51
|
Costa LC, Luz LM, Nascimento VL, Araujo FF, Santos MNS, França CDFM, Silva TP, Fugate KK, Finger FL. Selenium-Ethylene Interplay in Postharvest Life of Cut Flowers. FRONTIERS IN PLANT SCIENCE 2020; 11:584698. [PMID: 33391299 PMCID: PMC7773724 DOI: 10.3389/fpls.2020.584698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/26/2020] [Indexed: 05/18/2023]
Abstract
Selenium (Se) is considered a beneficial element in higher plants when provided at low concentrations. Recently, studies have unveiled the interactions between Se and ethylene metabolism throughout plant growth and development. However, despite the evidence that Se may provide longer shelf life in ethylene-sensitive flowers, its primary action on ethylene biosynthesis and cause-effect responses are still understated. In the present review, we discuss the likely action of Se on ethylene biosynthesis and its consequence on postharvest physiology of cut flowers. By combining Se chemical properties with a dissection of ethylene metabolism, we further highlighted both the potential use of Se solutions and their downstream responses. We believe that this report will provide the foundation for the hypothesis that Se plays a key role in the postharvest longevity of ethylene-sensitive flowers.
Collapse
Affiliation(s)
- Lucas C. Costa
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
- *Correspondence: Lucas C. Costa,
| | - Luana M. Luz
- Laboratório de Genética e Biotecnologia – Campus Capanema, Universidade Federal Rural da Amazônia, Capanema, Brazil
| | - Vitor L. Nascimento
- Setor de Fisiologia Vegetal – Departamento de Biologia, Universidade Federal de Lavras, Lavras, Brazil
| | - Fernanda F. Araujo
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Christiane de F. M. França
- Departamento de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, Brazil
| | - Tania P. Silva
- Instituto de Ciências Agrárias, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Brazil
| | - Karen K. Fugate
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Fernando L. Finger
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
52
|
Li X, Chen T, Li Y, Wang Z, Cao H, Chen F, Li Y, Soppe WJJ, Li W, Liu Y. ETR1/RDO3 Regulates Seed Dormancy by Relieving the Inhibitory Effect of the ERF12-TPL Complex on DELAY OF GERMINATION1 Expression. THE PLANT CELL 2019; 31:832-847. [PMID: 30837295 PMCID: PMC6501604 DOI: 10.1105/tpc.18.00449] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/31/2019] [Accepted: 03/02/2019] [Indexed: 05/18/2023]
Abstract
The control of seed dormancy by ethylene has been well studied, but the underlying molecular mechanisms are not fully understood. Here, we report the characterization of the Arabidopsis (Arabidopsis thaliana) mutant reduced dormancy 3 (rdo3) and the cloning of the underlying gene. We demonstrate that rdo3 is a loss-of-function mutant of the ethylene receptor ETHYLENE RESPONSE1 (ETR1). ETR1 controls seed dormancy partially through the DELAY OF GERMINATION1 (DOG1) pathway. Molecular and genetic analyses demonstrated that ETHYLENE RESPONSE FACTOR12 (ERF12) is involved in the regulation of seed dormancy downstream of ETR1. ERF12 interacts with TOPLESS (TPL) and genetically requires TPL to function. ERF12 and TPL repress the expression of DOG1 by occupying its promoter. Thus, we identified the dormancy pathway ETR1-ERF12-TPL-DOG1 and provide mechanistic insights into the regulation of seed dormancy by linking the ethylene and DOG1 pathways.
Collapse
Affiliation(s)
- Xiaoying Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tiantian Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yong Li
- Institute of Genetic Epidemiology, University of Freiburg, 79106 Freiburg, Germany
| | - Wim J J Soppe
- Rijk Zwaan, De Lier 2678 ZG, The Netherlands
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Wenlong Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Science and Technology Daily, Beijing, China
| | - Yongxiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
53
|
Yu J, Niu L, Yu J, Liao W, Xie J, Lv J, Feng Z, Hu L, Dawuda MM. The Involvement of Ethylene in Calcium-Induced Adventitious Root Formation in Cucumber under Salt Stress. Int J Mol Sci 2019; 20:E1047. [PMID: 30823363 PMCID: PMC6429442 DOI: 10.3390/ijms20051047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022] Open
Abstract
Calcium and ethylene are essential in plant growth and development. In this study, we investigated the effects of calcium and ethylene on adventitious root formation in cucumber explants under salt stress. The results revealed that 10 μM calcium chloride (CaCl₂) or 0.1 μM ethrel (ethylene donor) treatment have a maximum biological effect on promoting the adventitious rooting in cucumber under salt stress. Meanwhile, we investigated that removal of ethylene suppressed calcium ion (Ca2+)-induced the formation of adventitious root under salt stress indicated that ethylene participates in this process. Moreover, the application of Ca2+ promoted the activities of 1-aminocyclopropane-l-carboxylic acid synthase (ACS) and ACC Oxidase (ACO), as well as the production of 1-aminocyclopropane-l-carboxylic acid (ACC) and ethylene under salt stress. Furthermore, we discovered that Ca2+ greatly up-regulated the expression level of CsACS3, CsACO1 and CsACO2 under salt stress. Meanwhile, Ca2+ significantly down-regulated CsETR1, CsETR2, CsERS, and CsCTR1, but positively up-regulated the expression of CsEIN2 and CsEIN3 under salt stress; however, the application of Ca2+ chelators or channel inhibitors could obviously reverse the effects of Ca2+ on the expression of the above genes. These results indicated that Ca2+ played a vital role in promoting the adventitious root development in cucumber under salt stress through regulating endogenous ethylene synthesis and activating the ethylene signal transduction pathway.
Collapse
Affiliation(s)
- Jian Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
- Horticulture Department, FoA University For Development Studies, Box TL 1350 Tamale, Ghana.
| |
Collapse
|
54
|
Yuan F, Guo J, Shabala S, Wang B. Reproductive Physiology of Halophytes: Current Standing. FRONTIERS IN PLANT SCIENCE 2019; 9:1954. [PMID: 30687356 PMCID: PMC6334627 DOI: 10.3389/fpls.2018.01954] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 05/19/2023]
Abstract
Background: Halophytes possess efficient salt-tolerance mechanisms and can complete their life cycles in naturally saline soils with NaCl contents exceeding 200 mM. While a significant progress have been made in recent decades elucidating underlying salt-tolerance mechanisms, these studies have been mostly confined to the vegetative growth stage. At the same time, the capacity to generate high-quality seeds and to survive early developmental stages under saline conditions, are both critically important for plants. Halophytes perform well in both regards, whereas non-halophytes cannot normally complete their life cycles under saline conditions. Scope: Research into the effects of salinity on plant reproductive biology has gained momentum in recent years. However, it remains unclear whether the reproductive biology of halophytes differs from that of non-halophytes, and whether their reproductive processes benefit, like their vegetative growth, from the presence of salt in the rhizosphere. Here, we summarize current knowledge of the mechanisms underlying the superior reproductive biology of halophytes, focusing on critical aspects including control of flowering time, changes in plant hormonal status and their impact on anther and pollen development and viability, plant carbohydrate status and seed formation, mechanisms behind the early germination of halophyte seeds, and the role of seed polymorphism. Conclusion: Salt has beneficial effects on halophyte reproductive growth that include late flowering, increased flower numbers and pollen vitality, and high seed yield. This improved performance is due to optimal nutrition during vegetative growth, alterations in plant hormonal status, and regulation of flowering genes. In addition, the seeds of halophytes harvested under saline conditions show higher salt tolerance than those obtained under non-saline condition, largely due to increased osmolyte accumulation, more optimal hormonal composition (e.g., high gibberellic acid and low abcisic acid content) and, in some species, seed dimorphism. In the near future, identifying key genes involved in halophyte reproductive physiology and using them to transform crops could be a promising approach to developing saline agriculture.
Collapse
Affiliation(s)
- Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, China
- College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
55
|
Harkey AF, Yoon GM, Seo DH, DeLong A, Muday GK. Light Modulates Ethylene Synthesis, Signaling, and Downstream Transcriptional Networks to Control Plant Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1094. [PMID: 31572414 PMCID: PMC6751313 DOI: 10.3389/fpls.2019.01094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/09/2019] [Indexed: 05/17/2023]
Abstract
The inhibition of hypocotyl elongation by ethylene in dark-grown seedlings was the basis of elegant screens that identified ethylene-insensitive Arabidopsis mutants, which remained tall even when treated with high concentrations of ethylene. This simple approach proved invaluable for identification and molecular characterization of major players in the ethylene signaling and response pathway, including receptors and downstream signaling proteins, as well as transcription factors that mediate the extensive transcriptional remodeling observed in response to elevated ethylene. However, the dark-adapted early developmental stage used in these experiments represents only a small segment of a plant's life cycle. After a seedling's emergence from the soil, light signaling pathways elicit a switch in developmental programming and the hormonal circuitry that controls it. Accordingly, ethylene levels and responses diverge under these different environmental conditions. In this review, we compare and contrast ethylene synthesis, perception, and response in light and dark contexts, including the molecular mechanisms linking light responses to ethylene biology. One powerful method to identify similarities and differences in these important regulatory processes is through comparison of transcriptomic datasets resulting from manipulation of ethylene levels or signaling under varying light conditions. We performed a meta-analysis of multiple transcriptomic datasets to uncover transcriptional responses to ethylene that are both light-dependent and light-independent. We identified a core set of 139 transcripts with robust and consistent responses to elevated ethylene across three root-specific datasets. This "gold standard" group of ethylene-regulated transcripts includes mRNAs encoding numerous proteins that function in ethylene signaling and synthesis, but also reveals a number of previously uncharacterized gene products that may contribute to ethylene response phenotypes. Understanding these light-dependent differences in ethylene signaling and synthesis will provide greater insight into the roles of ethylene in growth and development across the entire plant life cycle.
Collapse
Affiliation(s)
- Alexandria F. Harkey
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, United States
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Dong Hye Seo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Gloria K. Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, United States
- *Correspondence: Gloria K. Muday,
| |
Collapse
|
56
|
Piya S, Binder BM, Hewezi T. Canonical and noncanonical ethylene signaling pathways that regulate Arabidopsis susceptibility to the cyst nematode Heterodera schachtii. THE NEW PHYTOLOGIST 2019; 221:946-959. [PMID: 30136723 DOI: 10.1111/nph.15400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/13/2018] [Indexed: 05/29/2023]
Abstract
Plant-parasitic cyst nematodes successfully exploit various phytohormone signaling pathways to establish a new hormonal equilibrium that facilitates nematode parasitism. Although it is largely accepted that ethylene regulates plant responses to nematode infection, a mechanistic understanding of how ethylene shapes plant-nematode interactions remains largely unknown. In this study, we examined the involvement of various components regulating ethylene perception and signaling in establishing Arabidopsis susceptibility to the cyst nematode Heterodera schachtii using a large set of well-characterized single and higher order mutants. Our analyses revealed the existence of two pathways that separately engage ethylene with salicylic acid (SA) and cytokinin signaling during plant response to nematode infection. One pathway involves the canonical ethylene signaling pathway in which activation of ethylene signaling results in suppression of SA-based immunity. The second pathway involves the ethylene receptor ETR1, which signals independently of SA acid to affect immunity, instead altering cytokinin-mediated regulation of downstream components. Our results reveal important mechanisms through which cyst nematodes exploit components of ethylene perception and signaling to affect the balance of hormonal signaling through ethylene interaction with SA and cytokinin networks. This hormonal interaction overcomes plant defense and provokes a susceptible response.
Collapse
Affiliation(s)
- Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Brad M Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
57
|
Gwanpua SG, Jabbar A, Tongonya J, Nicholson S, East AR. Measuring ethylene in postharvest biology research using the laser-based ETD-300 ethylene detector. PLANT METHODS 2018; 14:105. [PMID: 30505339 PMCID: PMC6260721 DOI: 10.1186/s13007-018-0372-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/21/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Ability to measure ethylene is an important aspect of postharvest management, as knowledge of endogenous ethylene production is used in assessing physiological status, while response of crops to exogenous ethylene informs efforts needed to control unwanted ripening. An ethylene monitoring device with a laser-based photoacoustic detector, ETD-300, was recently developed by Sensor Sense B.V., Nijmegen, The Netherlands. In terms of performance, the ETD-300 is superior to all other current ethylene measurement devices, with a sensitivity of 0.3 nL L-1, a response time of 5 s, and an ability to monitor ethylene in real time. Although the ETD-300 is relatively easy to operate, the performance and correctness of the data obtained depends on the choice of settings, which depends on the application. RESULTS This article provides a description of different ways in which the ETD-300 can be used in postharvest research for monitoring ethylene production and ethylene presence in an environment. We provided guidelines on selecting the appropriate method (Continuous Flow, Stop and Flow, and Sample methods), and operational curves for deciding on suitable combination of free volume, flow rates, and period for the different measurement methods. CONCLUSIONS Using these guidelines and operational curves, ETD-300 users can considerably reduce the measurement effort by limiting trial and error in establishing appropriate methodologies for their application. The guidelines also comment on accurate use of the ETD-300, as using the inappropriate settings could lead to erroneous measurements. Although these methodologies were developed primarily for postharvest application, they can be applied in other plant science research.
Collapse
Affiliation(s)
- Sunny George Gwanpua
- Massey AgriTech Partnership, Massey University, Private Bag 11222, Palmerston North, 4412 New Zealand
| | - Abdul Jabbar
- Massey AgriTech Partnership, Massey University, Private Bag 11222, Palmerston North, 4412 New Zealand
| | - Jeritah Tongonya
- Massey AgriTech Partnership, Massey University, Private Bag 11222, Palmerston North, 4412 New Zealand
| | - Sue Nicholson
- Massey AgriTech Partnership, Massey University, Private Bag 11222, Palmerston North, 4412 New Zealand
| | - Andrew R. East
- Massey AgriTech Partnership, Massey University, Private Bag 11222, Palmerston North, 4412 New Zealand
| |
Collapse
|
58
|
Chen Y, Grimplet J, David K, Castellarin SD, Terol J, Wong DCJ, Luo Z, Schaffer R, Celton JM, Talon M, Gambetta GA, Chervin C. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:63-72. [PMID: 30348329 DOI: 10.1016/j.plantsci.2018.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 05/10/2023]
Abstract
Fruits have been traditionally classified into two categories based on their capacity to produce and respond to ethylene during ripening. Fruits whose ripening is associated to a peak of ethylene production and a respiration burst are referred to as climacteric, while those that are not are referred to as non-climacteric. However, an increasing body of literature supports an important role for ethylene in the ripening of both climacteric and non-climacteric fruits. Genome and transcriptomic data have become available across a variety of fruits and we leverage these data to compare the structure and transcriptional regulation of the ethylene receptors and related proteins. Through the analysis of four economically important fruits, two climacteric (tomato and apple), and two non-climacteric (grape and citrus), this review compares the structure and transcriptional regulation of the ethylene receptors and related proteins in both types of fruit, establishing a basis for the annotation of ethylene-related genes. This analysis reveals two interesting differences between climacteric and non-climacteric fruit: i) a higher number of ETR genes are found in climacteric fruits, and ii) non-climacteric fruits are characterized by an earlier ETR expression peak relative to sugar accumulation.
Collapse
Affiliation(s)
- Yi Chen
- Université de Toulouse, Genomics & Biotechnology of Fruits, INRA, Toulouse INP, ENSAT, BP 32607, F-31326 Castanet-Tolosan, France.
| | - Jérôme Grimplet
- Departamento de Viticultura, Instituto de Ciencias de la Vid y del Vino, CSIC, Universidad de La Rioja, Gobierno de la Rioja, Logroño, Spain.
| | - Karine David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Simone Diego Castellarin
- University of British Columbia, Wine Research Centre, 2205 East Mall, Vancouver, BC, V6T1Z4, Canada.
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera CV-315, km 10,7, Moncada, Valencia, Spain.
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT 2601, Australia.
| | - Zhiwei Luo
- Plant & Food Research, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Robert Schaffer
- Plant & Food Research, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand.
| | - Jean-Marc Celton
- Institut de Recherche en Horticulture et Semences, INRA, BP 60057, 49071 Beaucouze Cedex, France.
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera CV-315, km 10,7, Moncada, Valencia, Spain.
| | - Gregory Alan Gambetta
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, 33140 Villenave d'Ornon, France.
| | - Christian Chervin
- Université de Toulouse, Genomics & Biotechnology of Fruits, INRA, Toulouse INP, ENSAT, BP 32607, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
59
|
Silva NCQ, de Souza GA, Pimenta TM, Brito FAL, Picoli EAT, Zsögön A, Ribeiro DM. Salt stress inhibits germination of Stylosanthes humilis seeds through abscisic acid accumulation and associated changes in ethylene production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:399-407. [PMID: 30064096 DOI: 10.1016/j.plaphy.2018.07.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/09/2018] [Accepted: 07/21/2018] [Indexed: 05/13/2023]
Abstract
In Stylosanthes humilis, salt stress tolerance is associated with ethylene production by the seeds, however, how salt stress controls seed germination and ethylene production is poorly understood. Here, we studied the hormonal and metabolic changes triggered by salt stress on germination of S. humilis seeds. Salt stress led to decreased seed germination and ethylene production, concomitantly with higher abscisic acid (ABA) production by seeds. Treatment with NaCl and ABA promoted distinct changes in energy metabolism, allowing seeds to adapt to salt stress conditions. Treatment with the ABA biosynthesis inhibitor fluridone or ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) reversed the effects of salt stress on seed germination and ethylene production. Moreover, ethylene concentration was decreased by increasing the pH of the salt solution. High pH, however, did not influence concentration of ABA in seeds under salt stress. We conclude that biosynthesis of ABA and ethylene in response to salt stress constitutes a point of convergence that provides flexibility to regulate energy metabolism and embryo growth potential of S. humilis seeds within a given pH condition.
Collapse
Affiliation(s)
- Nilo C Q Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Genaina A de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Thaline M Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Fred A L Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Edgard A T Picoli
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
60
|
Zhang W, Lu LY, Hu LY, Cao W, Sun K, Sun QB, Siddikee A, Shi RH, Dai CC. Evidence for the Involvement of Auxin, Ethylene and ROS Signaling During Primary Root Inhibition of Arabidopsis by the Allelochemical Benzoic Acid. PLANT & CELL PHYSIOLOGY 2018; 59:1889-1904. [PMID: 29893960 DOI: 10.1093/pcp/pcy107] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 05/31/2018] [Indexed: 05/25/2023]
Abstract
Allelopathy is mediated by plant-derived secondary metabolites (allelochemicals) which are released by donor plants and affect the growth and development of receptor plants. The plant root is the first organ which senses soil allelochemicals this results in the production of a shorter primary root. However, the mechanisms underlying this process remain elusive. Here, we report that a model allelochemical benzoic acid (BA) inhibited primary root elongation of Arabidopsis seedlings by reducing the sizes of both the meristem and elongation zones, and that auxin signaling affected this process. An increase in auxin level in the root tips was associated with increased expression of auxin biosynthesis genes and auxin polar transporter AUX1 and PIN2 genes under BA stress. Mutant analyses demonstrated that AUX1 and PIN2 rather than PIN1 were required for the inhibition of primary root elongation during BA exposure. Furthermore, BA stimulated ethylene evolution, whereas blocking BA-induced ethylene signaling with an ethylene biosynthesis inhibitor (Co2+), an ethylene perception antagonist (1-methylcyclopropene) or ethylene signaling mutant lines etr1-3 and ein3eil1 compromised BA-mediated inhibition of root elongation and up-regulation of auxin biosynthesis-related genes together with AUX1 and PIN2, indicating that ethylene signal was involved in auxin-mediated inhibition of primary root elongation during BA stress. Further analysis revealed that the BA-induced reactive oxygen species (ROS) burst contributed to BA-mediated root growth inhibition without affecting auxin and ethylene signals. Taken together, our results reveal that the allelochemical BA inhibits root elongation by increasing auxin accumulation via stimulation of auxin biosynthesis and AUX1/PIN2-mediated auxin transport via stimulation of ethylene production and an auxin/ethylene-independent ROS burst.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Li-Ying Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Li-Yan Hu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Wei Cao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Qi-Biao Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Ashaduzzaman Siddikee
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Run-Han Shi
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China
| |
Collapse
|
61
|
Chahtane H, Nogueira Füller T, Allard PM, Marcourt L, Ferreira Queiroz E, Shanmugabalaji V, Falquet J, Wolfender JL, Lopez-Molina L. The plant pathogen Pseudomonas aeruginosa triggers a DELLA-dependent seed germination arrest in Arabidopsis. eLife 2018; 7:37082. [PMID: 30149837 PMCID: PMC6128175 DOI: 10.7554/elife.37082] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/30/2018] [Indexed: 11/23/2022] Open
Abstract
To anticipate potential seedling damage, plants block seed germination under unfavorable conditions. Previous studies investigated how seed germination is controlled in response to abiotic stresses through gibberellic and abscisic acid signaling. However, little is known about whether seeds respond to rhizosphere bacterial pathogens. We found that Arabidopsis seed germination is blocked in the vicinity of the plant pathogen Pseudomonas aeruginosa. We identified L-2-amino-4-methoxy-trans-3-butenoic acid (AMB), released by P. aeruginosa, as a biotic compound triggering germination arrest. We provide genetic evidence that in AMB-treated seeds DELLA factors promote the accumulation of the germination repressor ABI5 in a GA-independent manner. AMB production is controlled by the quorum sensing system IQS. In vitro experiments show that the AMB-dependent germination arrest protects seedlings from damage induced by AMB. We discuss the possibility that this could serve as a protective response to avoid severe seedling damage induced by AMB and exposure to a pathogen. The plant embryo within a seed is well protected. While it cannot stay within the seed forever, the embryo can often wait for the right conditions before it develops into a seedling and continues its life cycle. Indeed, plants have evolved several ways to time this process – which is known as germination – to maximize the chances that their seedlings will survive. For example, if the environment is too hot or too dark, the seed will make a hormone that stops it from germinating. In addition to environmental factors like light and temperature, a seed in the real word is continuously confronted with soil microbes that may harm or benefit the plant. However, few researchers have asked whether seeds control their germination in response to other living organisms. The bacterium Pseudomonas aeruginosa lives in a wide spectrum of environments, including the soil, and can cause diseases in both and plants and animals. Chahtane et al. now report that seeds of the model plant Arabidopsis thaliana do indeed repress their germination when this microbe is present. Specifically, the seeds respond to a molecule released from the bacteria called L-2-amino-4-methoxy-trans-3-butenoic acid, or AMB for short. Like the bacteria, AMB is harmful to young seedlings, but Chahtane et al. showed that the embryo within the seed is protected from its toxic effects. Further experiments revealed that the seed's response to the bacterial molecule requires many of the same signaling components that repress germination when environmental conditions are unfavorable. However, Chahtane et al. note that AMB activates these components in an unusual way that they still do not understand. The genes that control the production of AMB are known to also control how bacterial populations behave as they accumulate to high densities. It is therefore likely that Pseudomonas aeruginosa would make AMB if it reached a high density in the soil. This raises the possibility that plants have specifically evolved to stop germination if there are enough microbes nearby to pose a risk of disease. This hypothesis, however, is only one of several possible explanations and remains speculative at this stage; further work is now needed to evaluate it. Nevertheless, identifying how AMB interferes with the signaling components that control germination and plant growth may guide the design of new herbicides that could, for example, control weeds in the farming industry.
Collapse
Affiliation(s)
- Hicham Chahtane
- Department of Plant Biology, University of Geneva, Geneva, Switzerland.,Institute for Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Thanise Nogueira Füller
- Department of Plant Biology, University of Geneva, Geneva, Switzerland.,Institute for Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Venkatasalam Shanmugabalaji
- Department of Plant Biology, University of Geneva, Geneva, Switzerland.,Institute for Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Luis Lopez-Molina
- Department of Plant Biology, University of Geneva, Geneva, Switzerland.,Institute for Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
62
|
Harkey AF, Watkins JM, Olex AL, DiNapoli KT, Lewis DR, Fetrow JS, Binder BM, Muday GK. Identification of Transcriptional and Receptor Networks That Control Root Responses to Ethylene. PLANT PHYSIOLOGY 2018; 176:2095-2118. [PMID: 29259106 PMCID: PMC5841720 DOI: 10.1104/pp.17.00907] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/17/2017] [Indexed: 05/20/2023]
Abstract
Transcriptomic analyses with high temporal resolution provide substantial new insight into hormonal response networks. This study identified the kinetics of genome-wide transcript abundance changes in response to elevated levels of the plant hormone ethylene in roots from light-grown Arabidopsis (Arabidopsis thaliana) seedlings, which were overlaid on time-matched developmental changes. Functional annotation of clusters of transcripts with similar temporal patterns revealed rapidly induced clusters with known ethylene function and more slowly regulated clusters with novel predicted functions linked to root development. In contrast to studies with dark-grown seedlings, where the canonical ethylene response transcription factor, EIN3, is central to ethylene-mediated development, the roots of ein3 and eil1 single and double mutants still respond to ethylene in light-grown seedlings. Additionally, a subset of these clusters of ethylene-responsive transcripts were enriched in targets of EIN3 and ERFs. These results are consistent with EIN3-independent developmental and transcriptional changes in light-grown roots. Examination of single and multiple gain-of-function and loss-of-function receptor mutants revealed that, of the five ethylene receptors, ETR1 controls lateral root and root hair initiation and elongation and the synthesis of other receptors. These results provide new insight into the transcriptional and developmental responses to ethylene in light-grown seedlings.
Collapse
Affiliation(s)
- Alexandria F Harkey
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Justin M Watkins
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Amy L Olex
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Kathleen T DiNapoli
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Daniel R Lewis
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Jacquelyn S Fetrow
- Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27109
| | - Brad M Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Gloria K Muday
- Department of Biology and Center for Molecular Signaling, Wake Forest University, Winston-Salem, North Carolina 27109
| |
Collapse
|
63
|
Bakshi A, Piya S, Fernandez JC, Chervin C, Hewezi T, Binder BM. Ethylene Receptors Signal via a Noncanonical Pathway to Regulate Abscisic Acid Responses. PLANT PHYSIOLOGY 2018; 176:910-929. [PMID: 29158332 PMCID: PMC5761792 DOI: 10.1104/pp.17.01321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/17/2017] [Indexed: 05/04/2023]
Abstract
Ethylene is a gaseous plant hormone perceived by a family of receptors in Arabidopsis (Arabidopsis thaliana) including ETHYLENE RESPONSE1 (ETR1) and ETR2. Previously we showed that etr1-6 loss-of-function plants germinate better and etr2-3 loss-of-function plants germinate worse than wild-type under NaCl stress and in response to abscisic acid (ABA). In this study, we expanded these results by showing that ETR1 and ETR2 have contrasting roles in the control of germination under a variety of inhibitory conditions for seed germination such as treatment with KCl, CuSO4, ZnSO4, and ethanol. Pharmacological and molecular biology results support a model where ETR1 and ETR2 are indirectly affecting the expression of genes encoding ABA signaling proteins to affect ABA sensitivity. The receiver domain of ETR1 is involved in this function in germination under these conditions and controlling the expression of genes encoding ABA signaling proteins. Epistasis analysis demonstrated that these contrasting roles of ETR1 and ETR2 do not require the canonical ethylene signaling pathway. To explore the importance of receptor-protein interactions, we conducted yeast two-hybrid screens using the cytosolic domains of ETR1 and ETR2 as bait. Unique interacting partners with either ETR1 or ETR2 were identified. We focused on three of these proteins and confirmed the interactions with receptors. Loss of these proteins led to faster germination in response to ABA, showing that they are involved in ABA responses. Thus, ETR1 and ETR2 have both ethylene-dependent and -independent roles in plant cells that affect responses to ABA.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, 37996
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996
| | - Jessica C Fernandez
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Christian Chervin
- Université de Toulouse, INP-ENSAT, INRA, UMR 990 Génomique et Biotechnologie des Fruits, F-31326 Castanet-Tolosan Cedex, France
| | - Tarek Hewezi
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, 37996
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996
| | - Brad M Binder
- Genome Science and Technology Program, University of Tennessee, Knoxville, Tennessee, 37996
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
64
|
Jia H, Yang J, Liesche J, Liu X, Hu Y, Si W, Guo J, Li J. Ethylene promotes pollen tube growth by affecting actin filament organization via the cGMP-dependent pathway in Arabidopsis thaliana. PROTOPLASMA 2018; 255:273-284. [PMID: 28864968 DOI: 10.1007/s00709-017-1158-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Ethylene and cGMP are key regulators of plant developmental processes. In this study, we demonstrate that ethylene or cGMP promote pollen tube growth in a dose-dependent manner. The etr1-1 mutant was found to be insensitive to ethylene with regard to pollen tube growth, while the growth-promoting effect of ethylene in etr2-2, ein4-4, or ein4-7 did not change, suggesting that ethylene signaling was mainly perceived by ETR1. However, the function of cGMP was not inhibited in etr1-1 and pollen tubes became insensitive to ethylene when the endogenous cGMP level was artificially decreased. This shows that cGMP is necessary for the control of pollen tube growth and that it might be a downstream component of ETR1 in the ethylene signaling pathway. Our study also found that ethylene or cGMP increase the actin bundles and elevated the percentage of relative amount of F-actin, while removal of cGMP decreased actin bundles abundance and altered the ratio of F-actin in the tip and base regions of pollen tubes. In conclusion, our data suggests that ethylene functions as the upstream signal of cGMP, and that both signals promote pollen germination and tube growth by regulating F-actin, which is essential for vesicular transport and cytoplasmic streaming.
Collapse
Affiliation(s)
- Honglei Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Jun Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Nangang District, Harbin, 150000, China
| | - Wantong Si
- Inner Mongolia Key Laboratory of Biomass-Energy Conversion, Inner Mongolia University of Science and Technology, Neimenggu, Baotou, 014010, China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
65
|
Zhang M, Zhang GQ, Kang HH, Zhou SM, Wang W. TaPUB1, a Putative E3 Ligase Gene from Wheat, Enhances Salt Stress Tolerance in Transgenic Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2017; 58:1673-1688. [PMID: 29016965 DOI: 10.1093/pcp/pcx101] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 07/15/2017] [Indexed: 05/25/2023]
Abstract
High salinity is one of the most severe environmental stresses and limits the growth and yield of diverse crop plants. We isolated a gene named TaPUB1 from wheat (Triticum aestivum L. cv HF9703) that encodes a novel protein containing a U-box domain, the precursor RNA processing 19p (Prp19) superfamily and WD-40 repeats. Real-time reverse transcription-PCR analysis showed that TaPUB1 transcript accumulation was up-regulated by high salinity, drought and phytohormones, suggesting that it plays a role in the abiotic-related defense response. We overexpressed TaPUB1 in Nicotiana benthamiana to evaluate the function of TaPUB1 in the regulation of the salt stress response. Transgenic N. benthamiana plants (OE) with constitutively overexpressed TaPUB1 under the control of the Cauliflower mosaic virus 35S (CaMV 35S) promoter exhibited a higher germination rate, less growth inhibition, less Chl loss and higher photosynthetic capacity than wild-type (WT) plants under salt stress conditions. These results demonstrated the increased tolerance of OE plants to salt stress compared with the WT. The OE plants had lower osmotic potential (OP), reduced Na+ toxicity and less reactive oxygen species accumulation compared with the WT, which may be related to their higher level of osmolytes, lower Na+/K+ ratio and higher antioxidant enzyme activities under salt stress conditions. Consistent with these results, the up-regulated expression of osmic- and antioxidant-related genes in OE plants indicated a role for TaPUB1 in plant salt tolerance.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, PR China
| | - Guang-Qiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Han-Han Kang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shu-Mei Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|
66
|
Xue W, Yan J, Zhao G, Jiang Y, Cheng J, Cattivelli L, Tondelli A. A major QTL on chromosome 7HS controls the response of barley seedling to salt stress in the Nure × Tremois population. BMC Genet 2017; 18:79. [PMID: 28830338 PMCID: PMC5568257 DOI: 10.1186/s12863-017-0545-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Background Seedling establishment is a crucial and vulnerable stage in the crop life cycle which determines further plant growth. While many studies are available on salt tolerance at the vegetative stage, the mechanisms and genetic bases of salt tolerance during seedling establishment have been poorly investigated. Here, a novel and accurate phenotyping protocol was applied to characterize the response of seedlings to salt stress in two barley cultivars (Nure and Tremois) and their double-haploid population. Results The combined phenotypic data and existing genetic map led to the identification of a new major QTL for root elongation under salt stress on chromosome 7HS, with the parent Nure carrying the favourable allele. Gene-based markers were developed from the rice syntenic genomic region to restrict the QTL interval to Bin2.1 of barley chromosome 7HS. Furthermore, doubled haploid lines with contrasting responses to salt stress revealed different root morphological responses to stress, with the susceptible genotypes exhibiting an overall reduction in root length and volume but an increase in root diameter and root hair density. Conclusions Salt tolerance at the seedling stage was studied in barley through a comprehensive phenotyping protocol that allowed the detection of a new major QTL on chromosome 7HS. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0545-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wentao Xue
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Gang Zhao
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yan Jiang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Luigi Cattivelli
- CREA, Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy
| | - Alessandro Tondelli
- CREA, Research Centre for Genomics and Bioinformatics, 29017, Fiorenzuola d'Arda, Italy.
| |
Collapse
|
67
|
Yu M, Yau CP, Yip WK. Differentially localized rice ethylene receptors OsERS1 and OsETR2 and their potential role during submergence. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356532. [PMID: 28758833 PMCID: PMC5616157 DOI: 10.1080/15592324.2017.1356532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene is gaseous plant hormone that controls a variety of physiologic activities. OsERS1 and OsETR2 are major ethylene receptors in rice that have been reported to have different regulatory functions. The GFP fused N-terminus of OsERS1 and OsETR2 showed differentially localization patterns when transiently expressed in onion epidermal cells. Base on these results, we suggested that OsERS1 could be localized to plasma membranes, whereas OsETR2 could be localized to the endoplasmic reticulum. Furthermore, instead of the constitutive expression profile of OsERS1, OsETR2 is differentially expressed in seedlings of light/dark-grown conditions, submergence or exogenous ethylene treatments. Our results and others support the notion that OsERS1 and OsETR2 could have different roles during rice plant submergence.
Collapse
Affiliation(s)
- Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Chi Ping Yau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wing Kin Yip
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- CONTACT Wing Kin Yip 7S09 Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
68
|
Liu T, Longhurst AD, Talavera-Rauh F, Hokin SA, Barton MK. The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. eLife 2016; 5:e13768. [PMID: 27697148 PMCID: PMC5050019 DOI: 10.7554/elife.13768] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 08/31/2016] [Indexed: 01/04/2023] Open
Abstract
Drought inhibits plant growth and can also induce premature senescence. Here we identify a transcription factor, ABA INSENSITIVE GROWTH 1 (ABIG1) required for abscisic acid (ABA) mediated growth inhibition, but not for stomatal closure. ABIG1 mRNA levels are increased both in response to drought and in response to ABA treatment. When treated with ABA, abig1 mutants remain greener and produce more leaves than comparable wild-type plants. When challenged with drought, abig1 mutants have fewer yellow, senesced leaves than wild-type. Induction of ABIG1 transcription mimics ABA treatment and regulates a set of genes implicated in stress responses. We propose a model in which drought acts through ABA to increase ABIG1 transcription which in turn restricts new shoot growth and promotes leaf senescence. The results have implications for plant breeding: the existence of a mutant that is both ABA resistant and drought resistant points to new strategies for isolating drought resistant genetic varieties.
Collapse
Affiliation(s)
- Tie Liu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Adam D Longhurst
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | | | - Samuel A Hokin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - M Kathryn Barton
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| |
Collapse
|
69
|
Wu Z, Zhang T, Li L, Xu J, Qin X, Zhang T, Cui L, Lou Q, Li J, Chen J. Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. BMC PLANT BIOLOGY 2016; 16:182. [PMID: 27553196 PMCID: PMC4995632 DOI: 10.1186/s12870-016-0873-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 08/15/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Parthenocarpy is an important trait for yield and quality in many plants. But due to its complex interactions with genetic and physiological factors, it has not been adequately understood and applied to breeding and production. Finding novel and effective quantitative trait loci (QTLs) is a critical step towards understanding its genetic mechanism. Cucumber (Cucumis sativus L.) is a typical parthenocarpic plant but the QTLs controlling parthenocarpy in cucumber were not mapped on chromosomes, and the linked markers were neither user-friendly nor confirmed by previous studies. Hence, we conducted a two-season QTL study of parthenocarpy based on the cucumber genome with 145 F2:3 families derived from a cross between EC1 (a parthenocarpic inbred line) and 8419 s-1 (a non-parthenocarpic inbred line) in order to map novel QTLs. Whole genome re-sequencing was also performed both to develop effective linked markers and to predict candidate genes. RESULTS A genetic linkage map, employing 133 Simple Sequence Repeats (SSR) markers and nine Insertion/Deletion (InDel) markers spanning 808.1 cM on seven chromosomes, was constructed from an F2 population. Seven novel QTLs were identified on chromosomes 1, 2, 3, 5 and 7. Parthenocarpy 2.1 (Parth2.1), a QTL on chromosome 2, was a major-effect QTL with a logarithm of odds (LOD) score of 9.0 and phenotypic variance explained (PVE) of 17.0 % in the spring season and with a LOD score of 6.2 and PVE of 10.2 % in the fall season. We confirmed this QTL using a residual heterozygous line97-5 (RHL97-5). Effectiveness of linked markers of the Parth2.1 was validated in F3:4 population and in 21 inbred lines. Within this region, there were 57 genes with nonsynonymous SNPs/InDels in the coding sequence. Based on further combined analysis with transcriptome data between two parents, CsARF19, CsWD40, CsEIN1, CsPPR, CsHEXO3, CsMDL, CsDJC77 and CsSMAX1 were predicted as potential candidate genes controlling parthenocarpy. CONCLUSIONS A major-effect QTL Parth2.1 and six minor-effect QTLs mainly contribute to the genetic architecture of parthenocarpy in cucumber. SSR16226 and Indel-T-39 can be used in marker-assisted selection (MAS) of cucumber breeding. Whole genome re-sequencing enhances the efficiency of polymorphic marker development and prediction of candidate genes.
Collapse
Affiliation(s)
- Zhe Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- College of Horticulture, Shanxi Agricultural University, Shanxi, 030801 China
| | - Ting Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jian Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tinglin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Li Cui
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
70
|
Zhang M, Smith JAC, Harberd NP, Jiang C. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. PLANT MOLECULAR BIOLOGY 2016; 91:651-9. [PMID: 27233644 DOI: 10.1007/s11103-016-0488-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/02/2016] [Indexed: 05/20/2023]
Abstract
Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - J Andrew C Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
71
|
Wang H, Sun Y, Chang J, Zheng F, Pei H, Yi Y, Chang C, Dong CH. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. PLANT MOLECULAR BIOLOGY 2016; 91:471-484. [PMID: 27097903 DOI: 10.1007/s11103-016-0482-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling.
Collapse
Affiliation(s)
- Honglin Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yue Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianhong Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Fangfang Zheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haixia Pei
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanjun Yi
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
72
|
He Y, Liu X, Zou T, Pan C, Qin L, Chen L, Lu G. Genome-Wide Identification of Two-Component System Genes in Cucurbitaceae Crops and Expression Profiling Analyses in Cucumber. FRONTIERS IN PLANT SCIENCE 2016; 7:899. [PMID: 27446129 PMCID: PMC4916222 DOI: 10.3389/fpls.2016.00899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/07/2016] [Indexed: 05/30/2023]
Abstract
Cucumber and watermelon, which belong to Cucurbitaceae family, are economically important cultivated crops worldwide. However, these crops are vulnerable to various adverse environments. Two-component system (TCS), consisting of histidine kinases (HKs), phosphotransfers (HPs), and response regulator proteins (RRs), plays important roles in various plant developmental processes and signaling transduction in responses to a wide range of biotic and abiotic stresses. No systematic investigation has been conducted on TCS genes in Cucurbitaceae species. Based on the completion of the cucumber and watermelon genome draft, we identified 46 and 49 TCS genes in cucumber and watermelon, respectively. The cucumber TCS members included 18 HK(L)s, 7 HPs, and 21 RRs, whereas the watermelon TCS system consisted of 19 HK(L)s, 6 HPs, and 24 RRs. The sequences and domains of TCS members from these two species were highly conserved. Gene duplication events occurred rarely, which might have resulted from the absence of recent whole-genome duplication event in these two Cucurbitaceae crops. Numerous stress- and hormone-responsive cis-elements were detected in the putative promoter regions of the cucumber TCS genes. Meanwhile, quantitative real-time PCR indicated that most of the TCS genes in cucumber were specifically or preferentially expressed in certain tissues or organs, especially in the early developing fruit. Some TCS genes exhibited diverse patterns of gene expression in response to abiotic stresses as well as exogenous trans-zeatin (ZT) and abscisic acid (ABA) treatment, suggesting that TCS genes might play significant roles in responses to various abiotic stresses and hormones in Cucurbitaceae crops.
Collapse
Affiliation(s)
- Yanjun He
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
| | - Xue Liu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
| | - Tao Zou
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
| | - Changtian Pan
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Li Qin
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
| | - Lifei Chen
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Gang Lu
- Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang UniversityHangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| |
Collapse
|
73
|
Li YH, Wu QS, Huang X, Liu SH, Zhang HN, Zhang Z, Sun GM. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering. FRONTIERS IN PLANT SCIENCE 2016; 7:710. [PMID: 27252725 PMCID: PMC4878293 DOI: 10.3389/fpls.2016.00710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/09/2016] [Indexed: 05/29/2023]
Abstract
Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5' flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1-9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1-4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon.
Collapse
Affiliation(s)
- Yun-He Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
- Key Laboratory of Tropical Fruit Biology, Ministry of AgricultureZhanjiang, China
| | - Qing-Song Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Xia Huang
- The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Sheng-Hui Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Hong-Na Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Zhi Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Guang-Ming Sun
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| |
Collapse
|
74
|
Yu Y, Wang J, Shi H, Gu J, Dong J, Deng XW, Huang R. Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination. PLANT PHYSIOLOGY 2016; 170:2340-50. [PMID: 26850275 PMCID: PMC4825130 DOI: 10.1104/pp.15.01724] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/03/2016] [Indexed: 05/22/2023]
Abstract
Seed germination, a critical stage initiating the life cycle of a plant, is severely affected by salt stress. However, the underlying mechanism of salt inhibition of seed germination (SSG) is unclear. Here, we report that the Arabidopsis (Arabidopsis thaliana) CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) counteracts SSG Genetic assays provide evidence that SSG in loss of function of the COP1 mutant was stronger than this in the wild type. A GUS-COP1 fusion was constitutively localized to the nucleus in radicle cells. Salt treatment caused COP1 to be retained in the cytosol, but the addition of ethylene precursor 1-aminocyclopropane-1-carboxylate had the reverse effect on the translocation of COP1 to the nucleus, revealing that ethylene and salt exert opposite regulatory effects on the localization of COP1 in germinating seeds. However, loss of function of the ETHYLENE INSENSITIVE3 (EIN3) mutant impaired the ethylene-mediated rescue of the salt restriction of COP1 to the nucleus. Further research showed that the interaction between COP1 and LONG HYPOCOTYL5 (HY5) had a role in SSG Correspondingly, SSG in loss of function of HY5 was suppressed. Biochemical detection showed that salt promoted the stabilization of HY5, whereas ethylene restricted its accumulation. Furthermore, salt treatment stimulated and ethylene suppressed transcription of ABA INSENSITIVE5 (ABI5), which was directly transcriptionally regulated by HY5. Together, our results reveal that salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1, thereby controlling Arabidopsis seed germination via the COP1-mediated down-regulation of HY5 and ABI5. These findings enhance our understanding of the stress response and have great potential for application in agricultural production.
Collapse
Affiliation(s)
- Yanwen Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Juan Wang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Hui Shi
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Juntao Gu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Jingao Dong
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Xing Wang Deng
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| | - Rongfeng Huang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China (Y.Y., J.G., J.D.); Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Y.Y., J.W., R.H.); School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China (H.S., X.W.D.); and National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing 100081, China (J.W., R.H.)
| |
Collapse
|
75
|
Shu K, Liu XD, Xie Q, He ZH. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. MOLECULAR PLANT 2016; 9:34-45. [PMID: 26343970 DOI: 10.1016/j.molp.2015.08.010] [Citation(s) in RCA: 474] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 05/02/2023]
Abstract
Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also important for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node.
Collapse
Affiliation(s)
- Kai Shu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Dong Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zu-Hua He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
76
|
Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber APM. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare. PLANT PHYSIOLOGY 2016; 170:102-22. [PMID: 26530316 PMCID: PMC4704576 DOI: 10.1104/pp.15.01076] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/03/2015] [Indexed: 05/14/2023]
Abstract
Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3-CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM.
Collapse
Affiliation(s)
- Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| | - Tabea Mettler-Altmann
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| | - Klaus Winter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany (D.B., A.B., T.M.-A., A.P.M.W.); and Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama (K.W.)
| |
Collapse
|
77
|
Van de Poel B, Smet D, Van Der Straeten D. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development. PLANT PHYSIOLOGY 2015; 169:61-72. [PMID: 26232489 PMCID: PMC4577414 DOI: 10.1104/pp.15.00724] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/29/2015] [Indexed: 05/20/2023]
Abstract
Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.
Collapse
Affiliation(s)
- Bram Van de Poel
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dajo Smet
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Physiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
78
|
Ju C, Chang C. Mechanistic Insights in Ethylene Perception and Signal Transduction. PLANT PHYSIOLOGY 2015; 169:85-95. [PMID: 26246449 PMCID: PMC4577421 DOI: 10.1104/pp.15.00845] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/05/2015] [Indexed: 05/04/2023]
Abstract
The gaseous hormone ethylene profoundly affects plant growth, development, and stress responses. Ethylene perception occurs at the endoplasmic reticulum membrane, and signal transduction leads to a transcriptional cascade that initiates diverse responses, often in conjunction with other signals. Recent findings provide a more complete picture of the components and mechanisms in ethylene signaling, now rendering a more dynamic view of this conserved pathway. This includes newly identified protein-protein interactions at the endoplasmic reticulum membrane, as well as the major discoveries that the central regulator ETHYLENE INSENSITIVE2 (EIN2) is the long-sought phosphorylation substrate for the CONSTITUTIVE RESPONSE1 protein kinase, and that cleavage of EIN2 transmits the signal to the nucleus. In the nucleus, hundreds of potential gene targets of the EIN3 master transcription factor have been identified and found to be induced in transcriptional waves, and transcriptional coregulation has been shown to be a mechanism of ethylene cross talk.
Collapse
Affiliation(s)
- Chuanli Ju
- College of Life Sciences, Capital Normal University, Beijing 100048, China (C.J.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (C.J., C.C.)
| | - Caren Chang
- College of Life Sciences, Capital Normal University, Beijing 100048, China (C.J.); andDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815 (C.J., C.C.)
| |
Collapse
|
79
|
Yasumura Y, Pierik R, Kelly S, Sakuta M, Voesenek LACJ, Harberd NP. An Ancestral Role for CONSTITUTIVE TRIPLE RESPONSE1 Proteins in Both Ethylene and Abscisic Acid Signaling. PLANT PHYSIOLOGY 2015; 169:283-98. [PMID: 26243614 PMCID: PMC4577374 DOI: 10.1104/pp.15.00233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/23/2015] [Indexed: 05/20/2023]
Abstract
Land plants have evolved adaptive regulatory mechanisms enabling the survival of environmental stresses associated with terrestrial life. Here, we focus on the evolution of the regulatory CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) component of the ethylene signaling pathway that modulates stress-related changes in plant growth and development. First, we compare CTR1-like proteins from a bryophyte, Physcomitrella patens (representative of early divergent land plants), with those of more recently diverged lycophyte and angiosperm species (including Arabidopsis [Arabidopsis thaliana]) and identify a monophyletic CTR1 family. The fully sequenced P. patens genome encodes only a single member of this family (PpCTR1L). Next, we compare the functions of PpCTR1L with that of related angiosperm proteins. We show that, like angiosperm CTR1 proteins (e.g. AtCTR1 of Arabidopsis), PpCTR1L modulates downstream ethylene signaling via direct interaction with ethylene receptors. These functions, therefore, likely predate the divergence of the bryophytes from the land-plant lineage. However, we also show that PpCTR1L unexpectedly has dual functions and additionally modulates abscisic acid (ABA) signaling. In contrast, while AtCTR1 lacks detectable ABA signaling functions, Arabidopsis has during evolution acquired another homolog that is functionally distinct from AtCTR1. In conclusion, the roles of CTR1-related proteins appear to have functionally diversified during land-plant evolution, and angiosperm CTR1-related proteins appear to have lost an ancestral ABA signaling function. Our study provides new insights into how molecular events such as gene duplication and functional differentiation may have contributed to the adaptive evolution of regulatory mechanisms in plants.
Collapse
Affiliation(s)
- Yuki Yasumura
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Ronald Pierik
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Masaaki Sakuta
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Laurentius A C J Voesenek
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (Y.Y., S.K., N.P.H.); Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.S.); and Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands (R.P., L.A.C.J.V.)
| |
Collapse
|
80
|
Tao JJ, Cao YR, Chen HW, Wei W, Li QT, Ma B, Zhang WK, Chen SY, Zhang JS. Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation. PLANT PHYSIOLOGY 2015; 169:96-114. [PMID: 25941315 PMCID: PMC4577386 DOI: 10.1104/pp.15.00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 05/04/2023]
Abstract
Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharomyces cerevisiae) two-hybrid assay and further characterized its roles in plant growth. The interaction was further confirmed by in vitro glutathione S-transferase pull down and in vivo coimmunoprecipitation and bimolecular fluorescence complementation assays, and the kinase domain of NTHK1 mediates the interaction with NtTCTP. The NtTCTP protein is induced by ethylene treatment and colocalizes with NTHK1 at the endoplasmic reticulum. Overexpression of NtTCTP or NTHK1 reduces plant response to ethylene and promotes seedling growth, mainly through acceleration of cell proliferation. Genetic analysis suggests that NtTCTP is required for the function of NTHK1. Furthermore, association of NtTCTP prevents NTHK1 from proteasome-mediated protein degradation. Our data suggest that plant growth inhibition triggered by ethylene is regulated by a unique feedback mechanism, in which ethylene-induced NtTCTP associates with and stabilizes ethylene receptor NTHK1 to reduce plant response to ethylene and promote plant growth through acceleration of cell proliferation.
Collapse
Affiliation(s)
- Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang-Rong Cao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao-Wei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
81
|
Bakshi A, Wilson RL, Lacey RF, Kim H, Wuppalapati SK, Binder BM. Identification of Regions in the Receiver Domain of the ETHYLENE RESPONSE1 Ethylene Receptor of Arabidopsis Important for Functional Divergence. PLANT PHYSIOLOGY 2015; 169:219-32. [PMID: 26160962 PMCID: PMC4577405 DOI: 10.1104/pp.15.00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 05/08/2023]
Abstract
Ethylene influences the growth and development of Arabidopsis (Arabidopsis thaliana) via five receptor isoforms. However, the ETHYLENE RESPONSE1 (ETR1) ethylene receptor has unique, and sometimes contrasting, roles from the other receptor isoforms. Prior research indicates that the receiver domain of ETR1 is important for some of these noncanonical roles. We determined that the ETR1 receiver domain is not needed for ETR1's predominant role in mediating responses to the ethylene antagonist, silver. To understand the structure-function relationship underlying the unique roles of the ETR1 receiver domain in the control of specific traits, we performed alanine-scanning mutagenesis. We chose amino acids that are poorly conserved and are in regions predicted to have altered tertiary structure compared with the receiver domains of the other two receptors that contain a receiver domain, ETR2 and ETHYLENE INSENSITIVE4. The effects of these mutants on various phenotypes were examined in transgenic, receptor-deficient Arabidopsis plants. Some traits, such as growth in air and growth recovery after the removal of ethylene, were unaffected by these mutations. By contrast, three mutations on one surface of the receiver domain rendered the transgene unable to rescue ethylene-stimulated nutations. Additionally, several mutations on another surface altered germination on salt. Some of these mutations conferred hyperfunctionality to ETR1 in the context of seed germination on salt, but not for other traits, that correlated with increased responsiveness to abscisic acid. Thus, the ETR1 receiver domain has multiple functions where different surfaces are involved in the control of different traits. Models are discussed for these observations.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Rebecca L Wilson
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Randy F Lacey
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Heejung Kim
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Sai Keerthana Wuppalapati
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Brad M Binder
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
82
|
Zdarska M, Dobisová T, Gelová Z, Pernisová M, Dabravolski S, Hejátko J. Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4913-31. [PMID: 26022257 DOI: 10.1093/jxb/erv261] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Integrating important environmental signals with intrinsic developmental programmes is a crucial adaptive requirement for plant growth, survival, and reproduction. Key environmental cues include changes in several light variables, while important intrinsic (and highly interactive) regulators of many developmental processes include the phytohormones cytokinins (CKs) and ethylene. Here, we discuss the latest discoveries regarding the molecular mechanisms mediating CK/ethylene crosstalk at diverse levels of biosynthetic and metabolic pathways and their complex interactions with light. Furthermore, we summarize evidence indicating that multiple hormonal and light signals are integrated in the multistep phosphorelay (MSP) pathway, a backbone signalling pathway in plants. Inter alia, there are strong overlaps in subcellular localizations and functional similarities in components of these pathways, including receptors and various downstream agents. We highlight recent research demonstrating the importance of CK/ethylene/light crosstalk in selected aspects of plant development, particularly seed germination and early seedling development. The findings clearly demonstrate the crucial integration of plant responses to phytohormones and adaptive responses to environmental cues. Finally, we tentatively identify key future challenges to refine our understanding of the molecular mechanisms mediating crosstalk between light and hormonal signals, and their integration during plant life cycles.
Collapse
Affiliation(s)
- Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Tereza Dobisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Zuzana Gelová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Markéta Pernisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Siarhei Dabravolski
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
83
|
Krannich CT, Maletzki L, Kurowsky C, Horn R. Network Candidate Genes in Breeding for Drought Tolerant Crops. Int J Mol Sci 2015; 16:16378-400. [PMID: 26193269 PMCID: PMC4519955 DOI: 10.3390/ijms160716378] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 01/09/2023] Open
Abstract
Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.
Collapse
Affiliation(s)
- Christoph Tim Krannich
- Institute of Biological Sciences, Department of Plant Genetics, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany.
| | - Lisa Maletzki
- Institute of Biological Sciences, Department of Plant Genetics, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany.
| | - Christina Kurowsky
- Institute of Biological Sciences, Department of Plant Genetics, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany.
| | - Renate Horn
- Institute of Biological Sciences, Department of Plant Genetics, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany.
| |
Collapse
|
84
|
Abstract
Ethylene is a hormone involved in numerous aspects of growth, development, and responses to biotic and abiotic stresses in plants. Ethylene is perceived through its binding to endoplasmic reticulum-localized receptors that function as negative regulators of ethylene signaling in the absence of the hormone. In Arabidopsis thaliana, five structurally and functionally different ethylene receptors are present. These differ in their primary sequence, in the domains present, and in the type of kinase activity exhibited, which may suggest functional differences among the receptors. Whereas ethylene receptors functionally overlap to suppress ethylene signaling, certain other responses are controlled by specific receptors. In this review, I examine the nature of these receptor differences, how the evolution of the ethylene receptor gene family may provide insight into their differences, and how expression of receptors or their accessory proteins may underlie receptor-specific responses.
Collapse
|
85
|
Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. TRENDS IN PLANT SCIENCE 2015; 20:219-29. [PMID: 25731753 DOI: 10.1016/j.tplants.2015.02.001] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/25/2015] [Accepted: 02/01/2015] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) and ethylene (ET), often acting cooperatively, play essential roles in regulating plant defense against pests and pathogens. Recent research reviewed here has revealed mechanistic new insights into the mode of action of these hormones in plant abiotic stress tolerance. During cold stress, JAs and ET differentially regulate the C-repeat binding factor (CBF) pathway. Major JA and ET signaling hubs such as JAZ proteins, CTR1, MYC2, components of the mediator complex, EIN2, EIN3, and several members of the AP2/ERF transcription factor gene family all have complex regulatory roles during abiotic stress adaptation. Better understanding the roles of these phytohormones in plant abiotic stress tolerance will contribute to the development of crop plants tolerant to a wide range of stressful environments.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, Queensland, Australia; The Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Queensland Bioscience Precinct, Brisbane, Queensland, Australia.
| |
Collapse
|
86
|
Yang C, Lu X, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. MOLECULAR PLANT 2015; 8:495-505. [PMID: 25732590 DOI: 10.1016/j.molp.2015.01.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 05/18/2023]
Abstract
Ethylene as a gas phytohormone plays significant roles in the whole life cycle of plants, ranging from growth and development to stress responses. A linear ethylene signaling pathway has been established in the dicotyledonous model plant Arabidopsis. However, the ethylene signaling mechanism in monocotyledonous plants such as rice is largely unclear. In this review, we compare the ethylene response phenotypes of dark-grown seedlings of Arabidopsis, rice, and other monocotyledonous plants (maize, wheat, sorghum, and Brachypodium distachyon) and pinpoint that rice has a distinct phenotype of root inhibition but coleoptile promotion in etiolated seedlings upon ethylene treatment. We further summarize the homologous genes of Arabidopsis ethylene signaling components in these monocotyledonous plants and discuss recent progress. Although conserved in most aspects, ethylene signaling in rice has evolved new features compared with that in Arabidopsis. These analyses provide novel insights into the understanding of ethylene signaling in the dicotyledonous Arabidopsis and monocotyledonous plants, particularly rice. Further characterization of rice ethylene-responsive mutants and their corresponding genes will help us better understand the whole picture of ethylene signaling mechanisms in plants.
Collapse
Affiliation(s)
- Chao Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
87
|
Tao JJ, Chen HW, Ma B, Zhang WK, Chen SY, Zhang JS. The Role of Ethylene in Plants Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1059. [PMID: 26640476 PMCID: PMC4661241 DOI: 10.3389/fpls.2015.01059] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene.
Collapse
|
88
|
Wu JX, Wu JL, Yin J, Zheng P, Yao N. Ethylene Modulates Sphingolipid Synthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:1122. [PMID: 26734030 PMCID: PMC4679861 DOI: 10.3389/fpls.2015.01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/26/2015] [Indexed: 05/20/2023]
Abstract
Sphingolipids have essential structural and bioactive functions in membranes and in signaling. However, how plants regulate sphingolipid biosynthesis in the response to stress remains unclear. Here, we reveal that the plant hormone ethylene can modulate sphingolipid synthesis. The fungal toxin Fumonisin B1 (FB1) inhibits the activity of ceramide synthases, perturbing sphingolipid homeostasis, and thus inducing cell death. We used FB1 to test the role of ethylene signaling in sphingolipid synthesis in Arabidopsis thaliana. The etr1-1 and ein2 mutants, which have disrupted ethylene signaling, exhibited hypersensitivity to FB1; by contrast, the eto1-1 and ctr1-1 mutants, which have enhanced ethylene signaling, exhibited increased tolerance to FB1. Gene expression analysis showed that during FB1 treatment, transcripts of genes involved in de novo sphingolipid biosynthesis were down-regulated in ctr1-1 mutants but up-regulated in ein2 mutants. Strikingly, under normal conditions, ctr1-1 mutants contained less ceramides and hydroxyceramides, compared with wild type. After FB1 treatment, ctr1-1 and ein2 mutants showed a significant improvement in sphingolipid contents, except the ctr1-1 mutants showed little change in hydroxyceramide levels. Treatment of wild-type seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid down-regulated genes involved in the sphingolipid de novo biosynthesis pathway, thus reducing sphingolipid contents and partially rescuing FB1-induced cell death. Taking these results together, we propose that ethylene modulates sphingolipids by regulating the expression of genes related to the de novo biosynthesis of sphingolipids.
Collapse
|
89
|
Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H. Ethylene, a key factor in the regulation of seed dormancy. FRONTIERS IN PLANT SCIENCE 2014; 5:539. [PMID: 25346747 PMCID: PMC4193209 DOI: 10.3389/fpls.2014.00539] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/22/2014] [Indexed: 05/04/2023]
Abstract
Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA) and gibberellins (GAs). Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L(-1). Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1) demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS) may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a crosstalk between hormones and other signals will be discussed.
Collapse
Affiliation(s)
- Françoise Corbineau
- Biologie des Semences (Seed Biology), UMR7622 CNRS-UPMC, Sorbonne Universités – Université Pierre et Marie Curie-ParisParis, France
| | | | | | | |
Collapse
|
90
|
Wilson RL, Bakshi A, Binder BM. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:433. [PMID: 25221561 PMCID: PMC4147998 DOI: 10.3389/fpls.2014.00433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/13/2014] [Indexed: 05/18/2023]
Abstract
When exposed to far-red light followed by darkness, wild-type Arabidopsis thaliana seeds fail to germinate or germinate very poorly. We have previously shown that the ethylene receptor ETR1 (ETHYLENE RESPONSE1) inhibits and ETR2 stimulates seed germination of Arabidopsis during salt stress. This function of ETR1 requires the full-length receptor. These roles are independent of ethylene levels and sensitivity and are mainly mediated by a change in abscisic acid (ABA) sensitivity. In the current study we find that etr1-6 and etr1-7 loss-of-function mutant seeds germinate better than wild-type seeds after illumination with far-red light or when germinated in the dark indicating an inhibitory role for ETR1. Surprisingly, this function of ETR1 does not require the receiver domain. No differences between these mutants and wild-type are seen when germination proceeds after treatment with white, blue, green, or red light. Loss of any of the other four ethylene receptor isoforms has no measurable effect on germination after far-red light treatment. An analysis of the transcript abundance for genes encoding ABA and gibberellic acid (GA) metabolic enzymes indicates that etr1-6 mutants may produce more GA and less ABA than wild-type seeds after illumination with far-red light which correlates with the better germination of the mutants. Epistasis analysis suggests that ETR1 may genetically interact with the phytochromes (phy), PHYA and PHYB to control germination and growth. This study shows that of the five ethylene receptor isoforms in Arabidopsis, ETR1 has a unique role in modulating the effects of red and far-red light on plant growth and development.
Collapse
Affiliation(s)
| | | | - Brad M. Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of TennesseeKnoxville, TN, USA
| |
Collapse
|