51
|
Nagels Durand A, Iñigo S, Ritter A, Iniesto E, De Clercq R, Staes A, Van Leene J, Rubio V, Gevaert K, De Jaeger G, Pauwels L, Goossens A. The Arabidopsis Iron-Sulfur Protein GRXS17 is a Target of the Ubiquitin E3 Ligases RGLG3 and RGLG4. PLANT & CELL PHYSIOLOGY 2016; 57:1801-1813. [PMID: 27497447 DOI: 10.1093/pcp/pcw122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
The stability of signaling proteins in eukaryotes is often controlled by post-translational modifiers. For polyubiquitination, specificity is assured by E3 ubiquitin ligases. Although plant genomes encode hundreds of E3 ligases, only few targets are known, even in the model Arabidopsis thaliana. Here, we identified the monothiol glutaredoxin GRXS17 as a substrate of the Arabidopsis E3 ubiquitin ligases RING DOMAIN LIGASE 3 (RGLG3) and RGLG4 using a substrate trapping approach involving tandem affinity purification of RING-dead versions. Simultaneously, we used a ubiquitin-conjugating enzym (UBC) panel screen to pinpoint UBC30 as a cognate E2 UBC capable of interacting with RGLG3 and RGLG4 and mediating auto-ubiquitination of RGLG3 and ubiquitination of GRXS17 in vitro. Accordingly, GRXS17 is ubiquitinated and degraded in an RGLG3- and RGLG4-dependent manner in planta. The truncated hemoglobin GLB3 also interacted with RGLG3 and RGLG4 but appeared to obstruct RGLG3 ubiquitination activity rather than being its substrate. Our results suggest that the RGLG family is intimately linked to the essential element iron.
Collapse
Affiliation(s)
- Astrid Nagels Durand
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium These authors contributed equally to this work
| | - Sabrina Iñigo
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium These authors contributed equally to this work
| | - Andrés Ritter
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Elisa Iniesto
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, Madrid, Spain
| | - Rebecca De Clercq
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - An Staes
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Vicente Rubio
- Plant Molecular Genetics Department, National Centre for Biotechnology (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, Madrid, Spain
| | - Kris Gevaert
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium These authors contributed equally to this work
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium These authors contributed equally to this work.
| |
Collapse
|
52
|
Ströher E, Grassl J, Carrie C, Fenske R, Whelan J, Millar AH. Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1284-99. [PMID: 26672074 PMCID: PMC4775112 DOI: 10.1104/pp.15.01308] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 05/18/2023]
Abstract
Glutaredoxins (Grxs) are small proteins that function as oxidoreductases with roles in deglutathionylation of proteins, reduction of antioxidants, and assembly of iron-sulfur (Fe-S) cluster-containing enzymes. Which of the 33 Grxs in Arabidopsis (Arabidopsis thaliana) perform roles in Fe-S assembly in mitochondria is unknown. We have examined in detail the function of the monothiol GrxS15 in plants. Our results show its exclusive mitochondrial localization, and we are concluding it is the major or only Grx in this subcellular location. Recombinant GrxS15 has a very low deglutathionylation and dehydroascorbate reductase activity, but it binds a Fe-S cluster. Partially removing GrxS15 from mitochondria slowed whole plant growth and respiration. Native GrxS15 is shown to be especially important for lipoic acid-dependent enzymes in mitochondria, highlighting a putative role in the transfer of Fe-S clusters in this process. The enhanced effect of the toxin arsenic on the growth of GrxS15 knockdown plants compared to wild type highlights the role of mitochondrial glutaredoxin Fe-S-binding in whole plant growth and toxin tolerance.
Collapse
Affiliation(s)
- Elke Ströher
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - Julia Grassl
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - Chris Carrie
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - Ricarda Fenske
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, M316, Faculty of Science, The University of Western Australia, Crawley, 6009 Western Australia, Australia (E.S., J.G., C.C., R.F., A.H.M.); and ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, LaTrobe University, Bundoora, 3086 Victoria, Australia (J.W.)
| |
Collapse
|
53
|
Delorme-Hinoux V, Bangash SAK, Meyer AJ, Reichheld JP. Nuclear thiol redox systems in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:84-95. [PMID: 26795153 DOI: 10.1016/j.plantsci.2015.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
Thiol-disulfide redox regulation is essential for many cellular functions in plants. It has major roles in defense mechanisms, maintains the redox status of the cell and plays structural, with regulatory roles for many proteins. Although thiol-based redox regulation has been extensively studied in subcellular organelles such as chloroplasts, it has been much less studied in the nucleus. Thiol-disulfide redox regulation is dependent on the conserved redox proteins, glutathione/glutaredoxin (GRX) and thioredoxin (TRX) systems. We first focus on the functions of glutathione in the nucleus and discuss recent data concerning accumulation of glutathione in the nucleus. We also provide evidence that glutathione reduction is potentially active in the nucleus. Recent data suggests that the nucleus is enriched in specific GRX and TRX isoforms. We discuss the biochemical and molecular characteristics of these isoforms and focus on genetic evidences for their potential nuclear functions. Finally, we make an overview of the different thiol-based redox regulated proteins in the nucleus. These proteins are involved in various pathways including transcriptional regulation, metabolism and signaling.
Collapse
Affiliation(s)
- Valérie Delorme-Hinoux
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| | - Sajid A K Bangash
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France; Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France.
| |
Collapse
|
54
|
Schippers JH, Foyer CH, van Dongen JT. Redox regulation in shoot growth, SAM maintenance and flowering. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:121-8. [PMID: 26799134 DOI: 10.1016/j.pbi.2015.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) and associated reduction/oxidation (redox) controls involving glutathione, glutaredoxins and thioredoxins play key roles in the regulation of plant growth and development. While many questions remain concerning redox functions in the shoot apical meristem (SAM), accumulating evidence suggests that redox master switches integrate major hormone signals and transcriptional networks in the SAM, and so regulate organ growth, polarity and floral development. Auxin-induced activation of plasma-membrane located NADPH-oxidases and mitochondrial respiratory bioenergetics are likely regulators of the ROS bursts that drive the cell cycle in proliferating regions, with other hormones such as jasmonic acid playing propagating or antagonistic roles in gene regulation. Moreover, the activation of oxygen production by photosynthesis and oxygen-dependent N-end rule controls are linked to the transition from cell proliferation to cell expansion and differentiation. While much remains to be understood, the nexus of available redox controls provides a key underpinning mechanism linking hormonal controls, energy metabolism and bioenergetics to plant growth and development.
Collapse
Affiliation(s)
- Jos Hm Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Joost T van Dongen
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
55
|
Vigani G, Briat JF. Impairment of Respiratory Chain under Nutrient Deficiency in Plants: Does it Play a Role in the Regulation of Iron and Sulfur Responsive Genes? FRONTIERS IN PLANT SCIENCE 2016; 6:1185. [PMID: 26779219 PMCID: PMC4700279 DOI: 10.3389/fpls.2015.01185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/10/2015] [Indexed: 05/23/2023]
Abstract
Plant production and plant product quality strongly depend on the availability of mineral nutrients. Among them, sulfur (S) and iron (Fe) play a central role, as they are needed for many proteins of the respiratory chain. Plant mitochondria play essential bioenergetic and biosynthetic functions as well as they have an important role in signaling processes into the cell. Here, by comparing several transcriptomic data sets from plants impaired in their respiratory function with the genes regulated under Fe or S deficiencies obtained from other data sets, nutrient-responsive genes potentially regulated by hypothetical mitochondrial retrograde signaling pathway are evidenced. It leads us to hypothesize that plant mitochondria could be, therefore, required for regulating the expression of key genes involved both in Fe and S metabolisms.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio Agroenergia, Università degli Studi di MilanoMilan, Italy
| | - Jean-François Briat
- Biochimie and Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/SupAgro/UM2Montpellier, France
| |
Collapse
|
56
|
Wu L, Tian L, Wang S, Zhang J, Liu P, Tian Z, Zhang H, Liu H, Chen Y. Comparative Proteomic Analysis of the Response of Maize (Zea mays L.) Leaves to Long Photoperiod Condition. FRONTIERS IN PLANT SCIENCE 2016; 7:752. [PMID: 27313588 PMCID: PMC4889979 DOI: 10.3389/fpls.2016.00752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 05/17/2016] [Indexed: 05/11/2023]
Abstract
Maize (Zea mays L.), an important industrial material and food source, shows an astonishing environmental adaptation. A remarkable feature of its post-domestication adaptation from tropical to temperate environments is adaptation to a long photoperiod (LP). Many photoperiod-related genes have been identified in previous transcriptomics analysis, but proteomics shows less evidence for this mechanism of photoperiod response. In this study, we sampled newly expanded leaves of maize at the three- and six-leaf stages from an LP-sensitive introgression line H496, the donor CML288, LP-insensitive inbred line, and recurrent parent Huangzao4 (HZ4) grown under long days (15 h light and 9 h dark). To characterize the proteomic changes in response to LP, the iTRAQ-labeling method was used to determine the proteome profiles of plants exposed to LP. A total of 943 proteins differentially expressed at the three- and six-leaf stages in HZ4 and H496 were identified. Functional analysis was performed by which the proteins were classified into stress defense, signal transduction, carbohydrate metabolism, protein metabolism, energy production, and transport functional groups using the WEGO online tool. The enriched gene ontology categories among the identified proteins were identified statistically with the Cytoscape plugin ClueGO + Cluepedia. Twenty Gene Ontology terms showed the highest significance, including those associated with protein processing in the endoplasmic reticulum, splicesome, ribosome, glyoxylate, dicarboxylate metabolism, L-malate dehydrogenase activity, and RNA transport. In addition, for subcellular location, all proteins showed significant enrichment of the mitochondrial outer membrane. The sugars producted by photosynthesis in plants are also a pivotal metabolic output in the circadian regulation. The results permit the prediction of several crucial proteins to photoperiod response and provide a foundation for further study of the influence of LP treatments on the circadian response in short-day plants.
Collapse
Affiliation(s)
- Liuji Wu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Lei Tian
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Shunxi Wang
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Jun Zhang
- Food Crops Research Institute, Henan Academy of Agricultural ScienceZhengzhou, China
| | - Ping Liu
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Zhiqiang Tian
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Huimin Zhang
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
| | - Haiping Liu
- Department of Biological Science, Michigan Technological UniversityMichigan, MI, USA
| | - Yanhui Chen
- Henan Agricultural University and Synergetic Innovation Center of Henan Grain CropsZhengzhou, China
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhou, China
- *Correspondence: Yanhui Chen
| |
Collapse
|
57
|
The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:13735-40. [PMID: 26483494 DOI: 10.1073/pnas.1510835112] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The iron-sulfur cluster (ISC) is an ancient and essential cofactor of many proteins involved in electron transfer and metabolic reactions. In Arabidopsis, three pathways exist for the maturation of iron-sulfur proteins in the cytosol, plastids, and mitochondria. We functionally characterized the role of mitochondrial glutaredoxin S15 (GRXS15) in biogenesis of ISC containing aconitase through a combination of genetic, physiological, and biochemical approaches. Two Arabidopsis T-DNA insertion mutants were identified as null mutants with early embryonic lethal phenotypes that could be rescued by GRXS15. Furthermore, we showed that recombinant GRXS15 is able to coordinate and transfer an ISC and that this coordination depends on reduced glutathione (GSH). We found the Arabidopsis GRXS15 able to complement growth defects based on disturbed ISC protein assembly of a yeast Δgrx5 mutant. Modeling of GRXS15 onto the crystal structures of related nonplant proteins highlighted amino acid residues that after mutation diminished GSH and subsequently ISC coordination, as well as the ability to rescue the yeast mutant. When used for plant complementation, one of these mutant variants, GRXS15K83/A, led to severe developmental delay and a pronounced decrease in aconitase activity by approximately 65%. These results indicate that mitochondrial GRXS15 is an essential protein in Arabidopsis, required for full activity of iron-sulfur proteins.
Collapse
|
58
|
Biochemical and redox characterization of the mediator complex and its associated transcription factor GeBPL, a GLABROUS1 enhancer binding protein. Biochem J 2015; 468:385-400. [PMID: 25877331 DOI: 10.1042/bj20150132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 12/23/2022]
Abstract
The eukaryotic mediator integrates regulatory signals from promoter-bound transcription factors (TFs) and transmits them to RNA polymerase II (Pol II) machinery. Although redox signalling is important in adjusting plant metabolism and development, nothing is known about a possible redox regulation of mediator. In the present study, using pull-down and yeast two-hybrid assays, we demonstrate the association of mediator (MED) subunits MED10a, MED28 and MED32 with the GLABROUS1 (GL1) enhancer-binding protein-like (GeBPL), a plant-specific TF that binds a promoter containing cryptochrome 1 response element 2 (CryR2) element. All the corresponding recombinant proteins form various types of covalent oligomers linked by intermolecular disulfide bonds that are reduced in vitro by the thioredoxin (TRX) and/or glutathione/glutaredoxin (GRX) systems. The presence of recombinant MED10a, MED28 and MED32 subunits or changes of its redox state affect the DNA-binding capacity of GeBPL suggesting that redox-driven conformational changes might modulate its activity. Overall, these results advance our understanding of how redox signalling affects transcription and identify mediator as a novel actor in redox signalling pathways, relaying or integrating redox changes in combination with specific TFs as GeBPL.
Collapse
|
59
|
Involvement of thiol-based mechanisms in plant development. Biochim Biophys Acta Gen Subj 2015; 1850:1479-96. [PMID: 25676896 DOI: 10.1016/j.bbagen.2015.01.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. SCOPE OF VIEW The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. MAJOR CONCLUSIONS The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GENERAL SIGNIFICANCE GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
|
60
|
Hu Y, Wu Q, Sprague SA, Park J, Oh M, Rajashekar CB, Koiwa H, Nakata PA, Cheng N, Hirschi KD, White FF, Park S. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components. HORTICULTURE RESEARCH 2015; 2:15051. [PMID: 26623076 PMCID: PMC4641303 DOI: 10.1038/hortres.2015.51] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 05/22/2023]
Abstract
Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing power of glutathione to reduce disulfide bonds of substrate proteins and maintain cellular redox homeostasis. Here, we report that tomato expressing Arabidopsis GRX gene AtGRXS17 conferred tolerance to chilling stress without adverse effects on growth and development. AtGRXS17-expressing tomato plants displayed lower ion leakage, higher maximal photochemical efficiency of photosystem II (Fv/Fm) and increased accumulation of soluble sugar compared with wild-type plants after the chilling stress challenge. Furthermore, chilling tolerance was correlated with increased antioxidant enzyme activities and reduced H2O2 accumulation. At the same time, temporal expression patterns of the endogenous C-repeat/DRE-binding factor 1 (SlCBF1) and CBF mediated-cold regulated genes were not altered in AtGRXS17-expressing plants when compared with wild-type plants, and proline concentrations remained unchanged relative to wild-type plants under chilling stress. Green fluorescent protein -AtGRXS17 fusion proteins, which were initially localized in the cytoplasm, migrated into the nucleus during chilling stress, reflecting a possible role of AtGRXS17 in nuclear signaling of chilling stress responses. Together, our findings demonstrate that genetically engineered tomato plants expressing AtGRXS17 can enhance chilling tolerance and suggest a genetic engineering strategy to improve chilling tolerance without yield penalty across different crop species.
Collapse
Affiliation(s)
- Ying Hu
- Department of Horticulture, Forestry, and Recreation Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Qingyu Wu
- Department of Horticulture, Forestry, and Recreation Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Stuart A Sprague
- Department of Horticulture, Forestry, and Recreation Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Jungeun Park
- Department of Horticulture, Forestry, and Recreation Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Myungmin Oh
- Department of Horticulture, Forestry, and Recreation Resources, Kansas State University, Manhattan, KS 66506, USA
| | - C B Rajashekar
- Department of Horticulture, Forestry, and Recreation Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Hisashi Koiwa
- Department of Horticultural Science, Texas A&M University, College Station, TX 77843, USA
| | - Paul A Nakata
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ninghui Cheng
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendal D Hirschi
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank F White
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Sunghun Park
- Department of Horticulture, Forestry, and Recreation Resources, Kansas State University, Manhattan, KS 66506, USA
- ()
| |
Collapse
|