51
|
Guan J, Teng K, Yue Y, Guo Y, Liu L, Yin S, Han L. Zoysia japonica Chlorophyll b Reductase Gene NOL Participates in Chlorophyll Degradation and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:906018. [PMID: 35599887 PMCID: PMC9121134 DOI: 10.3389/fpls.2022.906018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
The degradation of chlorophyll is of great significance to plant growth. The chlorophyll b reductase NOL (NYC1-like) is in charge of catalyzing the degradation of chlorophyll b and maintaining the stability of the photosystem. However, the molecular mechanisms of NOL-mediated chlorophyll degradation, senescence, and photosynthesis and its functions in other metabolic pathways remain unclear, especially in warm-season turfgrass. In this study, ZjNOL was cloned from Zoysia japonica. It is highly expressed in senescent leaves. Subcellular localization investigation showed ZjNOL is localized in the chloroplast and the bimolecular fluorescence complementation (BiFC) results proved ZjNOL interacts with ZjNYC1 in vivo. ZjNOL promoted the accumulation of abscisic acid (ABA) and carbohydrates, and the increase of SAG14 at the transcriptional level. ZjNOL simultaneously led to the excessive accumulation of reactive oxygen species (ROS), the activation of antioxidant enzymes, and the generation of oxidative stress, which in turn accelerated senescence. Chlorophyll fluorescence assay (JIP-test) analysis showed that ZjNOL inhibited photosynthetic efficiency mainly through damage to the oxygen-evolving complex. In total, these results suggest that ZjNOL promotes chlorophyll degradation and senescence and negatively affects the integrity and functionality of the photosystem. It could be a valuable candidate gene for genome editing to cultivate Z. japonica germplasm with prolonged green period and improved photosynthesis efficiency.
Collapse
Affiliation(s)
- Jin Guan
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Ke Teng
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuesen Yue
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yidi Guo
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Lingyun Liu
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Shuxia Yin
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Liebao Han
- College of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
52
|
Li X, Wang XH, Qiang W, Zheng HJ, ShangGuan LY, Zhang MS. Transcriptome revealing the dual regulatory mechanism of ethylene on the rhynchophylline and isorhynchophylline in Uncaria rhynchophylla. JOURNAL OF PLANT RESEARCH 2022; 135:485-500. [PMID: 35380307 DOI: 10.1007/s10265-022-01387-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Rhynchophylline (RIN) and isorhynchophylline (IRN) are extracted from Uncaria rhynchophylla, which are used to treat Alzheimer's disease. However, the massive accumulation of RIN and IRN in U. rhynchophylla requires exogenous stimulation. Ethylene is a potential stimulant for RIN and IRN biosynthesis, but there is no study on the role of ethylene in RIN or IRN synthesis. This study investigated the regulation of ethylene in RIN and IRN biosynthesis in U. rhynchophylla. An increase in the content of RIN and IRN was observed that could be attributed to the release of ethylene from 18 mM ethephon, while ethylene released from 36 mM ethephon reduced the content of RIN and IRN. The transcriptome and weighted gene co-expression network analysis indicated the up-regulation of seven key enzyme genes related to the RIN/IRN biosynthesis pathway and starch/sucrose metabolism pathway favored RIN/IRN synthesis. In comparison, the down-regulation of these seven key enzyme genes contributed to the reduction of RIN/IRN. Moreover, the inhibition of photosynthesis is associated with a reduction in RIN/IRN. Photosynthesis was restrained owing to the down-regulation of Lhcb1 and Lhcb6 after 36 mM ethephon treatment and further prevented supply of primary metabolites (such as α-D-glucose) for RIN/IRN synthesis. However, uninterrupted photosynthesis ensured a normal supply of primary metabolites at 18 mM ethephon treatment. AP2/ERF1, bHLH1, and bHLH2 may positively regulate the RIN/IRN accumulation, while NAC1 may play a negative regulatory role. Our results construct the potential bidirectional model for ethylene regulation on RIN/IRN synthesis and provide novel insight into the ethylene-mediated regulation of the metabolism of terpenoid indole alkaloids.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiao-Hong Wang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wei Qiang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hao-Jie Zheng
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Li-Yang ShangGuan
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ming-Sheng Zhang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
53
|
Yang F, Miao Y, Liu Y, Botella JR, Li W, Li K, Song CP. Function of Protein Kinases in Leaf Senescence of Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:864215. [PMID: 35548290 PMCID: PMC9083415 DOI: 10.3389/fpls.2022.864215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is an evolutionarily acquired process and it is critical for plant fitness. During senescence, macromolecules and nutrients are disassembled and relocated to actively growing organs. Plant leaf senescence process can be triggered by developmental cues and environmental factors, proper regulation of this process is essential to improve crop yield. Protein kinases are enzymes that modify their substrates activities by changing the conformation, stability, and localization of those proteins, to play a crucial role in the leaf senescence process. Impressive progress has been made in understanding the role of different protein kinases in leaf senescence recently. This review focuses on the recent progresses in plant leaf senescence-related kinases. We summarize the current understanding of the function of kinases on senescence signal perception and transduction, to help us better understand how the orderly senescence degeneration process is regulated by kinases, and how the kinase functions in the intricate integration of environmental signals and leaf age information.
Collapse
Affiliation(s)
- Fengbo Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuyue Liu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Kun Li
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
54
|
Calone R, Mircea DM, González-Orenga S, Boscaiu M, Lambertini C, Barbanti L, Vicente O. Recovery from Salinity and Drought Stress in the Perennial Sarcocornia fruticosa vs. the Annual Salicornia europaea and S. veneta. PLANTS (BASEL, SWITZERLAND) 2022; 11:1058. [PMID: 35448785 PMCID: PMC9031041 DOI: 10.3390/plants11081058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 06/01/2023]
Abstract
Current agricultural problems, such as the decline of freshwater and fertile land, foster saline agriculture development. Salicornia and Sarcocornia species, with a long history of human consumption, are ideal models for developing halophyte crops. A greenhouse experiment was set up to compare the response of the perennial Sarcocornia fruticosa and the two annual Salicornia europaea and S. veneta to 30 days of salt stress (watering with 700 mM NaCl) and water deficit (complete withholding of irrigation) separate treatments, followed by 15 days of recovery. The three species showed high tolerance to salt stress, based on the accumulation of ions (Na+, Cl-, Ca2+) in the shoots and the synthesis of organic osmolytes. These defence mechanisms were partly constitutive, as active ion transport to the shoots and high levels of glycine betaine were also observed in non-stressed plants. The three halophytes were sensitive to water stress, albeit S. fruticosa to a lesser extent. In fact, S. fruticosa showed a lower reduction in shoot fresh weight than S. europaea or S. veneta, no degradation of photosynthetic pigments, a significant increase in glycine betaine contents, and full recovery after the water stress treatment. The observed differences could be due to a better adaptation of S. fruticosa to a drier natural habitat, as compared to the two Salicornia species. However, a more gradual stress-induced senescence in the perennial S. fruticosa may contribute to greater drought tolerance in this species.
Collapse
Affiliation(s)
- Roberta Calone
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy;
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (D.-M.M.); (S.G.-O.); (O.V.)
| | - Diana-Maria Mircea
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (D.-M.M.); (S.G.-O.); (O.V.)
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania
| | - Sara González-Orenga
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (D.-M.M.); (S.G.-O.); (O.V.)
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain;
| | - Carla Lambertini
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, 20133 Milano, Italy;
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy;
| | - Oscar Vicente
- Institute for Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (D.-M.M.); (S.G.-O.); (O.V.)
| |
Collapse
|
55
|
Hussain A, Shah F, Ali F, Yun BW. Role of Nitric Oxide in Plant Senescence. FRONTIERS IN PLANT SCIENCE 2022; 13:851631. [PMID: 35463429 PMCID: PMC9022112 DOI: 10.3389/fpls.2022.851631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/15/2022] [Indexed: 05/27/2023]
Abstract
In plants senescence is the final stage of plant growth and development that ultimately leads to death. Plants experience age-related as well as stress-induced developmental ageing. Senescence involves significant changes at the transcriptional, post-translational and metabolomic levels. Furthermore, phytohormones also play a critical role in the programmed senescence of plants. Nitric oxide (NO) is a gaseous signalling molecule that regulates a plethora of physiological processes in plants. Its role in the control of ageing and senescence has just started to be elucidated. Here, we review the role of NO in the regulation of programmed cell death, seed ageing, fruit ripening and senescence. We also discuss the role of NO in the modulation of phytohormones during senescence and the significance of NO-ROS cross-talk during programmed cell death and senescence.
Collapse
Affiliation(s)
- Adil Hussain
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farooq Shah
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
56
|
Shirzadian-Khorramabad R, Moazzenzadeh T, Sajedi RH, Jing HC, Hille J, Dijkwel PP. A mutation in Arabidopsis SAL1 alters its in vitro activity against IP 3 and delays developmental leaf senescence in association with lower ROS levels. PLANT MOLECULAR BIOLOGY 2022; 108:549-563. [PMID: 35122174 DOI: 10.1007/s11103-022-01245-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Our manuscript is the first to find a link between activity of SAL1/OLD101 against IP3 and plant leaf senescence regulation and ROS levels assigning a potential biological role for IP3. Leaf senescence is a genetically programmed process that limits the longevity of a leaf. We identified and analyzed the recessive Arabidopsis stay-green mutation onset of leaf death 101 (old101). Developmental leaf longevity is extended in old101 plants, which coincided with higher peroxidase activity and decreased H2O2 levels in young 10-day-old, but not 25-day-old plants. The old101 phenotype is caused by a point mutation in SAL1, which encodes a bifunctional enzyme with inositol polyphosphate-1-phosphatase and 3' (2'), 5'-bisphosphate nucleotidase activity. SAL1 activity is highly specific for its substrates 3-polyadenosine 5-phosphate (PAP) and inositol 1, 4, 5-trisphosphate (IP3), where it removes the 1-phosphate group from the IP3 second messenger. The in vitro activity of recombinant old101 protein against its substrate IP3 was 2.5-fold lower than that of wild type SAL1 protein. However, the in vitro activity of recombinant old101 mutant protein against PAP remained the same as that of the wild type SAL1 protein. The results open the possibility that the activity of SAL1 against IP3 may affect the redox balance of young seedlings and that this delays the onset of leaf senescence.
Collapse
Affiliation(s)
- Reza Shirzadian-Khorramabad
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands.
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Taghi Moazzenzadeh
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hai-Chun Jing
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jacques Hille
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | - Paul P Dijkwel
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
57
|
Wang G, Peng M, Wang Y, Chen Z, Zhu S. Preharvest Hydrogen Peroxide Treatment Delays Leaf Senescence of Chinese Flowering Cabbage During Storage by Reducing Water Loss and Activating Antioxidant Defense System. FRONTIERS IN PLANT SCIENCE 2022; 13:856646. [PMID: 35432398 PMCID: PMC9009452 DOI: 10.3389/fpls.2022.856646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 06/10/2023]
Abstract
Leaf yellowing, an indicator of senescence, reduces commercial value of Chinese flowering cabbage after harvest. Hydrogen peroxide (H2O2) plays a dual role in mediating plant stress responses, but it is not clear whether and how it affects leaf senescence when exogenously stimulating the plants before harvest. Here, we found that preharvest application with low concentrations of H2O2 to root delays leaf senescence. Around 10 mM H2O2 reduced leaf yellowing rate by 8.2 and 26.4% relative to the control following 4 and 8 days storage, respectively. The H2O2-treated cabbages showed higher chlorophyll and lower relative expression of senescence-associated gene (SAG) BrSAG12 than the control. Proteomic analysis revealed 118 and 204 differentially expressed proteins (DEPs) in H2O2-treated plants at 4 and 8 days of storage, respectively. The main DEPs are involved in chlorophyll degradation and synthesis, water deprivation, antioxidant activity, and protections on chloroplast membranes. Decline of water loss in H2O2-treated cabbages was coincide with increase of proline contents and modulation of leaf stomatal aperture. Alleviation of oxidative stress was indicated by suppression of respiratory burst oxidase homolog and upregulation of reactive oxygen species (ROS) scavenging-related genes. These results were also supported by the alleviation of lipid peroxidation and the protections on cell integrity and photochemical efficiency in H2O2-treated group. Collectively, preharvest H2O2 treatment alleviates water loss and activates antioxidant defense system, protects chloroplast membrane from oxidative damage, and ultimately delays leaf senescence during storage. This study provides novel insights into the roles of H2O2 for regulating leaf senescence of Chinese flowering cabbage.
Collapse
|
58
|
Wang C, Wang B, Cao L, Zhang Y, Gao Y, Cao Y, Zhang Y, Liu Q, Zhang X. Identification and Gene Mapping of the Lesion Mimic Mutant lm8015-3. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.809008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lesion mimic mutants (LMMs) exhibit spots on leaves without fungal infection pressure. The spots confer variable resistance to pathogens in different LMM, making them useful research materials. It is unclear how the rice immune system responds to infection with the fungal pathogen Magnaporthe oryzae (M. oryzae). Here, we identified a rice LMM, lm8015-3, which shows reduced resistance to M. oryzae. We used Quantitative Real-Time PCR (qRT-PCR) to observe the immune system response to M. oryzae–induced lm8015-3. Lm8015-3, obtained from an ethyl methane sulfonate (EMS)–induced Zhonghui8015 (ZH8015) library, showed orange-yellow spots starting in the seedling stage and accumulated more H2O2, resulting in severe degradation of the chloroplast. With map-based cloning, the target gene was located on chromosome 12. Once inoculated with M. oryzae, the expression level of pathogen-related genes of lm8015-3 was downregulated between 48 and 72 h. In addition, more germinating spores appeared in lm8015-3. Therefore, we conclude that M. oryzae weakening the immune system of lm8015-3 from 48 to 72 h makes lm8015-3 more susceptible to M. oryzae. These results suggested that understanding how LMMs defend against M. oryzae infection will contribute to improving rice breeding.
Collapse
|
59
|
Wu Q, Liu C, Wang Z, Gao T, Liu Y, Xia Y, Yin R, Qi M. Zinc regulation of iron uptake and translocation in rice (Oryza sativa L.): Implication from stable iron isotopes and transporter genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118818. [PMID: 35016986 DOI: 10.1016/j.envpol.2022.118818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 05/24/2023]
Abstract
Iron (Fe) is an essential nutrient for living organisms and Fe deficiency is a worldwide problem for the health of both rice and humans. Zinc (Zn) contamination in agricultural soils is frequently observed. Here, we studied Fe isotope compositions and transcript levels of Fe transporter genes in rice growing in nutrient solutions having a range of Zn concentrations. Our results show Zn stress reduces Fe uptake by rice and drives its δ56Fe value to that of the nutrient solution. These observations can be explained by the weakened Fe(II) uptake through Strategy I but enhanced Fe(III) uptake through Strategy II due to the competition between Zn and Fe(II) combining with OsIRT1 (Fe(II) transporter) in root, which is supported by the downregulated expression of OsIRT1 and upregulated expression of OsYSL15 (Fe(III) transporter). Using a mass balance box model, we also show excess Zn reduces Fe(II) translocation in phloem and its remobilization from senescent leaf, indicating a competition of binding sites on nicotianamine between Zn and Fe(II). This study provides direct evidence that how Zn regulates Fe uptake and translocation in rice and is of practical significance to design strategies to treat Fe deficiency in rice grown in Zn-contaminated soils.
Collapse
Affiliation(s)
- Qiqi Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Chengshuai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Zhengrong Wang
- Department of Earth and Atmospheric Sciences, The City College of New York, CUNY, New York, 10031, USA
| | - Ting Gao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China.
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Runsheng Yin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
60
|
Chaparro-Encinas LA, Parra-Cota FI, Cruz-Mendívil A, Santoyo G, Peña-Cabriales JJ, Castro-Espinoza L, de Los Santos-Villalobos S. Transcriptional regulation of cell growth and reprogramming of systemic response in wheat (Triticum turgidum subsp. durum) seedlings by Bacillus paralicheniformis TRQ65. PLANTA 2022; 255:56. [PMID: 35106645 DOI: 10.1007/s00425-022-03837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Bacillus paralicheniformis TRQ65 reprograms the gene expression patterns associated with systemic response to potentially facilitate its colonization and stimulate cell growth and plant biomass. Plant growth-promoting rhizobacteria (PGPR) carry out numerous mechanisms that enhance growth in seedlings, such as nutrient solubilization, phytohormone production, biocontrol activity, and regulation of induced systemic resistance (ISR) and acquired systemic resistance (ASR). Bacillus paralicheniformis TRQ65 is a biological and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere. In this study, we performed a transcriptomic analysis of wheat seedlings inoculated with the native rhizobacterium Bacillus paralicheniformis TRQ65 (1 × 107 cells∙g -1 of soil) at early development stages (GS15). A morphometrical assay was carried out to confirm growth promotion and after the cultivation period, TRQ65 was re-isolated to define inoculum persistence. Inoculated seedlings showed a significant (P < 0.05) increase in shoot length (93.48%) and dry weight in both shoot (117.02%) and root (48.33%) tissues; also, the strain persisted in the soil at 1.4 × 107 UFC∙g-1 of soil. A total of 228 differentially expressed genes (DEGs) (FDR < 0.05 and |log2 fold change|≥ 1.3) were observed in response to TRQ65 inoculation, of which 185 were down-regulated and 43 were up-regulated. The transcriptional patterns were characterized by the regulation of multidimensional cell growth (ROS, Ca+2 channel, and NADPH oxidases activity), suppression of defense mechanism (PR proteins, PDFs, ROS, transcription factors), induction of central stimuli receptors (RALF, WAK, MAPK), carbohydrate metabolism (invertase activity) and phytohormone-related transport (ABCG transporter and AAAP). These results suggest that B. paralicheniformis TRQ65 is a promising bioinoculant agent for increasing wheat growth and development by reprogramming ISR and ASR simultaneously, suppressing defense mechanisms and inducing central stimuli response.
Collapse
Affiliation(s)
- Luis A Chaparro-Encinas
- Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P. 85000, Col. Centro, Ciudad Obregón, Sonora, México
- Universidad Autónoma Agraria Antonio Narro (UAAAN) Unidad Laguna, Periférico Raúl López Sánchez, Valle Verde, 27054, Torreón, Coahuila, México
| | - Fannie I Parra-Cota
- Campo Experimental Norman E. Borlaug-CIRNO. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Norman E. Borlaug Km. 12, CP 85000, Valle del Yaqui, Ciudad Obregón, Sonora, México
| | - Abraham Cruz-Mendívil
- Cátedras CONACYT, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional (CIIDIR) Unidad Sinaloa, Guasave, Sinaloa, México
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Juan J Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Campus Guanajuato, Irapuato Guanajuato, México
| | - Luciano Castro-Espinoza
- Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P. 85000, Col. Centro, Ciudad Obregón, Sonora, México
| | | |
Collapse
|
61
|
Moraga F, Alcaíno M, Matus I, Castillo D, del Pozo A. Leaf and Canopy Traits Associated with Stay-Green Expression Are Closely Related to Yield Components of Wheat Genotypes with Contrasting Tolerance to Water Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:292. [PMID: 35161273 PMCID: PMC8838353 DOI: 10.3390/plants11030292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The onset and rate of senescence influence key agronomical traits, including grain yield (GY). Our objective was to assess the relationships between stay-green and GY in a set of fourteen spring bread wheat (Triticum aestivum L.) genotypes with contrasting tolerance to water stress. Based on leaf chlorophyll content index (Chl) and normalized vegetation index (NDVI) measurements, the senescence dynamics at leaf and canopy levels, respectively, were quantified. Parameters describing the dynamics of senescence were examined in glasshouse and field experiments under well-watered (WW) and water-limited (WL) regimes, and they included the following stay-green traits: maximum NDVI or Chl near to anthesis (NDVImax, Chlmax), the senescence rate (SR, rate), the area under curve (AreaNDVI, AreaChl), and the time from anthesis to 10 (tonset), 50 (t50, X50) and 90% (t90) senescence. Our results revealed that specific stay-green traits were significantly different among genotypes and water regimes in both glasshouse and field experiments. GY was positively correlated with ttotal (0.42), tonset (0.62) and NDVIdif (0.63). Under WL, NDVIdif and NDVImax correlated with GY (0.66-0.58), but only t50 correlated with GY under WW (0.62), indicating that phenotyping of stay-green trait is a useful tool for tracking the dynamics of senescence in WW and WL environments.
Collapse
Affiliation(s)
- Felipe Moraga
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile; (F.M.); (M.A.)
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Marta Alcaíno
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile; (F.M.); (M.A.)
| | - Iván Matus
- CRI-Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3800062, Chile; (I.M.); (D.C.)
| | - Dalma Castillo
- CRI-Quilamapu, Instituto de Investigaciones Agropecuarias, Chillán 3800062, Chile; (I.M.); (D.C.)
| | - Alejandro del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile; (F.M.); (M.A.)
| |
Collapse
|
62
|
Zhang B, Yang J, Gu G, Jin L, Chen C, Lin Z, Song J, Xie X. Integrative Analyses of Biochemical Properties and Transcriptome Reveal the Dynamic Changes in Leaf Senescence of Tobacco ( Nicotiana tabacum L.). Front Genet 2022; 12:790167. [PMID: 35003224 PMCID: PMC8727547 DOI: 10.3389/fgene.2021.790167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Leaf senescence is an important process of growth and development in plant, and it is a programmed decline controlled by a series of genes. In this study, the biochemical properties and transcriptome at five maturity stages (M1∼M5) of tobacco leaves were analyzed to reveal the dynamic changes in leaf senescence of tobacco. A total of 722, 1,534, 3,723, and 6,933 genes were differentially expressed (DEG) between M1 and M2, M1 and M3, M1 and M4, and M1 and M5, respectively. Significant changes of nitrogen, sugars, and the DEGs related to metabolite accumulation were identified, suggesting the importance of energy metabolism during leaf senescence. Gene Ontology (GO) analysis found that DEGs were enriched in biosynthetic, metabolic, photosynthesis, and redox processes, and especially, the nitrogen metabolic pathways were closely related to the whole leaf senescence process (M1∼M5). All the DEGs were grouped into 12 expression profiles according to their distinct expression patterns based on Short Time-series Expression Miner (STEM) software analysis. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that these DEGs were enriched in pathways of carbon metabolism, starch and sucrose metabolism, nitrogen metabolism, and photosynthesis among these expression profiles. A total of 30 core genes were examined by Weight Gene Co-expression Network Analysis (WGCNA), and they appeared to play a crucial role in the regulatory of tobacco senescence. Our results provided valuable information for further functional investigation of leaf senescence in plants.
Collapse
Affiliation(s)
- Binghui Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Liao Jin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | | | - Zhiqiang Lin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | | | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
63
|
Bhakta S, Negi S, Tak H, Singh S, Ganapathi TR. MusaATAF2 like protein, a stress-related transcription factor, induces leaf senescence by regulating chlorophyll catabolism and H 2 O 2 accumulation. PHYSIOLOGIA PLANTARUM 2022; 174:e13593. [PMID: 34761415 DOI: 10.1111/ppl.13593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/09/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
NAC transcription factors are known for their diverse role in plants. In this study, we have demonstrated the role of MusaATAF2, a banana NAC transcription factor, in leaf senescence. Its expression gets strongly up-regulated during the early stress responses of drought and high salinity exposure and down-regulated under ABA application, which suggests MusaATAF2 is a stress-related NAC transcription factor. To study the role of MusaATAF2 in banana, we have transformed the banana embryogenic cells with MusaATAF2 coding region and generated transgenic banana plants. Overexpression of MusaATAF2 in banana plants caused yellow leaf phenotype under control condition, suggesting its role as a senescence-associated transcription factor. Transgenic banana leaves exhibited low chlorophyll content and high H2 O2 accumulation. Hormone analysis of the leaves demonstrated a higher accumulation of ABA in the transgenic plants than the controls. Transgenic plants overexpressing MusaATAF2 have a higher transcript abundance of two chlorophyll catabolic pathway genes (PAO and HCAR) and lower transcript abundance of ROS scavenging enzymes (TDP, THIO, CAT, APX, and PRXDN) than control. Together, all these analyses indicate that MusaATAF2 induces senescence by inducing chlorophyll degradation and H2 O2 accumulation in banana plants and controls its own expression using an ABA-dependent feedback loop.
Collapse
Affiliation(s)
- Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sanjana Negi
- Department of Biotechnology, University of Mumbai, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sudhir Singh
- Homi Bhabha National Institute, Mumbai, India
- Plant Biotechnology & Secondary Metabolites Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumbali R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
64
|
Teng K, Yue Y, Zhang H, Li H, Xu L, Han C, Fan X, Wu J. Functional Characterization of the Pheophytinase Gene, ZjPPH, From Zoysia japonica in Regulating Chlorophyll Degradation and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:786570. [PMID: 35003174 PMCID: PMC8733386 DOI: 10.3389/fpls.2021.786570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/16/2021] [Indexed: 05/13/2023]
Abstract
Pheophytinase (PPH), the phytol hydrolase, plays important roles in chlorophyll degradation. Nevertheless, little attention has been paid to the PPHs in warm-season grass species; neither its detailed function in photosynthesis has been systematically explored to date. In this study, we isolated ZjPPH from Zoysia japonica, an excellent warm-season turfgrass species. Quantitative real-time PCR analysis and promoter activity characterization revealed that the expression of ZjPPH could be induced by senescence, ABA, and dark induction. Subcellular localization observation proved that ZjPPH was localized in the chloroplasts. Overexpression of ZjPPH accelerated the chlorophyll degradation and rescued the stay-green phenotype of the Arabidopsis pph mutant. Moreover, ZjPPH promoted senescence with the accumulation of ABA and soluble sugar contents, as well as the increased transcriptional level of SAG12 and SAG14. Transmission electron microscopy investigation revealed that ZjPPH caused the decomposition of chloroplasts ultrastructure in stable transformed Arabidopsis. Furthermore, chlorophyll a fluorescence transient measurement analysis suggested that ZjPPH suppressed photosynthesis efficiency by mainly suppressing both photosystem II (PSII) and photosystem I (PSI). In conclusion, ZjPPH plays an important role in chlorophyll degradation and senescence. It could be a valuable target for genetic editing to cultivate new germplasms with stay-green performance and improved photosynthetic efficiency.
Collapse
Affiliation(s)
- Ke Teng
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuesen Yue
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lixin Xu
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Chao Han
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xifeng Fan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Juying Wu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
65
|
Hassan MA, Yang M, Rasheed A, Tian X, Reynolds M, Xia X, Xiao Y, He Z. Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping. PLANT PHYSIOLOGY 2021; 187:2623-2636. [PMID: 34601616 PMCID: PMC8644761 DOI: 10.1093/plphys/kiab431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/23/2021] [Indexed: 05/21/2023]
Abstract
Environmental stresses from climate change can alter source-sink relations during plant maturation, leading to premature senescence and decreased yields. Elucidating the genetic control of natural variations for senescence in wheat (Triticum aestivum) can be accelerated using recent developments in unmanned aerial vehicle (UAV)-based imaging techniques. Here, we describe the use of UAVs to quantify senescence in wheat using vegetative indices (VIs) derived from multispectral images. We detected senescence with high heritability, as well as its impact on grain yield (GY), in a doubled-haploid population and parent cultivars at various growth time points (TPs) after anthesis in the field. Selecting for slow senescence using a combination of different UAV-based VIs was more effective than using a single ground-based vegetation index. We identified 28 quantitative trait loci (QTL) for vegetative growth, senescence, and GY using a 660K single-nucleotide polymorphism array. Seventeen of these new QTL for VIs from UAV-based multispectral imaging were mapped on chromosomes 2B, 3A, 3D, 5A, 5D, 5B, and 6D; these QTL have not been reported previously using conventional phenotyping methods. This integrated approach allowed us to identify an important, previously unreported, senescence-related locus on chromosome 5D that showed high phenotypic variation (up to 18.1%) for all UAV-based VIs at all TPs during grain filling. This QTL was validated for slow senescence by developing kompetitive allele-specific PCR markers in a natural population. Our results suggest that UAV-based high-throughput phenotyping is advantageous for temporal assessment of the genetics underlying for senescence in wheat.
Collapse
Affiliation(s)
- Muhammad Adeel Hassan
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Mengjiao Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
- Deparment of Plant Science, Quaid-i-Azam University Islamabad 44000, Pakistan
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Matthew Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Mexico DF 06600, Mexico
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yonggui Xiao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Author for communication:
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
| |
Collapse
|
66
|
Lei S, Yu G, Rossi S, Yu J, Huang B. LpNOL-knockdown suppression of heat-induced leaf senescence in perennial ryegrass involving regulation of amino acid and organic acid metabolism. PHYSIOLOGIA PLANTARUM 2021; 173:1979-1991. [PMID: 34455589 DOI: 10.1111/ppl.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The nonyellow COLORING 1-like gene (NOL) is known for its roles in accelerating leaf senescence, but the underlying metabolic mechanisms for heat-induced leaf senescence remain unclear. The objectives of this study were to identify metabolites and associated metabolic pathways regulated by knockdown of NOL in perennial ryegrass (Lolium perenne) and to determine the metabolic mechanisms of NOL controlling heat-induced leaf senescence. Wild-type (WT; cv. "Pinnacle") and two lines (Noli-1 and Noli-2) of perennial ryegrass with LpNOL knockdown were exposed to heat stress at 35/33°C (day/night) or nonstress control temperatures at 25/22°C (day/night) for 30 days in growth chambers. Leaf electrolyte leakage, chlorophyll (Chl) content, photochemical efficiency (Fv /Fm ), and net photosynthetic rate (Pn) were measured as physiological indicators of leaf senescence, while gas chromatography-mass spectrometry was performed to identify metabolites regulated by LpNOL. Knockdown of LpNOL suppressed heat-induced leaf senescence and produced a stay-green phenotype in perennial ryegrass, as manifested by increased Chl content, photochemical efficiency, net photosynthetic rate, and cell membrane stability in Noli-1 and Noli-2. Five metabolites (valine, malic acid, threonic acid, shikimic acid, chlorogenic acid) were uniquely upregulated in LpNOL plants exposed to heat stress, and six metabolites (aspartic acid, glutamic acid, 5-oxoproline, phenylalanine, proline, tartaric acid) exhibited more pronounced increases in their content in LpNOL plants than the WT. LpNOL could regulate heat-induced leaf senescence in perennial ryegrass through metabolic reprogramming in the pathways of respiration, secondary metabolism, antioxidant metabolism, and protein synthesis.
Collapse
Affiliation(s)
- Shuhan Lei
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Guohui Yu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Stephanie Rossi
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Jinjing Yu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
67
|
Zhang Y, Wu Z, Feng M, Chen J, Qin M, Wang W, Bao Y, Xu Q, Ye Y, Ma C, Jiang CZ, Gan SS, Zhou H, Cai Y, Hong B, Gao J, Ma N. The circadian-controlled PIF8-BBX28 module regulates petal senescence in rose flowers by governing mitochondrial ROS homeostasis at night. THE PLANT CELL 2021; 33:2716-2735. [PMID: 34043798 PMCID: PMC8408477 DOI: 10.1093/plcell/koab152] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/19/2021] [Indexed: 05/20/2023]
Abstract
Reactive oxygen species (ROS) are unstable reactive molecules that are toxic to cells. Regulation of ROS homeostasis is crucial to protect cells from dysfunction, senescence, and death. In plant leaves, ROS are mainly generated from chloroplasts and are tightly temporally restricted by the circadian clock. However, little is known about how ROS homeostasis is regulated in nonphotosynthetic organs, such as petals. Here, we showed that hydrogen peroxide (H2O2) levels exhibit typical circadian rhythmicity in rose (Rosa hybrida) petals, consistent with the measured respiratory rate. RNA-seq and functional screening identified a B-box gene, RhBBX28, whose expression was associated with H2O2 rhythms. Silencing RhBBX28 accelerated flower senescence and promoted H2O2 accumulation at night in petals, while overexpression of RhBBX28 had the opposite effects. RhBBX28 influenced the expression of various genes related to respiratory metabolism, including the TCA cycle and glycolysis, and directly repressed the expression of SUCCINATE DEHYDROGENASE 1, which plays a central role in mitochondrial ROS (mtROS) homeostasis. We also found that PHYTOCHROME-INTERACTING FACTOR8 (RhPIF8) could activate RhBBX28 expression to control H2O2 levels in petals and thus flower senescence. Our results indicate that the circadian-controlled RhPIF8-RhBBX28 module is a critical player that controls flower senescence by governing mtROS homeostasis in rose.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhicheng Wu
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ming Feng
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiwei Chen
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meizhu Qin
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wenran Wang
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ying Bao
- Faculty of Life Science, Tangshan Normal University, Tangshan, 063000, Hebei, China
| | - Qian Xu
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ying Ye
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Ma
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cai-Zhong Jiang
- United States Department of Agriculture, Crop Pathology and Genetic Research Unit, Agricultural Research Service, University of California, Davis, CA, USA
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Hougao Zhou
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Youming Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Bo Hong
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nan Ma
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Author for correspondence:
| |
Collapse
|
68
|
Gems D, Kern CC, Nour J, Ezcurra M. Reproductive Suicide: Similar Mechanisms of Aging in C. elegans and Pacific Salmon. Front Cell Dev Biol 2021; 9:688788. [PMID: 34513830 PMCID: PMC8430333 DOI: 10.3389/fcell.2021.688788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Carina C. Kern
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Joseph Nour
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Ezcurra
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
69
|
Ferguson JN, Tidy AC, Murchie EH, Wilson ZA. The potential of resilient carbon dynamics for stabilizing crop reproductive development and productivity during heat stress. PLANT, CELL & ENVIRONMENT 2021; 44:2066-2089. [PMID: 33538010 DOI: 10.1111/pce.14015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/20/2023]
Abstract
Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops. Recent studies are beginning to demonstrate links between processes underlying carbon dynamics and reproduction during heat stress, consequently a summation of research that has been reported thus far and an evaluation of purported associations are needed to guide and stimulate future research. To this end, we review recent studies relating to source-sink dynamics, non-foliar photosynthesis and net carbon gain as pivotal in understanding how to improve reproductive development and crop productivity during heat stress. Rapid and precise phenotyping during narrow phenological windows will be important for understanding mechanisms underlying these processes, thus we discuss the development of relevant high-throughput phenotyping approaches that will allow for more informed decision-making regarding future crop improvement.
Collapse
Affiliation(s)
- John N Ferguson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Leicestershire, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison C Tidy
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Erik H Murchie
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| | - Zoe A Wilson
- Division of Plant & Crop Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
70
|
Rankenberg T, Geldhof B, van Veen H, Holsteens K, Van de Poel B, Sasidharan R. Age-Dependent Abiotic Stress Resilience in Plants. TRENDS IN PLANT SCIENCE 2021; 26:692-705. [PMID: 33509699 DOI: 10.1016/j.tplants.2020.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/13/2023]
Abstract
Developmental age is a strong determinant of stress responses in plants. Differential susceptibility to various environmental stresses is widely observed at both the organ and whole-plant level. While it is clear that age determines stress susceptibility, the causes, regulatory mechanisms, and functions are only now beginning to emerge. Compared with concepts on age-related biotic stress resilience, advancements in the abiotic stress field are relatively limited. In this review, we focus on current knowledge of ontogenic resistance to abiotic stresses, highlighting examples at the organ (leaf) and plant level, preceded by an overview of the relevant concepts in plant aging. We also discuss age-related abiotic stress resilience mechanisms, speculate on their functional relevance, and outline outstanding questions.
Collapse
Affiliation(s)
- Tom Rankenberg
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Hans van Veen
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium.
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
71
|
Qin M, Zhang B, Gu G, Yuan J, Yang X, Yang J, Xie X. Genome-Wide Analysis of the G2-Like Transcription Factor Genes and Their Expression in Different Senescence Stages of Tobacco ( Nicotiana tabacum L.). Front Genet 2021; 12:626352. [PMID: 34135936 PMCID: PMC8202009 DOI: 10.3389/fgene.2021.626352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
The Golden2-like (GLK) transcription factors play important roles in regulating chloroplast growth, development, and senescence in plants. In this study, a total of 89 NtGLK genes (NtGLK1-NtGLK89) were identified in the tobacco genome and were classified into 10 subfamilies with variable numbers of exons and similar structural organizations based on the gene structure and protein motif analyses. Twelve segmental duplication pairs of NtGLK genes were identified in the genome. These NtGLK genes contain two conserved helix regions related to the HLH structure, and the sequences of the first helix region are less conserved than that of the second helix motif. Cis-regulatory elements of the NtGLK promoters were widely involved in light responsiveness, hormone treatment, and physiological stress. Moreover, a total of 206 GLK genes from tomato, tobacco, maize, rice, and Arabidopsis were retrieved and clustered into eight subgroups. Our gene expression analysis indicated that NtGLK genes showed differential expression patterns in tobacco leaves at five senescence stages. The expression levels of six NtGLK genes in group C were reduced, coinciding precisely with the increment of the degree of senescence, which might be associated with the function of leaf senescence of tobacco. Our results have revealed valuable information for further functional characterization of the GLK gene family in tobacco.
Collapse
Affiliation(s)
- Mingyue Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiazheng Yuan
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC, United States
| | - Xuanshong Yang
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
72
|
Li N, Bo C, Zhang Y, Wang L. PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4577-4589. [PMID: 33830198 PMCID: PMC8446286 DOI: 10.1093/jxb/erab158] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/03/2021] [Indexed: 05/04/2023]
Abstract
Leaf senescence can be triggered by multiple abiotic stresses including darkness, nutrient limitation, salinity, and drought. Recently, heatwaves have been occurring more frequently, and they dramatically affect plant growth and development. However, the underlying molecular networks of heat stress-induced leaf senescence remain largely uncharacterized. Here we showed that PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5 proteins could efficiently promote heat stress-induced leaf senescence in Arabidopsis. Transcriptomic profiling analysis revealed that PIF4 and PIF5 are likely to function through multiple biological processes including hormone signaling pathways. Further, we characterized NAC019, SAG113, and IAA29 as direct transcriptional targets of PIF4 and PIF5. The transcription of NAC019, SAG113, and IAA29 changes significantly in daytime after heat treatment. In addition, we demonstrated that PIF4 and PIF5 proteins were accumulated during the recovery after heat treatment. Moreover, we showed that heat stress-induced leaf senescence is gated by the circadian clock, and plants might be more actively responsive to heat stress-induced senescence during the day. Taken together, our findings proposed important roles for PIF4 and PIF5 in mediating heat stress-induced leaf senescence, which may help to fully illustrate the molecular network of heat stress-induced leaf senescence in higher plants and facilitate the generation of heat stress-tolerant crops.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Cunpei Bo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Correspondence: or
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: or
| |
Collapse
|
73
|
Feng X, Liu L, Li Z, Sun F, Wu X, Hao D, Hao H, Jing HC. Potential interaction between autophagy and auxin during maize leaf senescence. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3554-3568. [PMID: 33684202 PMCID: PMC8446287 DOI: 10.1093/jxb/erab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 05/04/2023]
Abstract
Leaf senescence is important for crop yield as delaying it can increase the average yield. In this study, population genetics and transcriptomic profiling were combined to dissect its genetic basis in maize. To do this, the progenies of an elite maize hybrid Jidan27 and its parental lines Si-287 (early senescence) and Si-144 (stay-green), as well as 173 maize inbred lines were used. We identified two novel loci and their candidate genes, Stg3 (ZmATG18b) and Stg7 (ZmGH3.8), which are predicted to be members of autophagy and auxin pathways, respectively. Genomic variations in the promoter regions of these two genes were detected, and four allelic combinations existed in the examined maize inbred lines. The Stg3Si-144/Stg7Si-144 allelic combination with lower ZmATG18b expression and higher ZmGH3.8 expression could distinctively delay leaf senescence, increase ear weight and the improved hybrid of NIL-Stg3Si-144/Stg7Si-144 × Si-144 significantly reduced ear weight loss under drought stress, while opposite effects were observed in the Stg3Si-287/Stg7Si-287 combination with a higher ZmATG18b expression and lower ZmGH3.8 expression. Thus, we identify a potential interaction between autophagy and auxin which could modulate the timing of maize leaf senescence.
Collapse
Affiliation(s)
- Xue Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Dongyun Hao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130124, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Correspondence: or
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Engineering Laboratory for Grass-based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Correspondence: or
| |
Collapse
|
74
|
van Beek CR, Guzha T, Kopana N, van der Westhuizen CS, Panda SK, van der Vyver C. The SlNAC2 transcription factor from tomato confers tolerance to drought stress in transgenic tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:907-921. [PMID: 34092944 PMCID: PMC8140038 DOI: 10.1007/s12298-021-00996-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 05/13/2023]
Abstract
UNLABELLED Drought is a key environmental factor that restricts crop growth and productivity. Plant responses to water-deficit stress at the whole plant level are mediated by stress-response gene expression through the action of transcription factors (TF). The NAC (NAM/ATAF/CUC) transcription factor family has been well documented in its role in improving plant abiotic stress tolerance. In the present study we evaluated the effects of overexpression of SlNAC2 TF on the photosynthetic machinery, relative water content (RWC), reactive oxygen species, antioxidants and proline levels in tobacco plants exposed to a water-deficit treatment. Shoot growth and seed formation were also evaluated before, during and following water-deficit to determine any morphological consequences of transgene expression. The transgenic plants maintained higher RWC and chlorophyll levels over 21 days after withholding water and stomatal conductance until the 16th day of water-deficit. Overexpression of SlNAC2 in tobacco increased proline levels, improved seed setting and delayed leaf senescence of the transgenic plants. Reactive oxygen species accumulated at lower levels in the dehydrated transgenic plants but no significant difference in superoxide dismutase and catalase content were seen between the genotypes. The conversion of glutathione to oxidized glutathione was significantly higher in the transgenic plants, supported by increased glutathione reductase transcript levels. Our results indicate that overexpression of SlNAC2 in tobacco improved survival during and recovery from water-deficit stress, without an associated biomass penalty under irrigation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00996-2.
Collapse
Affiliation(s)
- Coenraad R. van Beek
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | - Tapiwa Guzha
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | - Nolusindiso Kopana
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| | | | - Sanjib K. Panda
- Department of Biochemistry, Central University of Rajasthan, Rajasthan, 305817 India
| | - Christell van der Vyver
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7601 South Africa
| |
Collapse
|
75
|
Paluch-Lubawa E, Stolarska E, Sobieszczuk-Nowicka E. Dark-Induced Barley Leaf Senescence - A Crop System for Studying Senescence and Autophagy Mechanisms. FRONTIERS IN PLANT SCIENCE 2021; 12:635619. [PMID: 33790925 PMCID: PMC8005711 DOI: 10.3389/fpls.2021.635619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 06/02/2023]
Abstract
This review synthesizes knowledge on dark-induced barley, attached, leaf senescence (DILS) as a model and discusses the possibility of using this crop system for studying senescence and autophagy mechanisms. It addresses the recent progress made in our understanding of DILS. The following aspects are discussed: the importance of chloroplasts as early targets of DILS, the role of Rubisco as the largest repository of recoverable nitrogen in leaves senescing in darkness, morphological changes of these leaves other than those described for chloroplasts and metabolic modifications associated with them, DILS versus developmental leaf senescence transcriptomic differences, and finally the observation that in DILS autophagy participates in the circulation of cell components and acts as a quality control mechanism during senescence. Despite the progression of macroautophagy, the symptoms of degradation can be reversed. In the review, the question also arises how plant cells regulate stress-induced senescence via autophagy and how the function of autophagy switches between cell survival and cell death.
Collapse
|
76
|
Cabot C, Sibole JV, Barceló J, Poschenrieder C. Luxury zinc supply acts as antiaging agent and enhances reproductive fitness in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110805. [PMID: 33568305 DOI: 10.1016/j.plantsci.2020.110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Developmental senescence in plants is an age dependent process affected by phytohormones, nutrient status, and environmental factors, while the antiaging effects of zinc are recognized in humans. This study explores the possible influence of a high, non-toxic Zn-supply (12 μM) on senescence and reproductive fitness in A. thaliana. Auxin-resistance mutant, axr1-12, and auxin overexpressing YUCCA6 mutant, yuc6-1D, and their corresponding background genotypes were grown until complete rosette senescence to quantify the fruit biomass and seed number. Gene expression of different antioxidant, auxin and senescence-associated markers were analyzed after the onset of senescence. All mutants showed delayed developmental senescence. Luxury Zn delayed senescence in wild type, but not in the mutant genotypes. Excluding axr1-12 mutants, which showed very low expression of the auxin gene marker INDOLE-3-ACETIC ACID INDUCIBLE 2 (IAA2), enhanced expression of the senescence markers SENESCENCE-ASSOCIATED GENE 12 (SAG12) and AUXIN RESPONSE FACTOR 2 (ARF2) coincided with decreased expression of IAA2. Delayed senescence and total number of seeds per plant were related to higher expression of the peroxisomal antioxidant enzymes Cu/Zn superoxide dismutase (SOD3) and catalase (CAT2). These results evidence that high Zn-induced delayed senescence and improved reproductive fitness in Arabidopsis are related to an auxin-independent mechanism that retains antioxidant activity.
Collapse
Affiliation(s)
- Catalina Cabot
- Department of Biology, Universitat de les Illes Balears, 07122 Palma, Spain.
| | - John V Sibole
- Department of Biology, Universitat de les Illes Balears, 07122 Palma, Spain
| | - Juan Barceló
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
77
|
An JP, Zhang XW, Liu YJ, Zhang JC, Wang XF, You CX, Hao YJ. MdABI5 works with its interaction partners to regulate abscisic acid-mediated leaf senescence in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1566-1581. [PMID: 33314379 DOI: 10.1111/tpj.15132] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/08/2020] [Indexed: 05/23/2023]
Abstract
Abscisic acid (ABA) induces chlorophyll degradation and leaf senescence; however, the molecular mechanism remains poorly understood, especially in woody plants. In this study, we found that MdABI5 plays an essential role in the regulation of ABA-triggered leaf senescence in Malus domestica (apple). Through yeast screening, three transcription factors, MdBBX22, MdWRKY40 and MdbZIP44, were found to interact directly with MdABI5 in vitro and in vivo. Physiological and biochemical assays showed that MdBBX22 delayed leaf senescence in two pathways. First, MdBBX22 interacted with MdABI5 to inhibit the transcriptional activity of MdABI5 on the chlorophyll catabolic genes MdNYE1 and MdNYC1, thus negatively regulating chlorophyll degradation and leaf senescence. Second, MdBBX22 interacted with MdHY5 to interfere with the transcriptional activation of MdHY5 on MdABI5, thereby inhibiting the expression of MdABI5, which also contributed to the delay of leaf senescence. MdWRKY40 and MdbZIP44 were identified as positive regulators of leaf senescence. They accelerated MdABI5-promoted leaf senescence through the same regulatory pathways, i.e., interacting with MdABI5 to enhance the transcriptional activity of MdABI5 on MdNYE1 and MdNYC1. Taken together, our results suggest that MdABI5 works with its positive or negative interaction partners to regulate ABA-mediated leaf senescence in apple, in which it acts as a core regulator. The antagonistic regulation pathways ensure that plants respond to external stresses flexibly and efficiently. Our results provide a concept for further study on the regulation mechanisms of leaf senescence.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Ya-Jing Liu
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
78
|
Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. Int J Mol Sci 2021; 22:ijms22031282. [PMID: 33525430 PMCID: PMC7865218 DOI: 10.3390/ijms22031282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.
Collapse
|
79
|
Zhao X, Zhang T, Feng H, Qiu T, Li Z, Yang J, Peng YL, Zhao W. OsNBL1, a Multi-Organelle Localized Protein, Plays Essential Roles in Rice Senescence, Disease Resistance, and Salt Tolerance. RICE (NEW YORK, N.Y.) 2021; 14:10. [PMID: 33423130 PMCID: PMC7797018 DOI: 10.1186/s12284-020-00450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/26/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant senescence is a complicated process involving multiple regulations, such as temperature, light, reactive oxygen species (ROS), endogenous hormone levels, and diseases. Although many such genes have been characterized to understand the process of leaf senescence, there still remain many unknowns, and many more genes need to be characterized. RESULTS We identified a rice mutant nbl1 with a premature leaf senescence phenotype. The causative gene, OsNBL1, encodes a small protein with 94 amino acids, which is conserved in monocot, as well as dicot plants. Disruption of OsNBL1 resulted in accelerated dark-induced leaf senescence, accompanied by a reduction in chlorophyll content and up-regulation of several senescence-associated genes. Notably, the nbl1 mutant was more susceptible to rice blast and bacterial blight but more tolerant to sodium chloride. Several salt-induced genes, including HAK1, HAK5, and three SNAC genes, were also up-regulated in the nbl1 mutant. Additionally, the nbl1 mutant was more sensitive to salicylic acid. Plants overexpressing OsNBL1 showed delayed dark-induced senescence, consistent with a higher chlorophyll content compared to wild-type plants. However, the overexpression plants were indistinguishable from the wild-types for resistance to the rice blast disease. OsNBL1 is a multi-organelle localized protein and interacts with OsClpP6, which is associated with senescence. CONCLUSIONS We described a novel leaf senescence mutant nbl1 in rice. It is showed that OsNBL1, a multi-organelle localized protein which interacts with a plastidic caseinolytic protease OsClpP6, is essential for controlling leaf senescence, disease resistance, and salt tolerance.
Collapse
Affiliation(s)
- Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Tianbo Zhang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
80
|
Jasinski S, Fabrissin I, Masson A, Marmagne A, Lécureuil A, Bill L, Chardon F. ACCELERATED CELL DEATH 6 Acts on Natural Leaf Senescence and Nitrogen Fluxes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 11:611170. [PMID: 33488657 PMCID: PMC7817547 DOI: 10.3389/fpls.2020.611170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 05/30/2023]
Abstract
As the last step of leaf development, senescence is a molecular process involving cell death mechanism. Leaf senescence is trigged by both internal age-dependent factors and environmental stresses. It must be tightly regulated for the plant to adopt a proper response to environmental variation and to allow the plant to recycle nutrients stored in senescing organs. However, little is known about factors that regulate both nutrients fluxes and plant senescence. Taking advantage of variation for natural leaf senescence between Arabidopsis thaliana accessions, Col-0 and Ct-1, we did a fine mapping of a quantitative trait loci for leaf senescence and identified ACCELERATED CELL DEATH 6 (ACD6) as the causal gene. Using two near-isogeneic lines, differing solely around the ACD6 locus, we showed that ACD6 regulates rosette growth, leaf chlorophyll content, as well as leaf nitrogen and carbon percentages. To unravel the role of ACD6 in N remobilization, the two isogenic lines and acd6 mutant were grown and labeled with 15N at the vegetative stage in order to determine 15N partitioning between plant organs at harvest. Results showed that N remobilization efficiency was significantly lower in all the genotypes with lower ACD6 activity irrespective of plant growth and productivity. Measurement of N uptake at vegetative and reproductive stages revealed that ACD6 did not modify N uptake efficiency but enhanced nitrogen translocation from root to silique. In this study, we have evidenced a new role of ACD6 in regulating both sequential and monocarpic senescences and disrupting the balance between N remobilization and N uptake that is required for a good seed filling.
Collapse
|
81
|
Pramanik D, Shelake RM, Kim MJ, Kim JY. CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. MOLECULAR PLANT 2021; 14:127-150. [PMID: 33152519 DOI: 10.1016/j.molp.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 05/03/2023]
Abstract
The central dogma (CD) of molecular biology is the transfer of genetic information from DNA to RNA to protein. Major CD processes governing genetic flow include the cell cycle, DNA replication, chromosome packaging, epigenetic changes, transcription, posttranscriptional alterations, translation, and posttranslational modifications. The CD processes are tightly regulated in plants to maintain genetic integrity throughout the life cycle and to pass genetic materials to next generation. Engineering of various CD processes involved in gene regulation will accelerate crop improvement to feed the growing world population. CRISPR technology enables programmable editing of CD processes to alter DNA, RNA, or protein, which would have been impossible in the past. Here, an overview of recent advancements in CRISPR tool development and CRISPR-based CD modulations that expedite basic and applied plant research is provided. Furthermore, CRISPR applications in major thriving areas of research, such as gene discovery (allele mining and cryptic gene activation), introgression (de novo domestication and haploid induction), and application of desired traits beneficial to farmers or consumers (biotic/abiotic stress-resilient crops, plant cell factories, and delayed senescence), are described. Finally, the global regulatory policies, challenges, and prospects for CRISPR-mediated crop improvement are discussed.
Collapse
Affiliation(s)
- Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Mi Jung Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
82
|
Lee J, Kang MH, Kim JY, Lim PO. The Role of Light and Circadian Clock in Regulation of Leaf Senescence. FRONTIERS IN PLANT SCIENCE 2021; 12:669170. [PMID: 33912212 PMCID: PMC8075161 DOI: 10.3389/fpls.2021.669170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 05/14/2023]
Abstract
Leaf senescence is an integrated response of the cells to develop age information and various environmental signals. Thus, some of the genes involved in the response to environmental changes are expected to regulate leaf senescence. Light acts not only as the primary source of energy for photosynthesis but also as an essential environmental cue that directly control plant growth and development including leaf senescence. The molecular mechanisms linking light signaling to leaf senescence have recently emerged, exploring the role of Phytochrome-Interacting Factors (PIFs) as a central player leading to diverse senescence responses, senescence-promoting gene regulatory networks (GRNs) involving PIFs, and structural features of transcription modules in GRNs. The circadian clock is an endogenous time-keeping system for the adaptation of organisms to changing environmental signals and coordinates developmental events throughout the life of the plant. Circadian rhythms can be reset by environmental signals, such as light-dark or temperature cycles, to match the environmental cycle. Research advances have led to the discovery of the role of core clock components as senescence regulators and their underlying signaling pathways, as well as the age-dependent shortening of the circadian clock period. These discoveries highlight the close relationship between the circadian system and leaf senescence. Key issues remain to be elucidated, including the effect of light on leaf senescence in relation to the circadian clock, and the identification of key molecules linking aging, light, and the circadian clock, and integration mechanisms of various senescence-affecting signals at the multi-regulation levels in dynamics point of view.
Collapse
|
83
|
Dong S, Sang L, Xie H, Chai M, Wang ZY. Comparative Transcriptome Analysis of Salt Stress-Induced Leaf Senescence in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2021; 12:666660. [PMID: 34305965 PMCID: PMC8299074 DOI: 10.3389/fpls.2021.666660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 05/20/2023]
Abstract
Leaves are the most critical portion of forage crops such as alfalfa (Medicago sativa). Leaf senescence caused by environmental stresses significantly impacts the biomass and quality of forages. To understand the molecular mechanisms and identify the key regulator of the salt stress-induced leaf senescence process, we conducted a simple and effective salt stress-induced leaf senescence assay in Medicago truncatula, which was followed by RNA-Seq analysis coupled with physiological and biochemical characterization. By comparing the observed expression data with that derived from dark-induced leaf senescence at different time points, we identified 3,001, 3,787, and 4,419 senescence-associated genes (SAGs) for salt stress-induced leaf senescence on day 2, 4, and 6, respectively. There were 1546 SAGs shared by dark and salt stress treatment across the three time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the 1546 SAGs were mainly related to protein and amino acids metabolism, photosynthesis, chlorophyll metabolism, and hormone signaling during leaf senescence. Strikingly, many different transcription factors (TFs) families out of the 1546 SAGs, including NAC, bHLH, MYB, and ERF, were associated with salt stress-induced leaf senescence processes. Using the transient expression system in Nicotiana benthamiana, we verified that three functional NAC TF genes from the 1546 SAGs were related to leaf senescence. These results clarify SAGs under salt stress in M. truncatula and provide new insights and additional genetic resources for further forage crop breeding.
Collapse
Affiliation(s)
| | | | | | - Maofeng Chai
- *Correspondence: Maofeng Chai orcid.org/0000-0001-9915-0321
| | | |
Collapse
|
84
|
Xiong E, Li Z, Zhang C, Zhang J, Liu Y, Peng T, Chen Z, Zhao Q. A study of leaf-senescence genes in rice based on a combination of genomics, proteomics and bioinformatics. Brief Bioinform 2020; 22:5998850. [PMID: 33257942 DOI: 10.1093/bib/bbaa305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022] Open
Abstract
Leaf senescence is a highly complex, genetically regulated and well-ordered process with multiple layers and pathways. Delaying leaf senescence would help increase grain yields in rice. Over the past 15 years, more than 100 rice leaf-senescence genes have been cloned, greatly improving the understanding of leaf senescence in rice. Systematically elucidating the molecular mechanisms underlying leaf senescence will provide breeders with new tools/options for improving many important agronomic traits. In this study, we summarized recent reports on 125 rice leaf-senescence genes, providing an overview of the research progress in this field by analyzing the subcellular localizations, molecular functions and the relationship of them. These data showed that chlorophyll synthesis and degradation, chloroplast development, abscisic acid pathway, jasmonic acid pathway, nitrogen assimilation and ROS play an important role in regulating the leaf senescence in rice. Furthermore, we predicted and analyzed the proteins that interact with leaf-senescence proteins and achieved a more profound understanding of the molecular principles underlying the regulatory mechanisms by which leaf senescence occurs, thus providing new insights for future investigations of leaf senescence in rice.
Collapse
Affiliation(s)
- Erhui Xiong
- College of Agriculture, Henan Agricultural University (HAU), China
| | - Zhiyong Li
- Academy for Advanced Interdisciplinary Studies, South University of Science and Technology, Shenzhen, China
| | - Chen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | | | - Ye Liu
- College of Agriculture, HAU
| | | | | | | |
Collapse
|
85
|
The Anti-Senescence Activity of Cytokinin Arabinosides in Wheat and Arabidopsis Is Negatively Correlated with Ethylene Production. Int J Mol Sci 2020; 21:ijms21218109. [PMID: 33143091 PMCID: PMC7662598 DOI: 10.3390/ijms21218109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/29/2022] Open
Abstract
Leaf senescence, accompanied by chlorophyll breakdown, chloroplast degradation and inhibition of photosynthesis, can be suppressed by an exogenous application of cytokinins. Two aromatic cytokinin arabinosides (6-benzylamino-9-β-d-arabinofuranosylpurines; BAPAs), 3-hydroxy- (3OHBAPA) and 3-methoxy- (3MeOBAPA) derivatives, have recently been found to possess high anti-senescence activity. Interestingly, their effect on the maintenance of chlorophyll content and maximal quantum yield of photosystem II (PSII) in detached dark-adapted leaves differed quantitatively in wheat (Triticum aestivum L. cv. Aranka) and Arabidopsis (Arabidopsisthaliana L. (Col-0)). In this work, we have found that the anti-senescence effects of 3OHBAPA and 3MeOBAPA in wheat and Arabidopsis also differ in other parameters, including the maintenance of carotenoid content and chloroplasts, rate of reduction of primary electron acceptor of PSII (QA) as well as electron transport behind QA, and partitioning of absorbed light energy in light-adapted leaves. In wheat, 3OHBAPA had a higher protective effect than 3MeOBAPA, whereas in Arabidopsis, 3MeOBAPA was the more efficient derivative. We have found that the different anti-senescent activity of 3OHBAPA and 3MeOBAPA was coupled to different ethylene production in the treated leaves: the lower the ethylene production, the higher the anti-senescence activity. 3OHBAPA and 3MeOBAPA also efficiently protected the senescing leaves of wheat and Arabidopsis against oxidative damage induced by both H2O2 and high-light treatment, which could also be connected with the low level of ethylene production.
Collapse
|
86
|
Zhang Z, Liu C, Guo Y. Wheat Transcription Factor TaSNAC11-4B Positively Regulates Leaf Senescence through Promoting ROS Production in Transgenic Arabidopsis. Int J Mol Sci 2020; 21:ijms21207672. [PMID: 33081330 PMCID: PMC7589474 DOI: 10.3390/ijms21207672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
Senescence is the final stage of leaf development which is accompanied by highly coordinated and complicated reprogramming of gene expression. Genetic manipulation of leaf senescence in major crops including wheat has been shown to be able to increase stress tolerance and grain yield. NAC(No apical meristem (NAM), ATAF1/2, and cup-shaped cotyledon (CUC)) transcription factors (TFs) play important roles in regulating gene expression changes during leaf senescence and in response to abiotic stresses. Here, we report the characterization of TaSNAC11-4B (Uniprot: A0A1D5XI64), a wheat NAC family member that acts as a functional homolog of AtNAP, a key regulator of leaf senescence in Arabidopsis. The expression of TaSNAC11-4B was up-regulated with the progression of leaf senescence, in response to abscisic acid (ABA) and drought treatments in wheat. Ectopic expression of TaSNAC11-4B in Arabidopsis promoted ROS accumulation and significantly accelerated age-dependent as well as drought- and ABA-induced leaf senescence. Results from transcriptional activity assays indicated that the TaSNAC11-4B protein displayed transcriptional activation activities that are dependent on its C terminus. Furthermore, qRT-PCR and dual-Luciferase assay results suggested that TaSNAC11-4B could positively regulate the expression of AtrbohD and AtrbohF, which encode catalytic subunits of the ROS-producing NADPH oxidase. Further analysis of TaSNAC11-4B in wheat senescence and the potential application of this gene in manipulating leaf senescence with the purpose of yield increase and stress tolerance is discussed.
Collapse
|
87
|
Zhang Y, Ji TT, Li TT, Tian YY, Wang LF, Liu WC. Jasmonic acid promotes leaf senescence through MYC2-mediated repression of CATALASE2 expression in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110604. [PMID: 32900442 DOI: 10.1016/j.plantsci.2020.110604] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 05/25/2023]
Abstract
Plants relocate nutrients and energy from aging leaves to developing tissues during leaf senescence, which is important for plant growth, development, and responses to various environmental stimuli. Both jasmonic acid (JA) and H2O2 are two crucial signalling molecules positively regulating leaf senescence, whereas whether and how they are coordinated in leaf senescence remains elusive. Here, we report that H2O2 accumulates in JA-treated leaves, while scavenging the increased H2O2 can significantly suppresses JA-induced leaf senescence and the expression of senescence-associated genes (SAGs). The mutant myc2 with a mutation of MYC2, a master transcription factor in JA signalling pathway, exhibits delayed leaf senescence with increased catalase activity and decreased H2O2 accumulation compared with the wild type upon JA treatment. Further study showed that MYC2 downregulates CATALASE 2 (CAT2) expression by binding to its promoter, thus promoting JA-induced H2O2 accumulation and leaf senescence. Moreover, the delayed leaf senescence with reduced H2O2 accumulation and SAGs expression of the myc2 mutant is significantly reverted by the cat2-1 mutation in myc2 cat2-1 double mutant. Thus, our study reveals that JA represses CAT2 expression to increase H2O2 accumulation, thus promoting leaf senescence in a MYC2 dependent manner in Arabidopsis.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Tong-Tong Ji
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yang-Yang Tian
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
88
|
Zhao MM, Zhang XW, Liu YW, Li K, Tan Q, Zhou S, Wang G, Zhou CJ. A WRKY transcription factor, TaWRKY42-B, facilitates initiation of leaf senescence by promoting jasmonic acid biosynthesis. BMC PLANT BIOLOGY 2020; 20:444. [PMID: 32993508 PMCID: PMC7526184 DOI: 10.1186/s12870-020-02650-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/15/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Leaf senescence comprises numerous cooperative events, integrates environmental signals with age-dependent developmental cues, and coordinates the multifaceted deterioration and source-to-sink allocation of nutrients. In crops, leaf senescence has long been regarded as an essential developmental stage for productivity and quality, whereas functional characterization of candidate genes involved in the regulation of leaf senescence has, thus far, been limited in wheat. RESULTS In this study, we analyzed the expression profiles of 97 WRKY transcription factors (TFs) throughout the progression of leaf senescence in wheat and subsequently isolated a potential regulator of leaf senescence, TaWRKY42-B, for further functional investigation. By phenotypic and physiological analyses in TaWRKY42-B-overexpressing Arabidopsis plants and TaWRKY42-B-silenced wheat plants, we confirmed the positive role of TaWRKY42-B in the initiation of developmental and dark-induced leaf senescence. Furthermore, our results revealed that TaWRKY42-B promotes leaf senescence mainly by interacting with a JA biosynthesis gene, AtLOX3, and its ortholog, TaLOX3, which consequently contributes to the accumulation of JA content. In the present study, we also demonstrated that TaWRKY42-B was functionally conserved with AtWRKY53 in the initiation of age-dependent leaf senescence. CONCLUSION Our results revealed a novel positive regulator of leaf senescence, TaWRKY42-B, which mediates JA-related leaf senescence via activation of JA biosynthesis and has the potential to be a target gene for molecular breeding in wheat.
Collapse
Affiliation(s)
- Ming-Ming Zhao
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xiao-Wen Zhang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences /Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, Hebei, China
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Qi Tan
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Shuo Zhou
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences /Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, 050051, Hebei, China
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| | - Chun-Jiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
89
|
Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:720-738. [DOI: 10.1007/s11427-020-1773-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
|
90
|
Niu F, Cui X, Zhao P, Sun M, Yang B, Deyholos MK, Li Y, Zhao X, Jiang YQ. WRKY42 transcription factor positively regulates leaf senescence through modulating SA and ROS synthesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:171-184. [PMID: 32634860 DOI: 10.1111/tpj.14914] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 05/08/2023]
Abstract
Leaf senescence represents the final stage of leaf growth and development, and its onset and progression are strictly regulated; however, the underlying regulatory mechanisms remain largely unknown. In this study we found that WRKY42 was highly induced during leaf senescence. Loss-of-function wrky42 mutants showed delayed leaf senescence whereas the overexpression of WRKY42 accelerated senescence. Transcriptome analysis revealed 2721 differentially expressed genes between wild-type and WRKY42-overexpressing plants, including genes involved in salicylic acid (SA) and reactive oxygen species (ROS) synthesis as well as several senescence-associated genes (SAGs). Moreover, WRKY42 activated the transcription of isochorismate synthase 1 (ICS1), respiratory burst oxidase homolog F (RbohF) and a few SAG genes. Consistently, the expression of these genes was reduced in wrky42 mutants but was markedly increased in transgenic Arabidopsis overexpressing WRKY42. Both in vitro electrophoretic mobility shift assays (EMSAs) and in vivo chromatin immunoprecipitation and dual luciferase assays demonstrated that WRKY42 directly bound to the promoters of ICS1 and RbohF, as well as a few SAGs, to activate their expression. Genetic analysis further showed that mutations of ICS1 and RbohF suppressed the early senescence phenotype evoked by WRKY42 overexpression. Thus, we have identified WRKY42 as a novel transcription factor positively regulating leaf senescence by directly activating the transcription of ICS1, RbohF and SAGs, without any seed yield penalty.
Collapse
Affiliation(s)
- Fangfang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xing Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Peiyu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Mengting Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Ye Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinjie Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
91
|
Tovar JC, Quillatupa C, Callen ST, Castillo SE, Pearson P, Shamin A, Schuhl H, Fahlgren N, Gehan MA. Heating quinoa shoots results in yield loss by inhibiting fruit production and delaying maturity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1058-1073. [PMID: 31971639 PMCID: PMC7318176 DOI: 10.1111/tpj.14699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 05/13/2023]
Abstract
Increasing global temperatures and a growing world population create the need to develop crop varieties that provide higher yields in warmer climates. There is growing interest in expanding quinoa cultivation, because of the ability of quinoa to produce nutritious grain in poor soils, with little water and at high salinity. The main limitation to expanding quinoa cultivation, however, is the susceptibility of quinoa to temperatures above approximately 32°C. This study investigates the phenotypes, genes and mechanisms that may affect quinoa seed yield at high temperatures. Using a differential heating system where only roots or only shoots were heated, quinoa yield losses were attributed to shoot heating. Plants with heated shoots lost 60-85% yield as compared with control plants. Yield losses were the result of lower fruit production, which lowered the number of seeds produced per plant. Furthermore, plants with heated shoots had delayed maturity and greater non-reproductive shoot biomass, whereas plants with both heated roots and heated shoots produced higher yields from the panicles that had escaped the heat, compared with the control. This suggests that quinoa uses a type of avoidance strategy to survive heat. Gene expression analysis identified transcription factors differentially expressed in plants with heated shoots and low yield that had been previously associated with flower development and flower opening. Interestingly, in plants with heated shoots, flowers stayed closed during the day while the control flowers were open. Although a closed flower may protect the floral structures, this could also cause yield losses by limiting pollen dispersal, which is necessary to produce fruit in the mostly female flowers of quinoa.
Collapse
Affiliation(s)
- Jose C. Tovar
- Donald Danforth Plant Science CenterSt. LouisMO63132USA
| | | | - Steven T. Callen
- Donald Danforth Plant Science CenterSt. LouisMO63132USA
- Bayer US – Crop ScienceSt. LouisMO63141USA
| | | | - Paige Pearson
- Donald Danforth Plant Science CenterSt. LouisMO63132USA
- Bayer US – Crop ScienceSt. LouisMO63141USA
| | | | - Haley Schuhl
- Donald Danforth Plant Science CenterSt. LouisMO63132USA
| | - Noah Fahlgren
- Donald Danforth Plant Science CenterSt. LouisMO63132USA
| | | |
Collapse
|
92
|
Cotado A, Munné-Bosch S, Pintó-Marijuan M. Strategies for severe drought survival and recovery in a Pyrenean relict species. PHYSIOLOGIA PLANTARUM 2020; 169:276-290. [PMID: 32072645 DOI: 10.1111/ppl.13072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
In the context of future climate change new habitats will be threatened and unique species will be forced to develop different strategies to survive. Saxifraga longifolia Lapeyr. is an endemic species from the Pyrenees with a very particular habitat. We explored the capacity and strategies of S. longifolia plants to face different severities of drought stress under both natural conditions and controlled water stress followed by a re-watering period of 20 days. Our results showed a role for abscisic acid (ABA), salicylic acid (SA) and cytokinins (CKs) in plant survival from drought stress, and as the stress increased, ABA lost significance and SA appeared to be more associated with the response mechanisms. Moreover, photo-oxidative stress markers revealed that both xanthophyll cycles played a photoprotection role with a stronger participation of the lutein epoxide cycle as the stress was more intense. Severe drought decreased the maximum efficiency of photosystem II (Fv /Fm ) below 0.45, being this the limit to survive upon rewatering. Overall, our results proved different strategies of S. longifolia plants to cope with drought stress and suggested a Fv /Fm threshold to predict plant survival in high-mountain environments.
Collapse
Affiliation(s)
- Alba Cotado
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
93
|
Lee S, Kim MH, Lee JH, Jeon J, Kwak JM, Kim YJ. Glycosyltransferase-Like RSE1 Negatively Regulates Leaf Senescence Through Salicylic Acid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:551. [PMID: 32499801 PMCID: PMC7242760 DOI: 10.3389/fpls.2020.00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/14/2020] [Indexed: 06/01/2023]
Abstract
Leaf senescence is a developmental process designed for nutrient recycling and relocation to maximize growth competence and reproductive capacity of plants. Thus, plants integrate developmental and environmental signals to precisely control senescence. To genetically dissect the complex regulatory mechanism underlying leaf senescence, we identified an early leaf senescence mutant, rse1. RSE1 encodes a putative glycosyltransferase. Loss-of-function mutations in RSE1 resulted in precocious leaf yellowing and up-regulation of senescence marker genes, indicating enhanced leaf senescence. Transcriptome analysis revealed that salicylic acid (SA) and defense signaling cascades were up-regulated in rse1 prior to the onset of leaf senescence. We found that SA accumulation was significantly increased in rse1. The rse1 phenotypes are dependent on SA-INDUCTION DEFICIENT 2 (SID2), supporting a role of SA in accelerated leaf senescence in rse1. Furthermore, RSE1 protein was localized to the cell wall, implying a possible link between the cell wall and RSE1 function. Together, we show that RSE1 negatively modulates leaf senescence through an SID2-dependent SA signaling pathway.
Collapse
Affiliation(s)
- Seulbee Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| | - Myung-Hee Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| | - Jae Ho Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jieun Jeon
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - June M. Kwak
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| |
Collapse
|
94
|
Jakubowicz M, Nowak W, Gałgański Ł, Babula-Skowrońska D, Kubiak P. Expression profiling of the genes encoding ABA route components and the ACC oxidase isozymes in the senescing leaves of Populus tremula. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153143. [PMID: 32126452 DOI: 10.1016/j.jplph.2020.153143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 05/02/2023]
Abstract
Abscisic acid (ABA) triggers and regulates, while ethylene modulates autumn leaf senescence. The expression profiles of genes encoding ABA route components and the ACC oxidase isozymes were investigated in Populus tremula during the early and moderate stages of autumn leaf senescence. The targets of interest were Ptre-HAB1-like genes (Ptre-HAB1, Ptre-HAB3a and Ptre-HAB3b), the subclass 3 of Ptre-SnRK2s genes (Ptre-SnRK2.6a, Ptre-SnRK2.6b and Ptre-SnRK2.6b) and Ptre-RbohD1, Ptre-RbohF1, and Ptre-RbohF2 genes encoding the poplar components, which are counterparts of the ABA route key regulators or the counterparts of its secondary messengers, such as Homology to ABA-insensitive 1 (HAB1), Sucrose non-fermenting 1-related protein kinases 2 (SnRK2s) or Respiratory burst oxidase D and Respiratory burst oxidase F (RbohD and RbohF, respectively) in Arabidopsis, and Ptre-ACO3, Ptre-ACO5, and Ptre-ACO6 genes encoding ACC oxidase isozymes involved in ethylene biosynthesis. The fold change in their expression levels enabled to distinguish the distinct expression patterns for the following pairs of genes: Ptre-HAB3a and Ptre-SnRK2.6a, Ptre-HAB3b and Ptre-SnRK2.2, and Ptre-HAB1 and Ptre-SnRK2.6b, where each pair involves the genes encoding the negative and positive regulators of ABA route, respectively. Among the investigated genes, the fold change of expression was the highest for Ptre-ACO3, Ptre-ACO6, and Ptre-SnRK2.6b genes during both the studied stages, and additionally for Ptre-HAB1 and Ptre-RbohD1 genes during the moderate stage. In contrast, the Ptre-RbohF1 and Ptre-RbohF2 genes exhibited only the transient upregulation at the early stage of senescence. In an in vitro study, the ability of protein kinases Ptre-SnRK2.6a and Ptre-SnRK2.6b to phosphorylate the N-terminal regions of Ptre-RbohD1 and Ptre-RbohF2 was studied; the activity of Ptre-SnRK2.6b against the studied Ptre-Rbohs was noticeably lower than that exhibited by Ptre-SnRK2.6a. It seems that despite the high similarity of their polypeptides, Ptre-SnRK2.6a and Ptre-SnRK2.6b may play different biological roles; nonetheless, it requires in vivo confirmation. Surprisingly, the highest protein kinase activity against the Ptre-Rbohs was detected in the heterologous reaction with AT-SnRK2.6/OST1 which suggests that the discussed interactions are evolutionary conserved.
Collapse
Affiliation(s)
- Małgorzata Jakubowicz
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Witold Nowak
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Łukasz Gałgański
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Danuta Babula-Skowrońska
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Piotr Kubiak
- Department of Biotechnology and Food Microbiology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| |
Collapse
|
95
|
Tian T, Ma L, Liu Y, Xu D, Chen Q, Li G. Arabidopsis FAR-RED ELONGATED HYPOCOTYL3 Integrates Age and Light Signals to Negatively Regulate Leaf Senescence. THE PLANT CELL 2020; 32:1574-1588. [PMID: 32152188 PMCID: PMC7203920 DOI: 10.1105/tpc.20.00021] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/06/2020] [Indexed: 05/02/2023]
Abstract
Leaf senescence is tightly regulated by numerous internal cues and external environmental signals. The process of leaf senescence is promoted by a low ratio of red to far-red (R:FR) light, FR light, or extended darkness and is repressed by a high ratio of R:FR light or R light. However, the precise regulatory mechanisms by which plants assess external light signals and their internal cues to initiate and control the process of leaf senescence remain largely unknown. In this study, we discovered that the light-signaling protein FAR-RED ELONGATED HYPOCOTYL3 (FHY3) negatively regulates age-induced and light-mediated leaf senescence in Arabidopsis (Arabidopsis thaliana). FHY3 directly binds to the promoter region of transcription factor gene WRKY28 to repress its expression, thus negatively regulating salicylic acid biosynthesis and senescence. Both the fhy3 loss-of-function mutant and WRKY28-overexpressing Arabidopsis plants exhibited early senescence under high R:FR light conditions, indicating that the FHY3-WRKY28 transcriptional module specifically prevents leaf senescence under high R:FR light conditions. This study reveals the physiological and molecular functions of FHY3 and WRKY28 in leaf senescence and provides insight into the regulatory mechanism by which plants integrate dynamic environmental light signals and internal cues to initiate and control leaf senescence.
Collapse
Affiliation(s)
- Tian Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Lin Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Di Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qingshuai Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
96
|
Lu H, Gordon MI, Amarasinghe V, Strauss SH. Extensive transcriptome changes during seasonal leaf senescence in field-grown black cottonwood (Populus trichocarpa Nisqually-1). Sci Rep 2020; 10:6581. [PMID: 32313054 PMCID: PMC7170949 DOI: 10.1038/s41598-020-63372-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/18/2020] [Indexed: 11/25/2022] Open
Abstract
To better understand the molecular control of leaf senescence, we examined transcriptome changes during seasonal leaf senescence in Populus trichocarpa Nisqually-1, the Populus reference genome, growing in its natural habitat. Using monthly (from May to October) transcriptomes for three years (2009, 2015, and 2016), we identified 17,974 differentially expressed genes (DEGs; false discovery rate <0.05; log-fold change cutoff = 0) from 36,007 expressed Populus gene models. A total of 14,415 DEGs were directly related to transitions between four major developmental phases – growth, senescence initiation, reorganization, and senescence termination. These DEGs were significantly (p < 0.05) enriched in 279 gene ontology (GO) terms, including those related to photosynthesis, metabolic process, catalytic activity, protein phosphorylation, kinase activity, pollination, and transport. Also, there were 881 differentially expressed transcription factor (TF) genes from 54 TF families, notably bHLH, MYB, ERF, MYB-related, NAC, and WRKY. We also examined 28 DEGs known as alternative splicing (AS) factors that regulate AS process, and found evidence for a reduced level of AS activity during leaf senescence. Furthermore, we were able to identify a number of promoter sequence motifs associated with leaf senescence. This work provides a comprehensive resource for identification of genes involved in seasonal leaf senescence in trees, and informs efforts to explore the conservation and divergence of molecular mechanisms underlying leaf senescence between annual and perennial species.
Collapse
Affiliation(s)
- Haiwei Lu
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Michael I Gordon
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Vindhya Amarasinghe
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
97
|
Wang Y, Zhao H, Liu C, Cui G, Qu L, Bao M, Wang J, Chan Z, Wang Y. Integrating physiological and metabolites analysis to identify ethylene involvement in petal senescence in Tulipa gesneriana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:121-131. [PMID: 32062332 DOI: 10.1016/j.plaphy.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/10/2020] [Accepted: 02/01/2020] [Indexed: 05/13/2023]
Abstract
Flower senescence is classified into ethylene-dependent and ethylene-independent manners and determines the flower longevity which is valuable for ornamental plants. However, the manner of petal senescence in tulip is still less defined. In this study, we characterized the physiological indexes in the process of petal senescence, as well as metabolic and ethylene responses in tulip cultivar 'American Dream', and further identified the role of ethylene biosynthesis genes TgACS by transgenic and transient assays. Primary metabolites profiling revealed that sugars, amino acids and organic acids preferentially accumulated in senescent petals. Additionally, senescence-associated genes were identified and significantly up-regulated, coupled with increased ROS contents, rapid water loss and accelerated cell membrane breakdown. Moreover, ethylene production was stimulated as evidenced by increasing in ACS activity and ethylene biosynthesis-related genes expression. Exogenous treatment of cutting flowers with 1-MCP or ethephon resulted in delayed or enhanced petal senescence, respectively. Transient down-regulation of TgACS by VIGS assay in tulip petals delayed senescence, while over-expressed TgACS1 in tobacco promoted leaf senescence. Taken together, this study provides evidences to certify ethylene roles and TgACS functions during flower senescence in tulip.
Collapse
Affiliation(s)
- Yaping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Huimin Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chunli Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Guangfen Cui
- Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lianwei Qu
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jihua Wang
- Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
98
|
Wen Z, Mei Y, Zhou J, Cui Y, Wang D, Wang NN. SAUR49 Can Positively Regulate Leaf Senescence by Suppressing SSPP in Arabidopsis. PLANT & CELL PHYSIOLOGY 2020; 61:644-658. [PMID: 31851355 DOI: 10.1093/pcp/pcz231] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 12/12/2019] [Indexed: 05/22/2023]
Abstract
The involvement of SMALL AUXIN-UP RNA (SAUR) proteins in leaf senescence has been more and more acknowledged, but the detailed mechanisms remain unclear. In the present study, we performed yeast two-hybrid assays and identified SAUR49 as an interactor of SENESCENCE SUPPRESSED PROTEIN PHOSPHATASE (SSPP), which is a PP2C protein phosphatase that negatively regulates Arabidopsis leaf senescence by suppressing the leucine-rich repeat receptor-like protein kinase SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK), as reported previously by our group. The interaction between SAUR49 and SSPP was further confirmed in planta. Functional characterization revealed that SAUR49 is a positive regulator of leaf senescence. The accumulation level of SAUR49 protein increased during natural leaf senescence in Arabidopsis. The transcript level of SAUR49 was upregulated during SARK-induced premature leaf senescence but downregulated during SSPP-mediated delayed leaf senescence. Overexpression of SAUR49 significantly accelerated both natural and dark-induced leaf senescence in Arabidopsis. More importantly, SAUR49 overexpression completely reversed SSPP-induced delayed leaf senescence. In addition, overexpression of SAUR49 reversed the decreased plasma membrane H+-ATPase activity mediated by SSPP. Taken together, the results showed that SAUR49 functions in accelerating the leaf senescence process via the activation of SARK-mediated leaf senescence signaling by suppressing SSPP. We further identified four other SSPP-interacting SAURs, SAUR30, SAUR39, SAUR41 and SAUR72, that may act redundantly with SAUR49 in regulating leaf senescence. All these observations indicated that certain members of the SAUR family may serve as an important hub that integrates various hormonal and environmental signals with senescence signals in Arabidopsis.
Collapse
Affiliation(s)
- Zewen Wen
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanjiao Cui
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
99
|
Byne K, Ryser P. Spring temperatures affect senescence and N uptake in autumn and N storage for winter in Rhynchospora alba (Cyperaceae). JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1551-1561. [PMID: 31712811 PMCID: PMC7031056 DOI: 10.1093/jxb/erz505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/08/2019] [Indexed: 06/02/2023]
Abstract
Environmental and physiological factors underlying variation in timing of autumn senescence are not well known. We investigated how the time of the onset of the growth in spring affects senescence and its functional consequences for nitrogen (N) uptake in autumn and storage of N for the winter, in a species that each year develops its bulbils for storage and overwintering anew. Rhynchospora alba was grown outdoors with two treatments, identical except for a 3 week difference in the start of growth in May. Leaf and root growth and senescence, and N uptake were recorded from August to November. By August, late-starting plants had caught up in size and total N content, but had smaller bulbils. They had a higher δ 13C, indicating a higher stomatal conductance during growth. Leaf and root senescence were delayed, extending 15N tracer uptake by 4 weeks. Nevertheless, after senescence, plants with an early start had 55% more N in their overwintering bulbils, due to earlier and more efficient remobilization. We conclude that timing of senescence in R. alba is a result of an interplay between the status of winter storage and cold temperatures, constrained by a trade-off between prolonged nutrient uptake and efficient remobilization of nutrients.
Collapse
Affiliation(s)
- Kyelle Byne
- Laurentian University, Department of Biology, Sudbury, ON, Canada
| | - Peter Ryser
- Laurentian University, Department of Biology, Sudbury, ON, Canada
| |
Collapse
|
100
|
The Senescence (Stay-Green)—An Important Trait to Exploit Crop Residuals for Bioenergy. ENERGIES 2020. [DOI: 10.3390/en13040790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this review, we present a comprehensive revisit of past research and advances developed on the stay-green (SG) paradigm. The study aims to provide an application-focused review of the SG phenotypes as crop residuals for bioenergy. Little is known about the SG trait as a germplasm enhancer resource for energy storage as a system for alternative energy. Initially described as a single locus recessive trait, SG was shortly after reported as a quantitative trait governed by complex physiological and metabolic networks including chlorophyll efficiency, nitrogen contents, nutrient remobilization and source-sink balance. Together with the fact that phenotyping efforts have improved rapidly in the last decade, new approaches based on sensing technologies have had an impact in SG identification. Since SG is linked to delayed senescence, we present a review of the term senescence applied to crop residuals and bioenergy. Firstly, we discuss the idiosyncrasy of senescence. Secondly, we present biological processes that determine the fate of senescence. Thirdly, we present the genetics underlying SG for crop-trait improvement in different crops. Further, this review explores the potential uses of senescence for bioenergy crops. Finally, we discuss how high-throughput phenotyping methods assist new technologies such as genomic selection in a cost-efficient manner.
Collapse
|