51
|
Lee HJ, Nakayasu M, Akiyama R, Kobayashi M, Miyachi H, Sugimoto Y, Umemoto N, Saito K, Muranaka T, Mizutani M. Identification of a 3β-Hydroxysteroid Dehydrogenase/ 3-Ketosteroid Reductase Involved in α-Tomatine Biosynthesis in Tomato. PLANT & CELL PHYSIOLOGY 2019; 60:1304-1315. [PMID: 30892648 DOI: 10.1093/pcp/pcz049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
α-Tomatine and dehydrotomatine are major steroidal glycoalkaloids (SGAs) that accumulate in the mature green fruits, leaves and flowers of tomato (Solanum lycopersicum), and function as defensive compounds against bacteria, fungi, insects and animals. The aglycone of dehydrotomatine is dehydrotomatidine (5,6-dehydrogenated tomatidine, having the Δ5,6 double bond; the dehydro-type). The aglycone of α-tomatine is tomatidine (having a single bond between C5 and C6; the dihydro-type), which is believed to be derived from dehydrotomatidine via four reaction steps: C3 oxidation, isomerization, C5 reduction and C3 reduction; however, these conversion processes remain uncharacterized. In the present study, we demonstrate that a short-chain alcohol dehydrogenase/reductase designated Sl3βHSD is involved in the conversion of dehydrotomatidine to tomatidine in tomato. Sl3βHSD1 expression was observed to be high in the flowers, leaves and mature green fruits of tomato, in which high amounts of α-tomatine are accumulated. Biochemical analysis of the recombinant Sl3βHSD1 protein revealed that Sl3βHSD1 catalyzes the C3 oxidation of dehydrotomatidine to form tomatid-4-en-3-one and also catalyzes the NADH-dependent C3 reduction of a 3-ketosteroid (tomatid-3-one) to form tomatidine. Furthermore, during co-incubation of Sl3βHSD1 with SlS5αR1 (steroid 5α-reductase) the four reaction steps converting dehydrotomatidine to tomatidine were completed. Sl3βHSD1-silenced transgenic tomato plants accumulated dehydrotomatine, with corresponding decreases in α-tomatine content. Furthermore, the constitutive expression of Sl3βHSD1 in potato hairy roots resulted in the conversion of potato SGAs to the dihydro-type SGAs. These results demonstrate that Sl3βHSD1 is a key enzyme involved in the conversion processes from dehydrotomatidine to tomatidine in α-tomatine biosynthesis.
Collapse
Affiliation(s)
- Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, Japan
| | - Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, Japan
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, Japan
| | - Midori Kobayashi
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, Japan
| | - Haruka Miyachi
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, Japan
| | - Toshiya Muranaka
- Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, Japan
| |
Collapse
|
52
|
Leveau A, Reed J, Qiao X, Stephenson MJ, Mugford ST, Melton RE, Rant JC, Vickerstaff R, Langdon T, Osbourn A. Towards take-all control: a C-21β oxidase required for acylation of triterpene defence compounds in oat. THE NEW PHYTOLOGIST 2019; 221:1544-1555. [PMID: 30294977 PMCID: PMC6446040 DOI: 10.1111/nph.15456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 05/13/2023]
Abstract
Oats produce avenacins, antifungal triterpenes that are synthesized in the roots and provide protection against take-all and other soilborne diseases. Avenacins are acylated at the carbon-21 position of the triterpene scaffold, a modification critical for antifungal activity. We have previously characterized several steps in the avenacin pathway, including those required for acylation. However, transfer of the acyl group to the scaffold requires the C-21β position to be oxidized first, by an as yet uncharacterized enzyme. We mined oat transcriptome data to identify candidate cytochrome P450 enzymes that may catalyse C-21β oxidation. Candidates were screened for activity by transient expression in Nicotiana benthamiana. We identified a cytochrome P450 enzyme AsCYP72A475 as a triterpene C-21β hydroxylase, and showed that expression of this enzyme together with early pathway steps yields C-21β oxidized avenacin intermediates. We further demonstrate that AsCYP72A475 is synonymous with Sad6, a previously uncharacterized locus required for avenacin biosynthesis. sad6 mutants are compromised in avenacin acylation and have enhanced disease susceptibility. The discovery of AsCYP72A475 represents an important advance in the understanding of triterpene biosynthesis and paves the way for engineering the avenacin pathway into wheat and other cereals for control of take-all and other diseases.
Collapse
Affiliation(s)
- Aymeric Leveau
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - James Reed
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xue Qiao
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Michael J. Stephenson
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sam T. Mugford
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel E. Melton
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jenni C. Rant
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Robert Vickerstaff
- Department of Genetics and Crop Improvement, East Malling Research, New Rd, East Malling, ME19 6BJ, UK
| | - Tim Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FL, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
53
|
Zhu G, Wang S, Huang Z, Zhang S, Liao Q, Zhang C, Lin T, Qin M, Peng M, Yang C, Cao X, Han X, Wang X, van der Knaap E, Zhang Z, Cui X, Klee H, Fernie AR, Luo J, Huang S. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 2018; 172:249-261.e12. [PMID: 29328914 DOI: 10.1016/j.cell.2017.12.019] [Citation(s) in RCA: 529] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022]
Abstract
Humans heavily rely on dozens of domesticated plant species that have been further improved through intensive breeding. To evaluate how breeding changed the tomato fruit metabolome, we have generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes from hundreds of tomato genotypes. The combined results illustrate how breeding globally altered fruit metabolite content. Selection for alleles of genes associated with larger fruits altered metabolite profiles as a consequence of linkage with nearby genes. Selection of five major loci reduced the accumulation of anti-nutritional steroidal glycoalkaloids in ripened fruits, rendering the fruit more edible. Breeding for pink tomatoes modified the content of over 100 metabolites. The introgression of resistance genes from wild relatives in cultivars also resulted in major and unexpected metabolic changes. The study reveals a multi-omics view of the metabolic breeding history of tomato, as well as provides insights into metabolome-assisted breeding and plant biology.
Collapse
Affiliation(s)
- Guangtao Zhu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaibin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qinggang Liao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Chunzhi Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Tao Lin
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Mao Qin
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Han
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Harry Klee
- Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 144776, Germany; Center of Plant System Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Tropical Agriculture and Forestry of Hainan University, Haikou, Hainan 572208, China.
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
54
|
Tomita KI, Fujita R. Induction of potato variants with enhanced resistance to common scab disease via cell culture is applicable to a cultivar developed in Japan, but the effect of using the phytotoxin thaxtomin A is restrictive. BREEDING SCIENCE 2018; 68:629-638. [PMID: 30697125 PMCID: PMC6345228 DOI: 10.1270/jsbbs.18031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/23/2018] [Indexed: 06/09/2023]
Abstract
To induce potato variants with enhanced resistance to common scab disease that retain the desirable agronomic traits of the original cultivars, we used a cell culture technique that employs thaxtomin A, the primary phytotoxin that induces scab symptoms. We induced 24 variants from the potato cultivar 'Saya-akane', developed in Japan, and selected two with enhanced resistance to the disease by growing them in planters with bacteriainoculated soil and in a field infested with the disease. We also examined toxin tolerance in micro-tubers of variants that showed a lower degree or percentage of infection in the glasshouse screening, and found no significant difference relative to the original cultivar. To clarify the effect of using thaxtomin A, we examined the efficiency of induction of the potential enhanced resistance by comparing the degree of infection among variants grown in planters with inoculated soil. We observed no significant difference between variants induced on culture medium with and without the toxin. These results suggest that the effect of using the toxin as a positive selection agent is restrictive and that most resistance-enhancing mutations are induced by the cell culture procedure itself.
Collapse
Affiliation(s)
- Ken-ichi Tomita
- Hokkaido Research Organization Kitami Agricultural Experiment Station,
Yayoi 52, Kunneppu, Tokoro-gun, Hokkaido 099-1496,
Japan
| | - Ryohei Fujita
- Hokkaido Research Organization Kitami Agricultural Experiment Station,
Yayoi 52, Kunneppu, Tokoro-gun, Hokkaido 099-1496,
Japan
| |
Collapse
|
55
|
Yin Y, Gao L, Zhang X, Gao W. A cytochrome P450 monooxygenase responsible for the C-22 hydroxylation step in the Paris polyphylla steroidal saponin biosynthesis pathway. PHYTOCHEMISTRY 2018; 156:116-123. [PMID: 30268044 DOI: 10.1016/j.phytochem.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Polyphyllins are the major steroidal saponin components of Paris polyphylla, the main source plant of the common Chinese herbal medicine Paridis Rhizoma with strong pharmacological activity and extremely high economic value and great market prospects. However, the production of polyphyllins in plants is limited, and their biosynthesis pathway has not been reported. The downstream hydroxylation step was particularly unclear. To clarify the enzymes and intermediates involved in the downstream steps of polyphyllin biosynthesis, we performed a comparative transcriptome analysis and discovered a cytochrome P450 gene that encodes a protein with monooxygenase activity. Heterologous expression in Saccharomyces cerevisiae demonstrated that it encodes an enzyme that catalyzes the formation of 22(R)-hydroxycholesterol from cholesterol. The relative gene expression measured by RT-PCR and polyphyllin contents measured by HPLC in P. polyphylla roots at different ages confirmed that this gene is involved in polyphyllin biosynthesis. To our best knowledge, this is the first report on the cloning of a CYP450 enzyme gene from the steroidal saponin pathway of higher plants.
Collapse
Affiliation(s)
- Yan Yin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, PR China
| | - Linhui Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China; State Key Laboratory of Breeding Base Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Xianan Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, PR China
| |
Collapse
|
56
|
Schimmel BCJ, Alba JM, Wybouw N, Glas JJ, Meijer TT, Schuurink RC, Kant MR. Distinct Signatures of Host Defense Suppression by Plant-Feeding Mites. Int J Mol Sci 2018; 19:E3265. [PMID: 30347842 PMCID: PMC6214137 DOI: 10.3390/ijms19103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 01/09/2023] Open
Abstract
Tomato plants are attacked by diverse herbivorous arthropods, including by cell-content-feeding mites, such as the extreme generalist Tetranychus urticae and specialists like Tetranychus evansi and Aculops lycopersici. Mite feeding induces plant defense responses that reduce mite performance. However, T. evansi and A. lycopersici suppress plant defenses via poorly understood mechanisms and, consequently, maintain a high performance on tomato. On a shared host, T. urticae can be facilitated by either of the specialist mites, likely due to the suppression of plant defenses. To better understand defense suppression and indirect plant-mediated interactions between herbivorous mites, we used gene-expression microarrays to analyze the transcriptomic changes in tomato after attack by either a single mite species (T. urticae, T. evansi, A. lycopersici) or two species simultaneously (T. urticae plus T. evansi or T. urticae plus A. lycopersici). Additionally, we assessed mite-induced changes in defense-associated phytohormones using LC-MS/MS. Compared to non-infested controls, jasmonates (JAs) and salicylate (SA) accumulated to higher amounts upon all mite-infestation treatments, but the response was attenuated after single infestations with defense-suppressors. Strikingly, whereas 8 to 10% of tomato genes were differentially expressed upon single infestations with T. urticae or A. lycopersici, respectively, only 0.1% was altered in T. evansi-infested plants. Transcriptome analysis of dual-infested leaves revealed that A. lycopersici primarily suppressed T. urticae-induced JA defenses, while T. evansi dampened T. urticae-triggered host responses on a transcriptome-wide scale. The latter suggests that T. evansi not solely down-regulates plant gene expression, but rather directs it back towards housekeeping levels. Our results provide valuable new insights into the mechanisms underlying host defense suppression and the plant-mediated facilitation of competing herbivores.
Collapse
Affiliation(s)
- Bernardus C J Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Juan M Alba
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Nicky Wybouw
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium.
| | - Joris J Glas
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Tomas T Meijer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE Amsterdam, The Netherlands.
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
57
|
Nakayasu M, Akiyama R, Lee HJ, Osakabe K, Osakabe Y, Watanabe B, Sugimoto Y, Umemoto N, Saito K, Muranaka T, Mizutani M. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:70-77. [PMID: 29735370 DOI: 10.1016/j.plaphy.2018.04.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/22/2018] [Accepted: 04/22/2018] [Indexed: 05/20/2023]
Abstract
Potato (Solanum tuberosum) is a major food crop, while the most tissues of potato accumulates steroidal glycoalkaloids (SGAs) α-solanine and α-chaconine. Since SGAs confer a bitter taste on human and show the toxicity against various organisms, reducing the SGA content in the tubers is requisite for potato breeding. However, generation of SGA-free potato has not been achieved yet, although silencing of several SGA biosynthetic genes led a decrease in SGAs. Here, we show that the knockout of St16DOX encoding a steroid 16α-hydroxylase in SGA biosynthesis causes the complete abolition of the SGA accumulation in potato hairy roots. Nine candidate guide RNA (gRNA) target sequences were selected from St16DOX by in silico analysis, and the two or three gRNAs were introduced into a CRISPR/Cas9 vector designated as pMgP237-2A-GFP that can express multiplex gRNAs based on the pre-tRNA processing system. To establish rapid screening of the candidate gRNAs that can efficiently mutate the St16DOX gene, we used a potato hairy root culture system for the introduction of the pMgP237 vectors. Among the transgenic hairy roots, two independent lines showed no detectable SGAs but accumulated the glycosides of 22,26-dihydroxycholesterol, which is the substrate of St16DOX. Analysis of the two lines with sequencing exhibited the mutated sequences of St16DOX with no wild-type sequences. Thus, generation of SGA-free hairy roots of tetraploid potato was achieved by the combination of the hairy root culture and the pMgP237-2A-GFP vector. This experimental system is useful to evaluate the efficacy of candidate gRNA target sequences in the short-term.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Ryota Akiyama
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yuriko Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoyuki Umemoto
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba, 260-8675, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Rokkoudai 1-1, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
58
|
Zhan X, Liao X, Luo X, Zhu Y, Feng S, Yu C, Lu J, Shen C, Wang H. Comparative Metabolomic and Proteomic Analyses Reveal the Regulation Mechanism Underlying MeJA-Induced Bioactive Compound Accumulation in Cutleaf Groundcherry ( Physalis angulata L.) Hairy Roots. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6336-6347. [PMID: 29874907 DOI: 10.1021/acs.jafc.8b02502] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cutleaf groundcherry ( Physalis angulata L.) is an annual plant with a number of medicinal ingredients. However, studies about the secondary metabolism of P. angulata are very limited. An integrated metabolome and proteome approach was used to reveal the variations in the metabolism associated with bioactive compounds under methyl-jasmonate (MeJA) treatment. Application of MeJA to the hairy roots could significantly increase the accumulation of most active ingredients. A targeted approach confirmed the variations in physalins D and H between MeJA treatment and the controls. Increases in the levels of a number of terpenoid backbone biosynthesis and steroid biosynthesis related enzymes, cytochrome P450 monooxygenases and 3β-hydroxysterioid dehydrogenase might provide a potential explanation for the MeJA-induced active ingredient synthesis. Our results may contribute to a deeper understanding of the regulation mechanism underlying the MeJA-induced active compound accumulation in P. angulata.
Collapse
|
59
|
Nakayasu M, Shioya N, Shikata M, Thagun C, Abdelkareem A, Okabe Y, Ariizumi T, Arimura GI, Mizutani M, Ezura H, Hashimoto T, Shoji T. JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:975-990. [PMID: 29569783 DOI: 10.1111/tpj.13911] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 05/18/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized anti-nutritional metabolites that accumulate in Solanum lycopersicum (tomato) and Solanum tuberosum (potato). A series of SGA biosynthetic genes is known to be upregulated in Solanaceae species by jasmonate-responsive Ethylene Response Factor transcription factors, including JRE4 (otherwise known as GAME9), but the exact regulatory significance in planta of each factor has remained unaddressed. Here, via TILLING-based screening of an EMS-mutagenized tomato population, we isolated a JRE4 loss-of-function line that carries an amino acid residue missense change in a region of the protein important for DNA binding. In this jre4 mutant, we observed downregulated expression of SGA biosynthetic genes and decreased SGA accumulation. Moreover, JRE4 overexpression stimulated SGA production. Further characterization of jre4 plants revealed their increased susceptibility to the generalist herbivore Spodoptera litura larvae. This susceptibility illustrates that herbivory resistance is dependent on JRE4-mediated defense responses, which include SGA accumulation. Ethylene treatment attenuated the jasmonate-mediated JRE4 expression induction and downstream SGA biosynthesis in tomato leaves and hairy roots. Overall, this study indicated that JRE4 functions as a primary master regulator of SGA biosynthesis, and thereby contributes toward plant defense against chewing insects.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoki Shioya
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masahito Shikata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Chonprakun Thagun
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Ayman Abdelkareem
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yoshihiro Okabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Gen-Ichiro Arimura
- Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tsubasa Shoji
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
60
|
Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proc Natl Acad Sci U S A 2018; 115:E5419-E5428. [PMID: 29784829 DOI: 10.1073/pnas.1804835115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Thousands of specialized, steroidal metabolites are found in a wide spectrum of plants. These include the steroidal glycoalkaloids (SGAs), produced primarily by most species of the genus Solanum, and metabolites belonging to the steroidal saponins class that are widespread throughout the plant kingdom. SGAs play a protective role in plants and have potent activity in mammals, including antinutritional effects in humans. The presence or absence of the double bond at the C-5,6 position (unsaturated and saturated, respectively) creates vast structural diversity within this metabolite class and determines the degree of SGA toxicity. For many years, the elimination of the double bond from unsaturated SGAs was presumed to occur through a single hydrogenation step. In contrast to this prior assumption, here, we show that the tomato GLYCOALKALOID METABOLISM25 (GAME25), a short-chain dehydrogenase/reductase, catalyzes the first of three prospective reactions required to reduce the C-5,6 double bond in dehydrotomatidine to form tomatidine. The recombinant GAME25 enzyme displayed 3β-hydroxysteroid dehydrogenase/Δ5,4 isomerase activity not only on diverse steroidal alkaloid aglycone substrates but also on steroidal saponin aglycones. Notably, GAME25 down-regulation rerouted the entire tomato SGA repertoire toward the dehydro-SGAs branch rather than forming the typically abundant saturated α-tomatine derivatives. Overexpressing the tomato GAME25 in the tomato plant resulted in significant accumulation of α-tomatine in ripe fruit, while heterologous expression in cultivated eggplant generated saturated SGAs and atypical saturated steroidal saponin glycosides. This study demonstrates how a single scaffold modification of steroidal metabolites in plants results in extensive structural diversity and modulation of product toxicity.
Collapse
|
61
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
62
|
Comparative Transcriptome Analysis Identifies Putative Genes Involved in Dioscin Biosynthesis in Dioscorea zingiberensis. Molecules 2018; 23:molecules23020454. [PMID: 29463020 PMCID: PMC6017347 DOI: 10.3390/molecules23020454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/12/2018] [Accepted: 02/17/2018] [Indexed: 12/17/2022] Open
Abstract
Dioscorea zingiberensis is a perennial herb native to China. The rhizome of D. zingiberensis has long been used as a traditional Chinese medicine to treat rheumatic arthritis. Dioscin is the major bioactive ingredient conferring the medicinal property described in Chinese pharmacopoeia. Several previous studies have suggested cholesterol as the intermediate to the biosynthesis of dioscin, however, the biosynthetic steps to dioscin after cholesterol remain unknown. In this study, a comprehensive D. zingiberensis transcriptome derived from its leaf and rhizome was constructed. Based on the annotation using various public databases, all possible enzymes in the biosynthetic steps to cholesterol were identified. In the late steps beyond cholesterol, cholesterol undergoes site-specific oxidation by cytochrome P450s (CYPs) and glycosylation by UDP-glycosyltransferases (UGTs) to yield dioscin. From the D. zingiberensis transcriptome, a total of 485 unigenes were annotated as CYPs and 195 unigenes with a sequence length above 1000 bp were annotated as UGTs. Transcriptomic comparison revealed 165 CYP annotated unigenes correlating to dioscin biosynthesis in the plant. Further phylogenetic analysis suggested that among those CYP candidates four of them would be the most likely candidates involved in the biosynthetic steps from cholesterol to dioscin. Additionally, from the UGT annotated unigenes, six of them were annotated as 3-O-UGTs and two of them were annotated as rhamnosyltransferases, which consisted of potential UGT candidates involved in dioscin biosynthesis. To further explore the function of the UGT candidates, two 3-O-UGT candidates, named Dz3GT1 and Dz3GT2, were cloned and functionally characterized. Both Dz3GT1 and Dz3GT2 were able to catalyze a C3-glucosylation activity on diosgenin. In conclusion, this study will facilitate our understanding of dioscin biosynthesis pathway and provides a basis for further mining the genes involved in dioscin biosynthesis.
Collapse
|
63
|
Liu F, Chen JR, Tang YH, Chang HT, Yuan YM, Guo Q. Isolation and characterization of cinnamate 4-hydroxylase gene from cultivated ramie ( Boehmeria nivea). BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2017.1418675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Fang Liu
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
- Laboratory of Economic Animal and Plant Quality Control and Application, College of Biological and Environmental Engineering, Changsha University, Changsha, PR China
| | - Jian-Rong Chen
- Laboratory of Economic Animal and Plant Quality Control and Application, College of Biological and Environmental Engineering, Changsha University, Changsha, PR China
| | - Ying-Hong Tang
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
| | - Hong-Tao Chang
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
| | - You-Mei Yuan
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
| | - Qingquan Guo
- College of Agriculture, Ramie Institute, Hunan Agricultural University, Changsha, PR China
| |
Collapse
|
64
|
Nadakuduti SS, Buell CR, Voytas DF, Starker CG, Douches DS. Genome Editing for Crop Improvement - Applications in Clonally Propagated Polyploids With a Focus on Potato ( Solanum tuberosum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1607. [PMID: 30483283 PMCID: PMC6243044 DOI: 10.3389/fpls.2018.01607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 05/05/2023]
Abstract
Genome-editing has revolutionized biology. When coupled with a recently streamlined regulatory process by the U.S. Department of Agriculture and the potential to generate transgene-free varieties, genome-editing provides a new avenue for crop improvement. For heterozygous, polyploid and vegetatively propagated crops such as cultivated potato, Solanum tuberosum Group Tuberosum L., genome-editing presents tremendous opportunities for trait improvement. In potato, traits such as improved resistance to cold-induced sweetening, processing efficiency, herbicide tolerance, modified starch quality and self-incompatibility have been targeted utilizing CRISPR/Cas9 and TALEN reagents in diploid and tetraploid clones. However, limited progress has been made in other such crops including sweetpotato, strawberry, grapes, citrus, banana etc., In this review we summarize the developments in genome-editing platforms, delivery mechanisms applicable to plants and then discuss the recent developments in regulation of genome-edited crops in the United States and The European Union. Next, we provide insight into the challenges of genome-editing in clonally propagated polyploid crops, their current status for trait improvement with future prospects focused on potato, a global food security crop.
Collapse
Affiliation(s)
- Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- *Correspondence: Satya Swathi Nadakuduti, David S. Douches,
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- AgBioResearch – Michigan State University, East Lansing, MI, United States
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology, and Development, Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - Colby G. Starker
- Department of Genetics, Cell Biology, and Development, Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- AgBioResearch – Michigan State University, East Lansing, MI, United States
- *Correspondence: Satya Swathi Nadakuduti, David S. Douches,
| |
Collapse
|
65
|
Nakayasu M, Umemoto N, Ohyama K, Fujimoto Y, Lee HJ, Watanabe B, Muranaka T, Saito K, Sugimoto Y, Mizutani M. A Dioxygenase Catalyzes Steroid 16α-Hydroxylation in Steroidal Glycoalkaloid Biosynthesis. PLANT PHYSIOLOGY 2017; 175:120-133. [PMID: 28754839 PMCID: PMC5580751 DOI: 10.1104/pp.17.00501] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/25/2017] [Indexed: 05/19/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites that are found in the Solanaceae. Potato (Solanum tuberosum) contains the SGAs α-solanine and α-chaconine, while tomato (Solanum lycopersicum) contains α-tomatine, all of which are biosynthesized from cholesterol. However, although two cytochrome P450 monooxygenases that catalyze the 22- and 26-hydroxylation of cholesterol have been identified, the 16-hydroxylase remains unknown. Feeding with deuterium-labeled cholesterol indicated that the 16α- and 16β-hydrogen atoms of cholesterol were eliminated to form α-solanine and α-chaconine in potato, while only the 16α-hydrogen atom was eliminated in α-tomatine biosynthesis, suggesting that a single oxidation at C-16 takes place during tomato SGA biosynthesis while a two-step oxidation occurs in potato. Here, we show that a 2-oxoglutarate-dependent dioxygenase, designated as 16DOX, is involved in SGA biosynthesis. We found that the transcript of potato 16DOX (St16DOX) was expressed at high levels in the tuber sprouts, where large amounts of SGAs are accumulated. Biochemical analysis of the recombinant St16DOX protein revealed that St16DOX catalyzes the 16α-hydroxylation of hydroxycholesterols and that (22S)-22,26-dihydroxycholesterol was the best substrate among the nine compounds tested. St16DOX-silenced potato plants contained significantly lower levels of SGAs, and a detailed metabolite analysis revealed that they accumulated the glycosides of (22S)-22,26-dihydroxycholesterol. Analysis of the tomato 16DOX (Sl16DOX) gene gave essentially the same results. These findings clearly indicate that 16DOX is a steroid 16α-hydroxylase that functions in the SGA biosynthetic pathway. Furthermore, St16DOX silencing did not affect potato tuber yield, indicating that 16DOX may be a suitable target for controlling toxic SGA levels in potato.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Naoyuki Umemoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Kiyoshi Ohyama
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yoshinori Fujimoto
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Hyoung Jae Lee
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Yukihiro Sugimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Masaharu Mizutani
- Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|