51
|
EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat Genet 2018; 50:1247-1253. [PMID: 30082787 DOI: 10.1038/s41588-018-0187-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
The ability of cells to perceive and translate versatile cues into differential chromatin and transcriptional states is critical for many biological processes1-5. In plants, timely transition to a flowering state is crucial for successful reproduction6-9. EARLY BOLTING IN SHORT DAY (EBS) is a negative transcriptional regulator that prevents premature flowering in Arabidopsis thaliana10,11. We found that EBS contains bivalent bromo-adjacent homology (BAH)-plant homeodomain (PHD) reader modules that bind H3K27me3 and H3K4me3, respectively. We observed co-enrichment of a subset of EBS-associated genes with H3K4me3, H3K27me3, and Polycomb repressor complex 2 (PRC2). Notably, EBS adopted an autoinhibition mode to mediate its switch in binding preference between H3K27me3 and H3K4me3. This binding balance was critical because disruption of either EBS-H3K27me3 or EBS-H3K4me3 interaction induced early floral transition. Our results identify a bivalent chromatin reader capable of recognizing two antagonistic histone marks, and we propose a distinct mechanism of interaction between active and repressive chromatin states.
Collapse
|
52
|
James AB, Sullivan S, Nimmo HG. Global spatial analysis of Arabidopsis natural variants implicates 5'UTR splicing of LATE ELONGATED HYPOCOTYL in responses to temperature. PLANT, CELL & ENVIRONMENT 2018; 41. [PMID: 29520807 PMCID: PMC6033021 DOI: 10.1111/pce.13188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
How plants perceive and respond to temperature remains an important question in the plant sciences. Temperature perception and signal transduction may occur through temperature-sensitive intramolecular folding of primary mRNA transcripts. Recent studies suggested a role for retention of the first intron in the 5'UTR of the clock component LATE ELONGATED HYPOCOTYL (LHY) in response to changes in temperature. Here, we identified a set of haplotypes in the LHY 5'UTR, examined their global spatial distribution, and obtained evidence that haplotype can affect temperature-dependent splicing of LHY transcripts. Correlations of haplotype spatial distributions with global bioclimatic variables and altitude point to associations with annual mean temperature and temperature fluctuation. Relatively rare relict type accessions correlate with lower mean temperature and greater temperature fluctuation and the spatial distribution of other haplotypes may be informative of evolutionary processes driving colonization of ecosystems. We propose that haplotypes may possess distinct 5'UTR pre-mRNA folding thermodynamics and/or specific biological stabilities based around the binding of trans-acting RNA splicing factors, a consequence of which is scalable splicing sensitivity of a central clock component that is likely tuned to specific temperature environments.
Collapse
Affiliation(s)
- Allan B. James
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Stuart Sullivan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Hugh G. Nimmo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
53
|
Yang L, Wang HN, Hou XH, Zou YP, Han TS, Niu XM, Zhang J, Zhao Z, Todesco M, Balasubramanian S, Guo YL. Parallel Evolution of Common Allelic Variants Confers Flowering Diversity in Capsella rubella. THE PLANT CELL 2018; 30:1322-1336. [PMID: 29764984 PMCID: PMC6048796 DOI: 10.1105/tpc.18.00124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 05/04/2023]
Abstract
Flowering time is an adaptive life history trait. Capsella rubella, a close relative of Arabidopsis thaliana and a young species, displays extensive variation for flowering time but low standing genetic variation due to an extreme bottleneck event, providing an excellent opportunity to understand how phenotypic diversity can occur with a limited initial gene pool. Here, we demonstrate that common allelic variation and parallel evolution at the FLC locus confer variation in flowering time in C. rubella. We show that two overlapping deletions in the 5' untranslated region (UTR) of C. rubella FLC, which are associated with local changes in chromatin conformation and histone modifications, reduce its expression levels and promote flowering. We further show that these two pervasive variants originated independently in natural C. rubella populations after speciation and spread to an intermediate frequency, suggesting a role of this parallel cis-regulatory change in adaptive evolution. Our results provide an example of how parallel mutations in the same 5' UTR region can shape phenotypic evolution in plants.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui-Na Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Pan Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Shen Han
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Min Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
54
|
Srivastava AK, Lu Y, Zinta G, Lang Z, Zhu JK. UTR-Dependent Control of Gene Expression in Plants. TRENDS IN PLANT SCIENCE 2018; 23:248-259. [PMID: 29223924 PMCID: PMC5828884 DOI: 10.1016/j.tplants.2017.11.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 05/22/2023]
Abstract
Throughout their lives, plants sense many developmental and environmental stimuli, and activation of optimal responses against these stimuli requires extensive transcriptional reprogramming. To facilitate this activation, plant mRNA contains untranslated regions (UTRs) that significantly increase the coding capacity of the genome by producing multiple mRNA variants from the same gene. In this review we compare UTRs of arabidopsis (Arabidopsis thaliana) and rice (Oryza sativum) at the genome scale to highlight their complexity in crop plants. We discuss different modes of UTR-based regulation with emphasis on genes that regulate multiple plant processes, including flowering, stress responses, and nutrient homeostasis. We demonstrate functional specificity in genes with variable UTR length and propose future research directions.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Permanent address: Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
55
|
Negishi K, Endo M, Abe M, Araki T. SODIUM POTASSIUM ROOT DEFECTIVE1 regulates FLOWERING LOCUS T expression via the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module in response to potassium conditions. PLANT & CELL PHYSIOLOGY 2018; 59:404-413. [PMID: 29253219 DOI: 10.1093/pcp/pcx199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
To determine flowering time, plants perceive multiple environmental stimuli and integrate these signals in the regulation of a florigen gene, FLOWERING LOCUS T (FT). It has been known that nutrient availability affects flowering time in both laboratories and fields. Nitrogen (N), phosphorus (P) and potassium (K) are the three major macronutrients which are important for plant growth and development. Although N and P stimuli can alter the expression of regulators of FT including microRNA156 (miR156) and miR156-targeted transcription factors of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family, how K+ conditions affect flowering is still unclear. We focused on SODIUM POTASSUIM ROOT DEFECTIVE1 (NaKR1) whose mutant plants showed Na+ and K+ overaccumulation and late flowering. It was reported that NaKR1 is involved in the phloem transport of FT protein. Here we report that NaKR1 is also required for the promotion of FT expression in long-day conditions. NaKR1 affects the accumulation of miR156 and SPL3 expression, suggesting that NaKR1 regulates FT expression in part through the miR156-SPL3 module. The late-flowering phenotype of the nakr1-1 mutant was partially suppressed under low K+ conditions, and miR156 abundance and SPL3 expression in the nakr1-1 mutant and, to a lesser extent, in wild-type plants responded to K+ conditions. Taken together, our findings suggest that the miR156-SPL3 module mediates regulation of FT expression by NaKR1 in response to K+ conditions. Finally, we propose a model in which NaKR1 plays dual roles in regulation of flowering, one in the regulation of florigen production, the other in that of florigen transport.
Collapse
Affiliation(s)
- Katsuya Negishi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Motomu Endo
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501 Japan
| | - Mitsutomo Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takashi Araki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8501 Japan
| |
Collapse
|
56
|
Horstman A, Bemer M, Boutilier K. A transcriptional view on somatic embryogenesis. ACTA ACUST UNITED AC 2017; 4:201-216. [PMID: 29299323 PMCID: PMC5743784 DOI: 10.1002/reg2.91] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Somatic embryogenesis is a form of induced plant cell totipotency where embryos develop from somatic or vegetative cells in the absence of fertilization. Somatic embryogenesis can be induced in vitro by exposing explants to stress or growth regulator treatments. Molecular genetics studies have also shown that ectopic expression of specific embryo‐ and meristem‐expressed transcription factors or loss of certain chromatin‐modifying proteins induces spontaneous somatic embryogenesis. We begin this review with a general description of the major developmental events that define plant somatic embryogenesis and then focus on the transcriptional regulation of this process in the model plant Arabidopsis thaliana (arabidopsis). We describe the different somatic embryogenesis systems developed for arabidopsis and discuss the roles of transcription factors and chromatin modifications in this process. We describe how these somatic embryogenesis factors are interconnected and how their pathways converge at the level of hormones. Furthermore, the similarities between the developmental pathways in hormone‐ and transcription‐factor‐induced tissue culture systems are reviewed in the light of our recent findings on the somatic embryo‐inducing transcription factor BABY BOOM.
Collapse
Affiliation(s)
- Anneke Horstman
- Bioscience Wageningen University and Research Wageningen The Netherlands.,Laboratory of Molecular Biology Wageningen University and Research Wageningen The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology Wageningen University and Research Wageningen The Netherlands
| | - Kim Boutilier
- Bioscience Wageningen University and Research Wageningen The Netherlands
| |
Collapse
|
57
|
Bloomer RH, Dean C. Fine-tuning timing: natural variation informs the mechanistic basis of the switch to flowering in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5439-5452. [PMID: 28992087 DOI: 10.1093/jxb/erx270] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of diverse life history strategies has allowed Arabidopsis thaliana to adapt to worldwide locations, spanning a range of latitudinal and environmental conditions. Arabidopsis thaliana accessions are either vernalization-requiring winter annuals or rapid cyclers, with extensive natural variation in vernalization requirement and response. Genetic and molecular analysis of this variation has enhanced our understanding of the mechanisms involved in life history determination, with translation to both natural and crop systems in the Brassicaceae and beyond.
Collapse
Affiliation(s)
- R H Bloomer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - C Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
58
|
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S. Multilevel Regulation of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1564. [PMID: 29033955 PMCID: PMC5627039 DOI: 10.3389/fpls.2017.01564] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/28/2017] [Indexed: 05/18/2023]
Abstract
The sessile lifestyle of plants requires them to cope with stresses in situ. Plants overcome abiotic stresses by altering structure/morphology, and in some extreme conditions, by compressing the life cycle to survive the stresses in the form of seeds. Genetic and molecular studies have uncovered complex regulatory processes that coordinate stress adaptation and tolerance in plants, which are integrated at various levels. Investigating natural variation in stress responses has provided important insights into the evolutionary processes that shape the integrated regulation of adaptation and tolerance. This review primarily focuses on the current understanding of how transcriptional, post-transcriptional, post-translational, and epigenetic processes along with genetic variation orchestrate stress responses in plants. We also discuss the current and future development of computational tools to identify biologically meaningful factors from high dimensional, genome-scale data and construct the signaling networks consisting of these components.
Collapse
Affiliation(s)
- David C. Haak
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, AthensOH, United States
| | - Rumen Ivanov
- Institut für Botanik, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, United Kingdom
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| |
Collapse
|
59
|
Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, De-la-Peña C. Plant hormone signaling in flowering: An epigenetic point of view. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:16-27. [PMID: 28419906 DOI: 10.1016/j.jplph.2017.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 05/19/2023]
Abstract
Reproduction is one of the most important phases in an organism's lifecycle. In the case of angiosperm plants, flowering provides the major developmental transition from the vegetative to the reproductive stage, and requires genetic and epigenetic reprogramming to ensure the success of seed production. Flowering is regulated by a complex network of genes that integrate multiple environmental cues and endogenous signals so that flowering occurs at the right time; hormone regulation, signaling and homeostasis are very important in this process. Working alone or in combination, hormones are able to promote flowering by epigenetic regulation. Some plant hormones, such as gibberellins, jasmonic acid, abscisic acid and auxins, have important effects on chromatin compaction mediated by DNA methylation and histone posttranslational modifications, which hints at the role that epigenetic regulation may play in flowering through hormone action. miRNAs have been viewed as acting independently from DNA methylation and histone modification, ignoring their potential to interact with hormone signaling - including the signaling of auxins, gibberellins, ethylene, jasmonic acid, salicylic acid and others - to regulate flowering. Therefore, in this review we examine new findings about interactions between epigenetic mechanisms and key players in hormone signaling to coordinate flowering.
Collapse
Affiliation(s)
| | | | | | - Rosa Us-Camas
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Fátima Duarte-Aké
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| |
Collapse
|
60
|
Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 2017; 18:124. [PMID: 28655328 PMCID: PMC5488299 DOI: 10.1186/s13059-017-1263-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plants frequently have to weather both biotic and abiotic stressors, and have evolved sophisticated adaptation and defense mechanisms. In recent years, chromatin modifications, nucleosome positioning, and DNA methylation have been recognized as important components in these adaptations. Given their potential epigenetic nature, such modifications may provide a mechanistic basis for a stress memory, enabling plants to respond more efficiently to recurring stress or even to prepare their offspring for potential future assaults. In this review, we discuss both the involvement of chromatin in stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Jörn Lämke
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Isabel Bäurle
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
61
|
Integrated analysis and transcript abundance modelling of H3K4me3 and H3K27me3 in developing secondary xylem. Sci Rep 2017; 7:3370. [PMID: 28611454 PMCID: PMC5469831 DOI: 10.1038/s41598-017-03665-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023] Open
Abstract
Despite the considerable contribution of xylem development (xylogenesis) to plant biomass accumulation, its epigenetic regulation is poorly understood. Furthermore, the relative contributions of histone modifications to transcriptional regulation is not well studied in plants. We investigated the biological relevance of H3K4me3 and H3K27me3 in secondary xylem development using ChIP-seq and their association with transcript levels among other histone modifications in woody and herbaceous models. In developing secondary xylem of the woody model Eucalyptus grandis, H3K4me3 and H3K27me3 genomic spans were distinctly associated with xylogenesis-related processes, with (late) lignification pathways enriched for putative bivalent domains, but not early secondary cell wall polysaccharide deposition. H3K27me3-occupied genes, of which 753 (~31%) are novel targets, were enriched for transcriptional regulation and flower development and had significant preferential expression in roots. Linear regression models of the ChIP-seq profiles predicted ~50% of transcript abundance measured with strand-specific RNA-seq, confirmed in a parallel analysis in Arabidopsis where integration of seven additional histone modifications each contributed smaller proportions of unique information to the predictive models. This study uncovers the biological importance of histone modification antagonism and genomic span in xylogenesis and quantifies for the first time the relative correlations of histone modifications with transcript abundance in plants.
Collapse
|
62
|
|
63
|
Bouché F, Woods DP, Amasino RM. Winter Memory throughout the Plant Kingdom: Different Paths to Flowering. PLANT PHYSIOLOGY 2017; 173:27-35. [PMID: 27756819 PMCID: PMC5210730 DOI: 10.1104/pp.16.01322] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 05/18/2023]
Abstract
Molecular mechanisms contribute to the memory of winter in different plant groups.
Collapse
Affiliation(s)
- Frédéric Bouché
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| | - Daniel P Woods
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| | - Richard M Amasino
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and
- United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.)
| |
Collapse
|
64
|
Fletcher JC. State of the Art: trxG Factor Regulation of Post-embryonic Plant Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1925. [PMID: 29184559 PMCID: PMC5694493 DOI: 10.3389/fpls.2017.01925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/24/2017] [Indexed: 05/07/2023]
Abstract
Multicellular organisms rely on the precise and consistent regulation of gene expression to direct their development in tissue- and cell-type specific patterns. This regulatory activity involves arrays of DNA-binding transcription factors and epigenetic factors that modify chromatin structure. Among the chromatin modifiers, trithorax (trxG) and Polycomb (PcG) group proteins play important roles in orchestrating the stable activation and repression of gene expression, respectively. These proteins have generally antagonistic functions in maintaining cell and tissue homeostasis as well as in mediating widespread transcriptional reprogramming during developmental transitions. Plants utilize multiple trxG factors to regulate gene transcription as they modulate their development in response to both endogenous and environmental cues. Here, I will discuss the roles of trxG factors and their associated proteins in post-embryonic plant development.
Collapse
Affiliation(s)
- Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture – Agricultural Research Service, Albany, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Jennifer C. Fletcher,
| |
Collapse
|
65
|
Kwak JS, Son GH, Song JT, Seo HS. Post-translational modifications of FLOWERING LOCUS C modulate its activity. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:383-389. [PMID: 28204510 DOI: 10.1093/jxb/erw431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flowering Locus C (FLC) is a key floral repressor that precisely controls flowering time. The role of FLC has been extensively studied at the transcriptional level using molecular biological and epigenetic approaches. However, how FLC functions and how its stability is controlled at the post-translational level are only beginning to be understood. Recent studies show that various post-translational modifications (PTMs) control the stability and activity of FLC. In this review, we focus on three types of PTMs that regulate FLC function: phosphorylation, ubiquitination, and sumoylation. This report should serve as a model to guide post-translational studies of other important floral regulators.
Collapse
Affiliation(s)
- Jun Soo Kwak
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Ga Hyun Son
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
66
|
Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc Natl Acad Sci U S A 2016; 113:E7846-E7855. [PMID: 27856735 DOI: 10.1073/pnas.1608827113] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Seed dormancy is one of the most crucial process transitions in a plant's life cycle. Its timing is tightly controlled by the expression level of the Delay of Germination 1 gene (DOG1). DOG1 is the major quantitative trait locus for seed dormancy in Arabidopsis and has been shown to control dormancy in many other plant species. This is reflected by the evolutionary conservation of the functional short alternatively polyadenylated form of the DOG1 mRNA. Notably, the 3' region of DOG1, including the last exon that is not included in this transcript isoform, shows a high level of conservation at the DNA level, but the encoded polypeptide is poorly conserved. Here, we demonstrate that this region of DOG1 contains a promoter for the transcription of a noncoding antisense RNA, asDOG1, that is 5' capped, polyadenylated, and relatively stable. This promoter is autonomous and asDOG1 has an expression profile that is different from known DOG1 transcripts. Using several approaches we show that asDOG1 strongly suppresses DOG1 expression during seed maturation in cis, but is unable to do so in trans Therefore, the negative regulation of seed dormancy by asDOG1 in cis results in allele-specific suppression of DOG1 expression and promotes germination. Given the evolutionary conservation of the asDOG1 promoter, we propose that this cis-constrained noncoding RNA-mediated mechanism limiting the duration of seed dormancy functions across the Brassicaceae.
Collapse
|
67
|
Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:95-105. [PMID: 27487457 DOI: 10.1016/j.bbagrm.2016.07.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
Abstract
Reproductive development in plants is controlled by complex and intricate gene-regulatory networks of transcription factors. These networks integrate the information from endogenous, hormonal and environmental regulatory pathways. Many of the key players have been identified in Arabidopsis and other flowering plant species, and their interactions and molecular modes of action are being elucidated. An emerging theme is that there is extensive crosstalk between different pathways, which can be accomplished at the molecular level by modulation of transcription factor activity or of their downstream targets. In this review, we aim to summarize current knowledge on transcription factors and epigenetic regulators that control basic developmental programs during inflorescence and flower morphogenesis in the model plant Arabidopsis thaliana. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
|
68
|
Asensi-Fabado MA, Amtmann A, Perrella G. Plant responses to abiotic stress: The chromatin context of transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:106-122. [PMID: 27487458 DOI: 10.1016/j.bbagrm.2016.07.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/09/2016] [Accepted: 07/26/2016] [Indexed: 12/29/2022]
Abstract
The ability of plants to cope with abiotic environmental stresses such as drought, salinity, heat, cold or flooding relies on flexible mechanisms for re-programming gene expression. Over recent years it has become apparent that transcriptional regulation needs to be understood within its structural context. Chromatin, the assembly of DNA with histone proteins, generates a local higher-order structure that impacts on the accessibility and effectiveness of the transcriptional machinery, as well as providing a hub for multiple protein interactions. Several studies have shown that chromatin features such as histone variants and post-translational histone modifications are altered by environmental stress, and they could therefore be primary stress targets that initiate transcriptional stress responses. Alternatively, they could act downstream of stress-induced transcription factors as an integral part of transcriptional activity. A few experimental studies have addressed this 'chicken-and-egg' problem in plants and other systems, but to date the causal relationship between dynamic chromatin changes and transcriptional responses under stress is still unclear. In this review we have collated the existing information on concurrent epigenetic and transcriptional responses of plants to abiotic stress, and we have assessed the evidence using a simple theoretical framework of causality scenarios. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Anna Amtmann
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK
| | - Giorgio Perrella
- Plant Science Group, MCSB, MVLS, University of Glasgow, Glasgow, G128QQ, UK.
| |
Collapse
|
69
|
Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, Dangl J, Ehrhardt D, Friesner JD, Frommer WB, Grotewold E, Meyerowitz E, Nemhauser J, Nordborg M, Pikaard C, Shanklin J, Somerville C, Stitt M, Torii KU, Waese J, Wagner D, McCourt P. 50 years of Arabidopsis research: highlights and future directions. THE NEW PHYTOLOGIST 2016; 209:921-44. [PMID: 26465351 DOI: 10.1111/nph.13687] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 05/14/2023]
Abstract
922 I. 922 II. 922 III. 925 IV. 925 V. 926 VI. 927 VII. 928 VIII. 929 IX. 930 X. 931 XI. 932 XII. 933 XIII. Natural variation and genome-wide association studies 934 XIV. 934 XV. 935 XVI. 936 XVII. 937 937 References 937 SUMMARY: The year 2014 marked the 25(th) International Conference on Arabidopsis Research. In the 50 yr since the first International Conference on Arabidopsis Research, held in 1965 in Göttingen, Germany, > 54 000 papers that mention Arabidopsis thaliana in the title, abstract or keywords have been published. We present herein a citational network analysis of these papers, and touch on some of the important discoveries in plant biology that have been made in this powerful model system, and highlight how these discoveries have then had an impact in crop species. We also look to the future, highlighting some outstanding questions that can be readily addressed in Arabidopsis. Topics that are discussed include Arabidopsis reverse genetic resources, stock centers, databases and online tools, cell biology, development, hormones, plant immunity, signaling in response to abiotic stress, transporters, biosynthesis of cells walls and macromolecules such as starch and lipids, epigenetics and epigenomics, genome-wide association studies and natural variation, gene regulatory networks, modeling and systems biology, and synthetic biology.
Collapse
Affiliation(s)
- Nicholas J Provart
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jose Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Jelena Brkljacic
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, 43210, USA
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Vincent Colot
- Departement de Biologie École Normale Supérieure, Biologie Moleculaire des Organismes Photosynthetiques, F-75230, Paris, France
| | - Sean Cutler
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92507, USA
| | - Jeff Dangl
- Department of Biology and Howard Hughes Medical Institute, Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Joanna D Friesner
- Department of Plant Biology, Agricultural Sustainability Institute, University of California, Davis, CA, 95616, USA
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Erich Grotewold
- Center for Applied Plant Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Elliot Meyerowitz
- Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jennifer Nemhauser
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Magnus Nordborg
- Gregor Mendel Institute of Molecular Plant Biology, A-1030, Vienna, Austria
| | - Craig Pikaard
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Chris Somerville
- Energy Biosciences Institute, University of California, Berkeley, CA, 94704, USA
| | - Mark Stitt
- Metabolic Networks Department, Max Planck Institute for Molecular Plant Physiology, D-14476, Potsdam, Germany
| | - Keiko U Torii
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Jamie Waese
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter McCourt
- Department of Cell & Systems Biology/CAGEF, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
70
|
Förderer A, Zhou Y, Turck F. The age of multiplexity: recruitment and interactions of Polycomb complexes in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:169-78. [PMID: 26826786 DOI: 10.1016/j.pbi.2015.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/23/2015] [Accepted: 11/28/2015] [Indexed: 05/08/2023]
Abstract
Polycomb group (PcG) proteins form distinct complexes that modify chromatin by histone H3 methylation and H2A mono-ubiquitination leading to chromatin compaction and epigenetic repression of target genes. A network of PcG protein complexes, associated partners and antagonistically acting chromatin modifiers is essential to regulate developmental transitions and cell fate in all multicellular eukaryotes. In this review, we discuss insights on the subfunctionalization of PcG complexes and their modes of recruitment to target sites based on data from the model organism Arabidopsis thaliana.
Collapse
Affiliation(s)
- Alexander Förderer
- Max Planck Institute for Plant Breeding Research, Department Plant Developmental Biology, Carl von Linne Weg 10, 50829 Köln, Germany
| | - Yue Zhou
- Max Planck Institute for Plant Breeding Research, Department Plant Developmental Biology, Carl von Linne Weg 10, 50829 Köln, Germany
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Department Plant Developmental Biology, Carl von Linne Weg 10, 50829 Köln, Germany.
| |
Collapse
|
71
|
McClung CR, Lou P, Hermand V, Kim JA. The Importance of Ambient Temperature to Growth and the Induction of Flowering. FRONTIERS IN PLANT SCIENCE 2016; 7:1266. [PMID: 27602044 PMCID: PMC4993786 DOI: 10.3389/fpls.2016.01266] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/09/2016] [Indexed: 05/17/2023]
Abstract
Plant development is exquisitely sensitive to the environment. Light quantity, quality, and duration (photoperiod) have profound effects on vegetative morphology and flowering time. Recent studies have demonstrated that ambient temperature is a similarly potent stimulus influencing morphology and flowering. In Arabidopsis, ambient temperatures that are high, but not so high as to induce a heat stress response, confer morphological changes that resemble the shade avoidance syndrome. Similarly, these high but not stressful temperatures can accelerate flowering under short day conditions as effectively as exposure to long days. Photoperiodic flowering entails a series of external coincidences, in which environmental cycles of light and dark must coincide with an internal cycle in gene expression established by the endogenous circadian clock. It is evident that a similar model of external coincidence applies to the effects of elevated ambient temperature on both vegetative morphology and the vegetative to reproductive transition. Further study is imperative, because global warming is predicted to have major effects on the performance and distribution of wild species and strong adverse effects on crop yields. It is critical to understand temperature perception and response at a mechanistic level and to integrate this knowledge with our understanding of other environmental responses, including biotic and abiotic stresses, in order to improve crop production sufficiently to sustainably feed an expanding world population.
Collapse
Affiliation(s)
- C. R. McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NHUSA
- *Correspondence: C. R. McClung, Jin A. Kim,
| | - Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, NHUSA
| | - Victor Hermand
- Department of Biological Sciences, Dartmouth College, Hanover, NHUSA
| | - Jin A. Kim
- Department of Biological Sciences, Dartmouth College, Hanover, NHUSA
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju-siSouth Korea
- *Correspondence: C. R. McClung, Jin A. Kim,
| |
Collapse
|
72
|
Yu CW, Chang KY, Wu K. Genome-Wide Analysis of Gene Regulatory Networks of the FVE-HDA6-FLD Complex in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:555. [PMID: 27200029 PMCID: PMC4848314 DOI: 10.3389/fpls.2016.00555] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/11/2016] [Indexed: 05/18/2023]
Abstract
FVE/MSI4 is a homolog of the mammalian RbAp48 protein. We found that FVE regulates flowering time by repressing FLC through decreasing histone H3K4 trimethylation and H3 acetylation. Furthermore, FVE interacts with the histone deacetylase HDA6 and the histone demethylase FLD, suggesting that these proteins may form a protein complex to regulate flowering time. To further investigate the function of the FVE-FLD-HDA6 complex, we compared the gene expression profiles of fve, fld, and hda6 mutant plants by using RNA-seq analysis. Among the mis-regulated genes found in fve plants, 51.8 and 36.5% of them were also mis-regulated in fld and hda6 plants, respectively, suggesting that FVE, HDA6, and FLD may regulate the gene expression in the same developmental processes in Arabidopsis. Gene ontology analysis revealed that among 383 genes co-regulated by FVE, HDA6, and FLD, 15.6% of them are involved in transcription, 8.2% in RNA metabolic process, 7.7% in response to abiotic stress, and 6.3% in hormone stimulus. Taken together, these results indicate that HDA6, FVE, and FLD co-regulate the gene expression in multiple development processes and pathways.
Collapse
|
73
|
Affiliation(s)
- Anna Amtmann
- Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow G12 8QQ United Kingdom
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development School of Life Sciences Fudan University Shanghai 200438, China
| | - Doris Wagner
- Department of Biology University of Pennsylvania Philadelphia, PA 19104
| |
Collapse
|