51
|
Johnson AJ, Meyerson E, de la Parra J, Savas TL, Miikkulainen R, Harper CB. Flavor-cyber-agriculture: Optimization of plant metabolites in an open-source control environment through surrogate modeling. PLoS One 2019; 14:e0213918. [PMID: 30943244 PMCID: PMC6447188 DOI: 10.1371/journal.pone.0213918] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
Food production in conventional agriculture faces numerous challenges such as reducing waste, meeting demand, maintaining flavor, and providing nutrition. Contained environments under artificial climate control, or cyber-agriculture, could in principle be used to meet many of these challenges. Through such environments, phenotypic expression of the plant—mass, edible yield, flavor, and nutrients—can be actuated through a “climate recipe,” where light, water, nutrients, temperature, and other climate and ecological variables are optimized to achieve a desired result. This paper describes a method for doing this optimization for the desired result of flavor by combining cyber-agriculture, metabolomic phenotype (chemotype) measurements, and machine learning. In a pilot experiment, (1) environmental conditions, i.e. photoperiod and ultraviolet (UV) light (known to affect production of flavor-active molecules in edible plants) were applied under different regimes to basil plants (Ocimum basilicum) growing inside a hydroponic farm with an open-source design; (2) flavor-active volatile molecules were measured in each plant using gas chromatography-mass spectrometry (GC-MS); and (3) symbolic regression was used to construct a surrogate model of this chemistry from the input environmental variables, and this model was used to discover new combinations of photoperiod and UV light to increase this chemistry. These new combinations, or climate recipes, were then implemented in the hydroponic farm, and several of them resulted in a marked increase in volatiles over control. The process also led to two important insights: it demonstrated a “dilution effect”, i.e. a negative correlation between weight and desirable chemical species, and it discovered the surprising effect that a 24-hour photoperiod of photosynthetic-active radiation, the equivalent of all-day light, induces the most flavor molecule production in basil. In this manner, surrogate optimization through machine learning can be used to discover effective recipes for cyber-agriculture that would be difficult and time-consuming to find using hand-designed experiments.
Collapse
Affiliation(s)
- Arielle J. Johnson
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Elliot Meyerson
- Department of Computer Science, University of Texas at Austin, Austin, Texas, United States of America
- Cognizant Technology Solutions, San Francisco, California, United States of America
| | - John de la Parra
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Harvard University Herbaria, Harvard University, Cambridge, Massachusetts, United States of America
| | - Timothy L. Savas
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Risto Miikkulainen
- Department of Computer Science, University of Texas at Austin, Austin, Texas, United States of America
- Cognizant Technology Solutions, San Francisco, California, United States of America
| | - Caleb B. Harper
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
52
|
Leong BJ, Lybrand DB, Lou YR, Fan P, Schilmiller AL, Last RL. Evolution of metabolic novelty: A trichome-expressed invertase creates specialized metabolic diversity in wild tomato. SCIENCE ADVANCES 2019; 5:eaaw3754. [PMID: 31032420 PMCID: PMC6482016 DOI: 10.1126/sciadv.aaw3754] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/06/2019] [Indexed: 05/19/2023]
Abstract
Plants produce a myriad of taxonomically restricted specialized metabolites. This diversity-and our ability to correlate genotype with phenotype-makes the evolution of these ecologically and medicinally important compounds interesting and experimentally tractable. Trichomes of tomato and other nightshade family plants produce structurally diverse protective compounds termed acylsugars. While cultivated tomato (Solanum lycopersicum) strictly accumulates acylsucroses, the South American wild relative Solanum pennellii produces copious amounts of acylglucoses. Genetic, transgenic, and biochemical dissection of the S. pennellii acylglucose biosynthetic pathway identified a trichome gland cell-expressed invertase-like enzyme that hydrolyzes acylsucroses (Sopen03g040490). This enzyme acts on the pyranose ring-acylated acylsucroses found in the wild tomato but not on the furanose ring-decorated acylsucroses of cultivated tomato. These results show that modification of the core acylsucrose biosynthetic pathway leading to loss of furanose ring acylation set the stage for co-option of a general metabolic enzyme to produce a new class of protective compounds.
Collapse
Affiliation(s)
- Bryan J. Leong
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Daniel B. Lybrand
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Pengxiang Fan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Anthony L. Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, USA
| | - Robert L. Last
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Corresponding author.
| |
Collapse
|
53
|
Vaattovaara A, Brandt B, Rajaraman S, Safronov O, Veidenberg A, Luklová M, Kangasjärvi J, Löytynoja A, Hothorn M, Salojärvi J, Wrzaczek M. Mechanistic insights into the evolution of DUF26-containing proteins in land plants. Commun Biol 2019; 2:56. [PMID: 30775457 PMCID: PMC6368629 DOI: 10.1038/s42003-019-0306-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Large protein families are a prominent feature of plant genomes and their size variation is a key element for adaptation. However, gene and genome duplications pose difficulties for functional characterization and translational research. Here we infer the evolutionary history of the DOMAIN OF UNKNOWN FUNCTION (DUF) 26-containing proteins. The DUF26 emerged in secreted proteins. Domain duplications and rearrangements led to the appearance of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES (CRKs) and PLASMODESMATA-LOCALIZED PROTEINS (PDLPs). The DUF26 is land plant-specific but structural analyses of PDLP ectodomains revealed strong similarity to fungal lectins and thus may constitute a group of plant carbohydrate-binding proteins. CRKs expanded through tandem duplications and preferential retention of duplicates following whole genome duplications, whereas PDLPs evolved according to the dosage balance hypothesis. We propose that new gene families mainly expand through small-scale duplications, while fractionation and genetic drift after whole genome multiplications drive families towards dosage balance.
Collapse
Affiliation(s)
- Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Sitaram Rajaraman
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Omid Safronov
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Andres Veidenberg
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Markéta Luklová
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- Present Address: Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC—Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| |
Collapse
|
54
|
Abstract
Specialized metabolites are critical for plant–environment interactions, e.g., attracting pollinators or defending against herbivores, and are important sources of plant-based pharmaceuticals. However, it is unclear what proportion of enzyme-encoding genes play a role in specialized metabolism (SM) as opposed to general metabolism (GM) in any plant species. This is because of the diversity of specialized metabolites and the considerable number of incompletely characterized pathways responsible for their production. In addition, SM gene ancestors frequently played roles in GM. We evaluate features distinguishing SM and GM genes and build a computational model that accurately predicts SM genes. Our predictions provide candidates for experimental studies, and our modeling approach can be applied to other species that produce medicinally or industrially useful compounds. Plant specialized metabolism (SM) enzymes produce lineage-specific metabolites with important ecological, evolutionary, and biotechnological implications. Using Arabidopsis thaliana as a model, we identified distinguishing characteristics of SM and GM (general metabolism, traditionally referred to as primary metabolism) genes through a detailed study of features including duplication pattern, sequence conservation, transcription, protein domain content, and gene network properties. Analysis of multiple sets of benchmark genes revealed that SM genes tend to be tandemly duplicated, coexpressed with their paralogs, narrowly expressed at lower levels, less conserved, and less well connected in gene networks relative to GM genes. Although the values of each of these features significantly differed between SM and GM genes, any single feature was ineffective at predicting SM from GM genes. Using machine learning methods to integrate all features, a prediction model was established with a true positive rate of 87% and a true negative rate of 71%. In addition, 86% of known SM genes not used to create the machine learning model were predicted. We also demonstrated that the model could be further improved when we distinguished between SM, GM, and junction genes responsible for reactions shared by SM and GM pathways, indicating that topological considerations may further improve the SM prediction model. Application of the prediction model led to the identification of 1,220 A. thaliana genes with previously unknown functions, each assigned a confidence measure called an SM score, providing a global estimate of SM gene content in a plant genome.
Collapse
|
55
|
Shoji T. The Recruitment Model of Metabolic Evolution: Jasmonate-Responsive Transcription Factors and a Conceptual Model for the Evolution of Metabolic Pathways. FRONTIERS IN PLANT SCIENCE 2019; 10:560. [PMID: 31156658 PMCID: PMC6528166 DOI: 10.3389/fpls.2019.00560] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/12/2019] [Indexed: 05/22/2023]
Abstract
Plants produce a vast array of structurally diverse specialized metabolites with various biological activities, including medicinal alkaloids and terpenoids, from relatively simple precursors through a series of enzymatic steps. Massive metabolic flow through these pathways usually depends on the transcriptional coordination of a large set of metabolic, transport, and regulatory genes known as a regulon. The coexpression of genes involved in certain metabolic pathways in a wide range of developmental and environmental contexts has been investigated through transcriptomic analysis, which has been successfully exploited to mine the genes involved in various metabolic processes. Transcription factors are DNA-binding proteins that recognize relatively short sequences known as cis-regulatory elements residing in the promoter regions of target genes. Transcription factors have positive or negative effects on gene transcription mediated by RNA polymerase II. Evolutionarily conserved transcription factors of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) and basic helix-loop-helix (bHLH) families have been identified as jasmonate (JA)-responsive transcriptional regulators of unrelated specialized pathways in distinct plant lineages. Here, I review the current knowledge and propose a conceptual model for the evolution of metabolic pathways, termed "recruitment model of metabolic evolution." According to this model, structural genes are repeatedly recruited into regulons under the control of conserved transcription factors through the generation of cognate cis-regulatory elements in the promoters of these genes. This leads to the adjustment of catalytic activities that improve metabolic flow through newly established passages.
Collapse
|
56
|
Nakayama T, Takahashi S, Waki T. Formation of Flavonoid Metabolons: Functional Significance of Protein-Protein Interactions and Impact on Flavonoid Chemodiversity. FRONTIERS IN PLANT SCIENCE 2019; 10:821. [PMID: 31338097 PMCID: PMC6629762 DOI: 10.3389/fpls.2019.00821] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
Flavonoids are a class of plant specialized metabolites with more than 6,900 known structures and play important roles in plant survival and reproduction. These metabolites are derived from p-coumaroyl-CoA via the sequential actions of a variety of flavonoid enzymes, which have been proposed to form weakly bound, ordered protein complexes termed flavonoid metabolons. This review discusses the impacts of the formation of flavonoid metabolons on the chemodiversity of flavonoids. Specific protein-protein interactions in the metabolons of Arabidopsis thaliana and other plant species have been studied for two decades. In many cases, metabolons are associated with the ER membrane, with ER-bound cytochromes P450 hypothesized to serve as nuclei for metabolon formation. Indeed, cytochromes P450 have been found to be components of flavonoid metabolons in rice, snapdragon, torenia, and soybean. Recent studies illustrate the importance of specific interactions for the efficient production and temporal/spatial distribution of flavonoids. For example, in diverse plant species, catalytically inactive type-IV chalcone isomerase-like protein serves as an enhancer of flavonoid production via its involvement in flavonoid metabolons. In soybean roots, a specific isozyme of chalcone reductase (CHR) interacts with 2-hydroxyisoflavanone synthase, to which chalcone synthase (CHS) can also bind, providing a mechanism to prevent the loss of the unstable CHR substrate during its transfer from CHS to CHR. Thus, diversification in chemical structures and temporal/spatial distribution patterns of flavonoids in plants is likely to be mediated by the formation of specific flavonoid metabolons via specific protein-protein interactions.
Collapse
|
57
|
Maeda HA. Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:881. [PMID: 31354760 PMCID: PMC6635470 DOI: 10.3389/fpls.2019.00881] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 05/05/2023]
Abstract
Plants produce a diverse array of lineage-specific specialized (secondary) metabolites, which are synthesized from primary metabolites. Plant specialized metabolites play crucial roles in plant adaptation as well as in human nutrition and medicine. Unlike well-documented diversification of plant specialized metabolic enzymes, primary metabolism that provides essential compounds for cellular homeostasis is under strong selection pressure and generally assumed to be conserved across the plant kingdom. Yet, some alterations in primary metabolic pathways have been reported in plants. The biosynthetic pathways of certain amino acids and lipids have been altered in specific plant lineages. Also, two alternative pathways exist in plants for synthesizing primary precursors of the two major classes of plant specialized metabolites, terpenoids and phenylpropanoids. Such primary metabolic diversities likely underlie major evolutionary changes in plant metabolism and chemical diversity by acting as enabling or associated traits for the evolution of specialized metabolic pathways.
Collapse
|
58
|
Yonekura-Sakakibara K, Higashi Y, Nakabayashi R. The Origin and Evolution of Plant Flavonoid Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:943. [PMID: 31428108 PMCID: PMC6688129 DOI: 10.3389/fpls.2019.00943] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 05/18/2023]
Abstract
During their evolution, plants have acquired the ability to produce a huge variety of compounds. Unlike the specialized metabolites that accumulate in limited numbers of species, flavonoids are widely distributed in the plant kingdom. Therefore, a detailed analysis of flavonoid metabolism in genomics and metabolomics is an ideal way to investigate how plants have developed their unique metabolic pathways during the process of evolution. More comprehensive and precise metabolite profiling integrated with genomic information are helpful to emerge unexpected gene functions and/or pathways. The distribution of flavonoids and their biosynthetic genes in the plant kingdom suggests that flavonoid biosynthetic pathways evolved through a series of steps. The enzymes that form the flavonoid scaffold structures probably first appeared by recruitment of enzymes from primary metabolic pathways, and later, enzymes that belong to superfamilies such as 2-oxoglutarate-dependent dioxygenase, cytochrome P450, and short-chain dehydrogenase/reductase modified and varied the structures. It is widely accepted that the first two enzymes in flavonoid biosynthesis, chalcone synthase, and chalcone isomerase, were derived from common ancestors with enzymes in lipid metabolism. Later enzymes acquired their function by gene duplication and the subsequent acquisition of new functions. In this review, we describe the recent progress in metabolomics technologies for flavonoids and the evolution of flavonoid skeleton biosynthetic enzymes to understand the complicate evolutionary traits of flavonoid metabolism in plant kingdom.
Collapse
|
59
|
Silva-Junior OB, Grattapaglia D, Novaes E, Collevatti RG. Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree. Gigascience 2018; 7:1-16. [PMID: 29253216 PMCID: PMC5905499 DOI: 10.1093/gigascience/gix125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Background Handroanthus impetiginosus (Mart. ex DC.) Mattos is a keystone Neotropical hardwood tree widely distributed in seasonally dry tropical forests of South and Mesoamerica. Regarded as the “new mahogany,” it is the second most expensive timber, the most logged species in Brazil, and currently under significant illegal trading pressure. The plant produces large amounts of quinoids, specialized metabolites with documented antitumorous and antibiotic effects. The development of genomic resources is needed to better understand and conserve the diversity of the species, to empower forensic identification of the origin of timber, and to identify genes for important metabolic compounds. Findings The genome assembly covers 503.7 Mb (N50 = 81 316 bp), 90.4% of the 557-Mbp genome, with 13 206 scaffolds. A repeat database with 1508 sequences was developed, allowing masking of ∼31% of the assembly. Depth of coverage indicated that consensus determination adequately removed haplotypes assembled separately due to the extensive heterozygosity of the species. Automatic gene prediction provided 31 688 structures and 35 479 messenger RNA transcripts, while external evidence supported a well-curated set of 28 603 high-confidence models (90% of total). Finally, we used the genomic sequence and the comprehensive gene content annotation to identify genes related to the production of specialized metabolites. Conclusions This genome assembly is the first well-curated resource for a Neotropical forest tree and the first one for a member of the Bignoniaceae family, opening exceptional opportunities to empower molecular, phytochemical, and breeding studies. This work should inspire the development of similar genomic resources for the largely neglected forest trees of the mega-diverse tropical biomes.
Collapse
Affiliation(s)
- Orzenil Bonfim Silva-Junior
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF. 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia - Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF 70790-160, Brazil
| | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF. 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia - Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF 70790-160, Brazil
| | - Evandro Novaes
- Escola de Agronomia, Universidade Federal de Goiás, CP 131. Goiânia, GO. 74001-970, Brazil
| | - Rosane G Collevatti
- Laboratório de Genética and Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás. Goiânia, GO. 74001-970, Brazil
| |
Collapse
|
60
|
Wang CC, Meng LH, Gao Y, Grierson D, Fu DQ. Manipulation of Light Signal Transduction Factors as a Means of Modifying Steroidal Glycoalkaloids Accumulation in Tomato Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:437. [PMID: 29706975 PMCID: PMC5906708 DOI: 10.3389/fpls.2018.00437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/21/2018] [Indexed: 05/19/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced by Solanaceous plant species. They contribute to pathogen defense but are considered as anti-nutritional compounds and toxic to humans. Although the genes involved in the SGA biosynthetic pathway have been successfully cloned and identified, transcription factors regulating this pathway are still poorly understood. We report that silencing tomato light signal transduction transcription factors ELONGATED HYPOCOTYL 5 (SlHY5) and PHYTOCHROME INTERACTING FACTOR3 (SlPIF3), by virus-induced gene silencing (VIGS), altered glycoalkaloids levels in tomato leaves compared to control plant. Electrophoretic mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) analysis confirmed that SlHY5 and SlPIF3 bind to the promoter of target genes of GLYCOALKALOID METABOLISM (GAME1, GAME4, GAME17), affecting the steady-state concentrations of transcripts coding for SGA pathway enzymes. The results indicate that light-signaling transcription factors HY5 and PIF3 regulate the abundance of SGAs by modulating the transcript levels of these GAME genes. This insight into the regulation of SGA biosynthesis can be used for manipulating the level of these metabolites in crops.
Collapse
Affiliation(s)
- Cui-cui Wang
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lan-huan Meng
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Gao
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Da-qi Fu
- Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Da-qi Fu
| |
Collapse
|
61
|
Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity. Nat Commun 2017; 8:2080. [PMID: 29234041 PMCID: PMC5727100 DOI: 10.1038/s41467-017-02045-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/03/2017] [Indexed: 01/29/2023] Open
Abstract
Plants produce hundreds of thousands of structurally diverse specialized metabolites via multistep biosynthetic networks, including compounds of ecological and therapeutic importance. These pathways are restricted to specific plant groups, and are excellent systems for understanding metabolic evolution. Tomato and other plants in the nightshade family synthesize protective acylated sugars in the tip cells of glandular trichomes on stems and leaves. We describe a metabolic innovation in wild tomato species that contributes to acylsucrose structural diversity. A small number of amino acid changes in two acylsucrose acyltransferases alter their acyl acceptor preferences, resulting in reversal of their order of reaction and increased product diversity. This study demonstrates how small numbers of amino acid changes in multiple pathway enzymes can lead to diversification of specialized metabolites in plants. It also highlights the power of a combined genetic, genomic and in vitro biochemical approach to identify the evolutionary mechanisms leading to metabolic novelty. Plants produce large numbers of structurally diverse metabolites through multistep pathways that often use the same precursors. Here the authors utilize the pathway leading to the production of acylated sucroses in the tomato plant to illustrate how metabolite diversity can arise through biochemical pathway evolution.
Collapse
|
62
|
Wilson AE, Feng X, Ono NN, Holland D, Amir R, Tian L. Characterization of a UGT84 Family Glycosyltransferase Provides New Insights into Substrate Binding and Reactivity of Galloylglucose Ester-Forming UGTs. Biochemistry 2017; 56:6389-6400. [PMID: 29140084 DOI: 10.1021/acs.biochem.7b00946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Galloylated plant specialized metabolites play important roles in plant-environment interactions and in the promotion of human and animal health. The galloylation reactions are mediated by the formation of galloylglucose esters from gallic acid and UDP-glucose, catalyzed by the plant UGT84 family glycosyltransferases. To explore and exploit the structural determinants of UGT84 activities, we performed homology modeling and substrate docking of PgUGT84A23, a galloylglucose ester-forming family 84 UGT, as well as sequence comparisons of PgUGT84A23 with other functionally characterized plant UGTs. By employing site-directed mutagenesis of candidate amino acids, enzyme assays with analogous substrates, and kinetic analysis, we elucidated key amino acid sites for PgUGT84A23 substrate binding and reactivity. The galloylglucose ester-forming UGT84s have not been shown to glycosylate genistein (an isoflavonoid) in vivo. Unexpectedly, amino acids highly conserved among UGT84s that affect specifically the binding of genistein but not gallic acid or other tested sugar acceptors were identified. This result suggests that genistein may resemble the substrate profile for the enzyme ancestor of the galloylglucose ester-forming UGTs and recruited during transition from a general to a more specialized defense function. Overall, a better understanding of the structure-function relationship of UGT84s will facilitate enzyme engineering for the production of pharmaceutically and industrially valuable glycosylated compounds.
Collapse
Affiliation(s)
- Alexander E Wilson
- Department of Plant Sciences, University of California , Davis, California 95616, United States
| | - Xiaoxue Feng
- Department of Plant Sciences, University of California , Davis, California 95616, United States
| | - Nadia N Ono
- Department of Plant Sciences, University of California , Davis, California 95616, United States
| | - Doron Holland
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization , Ramat Yishay 30095, Israel
| | - Rachel Amir
- Migal Galilee Technology Center , P.O. Box 831, Kiryat Shmona 11016, Israel
| | - Li Tian
- Department of Plant Sciences, University of California , Davis, California 95616, United States.,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden , Shanghai 201602, China.,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences , Shanghai 201602, China
| |
Collapse
|
63
|
Moghe GD, Leong BJ, Hurney SM, Daniel Jones A, Last RL. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. eLife 2017; 6:28468. [PMID: 28853706 PMCID: PMC5595436 DOI: 10.7554/elife.28468] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome-localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non-model plant species that remain underexplored. There are about 300,000 species of plant on Earth, which together produce over a million different small molecules called metabolites. Plants use many of these molecules to grow, to communicate with each other or to defend themselves against pests and disease. Humans have co-opted many of the same molecules as well; for example, some are important nutrients while others are active ingredients in medicines. Many plant metabolites are found in almost all plants, but hundreds of thousands of them are more specialized and only found in small groups of related plant species. These specialized metabolites have a wide variety of structures, and are made by different enzymes working together to carry out a series of biochemical reactions. Acylsugars are an example of a group of specialized metabolites with particularly diverse structures. These small molecules are restricted to plants in the Solanaceae family, which includes tomato and tobacco plants. Moghe et al. have now focused on acylsugars to better understand how plants produce the large diversity of chemical structures found in specialized metabolites, and how these processes have evolved over time. An analysis of over 35 plant species from across the Solanaceae family revealed hundreds of acylsugars, with some plants accumulating 300 or more different types of these specialized metabolites. Moghe et al. then looked at the enzymes that make acylsugars from a poorly studied flowering plant called Salpiglossis sinuata, partly because it produces a large diversity of these small molecules and partly because it sits in a unique position in the Solanaceae family tree. The activities of the enzymes were confirmed both in test tubes and in plants. This suggested that many of the enzymes were “promiscuous”, meaning that they could likely use a variety of molecules as starting points for their chemical reactions. This finding could help to explain how this plant species can make such a wide variety of acylsugars. Moghe et al. also discovered that many of the enzymes that make acylsugars are encoded by genes that were originally copies of other genes and that have subsequently evolved new activities. Plant scientists and plant breeders value tomato plants that produce acylsugars because these natural chemicals protect against pests like whiteflies and spider mites. A clearer understanding of the diversity of acylsugars in the Solanaceae family, as well as the enzymes that make these specialized metabolites, could help efforts to breed crops that are more resistant to pests. Some of the enzymes related to those involved in acylsugar production could also help to make chemicals with pharmaceutical value. These new findings might also eventually lead to innovative ways to produce these chemicals on a large scale.
Collapse
Affiliation(s)
- Gaurav D Moghe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
| | - Bryan J Leong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Steven M Hurney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Chemistry, Michigan State University, East Lansing, United States
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Chemistry, Michigan State University, East Lansing, United States
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
64
|
Promiscuity, impersonation and accommodation: evolution of plant specialized metabolism. Curr Opin Struct Biol 2017; 47:105-112. [PMID: 28822280 DOI: 10.1016/j.sbi.2017.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/06/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
Specialized metabolic enzymes and metabolite diversity evolve through a variety of mechanisms including promiscuity, changes in substrate specificity, modifications of gene expression and gene duplication. For example, gene duplication and substrate binding site changes led to the evolution of the glucosinolate biosynthetic enzyme, AtIPMDH1, from a Leu biosynthetic enzyme. BAHD acyltransferases illustrate how enzymatic promiscuity leads to metabolite diversity. The examples 4-coumarate:CoA ligase and aromatic acid methyltransferases illustrate how promiscuity can potentiate the evolution of these specialized metabolic enzymes.
Collapse
|
65
|
Schenck CA, Holland CK, Schneider MR, Men Y, Lee SG, Jez JM, Maeda HA. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants. Nat Chem Biol 2017; 13:1029-1035. [PMID: 28671678 DOI: 10.1038/nchembio.2414] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 11/09/2022]
Abstract
L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that defines TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cynthia K Holland
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew R Schneider
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yusen Men
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Soon Goo Lee
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
66
|
Kajikawa M, Sierro N, Hashimoto T, Shoji T. A model for evolution and regulation of nicotine biosynthesis regulon in tobacco. PLANT SIGNALING & BEHAVIOR 2017; 12:e1338225. [PMID: 28613112 PMCID: PMC5566349 DOI: 10.1080/15592324.2017.1338225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/27/2017] [Indexed: 05/11/2023]
Abstract
In tobacco, the defense alkaloid nicotine is produced in roots and accumulates mainly in leaves. Signaling mediated by jasmonates (JAs) induces the formation of nicotine via a series of structural genes that constitute a regulon and are coordinated by JA-responsive transcription factors of the ethylene response factor (ERF) family. Early steps in the pyrrolidine and pyridine biosynthesis pathways likely arose through duplication of the polyamine and nicotinamide adenine dinucleotide (NAD) biosynthetic pathways, respectively, followed by recruitment of duplicated primary metabolic genes into the nicotine biosynthesis regulon. Transcriptional regulation of nicotine biosynthesis by ERF and cooperatively-acting MYC2 transcription factors is implied by the frequency of cognate cis-regulatory elements for these factors in the promoter regions of the downstream structural genes. Indeed, a mutant tobacco with low nicotine content was found to have a large chromosomal deletion in a cluster of closely related ERF genes at the nicotine-controlling NICOTINE2 (NIC2) locus.
Collapse
Affiliation(s)
- Masataka Kajikawa
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Takayama, Ikoma, Nara, Japan
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products, Neuchâtel, Switzerland
| | - Takashi Hashimoto
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Takayama, Ikoma, Nara, Japan
| | - Tsubasa Shoji
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Takayama, Ikoma, Nara, Japan
| |
Collapse
|
67
|
Kajikawa M, Sierro N, Kawaguchi H, Bakaher N, Ivanov NV, Hashimoto T, Shoji T. Genomic Insights into the Evolution of the Nicotine Biosynthesis Pathway in Tobacco. PLANT PHYSIOLOGY 2017; 174:999-1011. [PMID: 28584068 PMCID: PMC5462024 DOI: 10.1104/pp.17.00070] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/13/2017] [Indexed: 05/18/2023]
Abstract
In tobacco (Nicotiana tabacum), nicotine is the predominant alkaloid. It is produced in the roots and accumulated mainly in the leaves. Jasmonates play a central signaling role in damage-induced nicotine formation. The genome sequence of tobacco provides us an almost complete inventory of structural and regulatory genes involved in nicotine pathway. Phylogenetic and expression analyses revealed a series of structural genes of the nicotine pathway, forming a regulon, under the control of jasmonate-responsive ETHYLENE RESPONSE FACTOR (ERF) transcription factors. The duplication of NAD and polyamine metabolic pathways and the subsequent recruitment of duplicated primary metabolic genes into the nicotine biosynthesis regulon were suggested to be the drivers for pyridine and pyrrolidine ring formation steps early in the pathway. Transcriptional regulation by ERF and cooperatively acting MYC2 transcription factors are corroborated by the frequent occurrence of cognate cis-regulatory elements of the factors in the promoter regions of the downstream structural genes. The allotetraploid tobacco has homologous clusters of ERF genes on different chromosomes, which are possibly derived from two ancestral diploids and include either nicotine-controlling ERF189 or ERF199 A large chromosomal deletion was found within one allele of the nicotine-controlling NICOTINE2 locus, which is part of one of the ERF gene clusters, and which has been used to breed tobacco cultivars with a low-nicotine content.
Collapse
Affiliation(s)
- Masataka Kajikawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (M.K., H.K., T.H., T.S.); and
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland (N.S., N.B., N.V.I.)
| | - Nicolas Sierro
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (M.K., H.K., T.H., T.S.); and
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland (N.S., N.B., N.V.I.)
| | - Haruhiko Kawaguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (M.K., H.K., T.H., T.S.); and
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland (N.S., N.B., N.V.I.)
| | - Nicolas Bakaher
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (M.K., H.K., T.H., T.S.); and
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland (N.S., N.B., N.V.I.)
| | - Nikolai V Ivanov
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (M.K., H.K., T.H., T.S.); and
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland (N.S., N.B., N.V.I.)
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (M.K., H.K., T.H., T.S.); and
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland (N.S., N.B., N.V.I.)
| | - Tsubasa Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (M.K., H.K., T.H., T.S.); and
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland (N.S., N.B., N.V.I.)
| |
Collapse
|
68
|
Schläpfer P, Zhang P, Wang C, Kim T, Banf M, Chae L, Dreher K, Chavali AK, Nilo-Poyanco R, Bernard T, Kahn D, Rhee SY. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants. PLANT PHYSIOLOGY 2017; 173:2041-2059. [PMID: 28228535 PMCID: PMC5373064 DOI: 10.1104/pp.16.01942] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/21/2017] [Indexed: 05/16/2023]
Abstract
Plant metabolism underpins many traits of ecological and agronomic importance. Plants produce numerous compounds to cope with their environments but the biosynthetic pathways for most of these compounds have not yet been elucidated. To engineer and improve metabolic traits, we need comprehensive and accurate knowledge of the organization and regulation of plant metabolism at the genome scale. Here, we present a computational pipeline to identify metabolic enzymes, pathways, and gene clusters from a sequenced genome. Using this pipeline, we generated metabolic pathway databases for 22 species and identified metabolic gene clusters from 18 species. This unified resource can be used to conduct a wide array of comparative studies of plant metabolism. Using the resource, we discovered a widespread occurrence of metabolic gene clusters in plants: 11,969 clusters from 18 species. The prevalence of metabolic gene clusters offers an intriguing possibility of an untapped source for uncovering new metabolite biosynthesis pathways. For example, more than 1,700 clusters contain enzymes that could generate a specialized metabolite scaffold (signature enzymes) and enzymes that modify the scaffold (tailoring enzymes). In four species with sufficient gene expression data, we identified 43 highly coexpressed clusters that contain signature and tailoring enzymes, of which eight were characterized previously to be functional pathways. Finally, we identified patterns of genome organization that implicate local gene duplication and, to a lesser extent, single gene transposition as having played roles in the evolution of plant metabolic gene clusters.
Collapse
Affiliation(s)
- Pascal Schläpfer
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Peifen Zhang
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Chuan Wang
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Taehyong Kim
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Michael Banf
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Lee Chae
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Kate Dreher
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Arvind K Chavali
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Ricardo Nilo-Poyanco
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Thomas Bernard
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Daniel Kahn
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| | - Seung Y Rhee
- Carnegie Institution for Science, Plant Biology Department, Stanford, California 94305 (P.S., P.Z., C.W., T.K., M.B., L.C., K.D., A.K.C., R.N.-P., S.Y.R.); and
- Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 5558, 69622 Villeurbanne, France (T.B., D.K.)
| |
Collapse
|
69
|
Panchy N, Lehti-Shiu M, Shiu SH. Evolution of Gene Duplication in Plants. PLANT PHYSIOLOGY 2016; 171:2294-316. [PMID: 27288366 PMCID: PMC4972278 DOI: 10.1104/pp.16.00523] [Citation(s) in RCA: 886] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication.
Collapse
Affiliation(s)
- Nicholas Panchy
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Melissa Lehti-Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Genetics Program (N.P., S.-H.S.) and Department of Plant Biology (M.L.-S., S.-H.S.), Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
70
|
Zhao Q, Chen XY, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull (Beijing) 2016; 61:1391-1398. [PMID: 27730005 PMCID: PMC5031759 DOI: 10.1007/s11434-016-1136-5] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
Abstract
Scutellaria baicalensis Georgi, or Chinese skullcap, has been widely used as a medicinal plant in China for thousands of years, where the preparation from its roots is called Huang-Qin. It has been applied in the treatment of diarrhea, dysentery, hypertension, hemorrhaging, insomnia, inflammation and respiratory infections. Flavones such as baicalin, wogonoside and their aglycones baicalein wogonin are the major bioactive compounds extracted from the root of S. baicalensis. These flavones have been reported to have various pharmacological functions, including anti-cancer, hepatoprotection, antibacterial and antiviral, antioxidant, anticonvulsant and neuroprotective effects. In this review, we focus on clinical applications and the pharmacological properties of the medicinal plant and the flavones extracted from it. We also describe biotechnological and metabolic methods that have been used to elucidate the biosynthetic pathways of the bioactive compounds in Scutellaria.
Collapse
Affiliation(s)
- Qing Zhao
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602 China
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH UK
| | - Xiao-Ya Chen
- Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai, 201602 China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH UK
| |
Collapse
|
71
|
Casas MI, Falcone-Ferreyra ML, Jiang N, Mejía-Guerra MK, Rodríguez E, Wilson T, Engelmeier J, Casati P, Grotewold E. Identification and Characterization of Maize salmon silks Genes Involved in Insecticidal Maysin Biosynthesis. THE PLANT CELL 2016; 28:1297-309. [PMID: 27221383 PMCID: PMC4944406 DOI: 10.1105/tpc.16.00003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
The century-old maize (Zea mays) salmon silks mutation has been linked to the absence of maysin. Maysin is a C-glycosyl flavone that, when present in silks, confers natural resistance to the maize earworm (Helicoverpa zea), which is one of the most damaging pests of maize in America. Previous genetic analyses predicted Pericarp Color1 (P1; R2R3-MYB transcription factor) to be epistatic to the sm mutation. Subsequent studies identified two loci as being capable of conferring salmon silks phenotypes, salmon silks1 (sm1) and sm2 Benefitting from available sm1 and sm2 mapping information and from knowledge of the genes regulated by P1, we describe here the molecular identification of the Sm1 and Sm2 gene products. Sm2 encodes a rhamnosyl transferase (UGT91L1) that uses isoorientin and UDP-rhamnose as substrates and converts them to rhamnosylisoorientin. Sm1 encodes a multidomain UDP-rhamnose synthase (RHS1) that converts UDP-glucose into UDP-l-rhamnose. Here, we demonstrate that RHS1 shows unexpected substrate plasticity in converting the glucose moiety in rhamnosylisoorientin to 4-keto-6-deoxy glucose, resulting in maysin. Both Sm1 and Sm2 are direct targets of P1, as demonstrated by chromatin immunoprecipitation experiments. The molecular characterization of Sm1 and Sm2 described here completes the maysin biosynthetic pathway, providing powerful tools for engineering tolerance to maize earworm in maize and other plants.
Collapse
Affiliation(s)
- María Isabel Casas
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | | | - Nan Jiang
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - María Katherine Mejía-Guerra
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Eduardo Rodríguez
- Instituto de Biología Molecular y Celular de Rosario, Rosario, Santa Fe S2002LRK, Argentina
| | - Tyler Wilson
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Jacob Engelmeier
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Santa Fe S2002LRK, Argentina
| | - Erich Grotewold
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210 Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
72
|
Thagun C, Imanishi S, Kudo T, Nakabayashi R, Ohyama K, Mori T, Kawamoto K, Nakamura Y, Katayama M, Nonaka S, Matsukura C, Yano K, Ezura H, Saito K, Hashimoto T, Shoji T. Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato. PLANT & CELL PHYSIOLOGY 2016; 57:961-75. [PMID: 27084593 DOI: 10.1093/pcp/pcw067] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/23/2016] [Indexed: 05/23/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced in species of the Solanaceae. Here, we report that a group of jasmonate-responsive transcription factors of the ETHYLENE RESPONSE FACTOR (ERF) family (JREs) are close homologs of alkaloid regulators in Cathranthus roseus and tobacco, and regulate production of SGAs in tomato. In transgenic tomato, overexpression and dominant suppression of JRE genes caused drastic changes in SGA accumulation and in the expression of genes for metabolic enzymes involved in the multistep pathway leading to SGA biosynthesis, including the upstream mevalonate pathway. Transactivation and DNA-protein binding assays demonstrate that JRE4 activates the transcription of SGA biosynthetic genes by binding to GCC box-like elements in their promoters. These JRE-binding elements occur at significantly higher frequencies in proximal promoter regions of the genes regulated by JRE genes, supporting the conclusion that JREs mediate transcriptional co-ordination of a series of metabolic genes involved in SGA biosynthesis.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101 Japan
| | - Shunsuke Imanishi
- Institute of Vegetable and Tea Science, National Agriculture and Food Research Organization, Tsu, 514-2392 Japan
| | - Toru Kudo
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Kiyoshi Ohyama
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, 152-8551 Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Koichi Kawamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Yukino Nakamura
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Minami Katayama
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Satoko Nonaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Chiaki Matsukura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Kentaro Yano
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101 Japan
| | - Tsubasa Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101 Japan
| |
Collapse
|
73
|
Fernie AR, Pichersky E. Focus Issue on Metabolism: Metabolites, Metabolites Everywhere. PLANT PHYSIOLOGY 2015; 169:1421-3. [PMID: 26531677 PMCID: PMC4634105 DOI: 10.1104/pp.15.01499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Alisdair R Fernie
- Max-Planck-Institute of MolecularPlant Physiology14476 Potsdam-GolmGermany
| | - Eran Pichersky
- Department of Molecular, Cellular, andDevelopmental BiologyUniversity of MichiganAnn Arbor, MI 48109
| |
Collapse
|
74
|
Ning J, Moghe GD, Leong B, Kim J, Ofner I, Wang Z, Adams C, Jones AD, Zamir D, Last RL. A Feedback-Insensitive Isopropylmalate Synthase Affects Acylsugar Composition in Cultivated and Wild Tomato. PLANT PHYSIOLOGY 2015; 169:1821-35. [PMID: 25986128 PMCID: PMC4634047 DOI: 10.1104/pp.15.00474] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/15/2015] [Indexed: 05/05/2023]
Abstract
Acylsugars are insecticidal specialized metabolites produced in the glandular trichomes of plants in the Solanaceae family. In the tomato clade of the Solanum genus, acylsugars consist of aliphatic acids of different chain lengths esterified to sucrose, or less frequently to glucose. Through liquid chromatography-mass spectrometry screening of introgression lines, we previously identified a region of chromosome 8 in the Solanum pennellii LA0716 genome (IL8-1/8-1-1) that causes the cultivated tomato Solanum lycopersicum to shift from producing acylsucroses with abundant 3-methylbutanoic acid acyl chains derived from leucine metabolism to 2-methylpropanoic acid acyl chains derived from valine metabolism. We describe multiple lines of evidence implicating a trichome-expressed gene from this region as playing a role in this shift. S. lycopersicum M82 SlIPMS3 (Solyc08g014230) encodes a functional end product inhibition-insensitive version of the committing enzyme of leucine biosynthesis, isopropylmalate synthase, missing the carboxyl-terminal 160 amino acids. In contrast, the S. pennellii LA0716 IPMS3 allele found in IL8-1/8-1-1 encodes a nonfunctional truncated IPMS protein. M82 transformed with an SlIPMS3 RNA interference construct exhibited an acylsugar profile similar to that of IL8-1-1, whereas the expression of SlIPMS3 in IL8-1-1 partially restored the M82 acylsugar phenotype. These IPMS3 alleles are polymorphic in 14 S. pennellii accessions spread throughout the geographical range of occurrence for this species and are associated with acylsugars containing varying amounts of 2-methylpropanoic acid and 3-methylbutanoic acid acyl chains.
Collapse
Affiliation(s)
- Jing Ning
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| | - Gaurav D Moghe
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| | - Bryan Leong
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| | - Jeongwoon Kim
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| | - Itai Ofner
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| | - Zhenzhen Wang
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| | - Christopher Adams
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| | - Dani Zamir
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| | - Robert L Last
- Department of Biochemistry and Molecular Biology (J.N., G.D.M., B.L., Z.W., A.D.J., R.L.L.), Department of Plant Biology (J.K., R.L.L.), and Department of Chemistry (A.D.J.), Michigan State University, East Lansing, Michigan 48824;Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel (I.O., D.Z.); andDepartment of Biochemistry, St. Mary's College of Maryland, St. Mary's City, Maryland 20686 (C.A.)
| |
Collapse
|