51
|
Beernink BM, Lappe RR, Bredow M, Whitham SA. Impacts of RNA Mobility Signals on Virus Induced Somatic and Germline Gene Editing. Front Genome Ed 2022; 4:925088. [PMID: 35755451 PMCID: PMC9219249 DOI: 10.3389/fgeed.2022.925088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Viral vectors are being engineered to deliver CRISPR/Cas9 components systemically in plants to induce somatic or heritable site-specific mutations. It is hypothesized that RNA mobility signals facilitate entry of viruses or single guide RNAs (sgRNAs) into the shoot apical meristem where germline mutations can occur. Our objective was to understand the impact of RNA mobility signals on virus-induced somatic and germline gene editing in Nicotiana benthamiana and Zea mays. Previously, we showed that foxtail mosaic virus (FoMV) expressing sgRNA induced somatic mutations in N. benthamiana and Z. mays expressing Cas9. Here, we fused RNA mobility signals to sgRNAs targeting the genes encoding either N. benthamiana phytoene desaturase (PDS) or Z. mays high affinity potassium transporter 1 (HKT1). Addition of Arabidopsis thaliana Flowering Locus T (AtFT) and A. thaliana tRNA-Isoleucine (AttRNAIle) did not improve FoMV-induced somatic editing, and neither were sufficient to facilitate germline mutations in N. benthamiana. Maize FT homologs, Centroradialus 16 (ZCN16) and ZCN19, as well as AttRNAIle were found to aid somatic editing in maize but did not enable sgRNAs delivered by FoMV to induce germline mutations. Additional viral guide RNA delivery systems were assessed for somatic and germline mutations in N. benthamiana with the intention of gaining a better understanding of the specificity of mobile signal-facilitated germline editing. Potato virus X (PVX), barley stripe mosaic virus (BSMV), and tobacco rattle virus (TRV) were included in this comparative study, and all three of these viruses delivering sgRNA were able to induce somatic and germline mutations. Unexpectedly, PVX, a potexvirus closely related to FoMV, expressing sgRNA alone induced biallelic edited progeny, indicating that mobility signals are dispensable in virus-induced germline editing. These results show that PVX, BSMV, and TRV expressing sgRNA all have an innate ability to induce mutations in the germline. Our results indicate that mobility signals alone may not be sufficient to enable virus-based delivery of sgRNAs using the viruses, FoMV, PVX, BSMV, and TRV into cell types that result in germline mutations.
Collapse
Affiliation(s)
| | | | | | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| |
Collapse
|
52
|
Fitoussi N, de Almeida Engler J, Sichov N, Bucki P, Sela N, Harel A, Belausuv E, Kumar A, Brown Miyara S. The Minichromosome Maintenance Complex Component 2 (MjMCM2) of Meloidogyne javanica is a potential effector regulating the cell cycle in nematode-induced galls. Sci Rep 2022; 12:9196. [PMID: 35654810 PMCID: PMC9163083 DOI: 10.1038/s41598-022-13020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
Root-knot nematodes Meloidogyne spp. induce enlarged multinucleate feeding cells—galls—in host plant roots. Although core cell-cycle components in galls follow a conserved track, they can also be usurped and manipulated by nematodes. We identified a candidate effector in Meloidogyne javanica that is directly involved in cell-cycle manipulation—Minichromosome Maintenance Complex Component 2 (MCM2), part of MCM complex licensing factor involved in DNA replication. MjMCM2, which is induced by plant oxilipin 9-HOT, was expressed in nematode esophageal glands, upregulated during parasitic stages, and was localized to plant cell nucleus and plasma membrane. Infected tomato hairy roots overexpressing MjMCM2 showed significantly more galls and egg-mass-producing females than wild-type roots, and feeding cells showed more nuclei. Phylogenetic analysis suggested seven homologues of MjMCM2 with unknown association to parasitism. Sequence mining revealed two RxLR-like motifs followed by SEED domains in all Meloidogyne spp. MCM2 protein sequences. The unique second RxLR-like motif was absent in other Tylenchida species. Molecular homology modeling of MjMCM2 suggested that second RxLR2-like domain is positioned on a surface loop structure, supporting its function in polar interactions. Our findings reveal a first candidate cell-cycle gene effector in M. javanica—MjMCM2—that is likely secreted into plant host to mimic function of endogenous MCM2.
Collapse
Affiliation(s)
- Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.,Department of Plant Pathology and Microbiology, The Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | | | - Natalia Sichov
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Noa Sela
- Bioinformatics Unit, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Arye Harel
- Bioinformatics Unit, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausuv
- Department of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Anil Kumar
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.
| |
Collapse
|
53
|
Li J, Scarano A, Gonzalez NM, D'Orso F, Yue Y, Nemeth K, Saalbach G, Hill L, de Oliveira Martins C, Moran R, Santino A, Martin C. Biofortified tomatoes provide a new route to vitamin D sufficiency. NATURE PLANTS 2022; 8:611-616. [PMID: 35606499 PMCID: PMC9213236 DOI: 10.1038/s41477-022-01154-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/12/2022] [Indexed: 05/04/2023]
Abstract
Poor vitamin D status is a global health problem; insufficiency underpins higher risk of cancer, neurocognitive decline and all-cause mortality. Most foods contain little vitamin D and plants are very poor sources. We have engineered the accumulation of provitamin D3 in tomato by genome editing, modifying a duplicated section of phytosterol biosynthesis in Solanaceous plants, to provide a biofortified food with the added possibility of supplement production from waste material.
Collapse
Affiliation(s)
- Jie Li
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Aurelia Scarano
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Nestor Mora Gonzalez
- Recombinant Biopharmaceutical Laboratory, Department of Pharmacology, Biological Sciences Faculty, University of Concepción, Concepción, Chile
| | - Fabio D'Orso
- John Innes Centre, Norwich Research Park, Norwich, UK
- CREA-Research Centre for Genomics and Bioinformatics, Rome, Italy
| | - Yajuan Yue
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Angelo Santino
- Institute of Sciences of Food Production, C.N.R., Unit of Lecce, Lecce, Italy
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
54
|
Neumann M, Xu X, Smaczniak C, Schumacher J, Yan W, Blüthgen N, Greb T, Jönsson H, Traas J, Kaufmann K, Muino JM. A 3D gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data. Nat Commun 2022; 13:2838. [PMID: 35595749 PMCID: PMC9122980 DOI: 10.1038/s41467-022-30177-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular heterogeneity in growth and differentiation results in organ patterning. Single-cell transcriptomics allows characterization of gene expression heterogeneity in developing organs at unprecedented resolution. However, the original physical location of the cell is lost during this methodology. To recover the original location of cells in the developing organ is essential to link gene activity with cellular identity and function in plants. Here, we propose a method to reconstruct genome-wide gene expression patterns of individual cells in a 3D flower meristem by combining single-nuclei RNA-seq with microcopy-based 3D spatial reconstruction. By this, gene expression differences among meristematic domains giving rise to different tissue and organ types can be determined. As a proof of principle, the method is used to trace the initiation of vascular identity within the floral meristem. Our work demonstrates the power of spatially reconstructed single cell transcriptome atlases to understand plant morphogenesis. The floral meristem 3D gene expression atlas can be accessed at http://threed-flower-meristem.herokuapp.com. Single-cell transcriptomics allows gene expression heterogeneity to be assessed at cellular resolution but the original location of each cell is unknown. Here the authors combine single nuclei RNA-seq with 3D spatial reconstruction of floral meristems to link gene activities with morphology.
Collapse
Affiliation(s)
- Manuel Neumann
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Cezary Smaczniak
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Julia Schumacher
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Wenhao Yan
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Nils Blüthgen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas Greb
- Department of Developmental Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Jan Traas
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364, Lyon, France
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany
| | - Jose M Muino
- Systems Biology of Gene Regulation, Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany.
| |
Collapse
|
55
|
CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update. Mol Biol Rep 2022; 49:7101-7110. [PMID: 35568789 DOI: 10.1007/s11033-022-07523-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system was initially identified in bacteria and archaea as a defense mechanism to confer immunity against phages. Later on, it was developed as a gene editing tool for both prokaryotic and eukaryotic cells including plant cells. METHODS AND RESULTS CRISPR/Cas9 approach has wider applications in reverse genetics as well as in crop improvement. Various characters involved in enhancing economic value and crop sustainability against biotic/abiotic stresses can be targeted through this tool. Currently, CRISPR/Cas9 gene editing mechanism has been applied on around 20 crop species for improvement in several traits including yield enhancement and resistance against biotic and abiotic stresses. In the last five years, maximum genome editing research has been validated in rice, wheat, maize and soybean. Genes targeted in these plants has been involved in causing male sterility, conferring resistance against pathogens or having certain nutritional value. CONCLUSIONS Current review summarizes various applications of CRISPR/Cas system and its future prospects in plant biotechnology targeting crop improvement with higher yield, disease tolerance and enhanced nutritional value.
Collapse
|
56
|
Chu Y, Gong J, Wu P, Liu Y, Du Y, Ma L, Fu D, Zhu H, Qu G, Zhu B. Deciphering Precise Gene Transcriptional Expression Using gwINTACT in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:852206. [PMID: 35498641 PMCID: PMC9048029 DOI: 10.3389/fpls.2022.852206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Functional gene transcription mainly occurs in the nucleus and has a significant role in plant physiology. The isolation of nuclei tagged in specific cell type (INTACT) technique provides an efficient and stable nucleus purification method to investigate the dynamic changes of nuclear gene transcriptional expression. However, the application of traditional INTACT in plants is still limited to seedlings or root cells because of severe chloroplast pollution. In this study, we proposed a newly designed and simplified INTACT based on mas-enhanced GFP (eGFP)-SlWIP2 (gwINTACT) for nuclear purification in tomato (Solanum lycopersicum) leaves, flowers, and fruits for the first time. The yield of the nucleus purified using gwINTACT from transgenic tomato leaves was doubled compared with using a traditional INTACT procedure, accompanied by more than 95% removal of chloroplasts. Relative gene expression of ethylene-related genes with ethylene treatment was reevaluated in gwINTACT leaves to reveal more different results from the traditional gene expression assay based on total RNA. Therefore, establishing the gwINTACT system in this study facilitates the precise deciphering of the transcriptional status in various tomato tissues, which lays the foundation for the further experimental study of nucleus-related molecular regulation on fruit ripening, such as ChIP-seq and ATAC-seq.
Collapse
|
57
|
Naik BJ, Shimoga G, Kim SC, Manjulatha M, Subramanyam Reddy C, Palem RR, Kumar M, Kim SY, Lee SH. CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement. FRONTIERS IN PLANT SCIENCE 2022; 13:843575. [PMID: 35463432 PMCID: PMC9024397 DOI: 10.3389/fpls.2022.843575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/08/2023]
Abstract
The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.
Collapse
Affiliation(s)
- Banavath Jayanna Naik
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | - Ganesh Shimoga
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Seong-Cheol Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Jeju, South Korea
| | | | | | | | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, South Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Future Convergence Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, South Korea
| |
Collapse
|
58
|
Makhadmeh IM, Thabet SG, Ali M, Alabbadi B, Albalasmeh A, Alqudah AM. Exploring genetic variation among Jordanian Solanum lycopersicon L. landraces and their performance under salt stress using SSR markers. J Genet Eng Biotechnol 2022; 20:45. [PMID: 35275332 PMCID: PMC8917245 DOI: 10.1186/s43141-022-00327-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/01/2022] [Indexed: 01/15/2023]
Abstract
Background Tomatoes (Solanum lycopersicon L.) are one of the main daily consumed vegetables in the human diet. Tomato has been classified as moderately sensitive to salinity at most stages of plant development, including seed germination, seedling (vegetative), and reproduction phases. In this study, we evaluated the performance and response of 39 tomato landraces from Jordan under salt stress conditions. Furthermore, the landraces were also genetically characterized using simple sequence repeat (SSR) markers. Results The studied morphological-related traits at the seedling stage were highly varied among landraces of which the landrace number 24 (Jo970) showed the best performance with the highest salt tolerance. The total number of amplification products produced by five primers (LEaat002, LEaat006, LEaat008, LEga003, LEta019) was 346 alleles. Primer LEta 019 produced the highest number of alleles (134) and generated the highest degree of polymorphism (100%) among landraces in addition to primers (LEaat002, LEaat006, LEaat008). The lowest dissimilarity among landraces ranged from 0.04 between accessions 25 (Jo969) and 26 (Jo981) and the highest dissimilarity (1.45) was found between accessions 39 (Jo980) and both 3 (Jo960) and 23 (Jo978). The dendrogram showed two main clusters and separated 30 landraces from the rest 9 landraces. High genetic diversity was detected (0.998) based on the average polymorphism information. Therefore, the used SSRs in the current study provide new insights to reveal the genetic variation among thirty-nine Jordanian tomato landraces. According to functional annotations of the gene-associated SSRs in tomatoes, a few of SSR markers gene-associated markers, for example, LEaat002 and LEaat008 markers are related to MEIS1 Transcription factors genes (Solyc07g007120 and Solyc07g007120.2). The LEaat006 is related to trypsin and protease inhibitor (Kunitz_legume) gene (Solyc03g020010). Also, the SSR LEga003 marker was related to the Carbonic anhydrase gene (Solyc09g010970). Conclusions The genetic variation of tomato landraces could be used for considering salt tolerance improvement in tomato breeding programs. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00327-2.
Collapse
Affiliation(s)
- Ibrahim M Makhadmeh
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Samar G Thabet
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum, 63514, Egypt
| | - Mohammed Ali
- Egyptian Deserts Gene Bank, Desert Research Center, Department of Genetic Resources, Cairo, 11753, Egypt
| | - Basmah Alabbadi
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ammar Albalasmeh
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmad M Alqudah
- Department of Agroecology, Aarhus University Flakkebjerg, 4200, Slagelse, Denmark.
| |
Collapse
|
59
|
Schott C, Bley T, Walter T, Brusius J, Steingroewer J. Monitoring the apical growth characteristics of hairy roots using non-invasive laser speckle contrast imaging. Eng Life Sci 2022; 22:288-298. [PMID: 35382543 PMCID: PMC8961043 DOI: 10.1002/elsc.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Hairy roots are used to produce plant agents and additives. Due to their heterogeneous structure and growth characteristics, it is difficult to determine growth-related parameters continuously and in real time. Laser speckle contrast analysis is widely used as a non-destructive measurement technique in material testing or in medical technology. This type of analysis is based on the principle that moving objects or particles cause fluctuations in stochastic interference patterns known as speckle patterns. They are formed by the random backscattering of coherent laser light on an optically rough surface. A Laser Speckle Imager, which is well established for speckle studies of hemodynamics, was used for the first time for non-invasive speckle measurements on hairy roots to study dynamic behavior in plant tissue. Based on speckle contrast, a specific flux value was defined to map the dynamic changes in the investigated tissue. Using this method, we were able to predict the formation of lateral strands and to identify the growth zone in the apical root region, as well as dividing it into functional regions. This makes it possible to monitor physiological processes in the apical growth zone in vivo and in real time without labeling the target structures.
Collapse
Affiliation(s)
- Carolin Schott
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| | - Thomas Bley
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| | - Thomas Walter
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| | | | - Juliane Steingroewer
- Institute of Natural Materials TechnologyTU DresdenBioprocess EngineeringDresdenGermany
| |
Collapse
|
60
|
Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. FRONTIERS IN PLANT SCIENCE 2022; 13:830931. [PMID: 35283922 PMCID: PMC8909381 DOI: 10.3389/fpls.2022.830931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.
Collapse
Affiliation(s)
- Silvia Massa
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Riccardo Pagliarello
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - Olivia Costantina Demurtas
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Gianfranco Diretto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Francesca Paolini
- 'Regina Elena' National Cancer Institute, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation, Translational Research Functional Departmental Area, Rome, Italy
| | - H Earl Petzold
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mattijs Bliek
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Elisabetta Bennici
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Antonella Del Fiore
- Department for Sustainability, Biotechnology and Agro-Industry Division - Agrifood Sustainability, Quality, and Safety Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Patrizia De Rossi
- Energy Efficiency Unit Department - Northern Area Regions Laboratory, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Cornelis Spelt
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Koes
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Quattrocchio
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eugenio Benvenuto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
61
|
Tomasiak A, Zhou M, Betekhtin A. Buckwheat in Tissue Culture Research: Current Status and Future Perspectives. Int J Mol Sci 2022; 23:2298. [PMID: 35216414 PMCID: PMC8876565 DOI: 10.3390/ijms23042298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Buckwheat is a member of a genus of 23 species, where the two most common species are Fagopyrum esculentum (common buckwheat) and Fagopyrum tataricum (Tartary buckwheat). This pseudocereal is a source of micro and macro nutrients, such as gluten-free proteins and amino acids, fatty acids, bioactive compounds, dietary fibre, fagopyrins, vitamins and minerals. It is gaining increasing attention due to its health-promoting properties. Buckwheat is widely susceptible to in vitro conditions which are used to study plantlet regeneration, callus induction, organogenesis, somatic embryogenesis, and the synthesis of phenolic compounds. This review summarises the development of buckwheat in in vitro culture and describes protocols for the regeneration of plantlets from various explants and differing concentrations of plant growth regulators. It also describes callus induction protocols as well as the role of calli in plantlet regeneration. Protocols for establishing hairy root cultures with the use of Agrobacterium rhizogens are useful in the synthesis of secondary metabolites, as well as protocols used for transgenic plants. The review also focuses on the future prospects of buckwheat in tissue culture and the challenges researchers are addressing.
Collapse
Affiliation(s)
- Alicja Tomasiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St., 40-032 Katowice, Poland;
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 405, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China;
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St., 40-032 Katowice, Poland;
| |
Collapse
|
62
|
Chaudhuri A, Halder K, Datta A. Classification of CRISPR/Cas system and its application in tomato breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:367-387. [PMID: 34973111 PMCID: PMC8866350 DOI: 10.1007/s00122-021-03984-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/21/2021] [Indexed: 05/03/2023]
Abstract
Remarkable diversity in the domain of genome loci architecture, structure of effector complex, array of protein composition, mechanisms of adaptation along with difference in pre-crRNA processing and interference have led to a vast scope of detailed classification in bacterial and archaeal CRISPR/Cas systems, their intrinsic weapon of adaptive immunity. Two classes: Class 1 and Class 2, several types and subtypes have been identified so far. While the evolution of the effector complexes of Class 2 is assigned solely to mobile genetic elements, the origin of Class 1 effector molecules is still in a haze. Majority of the types target DNA except type VI, which have been found to target RNA exclusively. Cas9, the single effector protein, has been the primary focus of CRISPR-mediated genome editing revolution and is an integral part of Class 2 (type II) system. The present review focuses on the different CRISPR types in depth and the application of CRISPR/Cas9 for epigenome modification, targeted base editing and improving traits such as abiotic and biotic stress tolerance, yield and nutritional aspects of tomato breeding.
Collapse
Affiliation(s)
- Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067 India
| | - Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067 India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110 067 India
| |
Collapse
|
63
|
Geng S, Sohail H, Cao H, Sun J, Chen Z, Zhou L, Wang W, Ye R, Yang L, Bie Z. An efficient root transformation system for CRISPR/Cas9-based analyses of shoot-root communication in cucurbit crops. HORTICULTURE RESEARCH 2022; 9:uhab082. [PMID: 35048110 PMCID: PMC9071382 DOI: 10.1093/hr/uhab082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 05/28/2023]
Abstract
Cucurbit crops are suitable models for studying long-distance signaling in horticultural plants. Although thousands of substances are graft transmissible in cucurbits, functional studies have been hampered by the lack of efficient genetic transformation systems. Here, we report a convenient and efficient root transformation method for several cucurbit crops that will facilitate studies of functional genes and shoot-root crosstalk. We obtained healthy plants with completely transformed roots and non-transgenic shoots within 6 weeks. Furthermore, we combined this root transformation method with grafting, which allowed for gene manipulation in the rootstock. We validated our system by exploring salt tolerance mechanisms using a cucumber (Cucumis sativus)/pumpkin (Cucurbita moschata Duch.) (scion/rootstock) graft in which the sodium transporter gene High-affinity K+ transporter1 (CmoHKT1;1) was edited in the pumpkin rootstock, and by overexpressing the pumpkin tonoplast Na+/H+ antiporter gene Sodium hydrogen exchanger4 (CmoNHX4) in cucumber roots.
Collapse
Affiliation(s)
- Shouyu Geng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Haishun Cao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jingyu Sun
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijian Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbo Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Runwen Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilong Bie
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
64
|
Liu W, Sun J, Li J, Liu C, Si F, Yan B, Wang Z, Song X, Yang Y, Zhu Y, Cao X. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line. J Genet Genomics 2022; 49:624-635. [PMID: 35041992 DOI: 10.1016/j.jgg.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Translational regulation, especially tissue- or cell type-specific gene regulation, plays essential roles in plant growth and development. Thermo-sensitive genic male sterile (TGMS) lines have been widely used for hybrid breeding in rice (Oryza sativa). However, little is known about translational regulation during reproductive stage in TGMS rice. Here, we used translating ribosome affinity purification (TRAP) combined with RNA sequencing to investigate the reproductive tissue-specific translatome of TGMS rice expressing FLAG-tagged ribosomal protein L18 (RPL18) from the germline-specific promoter MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1). Differentially expressed genes at the transcriptional and translational levels were enriched in pollen and anther-related formation and development processes. These contained a number of genes reported to be involved in tapetum programmed cell death (PCD) and lipid metabolism during pollen development and anther dehiscence in rice, including several encoding transcription factors and key enzymes, as well as several long non-coding RNAs (lncRNAs) that potentially affect tapetum and pollen-related genes in male sterility. This study represents the first comprehensive reproductive tissue-specific characterization of the translatome in TGMS rice. These results contribute to our understanding of the molecular basis of sterility in TGMS rice and will facilitate further genetic manipulation of TGMS rice in two-line breeding systems.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ji Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuyan Si
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanzhu Yang
- Department of Rice Breeding, Hunan Yahua Seed Scientific Research Institute, Changsha 410119, Hunan, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, Hubei, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
65
|
Raul B, Sinharoy S. An Improvised Hairy Root Transformation Method for Efficient Gene Silencing in Roots and Nodules of Arachis hypogaea. Methods Mol Biol 2022; 2408:303-316. [PMID: 35325431 DOI: 10.1007/978-1-0716-1875-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peanut (Arachis hypogaea) is a major oilseed crop and is widely cultivated in tropical and subtropical climate zone worldwide. Peanut belongs to the Papilionoid family with an atypical nodule developmental program. In particular, rhizobia enter through developmental cracks and lead to the formation of aeschynomenoid subtype determinate nodules. Peanut nodules are efficient nitrogen-fixers and form swollen bacteroid containing symbiosomes. The allotetraploid genome and recalcitrance to stable transformation used to be the major bottleneck for peanut biologists. Recent genome sequencing of peanut cultivar Tifrunner has opened up a huge opportunity for molecular research. A composite plant contains transformed roots with a non-transformed shoot. The composite plant-based approach has already proven to be a tool of choice for high throughput studies in root biology. The available protocols failed to generate efficient hairy root transformation in the genome sequenced cultivar Tifrunner. Here we describe an efficient hairy root transformation and composite plant generation protocol for the peanut cultivar Tifrunner. Our protocol generated ~92% plant regeneration efficiency with between 21.8% and 58.6% co-transformed root regeneration. We also show that this protocol can be efficiently used for protein localization, promoter GUS analysis, monitoring hormone response, and RNAi mediated knockdown of the genes using genome sequenced cultivar Tifrunner.
Collapse
Affiliation(s)
- Bikash Raul
- National Institute of Plant Genome Research, New Delhi, India
| | | |
Collapse
|
66
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
67
|
Amo J, Lara A, Martínez-Martínez A, Martínez V, Rubio F, Nieves-Cordones M. The protein kinase SlCIPK23 boosts K + and Na + uptake in tomato plants. PLANT, CELL & ENVIRONMENT 2021; 44:3589-3605. [PMID: 34545584 DOI: 10.1111/pce.14189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Regulation of root transport systems is essential under fluctuating nutrient supply. In the case of potassium (K+ ), HAK/KUP/KT K+ transporters and voltage-gated K+ channels ensure root K+ uptake in a wide range of K+ concentrations. In Arabidopsis, the CIPK23/CBL1-9 complex regulates both transporter- and channel-mediated root K+ uptake. However, research about K+ homeostasis in crops is in demand due to species-specific mechanisms. In the present manuscript, we studied the contribution of the voltage-gated K+ channel LKT1 and the protein kinase SlCIPK23 to K+ uptake in tomato plants by analysing gene-edited knockout tomato mutant lines, together with two-electrode voltage-clamp experiments in Xenopus oocytes and protein-protein interaction analyses. It is shown that LKT1 is a crucial player in tomato K+ nutrition by contributing approximately 50% to root K+ uptake under K+ -sufficient conditions. Moreover, SlCIPK23 was responsible for approximately 100% of LKT1 and approximately 40% of the SlHAK5 K+ transporter activity in planta. Mg+2 and Na+ compensated for K+ deficit in tomato roots to a large extent, and the accumulation of Na+ was strongly dependent on SlCIPK23 function. The role of CIPK23 in Na+ accumulation in tomato roots was not conserved in Arabidopsis, which expands the current set of CIPK23-like protein functions in plants.
Collapse
Affiliation(s)
- Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Alberto Lara
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Almudena Martínez-Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| |
Collapse
|
68
|
Denne NL, Hiles RR, Kyrysyuk O, Iyer-Pascuzzi AS, Mitra RM. Ralstonia solanacearum Effectors Localize to Diverse Organelles in Solanum Hosts. PHYTOPATHOLOGY 2021; 111:2213-2226. [PMID: 33720750 DOI: 10.1094/phyto-10-20-0483-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytopathogenic bacteria secrete type III effector (T3E) proteins directly into host plant cells. T3Es can interact with plant proteins and frequently manipulate plant host physiological or developmental processes. The proper subcellular localization of T3Es is critical for their ability to interact with plant targets, and knowledge of T3E localization can be informative for studies of effector function. Here we investigated the subcellular localization of 19 T3Es from the phytopathogenic bacteria Ralstonia pseudosolanacearum and Ralstonia solanacearum. Approximately 45% of effectors in our library localize to both the plant cell periphery and the nucleus, 15% exclusively to the cell periphery, 15% exclusively to the nucleus, and 25% to other organelles, including tonoplasts and peroxisomes. Using tomato hairy roots, we show that T3E localization is similar in both leaves and roots and is not impacted by Solanum species. We find that in silico prediction programs are frequently inaccurate, highlighting the value of in planta localization experiments. Our data suggest that Ralstonia targets a wide diversity of cellular organelles and provides a foundation for developing testable hypotheses about Ralstonia effector function.
Collapse
Affiliation(s)
- Nina L Denne
- Department of Biology, Carleton College, Northfield, MN 55057
| | - Rachel R Hiles
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47907
| | | | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47907
| | - Raka M Mitra
- Department of Biology, Carleton College, Northfield, MN 55057
| |
Collapse
|
69
|
Matosevich R, Efroni I. The quiescent center and root regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6739-6745. [PMID: 34324634 PMCID: PMC8513162 DOI: 10.1093/jxb/erab319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/03/2021] [Indexed: 05/26/2023]
Abstract
Since its discovery by F.A.L Clowes, extensive research has been dedicated to identifying the functions of the quiescent center (QC). One of the earliest hypotheses was that it serves a key role in regeneration of the root meristem. Recent works provided support for this hypothesis and began to elucidate the molecular mechanisms underlying this phenomenon. There are two scenarios to consider when assessing the role of the QC in regeneration: one, when the damage leaves the QC intact; and the other, when the QC itself is destroyed. In the first scenario, multiple factors are recruited to activate QC cell division in order to replace damaged cells, but whether the QC has a role in the second scenario is less clear. Both using gene expression studies and following the cell division pattern have shown that the QC is assembled gradually, only to appear as a coherent identity late in regeneration. Similar late emergence of the QC was observed during the de novo formation of the lateral root meristem. These observations can lead to the conclusion that the QC has no role in regeneration. However, activities normally occurring in QC cells, such as local auxin biosynthesis, are still found during regeneration but occur in different cells in the regenerating meristem. Thus, we explore an alternative hypothesis, that following destruction of the QC, QC-related gene activity is temporarily distributed to other cells in the regenerating meristem, and only coalesce into a distinct cell identity when regeneration is complete.
Collapse
Affiliation(s)
- Rotem Matosevich
- The Institute of Plant Sciences, Faculty of Agriculture, The Hebrew University, Rehovot, Israel
| | - Idan Efroni
- The Institute of Plant Sciences, Faculty of Agriculture, The Hebrew University, Rehovot, Israel
| |
Collapse
|
70
|
Zhu F, Fernie AR. Plants upcycle gene functions to suit their roots. TRENDS IN PLANT SCIENCE 2021; 26:996-998. [PMID: 34284955 DOI: 10.1016/j.tplants.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The plant root is a crucial organ for adaptation to dynamic environments, but to date the degree of functional conservation of root developmental programs has remained unknown. A recent report by Kajala et al. sheds light on the cross-species conservation and repurposing of root gene functions in a manner pertinent to attempts to ensure future yield stability.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
71
|
Nazeri A, Niazi A, Afsharifar A, Taghavi SM, Moghadam A, Aram F. Heterologous production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2. Sci Rep 2021; 11:17966. [PMID: 34504153 PMCID: PMC8429445 DOI: 10.1038/s41598-021-97139-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Hyaluronic acid (HA), a unique polysaccharide with excellent Physico-chemical properties, is broadly used in pharmaceutical, biomedical, and cosmetic fields. It is widely present in all vertebrates, certain bacterial strains, and even viruses while it is not found in plants, fungi, and insects. HA is naturally synthesized by a class of integral membrane proteins called Hyaluronic acid synthase (HAS). Thus far, industrial production of HA is carried out based on either extraction from animal sources or large-scale microbial fermentation. The major drawbacks to using these systems are contamination with pathogens and microbial toxins. Recently, the production of HA through recombinant systems has received considerable attention. Plants are eco-friendly ideal expression systems for biopharmaceuticals production. In this study, the optimized human hyaluronic acid synthase2 (hHAS2) sequence was transformed into Nicotiana tabacum using Agrobacterium rhizogenes. The highest rhHAS2 concentration of 65.72 ng/kg (wet weight) in transgenic tobacco hairy roots was measured by the human HAS2 ELISA kit. The HA production in the transgenic hairy roots was verified by scanning electron microscope (SEM) and quantified by the HA ELISA kit. The DPPH radical scavenging activity of HA with the highest concentration of 0.56 g/kg (wet weight) showed a maximum activity of 46%. Gel Permeation Chromatography (GPC) analyses revealed the high molecular weight HA (HMW-HA) with about > 0.8 MDa.
Collapse
Affiliation(s)
- Arezoo Nazeri
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Seyed Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Farzaneh Aram
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
72
|
Gene Downregulation in Potato Roots Using Agrobacterium rhizogenes-Mediated Transformation. Methods Mol Biol 2021. [PMID: 34448169 DOI: 10.1007/978-1-0716-1609-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Agrobacterium rhizogenes has the ability to transform plant cells by transferring the T-DNA from the Ri plasmid to the plant cell genome. These infected plant cells divide and organize the formation of adventitious roots, called hairy roots. When the A. rhizogenes is additionally transformed with a binary vector, the cells infected can indeed be transformed with this second T-DNA producing transgenic hairy roots. In this chapter, we present the protocol to produce transgenic hairy roots from in vitro potato (Solanum tuberosum) plants injected with transformed A. rhizogenes, generating plants with a wild-type shoot and a transgenic root system. Specifically, we detail the procedure to obtain in vitro-cultured hairy roots with a downregulated gene of interest, by using a Gateway-based binary vector able to produce a RNA hairpin triggering the RNA interference mechanism (hpRNAi). We also present the protocol to analyze the downregulation of the target gene in hairy roots by means of reverse-transcription reaction followed by real-time PCR (qPCR).
Collapse
|
73
|
Bourigault Y, Rodrigues S, Crépin A, Chane A, Taupin L, Bouteiller M, Dupont C, Merieau A, Konto-Ghiorghi Y, Boukerb AM, Turner M, Hamon C, Dufour A, Barbey C, Latour X. Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching. Int J Mol Sci 2021; 22:ijms22158241. [PMID: 34361010 PMCID: PMC8347015 DOI: 10.3390/ijms22158241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.
Collapse
Affiliation(s)
- Yvann Bourigault
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Alexandre Crépin
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, F-86073 Poitiers, France;
| | - Andrea Chane
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Mathilde Bouteiller
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Amine M. Boukerb
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Marie Turner
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
- Biocontrol Consortium, F-75007 Paris, France
| | - Céline Hamon
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Corinne Barbey
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
- Biocontrol Consortium, F-75007 Paris, France
- Correspondence: ; +33-235-146-000
| |
Collapse
|
74
|
Mushtaq M, Ahmad Dar A, Skalicky M, Tyagi A, Bhagat N, Basu U, Bhat BA, Zaid A, Ali S, Dar TUH, Rai GK, Wani SH, Habib-Ur-Rahman M, Hejnak V, Vachova P, Brestic M, Çığ A, Çığ F, Erman M, EL Sabagh A. CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes (Basel) 2021; 12:797. [PMID: 34073848 PMCID: PMC8225059 DOI: 10.3390/genes12060797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Genome-editing (GE) is having a tremendous influence around the globe in the life science community. Among its versatile uses, the desired modifications of genes, and more importantly the transgene (DNA)-free approach to develop genetically modified organism (GMO), are of special interest. The recent and rapid developments in genome-editing technology have given rise to hopes to achieve global food security in a sustainable manner. We here discuss recent developments in CRISPR-based genome-editing tools for crop improvement concerning adaptation, opportunities, and challenges. Some of the notable advances highlighted here include the development of transgene (DNA)-free genome plants, the availability of compatible nucleases, and the development of safe and effective CRISPR delivery vehicles for plant genome editing, multi-gene targeting and complex genome editing, base editing and prime editing to achieve more complex genetic engineering. Additionally, new avenues that facilitate fine-tuning plant gene regulation have also been addressed. In spite of the tremendous potential of CRISPR and other gene editing tools, major challenges remain. Some of the challenges are related to the practical advances required for the efficient delivery of CRISPR reagents and for precision genome editing, while others come from government policies and public acceptance. This review will therefore be helpful to gain insights into technological advances, its applications, and future challenges for crop improvement.
Collapse
Affiliation(s)
- Muntazir Mushtaq
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Aejaz Ahmad Dar
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Anshika Tyagi
- ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Nancy Bhagat
- School of Biotechnology, University of Jammu, Jammu 180006, India;
| | - Umer Basu
- Division of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India;
| | | | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany Aligarh Muslim University, Aigarh 202002, India;
| | - Sajad Ali
- Centre of Research for Development, University of Kashmir, Srinagar 190006, India;
| | | | - Gyanendra Kumar Rai
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India; (M.M.); (A.A.D.)
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu 192101, India
| | - Muhammad Habib-Ur-Rahman
- Department of Crop Science, Institute of Crop Science and Resource Conservation (INRES), University Bonn, 53115 Bonn, Germany;
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (V.H.); (P.V.); (M.B.)
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
| | - Arzu Çığ
- Department of Horticulture, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey;
| | - Fatih Çığ
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
| | - Murat Erman
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
| | - Ayman EL Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt 56100, Turkey; (F.Ç.); (M.E.)
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
75
|
Innovation, conservation, and repurposing of gene function in root cell type development. Cell 2021; 184:3333-3348.e19. [PMID: 34010619 DOI: 10.1016/j.cell.2021.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.
Collapse
|
76
|
Hooykaas MJG, Hooykaas PJJ. The genome sequence of hairy root Rhizobium rhizogenes strain LBA9402: Bioinformatics analysis suggests the presence of a new opine system in the agropine Ri plasmid. Microbiologyopen 2021; 10:e1180. [PMID: 33970547 PMCID: PMC8087989 DOI: 10.1002/mbo3.1180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
We report here the complete genome sequence of the Rhizobium rhizogenes (formerly Agrobacterium rhizogenes) strain LBA9402 (NCPPB1855rifR), a pathogenic strain causing hairy root disease. To assemble a complete genome, we obtained short reads from Illumina sequencing and long reads from Oxford Nanopore Technology sequencing. The genome consists of a 3,958,212 bp chromosome, a 2,005,144 bp chromid (secondary chromosome) and a 252,168 bp Ri plasmid (pRi1855), respectively. The primary chromosome was very similar to that of the avirulent biocontrol strain K84, but the chromid showed a 724 kbp deletion accompanied by a large 1.8 Mbp inversion revealing the dynamic nature of these secondary chromosomes. The sequence of the agropine Ri plasmid was compared to other types of Ri and Ti plasmids. Thus, we identified the genes responsible for agropine catabolism, but also a unique segment adjacent to the TL region that has the signature of a new opine catabolic gene cluster including the three genes that encode the three subunits of an opine dehydrogenase. Our sequence analysis also revealed a novel gene at the very right end of the TL-DNA, which is unique for the agropine Ri plasmid. The protein encoded by this gene was most related to the succinamopine synthases of chrysopine and agropine Ti plasmids and thus may be involved in the synthesis of the unknown opine that can be degraded by the adjacent catabolic cluster. The available sequence will facilitate the use of R. rhizogenes and especially LBA9402 in both the laboratory and for biotechnological purposes.
Collapse
|
77
|
Iqbal A, Khan RS, Khan MA, Gul K, Jalil F, Shah DA, Rahman H, Ahmed T. Genetic Engineering Approaches for Enhanced Insect Pest Resistance in Sugarcane. Mol Biotechnol 2021; 63:557-568. [PMID: 33893996 DOI: 10.1007/s12033-021-00328-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Sugarcane (Saccharum officinarum), a sugar crop commonly grown for sugar production all over the world, is susceptible to several insect pests attack in addition to bacterial, fungal and viral infections leading to substantial reductions in its yield. The complex genetic makeup and lack of resistant genes in genome of sugarcane have made the conventional breeding a difficult and challenging task for breeders. Using pesticides for control of the attacking insects can harm beneficial insects, human and other animals and the environment as well. As alternative and effective strategy for control of insect pests, genetic engineering has been applied for overexpression of cry proteins, vegetative insecticidal proteins (vip), lectins and proteinase inhibitors (PI). In addition, the latest biotechnological tools such as host-induced gene silencing (HIGS) and CRISPR/Cas9 can be employed for sustainable control of insect pests in sugarcane. In this review overexpression of the cry, vip, lectins and PI genes in transgenic sugarcane and their disease resistance potential is described.
Collapse
Affiliation(s)
- Aneela Iqbal
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan.
| | - Mubarak Ali Khan
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Karim Gul
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Daud Ali Shah
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
| | - Talaat Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, Doha, Qatar
| |
Collapse
|
78
|
Li C, Brant E, Budak H, Zhang B. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B 2021; 22:253-284. [PMID: 33835761 PMCID: PMC8042526 DOI: 10.1631/jzus.b2100009] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010s, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has rapidly been developed into a robust, multifunctional genome editing tool with many uses. Following the discovery of the initial CRISPR/Cas-based system, the technology has been advanced to facilitate a multitude of different functions. These include development as a base editor, prime editor, epigenetic editor, and CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) gene regulators. It can also be used for chromatin and RNA targeting and imaging. Its applications have proved revolutionary across numerous biological fields, especially in biomedical and agricultural improvement. As a diagnostic tool, CRISPR has been developed to aid the detection and screening of both human and plant diseases, and has even been applied during the current coronavirus disease 2019 (COVID-19) pandemic. CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases, including cancers, and has aided drug development. In terms of agricultural breeding, precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins, starch, oil, and other functional components for crop improvement. Adding to this, CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators. Looking to the future, increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology. This review provides an in-depth overview of current CRISPR development, including the advantages and disadvantages of the technology, recent applications, and future considerations.
Collapse
Affiliation(s)
- Chao Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Eleanor Brant
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT 59802, USA.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
79
|
Sun T, Ma N, Wang C, Fan H, Wang M, Zhang J, Cao J, Wang D. A Golgi-Localized Sodium/Hydrogen Exchanger Positively Regulates Salt Tolerance by Maintaining Higher K +/Na + Ratio in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:638340. [PMID: 33767722 PMCID: PMC7985447 DOI: 10.3389/fpls.2021.638340] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/26/2021] [Indexed: 05/17/2023]
Abstract
Salt stress caused by soil salinization, is one of the main factors that reduce soybean yield and quality. A large number of genes have been found to be involved in the regulation of salt tolerance. In this study, we characterized a soybean sodium/hydrogen exchanger gene GmNHX5 and revealed its functional mechanism involved in the salt tolerance process in soybean. GmNHX5 responded to salt stress at the transcription level in the salt stress-tolerant soybean plants, but not significantly changed in the salt-sensitive ones. GmNHX5 was located in the Golgi apparatus, and distributed in new leaves and vascular, and was induced by salt treatment. Overexpression of GmNHX5 improved the salt tolerance of hairy roots induced by soybean cotyledons, while the opposite was observed when GmNHX5 was knockout by CRISPR/Cas9. Soybean seedlings overexpressing GmNHX5 also showed an increased expression of GmSOS1, GmSKOR, and GmHKT1, higher K+/Na+ ratio, and higher viability when exposed to salt stress. Our findings provide an effective candidate gene for the cultivation of salt-tolerant germplasm resources and new clues for further understanding of the salt-tolerance mechanism in plants.
Collapse
Affiliation(s)
- Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Nan Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Caiqing Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Huifen Fan
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Mengxuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jie Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jinfeng Cao
- Hebei Key Laboratory of Crop Salt-Alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou, China
- Academy of Agricultural and Forestry Sciences, Cangzhou, China
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding, China
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
80
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
81
|
Karimi-Ashtiyani R. Centromere Engineering as an Emerging Tool for Haploid Plant Production: Advances and Challenges. Methods Mol Biol 2021; 2289:3-22. [PMID: 34270060 DOI: 10.1007/978-1-0716-1331-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Haploid production is of great importance in plant breeding programs. Doubled haploid technology accelerates the generation of inbred lines with homozygosity in all loci in a single year. Haploids can be induced in vitro via cultivating the haploid gametes or in vivo through inter- and intraspecific hybridization. Haploid induction through centromere engineering is a novel system that is theoretically applicable to many plant species. The present review chapter discusses the proposed molecular mechanisms of selective chromosome elimination in early embryogenesis and the effects of kinetochore component modifications on proper chromosome segregation. Finally, the advantages and limitations of the CENH3-mediated haploidization approach and its applications are highlighted.
Collapse
|
82
|
Abstract
Agrobacterium spp. are important plant pathogens that are the causative agents of crown gall or hairy root disease. Their unique infection strategy depends on the delivery of part of their DNA to plant cells. Thanks to this capacity, these phytopathogens became a powerful and indispensable tool for plant genetic engineering and agricultural biotechnology. Although Agrobacterium spp. are standard tools for plant molecular biologists, current laboratory strains have remained unchanged for decades and functional gene analysis of Agrobacterium has been hampered by time-consuming mutation strategies. Here, we developed clustered regularly interspaced short palindromic repeats (CRISPR)-mediated base editing to enable the efficient introduction of targeted point mutations into the genomes of both Agrobacterium tumefaciens and Agrobacterium rhizogenes As an example, we generated EHA105 strains with loss-of-function mutations in recA, which were fully functional for maize (Zea mays) transformation and confirmed the importance of RolB and RolC for hairy root development by A. rhizogenes K599. Our method is highly effective in 9 of 10 colonies after transformation, with edits in at least 80% of the cells. The genomes of EHA105 and K599 were resequenced, and genome-wide off-target analysis was applied to investigate the edited strains after curing of the base editor plasmid. The off-targets present were characteristic of Cas9-independent off-targeting and point to TC motifs as activity hotspots of the cytidine deaminase used. We anticipate that CRISPR-mediated base editing is the start of "engineering the engineer," leading to improved Agrobacterium strains for more efficient plant transformation and gene editing.
Collapse
|
83
|
Cui ML, Liu C, Piao CL, Liu CL. A Stable Agrobacterium rhizogenes-Mediated Transformation of Cotton ( Gossypium hirsutum L.) and Plant Regeneration From Transformed Hairy Root via Embryogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:604255. [PMID: 33381137 PMCID: PMC7767857 DOI: 10.3389/fpls.2020.604255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 06/01/2023]
Abstract
Genetic transformation is a powerful tool to study gene function, secondary metabolism pathways, and molecular breeding in crops. Cotton (Gossypium hirsutum L.) is one of the most important economic crops in the world. Current cotton transformation methods take at least seven to culture and are labor-intensive and limited to some cultivars. In this study, we first time achieved plantlet regeneration of cotton via embryogenesis from transformed hairy roots. We inoculated the cotyledon explants of a commercial cultivar Zhongmian-24 with Agrobacterium rhizogenes strain AR1193, harboring a binary vector pBI-35S::GFP that contained the NPT II (neomycin phosphotransferase) gene and the GFP (green fluorescent protein) gene as a fluorescent marker in the T-DNA region. 82.6% explants produced adventitious roots, of which 53% showed GFP expression after transformation. 82% of transformed hairy roots produced embryonic calli, 12% of which regenerated into stable transformed cotton plants after 7 months of culture. The integration of GFP in the transformed cotton genomes were confirmed by PCR (Polymerase chain reaction) and Southern blot analysis as well as the stable expression of GFP were also detected by semi-quantitative RT-PCR analysis. The resultant transformed plantlets were phenotypically, thus avoiding Ri syndrome. Here we report a stable and reproducible method for A. rhizogenes-mediated transformation of cotton using cotyledon as explants, which provides a useful and reliable platform for gene function analysis of cotton.
Collapse
Affiliation(s)
- Min-Long Cui
- College of Agriculture and Food Sciences, Zhejiang A & F University, Hangzhou, China
| | - Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chun-Lan Piao
- College of Agriculture and Food Sciences, Zhejiang A & F University, Hangzhou, China
| | - Chuan-Liang Liu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
84
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
85
|
Hairy root culture technology: applications, constraints and prospect. Appl Microbiol Biotechnol 2020; 105:35-53. [PMID: 33226470 DOI: 10.1007/s00253-020-11017-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022]
Abstract
Hairy root (HR) culture, a successful biotechnology combining in vitro tissue culture with recombinant DNA machinery, is intended for the genetic improvement of plants. This technology has been put to use since the last three decades for genetic advancement of medicinal and aromatic plants and also to harvest the economical products in the form of secondary metabolites that are significantly important for their ethnobotanical and pharmacological properties. It also provides an efficient way out for the quicker extraction and quantification of the valuable phytochemicals. The current review provides an account of the in vitro HR culture technology and its wide-scale applications in the field of research as well as in pharmaceutical industries. Different facets of HR with respect to the culture establishment, phytochemical production as well as research investigations concerning the areas of gene manipulation, biotransformation of the secondary metabolites, phytoremediation, their industrial utilisations and different problems encountered during the application of this technology have been covered in this appraisal. Eventually, an idea has been provided on HR about the recent trends on the progress of this technology that may open up newer prospects in near future and calls for further research and explorations in this field. KEY POINTS: • Genetic engineering-based HR culture aims towards enhanced secondary metabolite production. • This review explores an insight in the HR technology and its multi-faceted approaches. • Up-to-date ground-breaking research applications and constraints of HR culture are discussed.
Collapse
|
86
|
Irigoyen S, Ramasamy M, Pant S, Niraula P, Bedre R, Gurung M, Rossi D, Laughlin C, Gorman Z, Achor D, Levy A, Kolomiets MV, Sétamou M, Badillo-Vargas IE, Avila CA, Irey MS, Mandadi KK. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nat Commun 2020; 11:5802. [PMID: 33199718 PMCID: PMC7669877 DOI: 10.1038/s41467-020-19631-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
A major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibacter spp., the presumptive causal agents of citrus greening, potato zebra chip and tomato vein greening diseases. Importantly, we leverage the microbial hairy roots for rapid, reproducible efficacy screening of multiple therapies. We identify six antimicrobial peptides, two plant immune regulators and eight chemicals which inhibit Candidatus Liberibacter spp. in plant tissues. The antimicrobials, either singly or in combination, can be used as near- and long-term therapies to control citrus greening, potato zebra chip and tomato vein greening diseases.
Collapse
Affiliation(s)
- Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | | | - Shankar Pant
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Agricultural Research Service, US Department of Agriculture, Stillwater, OK, USA
| | - Prakash Niraula
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Meena Gurung
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Denise Rossi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Corinne Laughlin
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Mamoudou Sétamou
- Texas A&M University-Kingsville, Citrus Center, Weslaco, TX, USA
| | - Ismael E Badillo-Vargas
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Carlos A Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
87
|
Butler NM, Jansky SH, Jiang J. First-generation genome editing in potato using hairy root transformation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2201-2209. [PMID: 32170801 PMCID: PMC7589382 DOI: 10.1111/pbi.13376] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 05/05/2023]
Abstract
Genome editing and cis-gene breeding have rapidly accelerated crop improvement efforts, but their impacts are limited by the number of species capable of being genetically transformed. Many dicot species, including some vital potato relatives being used to accelerate breeding and genetics efforts, remain recalcitrant to standard Agrobacterium tumefaciens-based transformation. Hairy root transformation using Agrobacterium rhizogenes (A. rhizogenes) provides an accelerated approach to generating transgenic material but has been limited to analysis of hairy root clones. In this study, strains of A. rhizogenes were tested in the wild diploid potato relative Solanum chacoense, which is recalcitrant to infection by Agrobacterium tumefaciens. One strain of A. rhizogenes MSU440 emerged as being capable of delivering a T-DNA carrying the GUS marker and generating transgenic hairy root clones capable of GUS expression and regeneration to whole plants. CRISPR/Cas9 reagents targeting the potato PHYTOENE DESATURASE (StPDS) gene were expressed in hairy root clones and regenerated. We found that 64%-98% of transgenic hairy root clones expressing CRISPR/Cas9 reagents carried targeted mutations, while only 14%-30% of mutations were chimeric. The mutations were maintained in regenerated lines as stable mutations at rates averaging at 38% and were capable of germ-line transmission to progeny. This novel approach broadens the numbers of genotypes amenable to Agrobacterium-mediated transformation while reducing chimerism in primary events and accelerating the generation of edited materials.
Collapse
Affiliation(s)
- Nathaniel M. Butler
- United States Department of Agriculture‐Agricultural Research ServiceVegetable Crops Research UnitMadisonWisconsinUSA
- Department of HorticultureUniversity of WisconsinMadisonWisconsinUSA
| | - Shelley H. Jansky
- United States Department of Agriculture‐Agricultural Research ServiceVegetable Crops Research UnitMadisonWisconsinUSA
- Department of HorticultureUniversity of WisconsinMadisonWisconsinUSA
| | - Jiming Jiang
- Department of Plant BiologyDepartment of HorticultureMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
88
|
Kaul T, Sony SK, Verma R, Motelb KFA, Prakash AT, Eswaran M, Bharti J, Nehra M, Kaul R. Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition. J Biosci 2020. [DOI: 10.1007/s12038-020-00094-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
89
|
Kuppu S, Ron M, Marimuthu MP, Li G, Huddleson A, Siddeek MH, Terry J, Buchner R, Shabek N, Comai L, Britt AB. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2068-2080. [PMID: 32096293 PMCID: PMC7540420 DOI: 10.1111/pbi.13365] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 05/03/2023]
Abstract
Creating true-breeding lines is a critical step in plant breeding. Novel, completely homozygous true-breeding lines can be generated by doubled haploid technology in single generation. Haploid induction through modification of the centromere-specific histone 3 variant (CENH3), including chimeric proteins, expression of non-native CENH3 and single amino acid substitutions, has been shown to induce, on outcrossing to wild type, haploid progeny possessing only the genome of the wild-type parent, in Arabidopsis thaliana. Here, we report the characterization of 31 additional EMS-inducible amino acid substitutions in CENH3 for their ability to complement a knockout in the endogenous CENH3 gene and induce haploid progeny when pollinated by the wild type. We also tested the effect of double amino acid changes, which might be generated through a second round of EMS mutagenesis. Finally, we report on the effects of CRISPR/Cas9-mediated in-frame deletions in the αN helix of the CENH3 histone fold domain. Remarkably, we found that complete deletion of the αN helix, which is conserved throughout angiosperms, results in plants which exhibit normal growth and fertility while acting as excellent haploid inducers when pollinated by wild-type pollen. Both of these technologies, CRISPR mutagenesis and EMS mutagenesis, represent non-transgenic approaches to the generation of haploid inducers.
Collapse
Affiliation(s)
- Sundaram Kuppu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mily Ron
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mohan P.A. Marimuthu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Glenda Li
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Amy Huddleson
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | | | - Joshua Terry
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Ryan Buchner
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Nitzan Shabek
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Luca Comai
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Anne B. Britt
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
90
|
Zou P, Duan L, Zhang S, Bai X, Liu Z, Jin F, Sun H, Xu W, Chen R. Target Specificity of the CRISPR-Cas9 System in Arabidopsis thaliana, Oryza sativa, and Glycine max Genomes. J Comput Biol 2020; 27:1544-1552. [PMID: 32298599 DOI: 10.1089/cmb.2019.0453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR), a class of immune-associated sequences in bacteria, have been developed as a powerful tool for editing eukaryotic genomes in diverse cells and organisms in recent years. The CRISPR-Cas9 system can recognize upstream 20 nucleotides (guide sequence) adjacent to the protospacer-adjacent motif site and trigger double-stranded DNA cleavage as well as DNA repair mechanisms, which eventually result in knockout, knockin, or site-specific mutagenesis. However, off-target effect caused by guide sequence misrecognition is the major drawback and restricts its widespread application. In this study, global analysis of specificities of all guide sequences in Arabidopsis thaliana, Oryza sativa (rice), and Glycine max (soybean) were performed. As a result, a simple pipeline and three genome-wide databases were established and shared for the scientific society. For each target site of CRISPR-Cas9, specificity score and off-target number were calculated and evaluated. The mean values of off-target numbers for A. thaliana, rice, and soybean were determined as 27.5, 57.3, and 174.7, respectively. Comparative analysis among these plants suggested that the frequency of off-target effects was correlated to genome size, chromosomal locus, gene density, and guanine-cytosine (GC) content. Our results contributed to the better understanding of CRISPR-Cas9 system in plants and would help to minimize the off-target effect during its applications in the future.
Collapse
Affiliation(s)
- Pan Zou
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lijin Duan
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Shasha Zhang
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Xue Bai
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhenghui Liu
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Fengmei Jin
- Tianjin Research Center of Agricultural Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Haibo Sun
- Tianjin Research Center of Agricultural Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Wentao Xu
- Key Laboratory of Assessment of Genetically Modified Organism (Food Safety) (Ministry of Agriculture and Rural Affairs), China Agricultural University, Beijing, China
| | - Rui Chen
- Tianjin Institute of Agricultural Quality Standard and Testing Technology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| |
Collapse
|
91
|
Meyer MD, Ryck JD, Goormachtig S, Van Damme P. Keeping in Touch with Type-III Secretion System Effectors: Mass Spectrometry-Based Proteomics to Study Effector-Host Protein-Protein Interactions. Int J Mol Sci 2020; 21:E6891. [PMID: 32961832 PMCID: PMC7555288 DOI: 10.3390/ijms21186891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
Manipulation of host cellular processes by translocated bacterial effectors is key to the success of bacterial pathogens and some symbionts. Therefore, a comprehensive understanding of effectors is of critical importance to understand infection biology. It has become increasingly clear that the identification of host protein targets contributes invaluable knowledge to the characterization of effector function during pathogenesis. Recent advances in mapping protein-protein interaction networks by means of mass spectrometry-based interactomics have enabled the identification of host targets at large-scale. In this review, we highlight mass spectrometry-driven proteomics strategies and recent advances to elucidate type-III secretion system effector-host protein-protein interactions. Furthermore, we highlight approaches for defining spatial and temporal effector-host interactions, and discuss possible avenues for studying natively delivered effectors in the context of infection. Overall, the knowledge gained when unravelling effector complexation with host factors will provide novel opportunities to control infectious disease outcomes.
Collapse
Affiliation(s)
- Margaux De Meyer
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Medical Biotechnology, Technologiepark 75, 9052 Zwijnaarde, Belgium
| | - Joren De Ryck
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Sofie Goormachtig
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium; (M.D.M.); (J.D.R.)
| |
Collapse
|
92
|
Lachner LA, Galstyan LG, Krause K. A highly efficient protocol for transforming Cuscuta reflexa based on artificially induced infection sites. PLANT DIRECT 2020; 4:e00254. [PMID: 32789286 PMCID: PMC7417715 DOI: 10.1002/pld3.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/17/2020] [Indexed: 05/02/2023]
Abstract
The parasitic plant genus Cuscuta is notoriously difficult to transform and to propagate or regenerate in vitro. With it being a substantial threat to many agroecosystems, techniques allowing functional analysis of gene products involved in host interaction and infection mechanisms are, however, in high demand. We set out to explore whether Agrobacterium-mediated transformation of different plant parts can provide efficient alternatives to the currently scarce and inefficient protocols for transgene expression in Cuscuta. We used fluorescent protein genes on the T-DNA as markers for transformation efficiency and transformation stability. As a result, we present a novel highly efficient transformation protocol for Cuscuta reflexa cells that exploits the propensity of the infection organ to take up and express transgenes with the T-DNA. Both, Agrobacterium rhizogenes and Agrobacterium tumefaciens carrying binary transformation vectors with reporter fluorochromes yielded high numbers of transformation events. An overwhelming majority of transformed cells were observed in the cell layer below the adhesive disk's epidermis, suggesting that these cells are particularly susceptible to infection. Cotransformation of these cells happens frequently when Agrobacterium strains carrying different constructs are applied together. Explants containing transformed tissue expressed the fluorescent markers in in vitro culture for several weeks, offering a future possibility for development of transformed cells into callus. These results are discussed with respect to the future potential of this technique and with respect to the special characteristics of the infection organ that may explain its competence to take up the foreign DNA.
Collapse
Affiliation(s)
| | - Levon Galstyan Galstyan
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
- Present address:
Faculty of Food TechnologiesArmenian National Agrarian UniversityYerevanArmenia
| | - Kirsten Krause
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
93
|
Yu Y, Xuan Y, Bian X, Zhang L, Pan Z, Kou M, Cao Q, Tang Z, Li Q, Ma D, Li Z, Sun J. Overexpression of phosphatidylserine synthase IbPSS1 affords cellular Na + homeostasis and salt tolerance by activating plasma membrane Na +/H + antiport activity in sweet potato roots. HORTICULTURE RESEARCH 2020; 7:131. [PMID: 32821414 PMCID: PMC7395154 DOI: 10.1038/s41438-020-00358-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 05/21/2023]
Abstract
Phosphatidylserine synthase (PSS)-mediated phosphatidylserine (PS) synthesis is crucial for plant development. However, little is known about the contribution of PSS to Na+ homeostasis regulation and salt tolerance in plants. Here, we cloned the IbPSS1 gene, which encodes an ortholog of Arabidopsis AtPSS1, from sweet potato (Ipomoea batatas (L.) Lam.). The transient expression of IbPSS1 in Nicotiana benthamiana leaves increased PS abundance. We then established an efficient Agrobacterium rhizogenes-mediated in vivo root transgenic system for sweet potato. Overexpression of IbPSS1 through this system markedly decreased cellular Na+ accumulation in salinized transgenic roots (TRs) compared with adventitious roots. The overexpression of IbPSS1 enhanced salt-induced Na+/H+ antiport activity and increased plasma membrane (PM) Ca2+-permeable channel sensitivity to NaCl and H2O2 in the TRs. We confirmed the important role of IbPSS1 in improving salt tolerance in transgenic sweet potato lines obtained from an Agrobacterium tumefaciens-mediated transformation system. Similarly, compared with the wild-type (WT) plants, the transgenic lines presented decreased Na+ accumulation, enhanced Na+ exclusion, and increased PM Ca2+-permeable channel sensitivity to NaCl and H2O2 in the roots. Exogenous application of lysophosphatidylserine triggered similar shifts in Na+ accumulation and Na+ and Ca2+ fluxes in the salinized roots of WT. Overall, this study provides an efficient and reliable transgenic method for functional genomic studies of sweet potato. Our results revealed that IbPSS1 contributes to the salt tolerance of sweet potato by enabling Na+ homeostasis and Na+ exclusion in the roots, and the latter process is possibly controlled by PS reinforcing Ca2+ signaling in the roots.
Collapse
Affiliation(s)
- Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Ying Xuan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Xiaofeng Bian
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Zhiyuan Pan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Meng Kou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Zhonghou Tang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Qiang Li
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Daifu Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, 221131 Xuzhou, Jiangsu Province China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, 221116 Xuzhou, Jiangsu China
| |
Collapse
|
94
|
Shi M, Liao P, Nile SH, Georgiev MI, Kai G. Biotechnological Exploration of Transformed Root Culture for Value-Added Products. Trends Biotechnol 2020; 39:137-149. [PMID: 32690221 DOI: 10.1016/j.tibtech.2020.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/09/2023]
Abstract
Medicinal plants produce valuable secondary metabolites with anticancer, analgesic, anticholinergic or other activities, but low metabolite levels and limited available tissue restrict metabolite yields. Transformed root cultures, also called hairy roots, provide a feasible approach for producing valuable secondary metabolites. Various strategies have been used to enhance secondary metabolite production in hairy roots, including increasing substrate availability, regulating key biosynthetic genes, multigene engineering, combining genetic engineering and elicitation, using transcription factors (TFs), and introducing new genes. In this review, we focus on recent developments in hairy roots from medicinal plants, techniques to boost production of desired secondary metabolites, and the development of new technologies to study these metabolites. We also discuss recent trends, emerging applications, and future perspectives.
Collapse
Affiliation(s)
- Min Shi
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China
| | - Pan Liao
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China.
| |
Collapse
|
95
|
A review of CRISPR associated genome engineering: application, advances and future prospects of genome targeting tool for crop improvement. Biotechnol Lett 2020; 42:1611-1632. [PMID: 32642978 DOI: 10.1007/s10529-020-02950-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
The Cas9 nuclease initiates double-stranded breaks at the target position in DNA, which are repaired by the intracellular restoration pathways to eliminate or insert pieces of DNA. CRISPR-Cas9 is proficient and cost-effective since cutting is guided by a piece of RNA instead of protein. Emphasis on this technology, in contrast with two recognized genome editing platforms (i.e., ZFNs and TALENs), is provided. This review evaluates the benefits of chemically synthesized gRNAs as well as the integration of chemical amendments to improve gene editing efficiencies. CRISPR is an indispensable means in biological investigations and is now as well transforming varied fields of biotechnology and agriculture. Recent advancement in targetable epigenomic-editing tools allows researchers to dispense direct functional and transcriptional significance to locus-explicit chromatin adjustments encompassing gene regulation and editing. An account of diverse sgRNA design tools is provided, principally on their target competence prediction model, off-target recognition algorithm, and generation of instructive annotations. The modern systems that have been utilized to deliver CRISPR-Cas9 in vivo and in vitro for crop improvement viz. nutritional enhancement, production of drought-tolerant and disease-resistant plants, are also highlighted. The conclusion is focused on upcoming directions, biosafety concerns, and expansive prospects of CRISPR technologies.
Collapse
|
96
|
Basso MF, Arraes FBM, Grossi-de-Sa M, Moreira VJV, Alves-Ferreira M, Grossi-de-Sa MF. Insights Into Genetic and Molecular Elements for Transgenic Crop Development. FRONTIERS IN PLANT SCIENCE 2020; 11:509. [PMID: 32499796 PMCID: PMC7243915 DOI: 10.3389/fpls.2020.00509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
Climate change and the exploration of new areas of cultivation have impacted the yields of several economically important crops worldwide. Both conventional plant breeding based on planned crosses between parents with specific traits and genetic engineering to develop new biotechnological tools (NBTs) have allowed the development of elite cultivars with new features of agronomic interest. The use of these NBTs in the search for agricultural solutions has gained prominence in recent years due to their rapid generation of elite cultivars that meet the needs of crop producers, and the efficiency of these NBTs is closely related to the optimization or best use of their elements. Currently, several genetic engineering techniques are used in synthetic biotechnology to successfully improve desirable traits or remove undesirable traits in crops. However, the features, drawbacks, and advantages of each technique are still not well understood, and thus, these methods have not been fully exploited. Here, we provide a brief overview of the plant genetic engineering platforms that have been used for proof of concept and agronomic trait improvement, review the major elements and processes of synthetic biotechnology, and, finally, present the major NBTs used to improve agronomic traits in socioeconomically important crops.
Collapse
Affiliation(s)
| | - Fabrício Barbosa Monteiro Arraes
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maíra Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Valdeir Junio Vaz Moreira
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| |
Collapse
|
97
|
Implementing the CRISPR/Cas9 Technology in Eucalyptus Hairy Roots Using Wood-Related Genes. Int J Mol Sci 2020; 21:ijms21103408. [PMID: 32408486 PMCID: PMC7279396 DOI: 10.3390/ijms21103408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 01/25/2023] Open
Abstract
Eucalypts are the most planted hardwoods worldwide. The availability of the Eucalyptus grandis genome highlighted many genes awaiting functional characterization, lagging behind because of the lack of efficient genetic transformation protocols. In order to efficiently generate knock-out mutants to study the function of eucalypts genes, we implemented the powerful CRISPR/Cas9 gene editing technology with the hairy roots transformation system. As proofs-of-concept, we targeted two wood-related genes: Cinnamoyl-CoA Reductase1 (CCR1), a key lignin biosynthetic gene and IAA9A an auxin dependent transcription factor of Aux/IAA family. Almost all transgenic hairy roots were edited but the allele-editing rates and spectra varied greatly depending on the gene targeted. Most edition events generated truncated proteins, the prevalent edition types were small deletions but large deletions were also quite frequent. By using a combination of FT-IR spectroscopy and multivariate analysis (partial least square analysis (PLS-DA)), we showed that the CCR1-edited lines, which were clearly separated from the controls. The most discriminant wave-numbers were attributed to lignin. Histochemical analyses further confirmed the decreased lignification and the presence of collapsed vessels in CCR1-edited lines, which are characteristics of CCR1 deficiency. Although the efficiency of editing could be improved, the method described here is already a powerful tool to functionally characterize eucalypts genes for both basic research and industry purposes.
Collapse
|
98
|
Xu J, Lee YRJ, Liu B. Establishment of a mitotic model system by transient expression of the D-type cyclin in differentiated leaf cells of tobacco (Nicotiana benthamiana). THE NEW PHYTOLOGIST 2020; 226:1213-1220. [PMID: 31679162 DOI: 10.1111/nph.16309] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
Investigations of plant cell division would greatly benefit from a fast, inducible system. Therefore, we aimed to establish a mitotic model by transiently expressing D-type cyclins in tobacco leaf cells. Two different D-type cyclins, CYCD3;1 and CYCD4;2 from Arabidopsis thaliana, were expressed by agrobacterial infiltration in the cells of expanded leaves in tobacco (Nicotiana benthamiana). Leaf pavement cells were examined after cyclin expression while target and reference (histone or tubulin) proteins were marked by fluorescent protein-tagging. Ectopic expression of the D-type cyclin induced pavement cells to re-enter cell division by establishing mitotic microtubule arrays. The induced leaf cells expressed M phase-specific genes of Arabidopsis encoding the mitotic kinase AtAurora 1, the microtubule-associated proteins AtEDE1 and AtMAP65-4, and the vesicle fusion protein AtKNOLLE by recognizing their genomic elements. Their distinct localizations at spindle poles (AtAurora1), spindle microtubules (AtEDE1), phragmoplast microtubules (AtMAP65-4) and the cell plate (AtKNOLLE) were indistinguishable from those in their native Arabidopsis cells. The dividing cells also revealed two rice (Oryza sativa) microtubule-associated proteins in the phragmoplast and uncovered a novel spindle-associated microtubule motor protein. Hence, this cell division-enabled leaf system predicts hypothesized cell cycle-dependent functions of heterologous genes by reporting the dynamics of encoded proteins.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
99
|
Ramkumar TR, Lenka SK, Arya SS, Bansal KC. A Short History and Perspectives on Plant Genetic Transformation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2124:39-68. [PMID: 32277448 DOI: 10.1007/978-1-0716-0356-7_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant genetic transformation is an important technological advancement in modern science, which has not only facilitated gaining fundamental insights into plant biology but also started a new era in crop improvement and commercial farming. However, for many crop plants, efficient transformation and regeneration still remain a challenge even after more than 30 years of technical developments in this field. Recently, FokI endonuclease-based genome editing applications in plants offered an exciting avenue for augmenting crop productivity but it is mainly dependent on efficient genetic transformation and regeneration, which is a major roadblock for implementing genome editing technology in plants. In this chapter, we have outlined the major historical developments in plant genetic transformation for developing biotech crops. Overall, this field needs innovations in plant tissue culture methods for simplification of operational steps for enhancing the transformation efficiency. Similarly, discovering genes controlling developmental reprogramming and homologous recombination need considerable attention, followed by understanding their role in enhancing genetic transformation efficiency in plants. Further, there is an urgent need for exploring new and low-cost universal delivery systems for DNA/RNA and protein into plants. The advancements in synthetic biology, novel vector systems for precision genome editing and gene integration could potentially bring revolution in crop-genetic potential enhancement for a sustainable future. Therefore, efficient plant transformation system standardization across species holds the key for translating advances in plant molecular biology to crop improvement.
Collapse
Affiliation(s)
- Thakku R Ramkumar
- Agronomy Department, IFAS, University of Florida, Gainesville, FL, USA
| | - Sangram K Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Sagar S Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Kailash C Bansal
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India.
| |
Collapse
|
100
|
Bernabé-Orts JM, Quijano-Rubio A, Vazquez-Vilar M, Mancheño-Bonillo J, Moles-Casas V, Selma S, Gianoglio S, Granell A, Orzaez D. A memory switch for plant synthetic biology based on the phage ϕC31 integration system. Nucleic Acids Res 2020; 48:3379-3394. [PMID: 32083668 PMCID: PMC7102980 DOI: 10.1093/nar/gkaa104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology has advanced from the setup of basic genetic devices to the design of increasingly complex gene circuits to provide organisms with new functions. While many bacterial, fungal and mammalian unicellular chassis have been extensively engineered, this progress has been delayed in plants due to the lack of reliable DNA parts and devices that enable precise control over these new synthetic functions. In particular, memory switches based on DNA site-specific recombination have been the tool of choice to build long-term and stable synthetic memory in other organisms, because they enable a shift between two alternative states registering the information at the DNA level. Here we report a memory switch for whole plants based on the bacteriophage ϕC31 site-specific integrase. The switch was built as a modular device made of standard DNA parts, designed to control the transcriptional state (on or off) of two genes of interest by alternative inversion of a central DNA regulatory element. The state of the switch can be externally operated by action of the ϕC31 integrase (Int), and its recombination directionality factor (RDF). The kinetics, memory, and reversibility of the switch were extensively characterized in Nicotiana benthamiana plants.
Collapse
Affiliation(s)
- Joan Miquel Bernabé-Orts
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Alfredo Quijano-Rubio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Javier Mancheño-Bonillo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Victor Moles-Casas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Selma
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Silvia Gianoglio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). CSIC - Universidad Politécnica de Valencia. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|