51
|
Trinh MDL, Masuda S. Chloroplast pH Homeostasis for the Regulation of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:919896. [PMID: 35693183 PMCID: PMC9174948 DOI: 10.3389/fpls.2022.919896] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 05/16/2023]
Abstract
The pH of various chloroplast compartments, such as the thylakoid lumen and stroma, is light-dependent. Light illumination induces electron transfer in the photosynthetic apparatus, coupled with proton translocation across the thylakoid membranes, resulting in acidification and alkalization of the thylakoid lumen and stroma, respectively. Luminal acidification is crucial for inducing regulatory mechanisms that protect photosystems against photodamage caused by the overproduction of reactive oxygen species (ROS). Stromal alkalization activates enzymes involved in the Calvin-Benson-Bassham (CBB) cycle. Moreover, proton translocation across the thylakoid membranes generates a proton gradient (ΔpH) and an electric potential (ΔΨ), both of which comprise the proton motive force (pmf) that drives ATP synthase. Then, the synthesized ATP is consumed in the CBB cycle and other chloroplast metabolic pathways. In the dark, the pH of both the chloroplast stroma and thylakoid lumen becomes neutral. Despite extensive studies of the above-mentioned processes, the molecular mechanisms of how chloroplast pH can be maintained at proper levels during the light phase for efficient activation of photosynthesis and other metabolic pathways and return to neutral levels during the dark phase remain largely unclear, especially in terms of the precise control of stromal pH. The transient increase and decrease in chloroplast pH upon dark-to-light and light-to-dark transitions have been considered as signals for controlling other biological processes in plant cells. Forward and reverse genetic screening approaches recently identified new plastid proteins involved in controlling ΔpH and ΔΨ across the thylakoid membranes and chloroplast proton/ion homeostasis. These proteins have been conserved during the evolution of oxygenic phototrophs and include putative photosynthetic protein complexes, proton transporters, and/or their regulators. Herein, we summarize the recently identified protein players that control chloroplast pH and influence photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Shinji Masuda,
| |
Collapse
|
52
|
Azeem F, Zameer R, Rehman Rashid MA, Rasul I, Ul-Allah S, Siddique MH, Fiaz S, Raza A, Younas A, Rasool A, Ali MA, Anwar S, Siddiqui MH. Genome-wide analysis of potassium transport genes in Gossypium raimondii suggest a role of GrHAK/KUP/KT8, GrAKT2.1 and GrAKT1.1 in response to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:110-122. [PMID: 34864561 DOI: 10.1016/j.plaphy.2021.11.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Potassium (K+) is an important macro-nutrient for plants, which comprises almost 10% of plant's dry mass. It plays a crucial role in the growth of plants as well as other important processes related to metabolism and stress tolerance. Plants have a complex and well-organized potassium distribution system (channels and transporters). Cotton is the most important economic crop, which is the primary source of natural fiber. Soil deficiency in K+ can negatively affect yield and fiber quality of cotton. However, potassium transport system in cotton is poorly studied. Current study identified 43 Potassium Transport System (PTS) genes in Gossypium raimondii genome. Based on conserved domains, transmembrane domains, and motif structures, these genes were classified as K+ transporters (2 HKTs, 7 KEAs, and 16 KUP/HAK/KTs) and K+ channels (11 Shakers and 7 TPKs/KCO). The phylogenetic comparison of GrPTS genes from Arabidopsis thaliana, Glycine max, Oryza sativa, Medicago truncatula and Cicer arietinum revealed variations in PTS gene conservation. Evolutionary analysis predicted that most GrPTS genes were segmentally duplicated. Gene structure analysis showed that the intron/exon organization of these genes was conserved in specific-family. Chromosomal localization demonstrated a random distribution of PTS genes across all the thirteen chromosomes except chromosome six. Many stress responsive cis-regulatory elements were predicted in promoter regions of GrPTS genes. The RNA-seq data analysis followed by qRT-PCR validation demonstrated that PTS genes potentially work in groups against environmental factors. Moreover, a transporter gene (GrHAK/KUP/KT8) and two channel genes (GrAKT2.1 and GrAKT1.1) are important candidate genes for plant stress response. These results provide useful information for further functional characterization of PTS genes with the breeding aim of stress-resistant cultivars.
Collapse
Affiliation(s)
- Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad, Pakistan
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad, Pakistan
| | | | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad, Pakistan
| | - Sami Ul-Allah
- College of Agriculture, Bahauddin Zakariya University, Bahadur Sub-Campus, Layyah, Pakistan
| | | | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, 22620, Haripir, Pakistan.
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, Fujian, 350002, China
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Asima Rasool
- Department of Bioinformatics and Biotechnology, Govt. College University, Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Sultana Anwar
- Department of Agronomy, University of Florida, Gainesville, USA
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
53
|
Han Y, Gao Y, Li M, Du Y, Zhang Y, Zhang W, Du J. The molecular events underpinning cultivar differences in melatonin counteracting salt damage in Phaseolus vulgaris. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:201-217. [PMID: 34871542 DOI: 10.1071/fp21126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Melatonin (N -acetyl-5-methoxytryptamine) plays important roles in multiple stress responses, especially under salt stress. However, cultivar differences in melatonin mediated salt stress tolerance are unclear. Phaseolus vulgaris L. (common bean) cultivars Jiyin 1 (JY, salt-tolerant) and Xuliyabai (XL, salt-sensitive) were used in this study. Exogenous melatonin significantly improved root growth under salt stress in JY, but had little effect on XL. Physiology analysis showed significant differences in activities of antioxidant enzymes (superoxide, SOD; and catalase, CAT) and malondialdehyde content between JY and XL. Meanwhile, the change of ABA content in JY and XL root was opposite in salt plus melatonin treatment. Comparative root transcriptomes of JY and XL revealed 3505 and 668 differentially expressed genes (DEGs) regulated by salt stress and melatonin. The most enriched melatonin-responsive genes under salt stress are mainly involved in regulation of transcription, oxidation-reduction process, transcription factor activity, oxidoreductase activity. In addition, melatonin induced more obvious changes of DEGs in JY than that in XL under salt condition. Melatonin also significantly induced 41 DEGs only in JY, including signal transduction genes, transcription factors, ubiquitin protein ligases, ion homeostasis and osmotic adjustment genes etc. This study uncovered the molecular mechanism of cultivar difference of melatonin response under salt stress in common bean.
Collapse
Affiliation(s)
- Yiqiang Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P. R. China; and National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang Province, P. R. China
| | - Yamei Gao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P. R. China; and Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in the Cold Region, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P. R. China
| | - Ming Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P. R. China
| | - Yanli Du
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P. R. China
| | - Yuxian Zhang
- National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang Province, P. R. China; and College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P. R. China
| | - Wenhui Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P. R. China
| | - Jidao Du
- National Coarse Cereals Engineering Research Center, Daqing 163319, Heilongjiang Province, P. R. China; and College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang Province, P. R. China
| |
Collapse
|
54
|
Genome-Wide Identification, Primary Functional Characterization of the NHX Gene Family in Canavalia rosea, and Their Possible Roles for Adaptation to Tropical Coral Reefs. Genes (Basel) 2021; 13:genes13010033. [PMID: 35052375 PMCID: PMC8774410 DOI: 10.3390/genes13010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Canavalia rosea, distributed in the coastal areas of tropical and subtropical regions, is an extremophile halophyte with good adaptability to high salinity/alkaline and drought tolerance. Plant sodium/hydrogen (Na+/H+) exchanger (NHX) genes encode membrane transporters involved in sodium ion (Na+), potassium ion (K+), and lithium ion (Li+) transport and pH homeostasis, thereby playing key roles in salinity tolerance. However, the NHX family has not been reported in this leguminous halophyte. In the present study, a genome-wide comprehensive analysis was conducted and finally eight CrNHXs were identified in C. rosea genome. Based on the bioinformatics analysis about the chromosomal location, protein domain, motif organization, and phylogenetic relationships of CrNHXs and their coding proteins, as well as the comparison with plant NHXs from other species, the CrNHXs were grouped into three major subfamilies (Vac-, Endo-, and PM-NHX). Promoter analyses of cis-regulatory elements indicated that the expression of different CrNHXs was affected by a series of stress challenges. Six CrNHXs showed high expression levels in five tested tissues of C. rosea in different levels, while CrNHX1 and CrNHX3 were expressed at extremely low levels, indicating that CrNHXs might be involved in regulating the development of C. rosea plant. The expression analysis based on RNA-seq showed that the transcripts of most CrNHXs were obviously decreased in mature leaves of C. rosea plant growing on tropical coral reefs, which suggested their involvement in this species' adaptation to reefs and specialized islands habitats. Furthermore, in the single-factor stress treatments mimicking the extreme environments of tropical coral reefs, the RNA-seq data also implied CrNHXs holding possible gene-specific regulatory roles in the environmental adaptation. The qRT-PCR based expression profiling exhibited that CrNHXs responded to different stresses to varying degrees, which further confirmed the specificity of CrNHXs' in responding to abiotic stresses. Moreover, the yeast functional complementation test proved that some CrNHXs could partially restore the salt tolerance of the salt-sensitive yeast mutant AXT3. This study provides comprehensive bio-information and primary functional identification of NHXs in C. rosea, which could help improve the salt/alkaline tolerance of genetically modified plants for further studies. This research also contributes to our understanding of the possible molecular mechanism whereby NHXs maintain the ion balance in the natural ecological adaptability of C. rosea to tropical coral islands and reefs.
Collapse
|
55
|
Azeem F, Ijaz U, Ali MA, Hussain S, Zubair M, Manzoor H, Abid M, Zameer R, Kim DS, Golokhvast KS, Chung G, Sun S, Nawaz MA. Genome-Wide Identification and Expression Profiling of Potassium Transport-Related Genes in Vigna radiata under Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2021; 11:2. [PMID: 35009006 PMCID: PMC8747342 DOI: 10.3390/plants11010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Potassium (K+) is one of the most important cations that plays a significant role in plants and constitutes up to 10% of plants' dry weight. Plants exhibit complex systems of transporters and channels for the distribution of K+ from soil to numerous parts of plants. In this study, we have identified 39 genes encoding putative K+ transport-related genes in Vigna radiata. Chromosomal mapping of these genes indicated an uneven distribution across eight out of 11 chromosomes. Comparative phylogenetic analysis of different plant species, i.e., V. radiata, Glycine max, Cicer arietinum, Oryza sativa, and Arabidopsis thaliana, showed their strong conservation in different plant species. Evolutionary analysis of these genes suggests that gene duplication is a major route of expansion for this family in V. radiata. Comprehensive promoter analysis identified several abiotic stresses related to cis-elements in the promoter regions of these genes, suggesting their role in abiotic stress tolerance. Our additional analyses indicated that abiotic stresses adversely affected the chlorophyll concentration, carotenoids, catalase, total soluble protein concentration, and the activities of superoxide and peroxidase in V. radiata. It also disturbs the ionic balance by decreasing the uptake of K+ content and increasing the uptake of Na+. Expression analysis from high-throughput sequencing data and quantitative real-time PCR experiments revealed that several K+ transport genes were expressed in different tissues (seed, flower, and pod) and in abiotic stress-responsive manners. A highly significant variation of expression was observed for VrHKT (1.1 and 1.2), VrKAT (1 and 2) VrAKT1.1, VrAKT2, VrSKOR, VrKEA5, VrTPK3, and VrKUP/HAK/KT (4, 5, and 8.1) in response to drought, heat or salinity stress. It reflected their potential roles in plant growth, development, or stress adaptations. The present study gives an in-depth understanding of K+ transport system genes in V. radiata and will serve as a basis for a functional analysis of these genes.
Collapse
Affiliation(s)
- Farrukh Azeem
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad 38000, Pakistan; (F.A.); (U.I.); (M.Z.); (R.Z.)
| | - Usman Ijaz
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad 38000, Pakistan; (F.A.); (U.I.); (M.Z.); (R.Z.)
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Sabir Hussain
- Department of Environmental Science and Engineering, GC University, Faisalabad 38000, Pakistan;
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad 38000, Pakistan; (F.A.); (U.I.); (M.Z.); (R.Z.)
| | - Hamid Manzoor
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Abid
- Department of Plant Pathology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad 38000, Pakistan; (F.A.); (U.I.); (M.Z.); (R.Z.)
| | - Dong-Seon Kim
- KM Research Science Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Korea;
| | - Kirill S. Golokhvast
- N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources, 190000 Saint Petersburg, Russia;
- SEC in Nanotechnology, Engineering School, Far Eastern Federal University, 690922 Vladivostok, Russia
- Siberian Federal Scientific Center of Agrobiotechnology, Russian Academy of Sciences, Krasnoobsk, 630501 Novosibirsk, Russia
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu Campus, Gwangju 52626, Korea;
| | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Yeosu Campus, Gwangju 52626, Korea;
| | - Muhammad Amjad Nawaz
- Siberian Federal Scientific Center of Agrobiotechnology, Russian Academy of Sciences, Krasnoobsk, 630501 Novosibirsk, Russia
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| |
Collapse
|
56
|
Paul A, Chatterjee A, Subrahmanya S, Shen G, Mishra N. NHX Gene Family in Camellia sinensis: In-silico Genome-Wide Identification, Expression Profiles, and Regulatory Network Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:777884. [PMID: 34987532 PMCID: PMC8720784 DOI: 10.3389/fpls.2021.777884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants, such as Arabidopsis thaliana and cotton; however, not much is known about NHXs in tea plant. In the present study, NHX genes of tea were obtained through a genome-wide search using A. thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER; CsNHX8) and plasma membrane (PM; CsNHX9), respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location, and protein-conserved motifs and domains were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes is subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in Camellia sinensis based on the orthologous genes in A. thaliana. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.
Collapse
Affiliation(s)
| | | | | | - Guoxin Shen
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Neelam Mishra
- Department of Botany, St. Joseph’s College Autonomous, Bangalore, India
| |
Collapse
|
57
|
Sze H, Palanivelu R, Harper JF, Johnson MA. Holistic insights from pollen omics: co-opting stress-responsive genes and ER-mediated proteostasis for male fertility. PLANT PHYSIOLOGY 2021; 187:2361-2380. [PMID: 34601610 PMCID: PMC8644640 DOI: 10.1093/plphys/kiab463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/01/2021] [Indexed: 05/15/2023]
Abstract
Sexual reproduction in flowering plants takes place without an aqueous environment. Sperm are carried by pollen through air to reach the female gametophyte, though the molecular basis underlying the protective strategy of the male gametophyte is poorly understood. Here we compared the published transcriptomes of Arabidopsis thaliana pollen, and of heat-responsive genes, and uncovered insights into how mature pollen (MP) tolerates desiccation, while developing and germinating pollen are vulnerable to heat stress. Germinating pollen expresses molecular chaperones or "heat shock proteins" in the absence of heat stress. Furthermore, pollen tubes that grew through pistils at basal temperature showed induction of the endoplasmic reticulum (ER) stress response, which is a characteristic of stressed vegetative tissues. Recent studies show MP contains mRNA-protein (mRNP) aggregates that resemble "stress" granules triggered by heat or other stresses to protect cells. Based on these observations, we postulate that mRNP particles are formed in maturing pollen in response to developmentally programmed dehydration. Dry pollen can withstand harsh conditions as it is dispersed in air. We propose that, when pollen lands on a compatible pistil and hydrates, mRNAs stored in particles are released, aided by molecular chaperones, to become translationally active. Pollen responds to osmotic, mechanical, oxidative, and peptide cues that promote ER-mediated proteostasis and membrane trafficking for tube growth and sperm discharge. Unlike vegetative tissues, pollen depends on stress-protection strategies for its normal development and function. Thus, heat stress during reproduction likely triggers changes that interfere with the normal pollen responses, thereby compromising male fertility. This holistic perspective provides a framework to understand the basis of heat-tolerant strains in the reproduction of crops.
Collapse
Affiliation(s)
- Heven Sze
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
- Author for communication:
| | | | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
58
|
Dreyer I. Nutrient cycling is an important mechanism for homeostasis in plant cells. PLANT PHYSIOLOGY 2021; 187:2246-2261. [PMID: 34890457 PMCID: PMC8644529 DOI: 10.1093/plphys/kiab217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 05/02/2023]
Abstract
Homeostasis in living cells refers to the steady state of internal, physical, and chemical conditions. It is sustained by self-regulation of the dynamic cellular system. To gain insight into the homeostatic mechanisms that maintain cytosolic nutrient concentrations in plant cells within a homeostatic range, we performed computational cell biology experiments. We mathematically modeled membrane transporter systems and simulated their dynamics. Detailed analyses of 'what-if' scenarios demonstrated that a single transporter type for a nutrient, irrespective of whether it is a channel or a cotransporter, is not sufficient to calibrate a desired cytosolic concentration. A cell cannot flexibly react to different external conditions. Rather, at least two different transporter types for the same nutrient, which are energized differently, are required. The gain of flexibility in adjusting a cytosolic concentration was accompanied by the establishment of energy-consuming cycles at the membrane, suggesting that these putatively "futile" cycles are not as futile as they appear. Accounting for the complex interplay of transporter networks at the cellular level may help design strategies for increasing nutrient use efficiency of crop plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca CL-3460000, Chile
- Author for communication:
| |
Collapse
|
59
|
Agarwal P, Baraiya BM, Joshi PS, Patel M, Parida AK, Agarwal PK. AlRab7 from Aeluropus lagopoides ameliorates ion toxicity in transgenic tobacco by regulating hormone signaling and reactive oxygen species homeostasis. PHYSIOLOGIA PLANTARUM 2021; 173:1448-1462. [PMID: 33934375 DOI: 10.1111/ppl.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The plants endomembrane system of the cellular compartments with its complex membrane trafficking network facilitates transport of macromolecules. The endomembrane dynamics are essential for maintaining basic and specific cellular functions including adaptation to the extracellular environment. The plant vacuole serves as a reservoir for nutrients and toxic metabolites and performs detoxification processes to maintain cellular homeostasis. The overexpression of AlRab7, a vesicle trafficking gene from Aeluropus lagopoides, improved germination and growth and reduced ionic and oxidative stress in transgenics. Moreover, the root and shoot of transgenic tobacco showed differential accumulation of phytohormone ABA and IAA with different ionic stresses. The improved growth (root and shoot length) can be co-related with higher IAA accumulation with NaCl stress. The low Na+ /K+ ratio with different NaCl stress treatments indicates better ion homeostasis in transgenics. Furthermore, the increased stomatal density and higher number of open stomata on both leaf surfaces in transgenics during NaCl stress suggest better gaseous exchange/functioning of guard cells. The maintained or increased superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and glutathione reductase antioxidative enzyme activities suggest that an extensive reactive oxygen species (ROS) scavenging system was triggered to detoxify cellular ROS, which remained at low levels in transgenics during the different stress treatments. Our results suggest that the AlRab7 transgenic tobacco ameliorates ionic stress by facilitating differential and selective ion transport at vacuolar membrane regulating hormone signaling, ROS homeostasis, stomatal development, and movement.
Collapse
Affiliation(s)
- Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
| | - Bhagirath M Baraiya
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka S Joshi
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Monika Patel
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Asish K Parida
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
60
|
Saddhe AA, Mishra AK, Kumar K. Molecular insights into the role of plant transporters in salt stress response. PHYSIOLOGIA PLANTARUM 2021; 173:1481-1494. [PMID: 33963568 DOI: 10.1111/ppl.13453] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 05/06/2021] [Indexed: 05/23/2023]
Abstract
Salt stress disturbs the cellular osmotic and ionic balance, which then creates a negative impact on plant growth and development. The Na+ and Cl- ions can enter into plant cells through various membrane transporters, including specific and non-specific Na+ , K+ , and Ca2+ transporters. Therefore, it is important to understand Na+ and K+ transport mechanisms in plants along with the isolation of genes, their characterization, the structural features, and their post-translation regulation under salt stress. This review summarizes the molecular insights of plant ion transporters, including non-selective cation transporters, cyclic nucleotide-gated cation transporters, glutamate-like receptors, membrane intrinsic proteins, cation proton antiporters, and sodium proton antiporter families. Further, we discussed the K+ transporter families such as high-affinity K+ transporters, HAK/KUP/KT transporters, shaker type K+ transporters, and K+ efflux antiporters. Besides the ion transport process, we have shed light on available literature on epigenetic regulation of transport processes under salt stress. Recent advancements of salt stress sensing mechanisms and various salt sensors within signaling transduction pathways are discussed. Further, we have compiled salt-stress signaling pathways, and their crosstalk with phytohormones.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| |
Collapse
|
61
|
Zhou JY, Hao DL, Yang GZ. Regulation of Cytosolic pH: The Contributions of Plant Plasma Membrane H +-ATPases and Multiple Transporters. Int J Mol Sci 2021; 22:12998. [PMID: 34884802 PMCID: PMC8657649 DOI: 10.3390/ijms222312998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cytosolic pH homeostasis is a precondition for the normal growth and stress responses in plants, and H+ flux across the plasma membrane is essential for cytoplasmic pH control. Hence, this review focuses on seven types of proteins that possess direct H+ transport activity, namely, H+-ATPase, NHX, CHX, AMT, NRT, PHT, and KT/HAK/KUP, to summarize their plasma-membrane-located family members, the effect of corresponding gene knockout and/or overexpression on cytosolic pH, the H+ transport pathway, and their functional regulation by the extracellular/cytosolic pH. In general, H+-ATPases mediate H+ extrusion, whereas most members of other six proteins mediate H+ influx, thus contributing to cytosolic pH homeostasis by directly modulating H+ flux across the plasma membrane. The fact that some AMTs/NRTs mediate H+-coupled substrate influx, whereas other intra-family members facilitate H+-uncoupled substrate transport, demonstrates that not all plasma membrane transporters possess H+-coupled substrate transport mechanisms, and using the transport mechanism of a protein to represent the case of the entire family is not suitable. The transport activity of these proteins is regulated by extracellular and/or cytosolic pH, with different structural bases for H+ transfer among these seven types of proteins. Notably, intra-family members possess distinct pH regulatory characterization and underlying residues for H+ transfer. This review is anticipated to facilitate the understanding of the molecular basis for cytosolic pH homeostasis. Despite this progress, the strategy of their cooperation for cytosolic pH homeostasis needs further investigation.
Collapse
Affiliation(s)
- Jin-Yan Zhou
- Jiangsu Vocational College of Agriculture and Forest, Jurong 212400, China;
| | - Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guang-Zhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| |
Collapse
|
62
|
Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153525. [PMID: 34560396 DOI: 10.1016/j.jplph.2021.153525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Vacuolar-type adenosine triphosphatase (V-ATPase, VHA) is a highly conserved, ATP-driven multisubunit proton pump that is widely distributed in all eukaryotic cells. V-ATPase consists of two domains formed by at least 13 different subunits, the membrane peripheral V1 domain responsible for ATP hydrolysis, and the membrane-integral V0 domain responsible for proton translocation. V-ATPase plays an essential role in energizing secondary active transport and is indispensable to plants. In addition to multiple stress responses, plant V-ATPase is also implicated in physiological processes such as growth, development, and morphogenesis. Based on the identification of distinct V-ATPase mutants and advances in luminal pH measurements in vivo, it has been revealed that this holoenzyme complex plays a pivotal role in pH homeostasis of the plant endomembrane system and endocytic and secretory trafficking. Here, we review recent progress in comprehending the biochemical properties and physiological functions of plant V-ATPase and explore the topics that require further elucidation.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
63
|
Gao S, Zhang X, Wang L, Wang X, Zhang H, Xie H, Ma Y, Qiu QS. Arabidopsis antiporter CHX23 and auxin transporter PIN8 coordinately regulate pollen growth. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153539. [PMID: 34628190 DOI: 10.1016/j.jplph.2021.153539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/08/2023]
Abstract
Both the antiporter CHX23 (Cation/Proton Exchangers 23) and auxin transporter PIN8 (PIN-FORMED 8) are localized in the ER and regulate pollen growth in Arabidopsis. But how these two proteins regulate pollen growth remains to be studied. Here, we report that CHX23 and PIN8 act coordinately in regulating pollen growth. The chx23 mutant was reduced in pollen growth and normally shaped pollen grains, and complementation with CHX23 restored both pollen growth and normal pollen morphology. NAA treatments showed that CHX23 was crucial for pollen auxin homeostasis. The pin8 chx23 double mutant was decreased in pollen growth and normal pollen grains, indicating the joint effort of CHX23 and PIN8 in pollen growth. In vivo germination assay showed that CHX23 and PIN8 were involved in the early stage of pollen growth. CHX23 and PIN8 also function collaboratively in maintaining pollen auxin homeostasis. PIN8 depends on CHX23 in regulating pollen morphology and response to NAA treatments. CHX23 co-localized with PIN8, but there was no physical interaction. KCl and NaCl treatments showed that pollen growth of chx23 was reduced less than Col-0; pin8 chx23 was reduced less than chx23 and pin8. Together, CHX23 may regulate PIN8 function and hence pollen growth through controlling K+ and Na+ homeostasis mediated by its transport activity.
Collapse
Affiliation(s)
- Shenglan Gao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiufang Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hua Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Yonggui Ma
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
64
|
Scholl S, Hillmer S, Krebs M, Schumacher K. ClCd and ClCf act redundantly at the trans-Golgi network/early endosome and prevent acidification of the Golgi stack. J Cell Sci 2021; 134:272608. [PMID: 34528690 DOI: 10.1242/jcs.258807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
The trans-Golgi network/early endosome (TGN/EE) serves as the central hub in which exocytic and endocytic trafficking pathways converge and specificity of cargo routing needs to be achieved. Acidification is a hallmark of the TGN/EE and is maintained by the vacuolar H+-ATPase (V-ATPase) with support of proton-coupled antiporters. We show here that ClCd and ClCf, two distantly related members of the Arabidopsis Cl- channel (ClC) family, colocalize in the TGN/EE, where they act redundantly, and are essential for male gametophyte development. Combining an inducible knockdown approach and in vivo pH measurements, we show here that reduced ClC activity does not affect pH in the TGN/EE but causes hyperacidification of trans-Golgi cisternae. Taken together, our results show that ClC-mediated anion transport into the TGN/EE is essential and affects spatiotemporal aspects of TGN/EE maturation as well as its functional separation from the Golgi stack.
Collapse
Affiliation(s)
- Stefan Scholl
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Stefan Hillmer
- Electron Microscopy Core Facility, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| |
Collapse
|
65
|
Gilliard G, Huby E, Cordelier S, Ongena M, Dhondt-Cordelier S, Deleu M. Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. FRONTIERS IN PLANT SCIENCE 2021; 12:749581. [PMID: 34675954 PMCID: PMC8523952 DOI: 10.3389/fpls.2021.749581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 05/08/2023]
Abstract
Plants are constantly facing abiotic and biotic stresses. To continue to thrive in their environment, they have developed many sophisticated mechanisms to perceive these stresses and provide an appropriate response. There are many ways to study these stress signals in plant, and among them, protoplasts appear to provide a unique experimental system. As plant cells devoid of cell wall, protoplasts allow observations at the individual cell level. They also offer a prime access to the plasma membrane and an original view on the inside of the cell. In this regard, protoplasts are particularly useful to address essential biological questions regarding stress response, such as protein signaling, ion fluxes, ROS production, and plasma membrane dynamics. Here, the tools associated with protoplasts to comprehend plant stress signaling are overviewed and their potential to decipher plant defense mechanisms is discussed.
Collapse
Affiliation(s)
- Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Eloïse Huby
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Sylvain Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
66
|
Assis RDAB, Sagawa CHD, Zaini PA, Saxe HJ, Wilmarth PA, Phinney BS, Salemi M, Moreira LM, Dandekar AM. A Secreted Chorismate Mutase from Xanthomonas arboricola pv. juglandis Attenuates Virulence and Walnut Blight Symptoms. Int J Mol Sci 2021; 22:10374. [PMID: 34638715 PMCID: PMC8508651 DOI: 10.3390/ijms221910374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/11/2023] Open
Abstract
Walnut blight is a significant above-ground disease of walnuts caused by Xanthomonas arboricola pv. juglandis (Xaj). The secreted form of chorismate mutase (CM), a key enzyme of the shikimate pathway regulating plant immunity, is highly conserved between plant-associated beta and gamma proteobacteria including phytopathogens belonging to the Xanthomonadaceae family. To define its role in walnut blight disease, a dysfunctional mutant of chorismate mutase was created in a copper resistant strain Xaj417 (XajCM). Infections of immature walnut Juglans regia (Jr) fruit with XajCM were hypervirulent compared with infections with the wildtype Xaj417 strain. The in vitro growth rate, size and cellular morphology were similar between the wild-type and XajCM mutant strains, however the quantification of bacterial cells by dPCR within walnut hull tissues showed a 27% increase in XajCM seven days post-infection. To define the mechanism of hypervirulence, proteome analysis was conducted to compare walnut hull tissues inoculated with the wild type to those inoculated with the XajCM mutant strain. Proteome analysis revealed 3296 Jr proteins (five decreased and ten increased with FDR ≤ 0.05) and 676 Xaj417 proteins (235 increased in XajCM with FDR ≤ 0.05). Interestingly, the most abundant protein in Xaj was a polygalacturonase, while in Jr it was a polygalacturonase inhibitor. These results suggest that this secreted chorismate mutase may be an important virulence suppressor gene that regulates Xaj417 virulence response, allowing for improved bacterial survival in the plant tissues.
Collapse
Affiliation(s)
- Renata de A. B. Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Cíntia H. D. Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| | - Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| | - Houston J. Saxe
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (B.S.P.); (M.S.)
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, CA 95616, USA; (B.S.P.); (M.S.)
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (R.d.A.B.A.); (C.H.D.S.); (P.A.Z.); (H.J.S.)
| |
Collapse
|
67
|
DeTar RA, Barahimipour R, Manavski N, Schwenkert S, Höhner R, Bölter B, Inaba T, Meurer J, Zoschke R, Kunz HH. Loss of inner-envelope K+/H+ exchangers impairs plastid rRNA maturation and gene expression. THE PLANT CELL 2021; 33:2479-2505. [PMID: 34235544 PMCID: PMC8364240 DOI: 10.1093/plcell/koab123] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 05/08/2023]
Abstract
The inner-envelope K+ EFFLUX ANTIPORTERS (KEA) 1 and 2 are critical for chloroplast development, ion homeostasis, and photosynthesis. However, the mechanisms by which changes in ion flux across the envelope affect organelle biogenesis remained elusive. Chloroplast development requires intricate coordination between the nuclear genome and the plastome. Many mutants compromised in plastid gene expression (PGE) display a virescent phenotype, that is delayed greening. The phenotypic appearance of Arabidopsis thaliana kea1 kea2 double mutants fulfills this criterion, yet a link to PGE has not been explored. Here, we show that a simultaneous loss of KEA1 and KEA2 results in maturation defects of the plastid ribosomal RNAs. This may be caused by secondary structure changes of rRNA transcripts and concomitant reduced binding of RNA-processing proteins, which we documented in the presence of skewed ion homeostasis in kea1 kea2. Consequently, protein synthesis and steady-state levels of plastome-encoded proteins remain low in mutants. Disturbance in PGE and other signs of plastid malfunction activate GENOMES UNCOUPLED 1-dependent retrograde signaling in kea1 kea2, resulting in a dramatic downregulation of GOLDEN2-LIKE transcription factors to halt expression of photosynthesis-associated nuclear-encoded genes (PhANGs). PhANG suppression delays the development of fully photosynthesizing kea1 kea2 chloroplasts, probably to avoid progressing photo-oxidative damage. Overall, our results reveal that KEA1/KEA2 function impacts plastid development via effects on RNA-metabolism and PGE.
Collapse
Affiliation(s)
- Rachael Ann DeTar
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Rouhollah Barahimipour
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nikolay Manavski
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Ricarda Höhner
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Bettina Bölter
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Jörg Meurer
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hans-Henning Kunz
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- Author for correspondence:
| |
Collapse
|
68
|
Differences in Ionic, Enzymatic, and Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus Species. PLANTS 2021; 10:plants10071401. [PMID: 34371604 PMCID: PMC8309277 DOI: 10.3390/plants10071401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
In the face of rising salinity along coastal regions and in irrigated areas, molecular breeding of tolerant crops and reforestation of exposed areas using tolerant woody species is a two-way strategy. Thus, identification of tolerant plants and of existing tolerance mechanisms are of immense value. In the present study, three Eucalyptus ecotypes with potentially differential salt sensitivity were compared. Soil-grown Eucalyptus plants were exposed to 80 and 170 mM NaCl for 30 days. Besides analysing salt effects on ionic/osmotic balance, and hydrolytic enzymes, plants were compared for dynamics of light-induced redox changes in photosynthetic electron transport chain (pETC) components, namely plastocyanin (PC), photosystem I (PSI) and ferredoxin (Fd), parallel to traditional chlorophyll a fluorescence-based PSII-related parameters. Deconvoluted signals for PC and Fd from PSI allowed identification of PC and PSI as the prime salinity-sensitive components of pETC in tested Eucalyptus species. Eucalyptus loxophleba portrayed efficient K+-Na+ balance (60–90% increased K+) along with a more dynamic range of redox changes for pETC components in old leaves. Young leaves in Eucalyptus loxophleba showed robust endomembrane homeostasis, as underlined by an increased response of hydrolytic enzymes at lower salt concentration (~1.7–2.6-fold increase). Findings are discussed in context of salinity dose dependence among different Eucalyptus species.
Collapse
|
69
|
Poidevin L, Forment J, Unal D, Ferrando A. Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth. PLANT, CELL & ENVIRONMENT 2021. [PMID: 33289138 DOI: 10.1101/2020.05.29.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant reproduction is one key biological process that is very sensitive to heat stress and, as a result, enhanced global warming becomes a serious threat to agriculture. In this work, we have studied the effects of heat on germinated pollen of Arabidopsis thaliana both at the transcriptional and translational level. We have used a high-resolution ribosome profiling technology to provide a comprehensive study of the transcriptome and the translatome of germinated pollen at permissive and restrictive temperatures. We have found significant down-regulation of key membrane transporters required for pollen tube growth by heat, thus uncovering heat-sensitive targets. A subset of the heat-repressed transporters showed coordinated up-regulation with canonical heat-shock genes at permissive conditions. We also found specific regulations at the translational level and we have uncovered the presence of ribosomes on sequences annotated as non-coding. Our results demonstrate that heat impacts mostly on membrane transporters thus explaining the deleterious effects of heat stress on pollen growth. The specific regulations at the translational level and the presence of ribosomes on non-coding RNAs highlights novel regulatory aspects on plant fertilization.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| | - Dilek Unal
- Biotechnology Application and Research Center, and Department of Molecular Biology, Faculty of Science and Letter, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Alejandro Ferrando
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
70
|
Britto DT, Coskun D, Kronzucker HJ. Potassium physiology from Archean to Holocene: A higher-plant perspective. JOURNAL OF PLANT PHYSIOLOGY 2021; 262:153432. [PMID: 34034042 DOI: 10.1016/j.jplph.2021.153432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/27/2023]
Abstract
In this paper, we discuss biological potassium acquisition and utilization processes over an evolutionary timescale, with emphasis on modern vascular plants. The quintessential osmotic and electrical functions of the K+ ion are shown to be intimately tied to K+-transport systems and membrane energization. Several prominent themes in plant K+-transport physiology are explored in greater detail, including: (1) channel mediated K+ acquisition by roots at low external [K+]; (2) K+ loading of root xylem elements by active transport; (3) variations on the theme of K+ efflux from root cells to the extracellular environment; (4) the veracity and utility of the "affinity" concept in relation to transport systems. We close with a discussion of the importance of plant-potassium relations to our human world, and current trends in potassium nutrition from farm to table.
Collapse
Affiliation(s)
- Dev T Britto
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Devrim Coskun
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation (FSAA), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
71
|
Jiang YT, Yang LH, Ferjani A, Lin WH. Multiple functions of the vacuole in plant growth and fruit quality. MOLECULAR HORTICULTURE 2021; 1:4. [PMID: 37789408 PMCID: PMC10509827 DOI: 10.1186/s43897-021-00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 10/05/2023]
Abstract
Vacuoles are organelles in plant cells that play pivotal roles in growth and developmental regulation. The main functions of vacuoles include maintaining cell acidity and turgor pressure, regulating the storage and transport of substances, controlling the transport and localization of key proteins through the endocytic and lysosomal-vacuolar transport pathways, and responding to biotic and abiotic stresses. Further, proteins localized either in the tonoplast (vacuolar membrane) or inside the vacuole lumen are critical for fruit quality. In this review, we summarize and discuss some of the emerging functions and regulatory mechanisms associated with plant vacuoles, including vacuole biogenesis, vacuole functions in plant growth and development, fruit quality, and plant-microbe interaction, as well as some innovative research technology that has driven advances in the field. Together, the functions of plant vacuoles are important for plant growth and fruit quality. The investigation of vacuole functions in plants is of great scientific significance and has potential applications in agriculture.
Collapse
Affiliation(s)
- Yu-Tong Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu-Han Yang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei-shi, 184-8501, Japan
| | - Wen-Hui Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
72
|
Lhamo D, Luan S. Potential Networks of Nitrogen-Phosphorus-Potassium Channels and Transporters in Arabidopsis Roots at a Single Cell Resolution. FRONTIERS IN PLANT SCIENCE 2021; 12:689545. [PMID: 34220911 PMCID: PMC8242960 DOI: 10.3389/fpls.2021.689545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen (N), phosphorus (P), and potassium (K) are three major macronutrients essential for plant life. These nutrients are acquired and transported by several large families of transporters expressed in plant roots. However, it remains largely unknown how these transporters are distributed in different cell-types that work together to transfer the nutrients from the soil to different layers of root cells and eventually reach vasculature for massive flow. Using the single cell transcriptomics data from Arabidopsis roots, we profiled the transcriptional patterns of putative nutrient transporters in different root cell-types. Such analyses identified a number of uncharacterized NPK transporters expressed in the root epidermis to mediate NPK uptake and distribution to the adjacent cells. Some transport genes showed cortex- and endodermis-specific expression to direct the nutrient flow toward the vasculature. For long-distance transport, a variety of transporters were shown to express and potentially function in the xylem and phloem. In the context of subcellular distribution of mineral nutrients, the NPK transporters at subcellular compartments were often found to show ubiquitous expression patterns, which suggests function in house-keeping processes. Overall, these single cell transcriptomic analyses provide working models of nutrient transport from the epidermis across the cortex to the vasculature, which can be further tested experimentally in the future.
Collapse
Affiliation(s)
- Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | | |
Collapse
|
73
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
74
|
Zou W, Liu K, Gao X, Yu C, Wang X, Shi J, Chao Y, Yu Q, Zhou G, Ge L. Diurnal variation of transitory starch metabolism is regulated by plastid proteins WXR1/WXR3 in Arabidopsis young seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3074-3090. [PMID: 33571997 DOI: 10.1093/jxb/erab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Transitory starch is the portion of starch that is synthesized during the day in the chloroplast and usually used for plant growth overnight. Here, we report altered metabolism of transitory starch in the wxr1/wxr3 (weak auxin response 1/3) mutants of Arabidopsis. WXR1/WXR3 were previously reported to regulate root growth of young seedlings and affect the auxin response mediated by auxin polar transport in Arabidopsis. In this study the wxr1/wxr3 mutants accumulated transitory starch in cotyledon, young leaf, and hypocotyl at the end of night. WXR1/WXR3 expression showed diurnal variation. Grafting experiments indicated that the WXRs in root were necessary for proper starch metabolism and plant growth. We also found that photosynthesis was inhibited and the transcription level of DIN1/DIN6 (Dark-Inducible 1/6) was reduced in wxr1/wxr3. The mutants also showed a defect in the ionic equilibrium of Na+ and K+, consistent with our bioinformatics data that genes related to ionic equilibrium were misregulated in wxr1. Loss of function of WXR1 also resulted in abnormal trafficking of membrane lipids and proteins. This study reveals that the plastid proteins WXR1/WXR3 play important roles in promoting transitory starch degradation for plant growth over night, possibly through regulating ionic equilibrium in the root.
Collapse
Affiliation(s)
- Wenjiao Zou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Kui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xueping Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Changjiang Yu
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaofei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Junjie Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanru Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qian Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Gongke Zhou
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
- Center for Crop Panomics, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
75
|
Grunwald Y, Wigoda N, Sade N, Yaaran A, Torne T, Gosa SC, Moran N, Moshelion M. Arabidopsis leaf hydraulic conductance is regulated by xylem sap pH, controlled, in turn, by a P-type H + -ATPase of vascular bundle sheath cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:301-313. [PMID: 33735498 DOI: 10.1111/tpj.15235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 05/28/2023]
Abstract
The leaf vascular bundle sheath cells (BSCs) that tightly envelop the leaf veins, are a selective and dynamic barrier to xylem sap water and solutes radially entering the mesophyll cells. Under normal conditions, xylem sap pH below 6 is presumably important for driving and regulating the transmembranal solute transport. Having discovered recently a differentially high expression of a BSC proton pump, AHA2, we now test the hypothesis that it regulates the xylem sap pH and leaf radial water fluxes. We monitored the xylem sap pH in the veins of detached leaves of wild-type Arabidopsis, AHA mutants and aha2 mutants complemented with AHA2 gene solely in BSCs. We tested an AHA inhibitor (vanadate) and stimulator (fusicoccin), and different pH buffers. We monitored their impact on the xylem sap pH and the leaf hydraulic conductance (Kleaf ), and the effect of pH on the water osmotic permeability (Pf ) of isolated BSCs protoplasts. We found that AHA2 is necessary for xylem sap acidification, and in turn, for elevating Kleaf . Conversely, AHA2 knockdown, which alkalinized the xylem sap, or, buffering its pH to 7.5, reduced Kleaf , and elevating external pH to 7.5 decreased the BSCs Pf . All these showed a causative link between AHA2 activity in BSCs and leaf radial hydraulic water conductance.
Collapse
Affiliation(s)
- Yael Grunwald
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Noa Wigoda
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Nir Sade
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences at Tel-Aviv University, Tel Aviv, 6997801, Israel
| | - Adi Yaaran
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Tanmayee Torne
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Sanbon Chaka Gosa
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Nava Moran
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Menachem Moshelion
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
76
|
Jia Q, Li MW, Zheng C, Xu Y, Sun S, Li Z, Wong FL, Song J, Lin WW, Li Q, Zhu Y, Liang K, Lin W, Lam HM. The soybean plasma membrane-localized cation/H + exchanger GmCHX20a plays a negative role under salt stress. PHYSIOLOGIA PLANTARUM 2021; 171:714-727. [PMID: 33094482 DOI: 10.1111/ppl.13250] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Cation/H+ -exchanger (CHX) perform diverse functions in plants, including being a part of the protective mechanisms to cope with salt stress. GmCHX1 has been previously identified as the causal gene in a major salt-tolerance quantitative trait locus (QTL) in soybean, but little is known about another close paralog, GmCHX20a, found in the same QTL. In this study, GmCHX20a was characterized along with GmCHX1. The expression patterns of the two genes and the direction of Na+ flux directed by overexpression of these two transporters are different, suggesting that they are functionally distinct. The ectopic expression of GmCHX20a led to an increase in salt sensitivity and osmotic tolerance, which was consistent with its role in increasing Na+ uptake into the root. Although this seems counter-intuitive, it may in fact be part of the mechanism by which soybean could counter act the effects of osmotic stress, which is commonly manifested in the initial stage of salinity stress. On the other hand, GmCHX1 from salt-tolerant soybean was shown to protect plants via Na+ exclusion under salt stress. Taken together these results suggest that GmCHX20a and GmCHX1 might work complementally through a concerted effort to address both osmotic stress and ionic stress as a result of elevated salinity.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Man-Wah Li
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chengwen Zheng
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiyue Xu
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Song Sun
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhong Li
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Fuk-Ling Wong
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Junliang Song
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei-Wei Lin
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Qinghua Li
- Putian Institute of Agricultural Sciences, Putian, China
| | - Yebao Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kangjing Liang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
77
|
Qu Y, Guan R, Bose J, Henderson SW, Wege S, Qiu L, Gilliham M. Soybean CHX-type ion transport protein GmSALT3 confers leaf Na + exclusion via a root derived mechanism, and Cl - exclusion via a shoot derived process. PLANT, CELL & ENVIRONMENT 2021; 44:856-869. [PMID: 33190315 DOI: 10.1111/pce.13947] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Soybean (Glycine max) yields are threatened by multiple stresses including soil salinity. GmSALT3 (a cation-proton exchanger protein) confers net shoot exclusion for both Na+ and Cl- and improves salt tolerance of soybean; however, how the ER-localized GmSALT3 achieves this is unknown. Here, GmSALT3's function was investigated in heterologous systems and near isogenic lines that contained the full-length GmSALT3 (NIL-T; salt-tolerant) or a truncated transcript Gmsalt3 (NIL-S; salt-sensitive). GmSALT3 restored growth of K+ -uptake-defective Escherichia coli and contributed towards net influx and accumulation of Na+ , K+ and Cl- in Xenopus laevis oocytes, while Gmsalt3 was non-functional. Time-course analysis of NILs confirmed shoot Cl- exclusion occurs distinctly from Na+ exclusion. Grafting showed that shoot Na+ exclusion occurs via a root xylem-based mechanism; in contrast, NIL-T plants exhibited significantly greater Cl- content in both the stem xylem and phloem sap compared to NIL-S, indicating that shoot Cl- exclusion likely depends upon novel phloem-based Cl- recirculation. NIL-T shoots grafted on NIL-S roots contained low shoot Cl- , which confirmed that Cl- recirculation is dependent on the presence of GmSALT3 in shoots. Overall, these findings provide new insights on GmSALT3's impact on salinity tolerance and reveal a novel mechanism for shoot Cl- exclusion in plants.
Collapse
Affiliation(s)
- Yue Qu
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Rongxia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jayakumar Bose
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Sam W Henderson
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Stefanie Wege
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Matthew Gilliham
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| |
Collapse
|
78
|
Lu C, Yuan F, Guo J, Han G, Wang C, Chen M, Wang B. Current Understanding of Role of Vesicular Transport in Salt Secretion by Salt Glands in Recretohalophytes. Int J Mol Sci 2021; 22:2203. [PMID: 33672188 PMCID: PMC7926375 DOI: 10.3390/ijms22042203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Soil salinization is a serious and growing problem around the world. Some plants, recognized as the recretohalophytes, can normally grow on saline-alkali soil without adverse effects by secreting excessive salt out of the body. The elucidation of the salt secretion process is of great significance for understanding the salt tolerance mechanism adopted by the recretohalophytes. Between the 1950s and the 1970s, three hypotheses, including the osmotic potential hypothesis, the transfer system similar to liquid flow in animals, and vesicle-mediated exocytosis, were proposed to explain the salt secretion process of plant salt glands. More recently, increasing evidence has indicated that vesicular transport plays vital roles in salt secretion of recretohalophytes. Here, we summarize recent findings, especially regarding the molecular evidence on the functional roles of vesicular trafficking in the salt secretion process of plant salt glands. A model of salt secretion in salt gland is also proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (C.L.); (F.Y.); (J.G.); (G.H.); (C.W.); (M.C.)
| |
Collapse
|
79
|
Lapshin NK, Piotrovskii MS, Trofimova MS. Involvement of plasma membrane H +-ATPase in diamide-induced extracellular alkalization by roots from pea seedlings. PLANTA 2021; 253:10. [PMID: 33389194 DOI: 10.1007/s00425-020-03532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION The plasma membrane H+-ATPase can be considered as a redox-dependent enzyme, because diamide-mediated inhibition of its hydrolytic and transport activities is accompanied by alkalization of the rhizosphere and retardation of root growth. Plasma membranes were isolated from roots of etiolated pea seedlings treated in the presence of an oxidant-diamide and an inhibitor of redox-sensitive protein phosphatase-phenylarsine oxide. Hydrolytic and proton transport activities of H+-ATPase were determined. The effects of diamide appeared in inhibition of both ATP hydrolysis and the proton transport. However, root treatment with phenylarsine oxide only slightly reduced Vmax, but did not affect ATP-dependent proton transport. The thiol groups of cysteines in the proteins can act as molecular targets for both compounds. However, treatment of isolated membranes with diamide or dithiothreitol did not have any effect on the H+ transport. It can be assumed that water-soluble diamide acts indirectly and its effects are not associated with oxidation of H+-ATPase cysteines. Therefore, plasmalemma was subjected to PEGylation-process where reduced cysteines available for PEG maleimide (5 kDa) were alkylated. Detection of such cysteines was carried out by Western blot analysis with anti-ATPase antibodies. It was found that shifts in the apparent molecular weight were detected only for denaturated proteins. These data suggest that available thiols are not localized on the enzyme surfaces. BN-PAGE analysis showed that the molecular weights of the ATPase complexes are almost identical in all samples. Therefore, oligomerization is probably not the reason for the inhibition of ATPase activity. Roots treated with these inhibitors in vivo exhibited stunted growth; however, a strong alkaline zone around the roots was formed only in the presence of diamide. Involvement of H+-ATPase redox regulation in this process is discussed.
Collapse
Affiliation(s)
- Nikita K Lapshin
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow, Russia, 127276
| | - Michail S Piotrovskii
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow, Russia, 127276
| | - Marina S Trofimova
- К.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya St., Moscow, Russia, 127276.
| |
Collapse
|
80
|
Wang Y, Chen YF, Wu WH. Potassium and phosphorus transport and signaling in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:34-52. [PMID: 33325114 DOI: 10.1111/jipb.13053] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 05/26/2023]
Abstract
Nitrogen (N), potassium (K), and phosphorus (P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice (Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
81
|
Li Y, Feng Z, Wei H, Cheng S, Hao P, Yu S, Wang H. Silencing of GhKEA4 and GhKEA12 Revealed Their Potential Functions Under Salt and Potassium Stresses in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:789775. [PMID: 34950173 PMCID: PMC8689187 DOI: 10.3389/fpls.2021.789775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 05/10/2023]
Abstract
The K+ efflux antiporter (KEA) mediates intracellular K+ and H+ homeostasis to improve salt tolerance in plants. However, the knowledge of KEA gene family in cotton is largely absent. In the present study, 8, 8, 15, and 16 putative KEA genes were identified in Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively. These KEA genes were classified into three subfamilies, and members from the same subfamilies showed similar motif compositions and gene structure characteristics. Some hormone response elements and stress response elements were identified in the upstream 2000 bp sequence of GhKEAs. Transcriptome data showed that most of the GhKEAs were highly expressed in roots and stems. The quantificational real-time polymerase chain reaction (qRT-PCR) results showed that most of the GhKEAs responded to low potassium, salt and drought stresses. Virus-induced gene silencing (VIGS) experiments demonstrated that under salt stress, after silencing genes GhKEA4 and GhKEA12, the chlorophyll content, proline content, soluble sugar content, peroxidase (POD) activity and catalase (CAT) activity were significantly decreased, and the Na+/K+ ratio was extremely significantly increased in leaves, leading to greater salt sensitivity. Under high potassium stress, cotton plants silenced for the GhKEA4 could still maintain a more stable Na+ and K+ balance, and the activity of transporting potassium ions from roots into leaves was reduced silenced for GhKEA12. Under low potassium stress, silencing the GhKEA4 increased the activity of transporting potassium ions to shoots, and silencing the GhKEA12 increased the ability of absorbing potassium ions, but accumulated more Na+ in leaves. These results provided a basis for further studies on the biological roles of KEA genes in cotton development and adaptation to stress conditions.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuaishuai Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Shuxun Yu,
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Hantao Wang,
| |
Collapse
|
82
|
Cosse M, Seidel T. Plant Proton Pumps and Cytosolic pH-Homeostasis. FRONTIERS IN PLANT SCIENCE 2021; 12:672873. [PMID: 34177988 PMCID: PMC8220075 DOI: 10.3389/fpls.2021.672873] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
Proton pumps create a proton motif force and thus, energize secondary active transport at the plasma nmembrane and endomembranes of the secretory pathway. In the plant cell, the dominant proton pumps are the plasma membrane ATPase, the vacuolar pyrophosphatase (V-PPase), and the vacuolar-type ATPase (V-ATPase). All these pumps act on the cytosolic pH by pumping protons into the lumen of compartments or into the apoplast. To maintain the typical pH and thus, the functionality of the cytosol, the activity of the pumps needs to be coordinated and adjusted to the actual needs. The cellular toolbox for a coordinated regulation comprises 14-3-3 proteins, phosphorylation events, ion concentrations, and redox-conditions. This review combines the knowledge on regulation of the different proton pumps and highlights possible coordination mechanisms.
Collapse
|
83
|
Ammonium Accumulation Caused by Reduced Tonoplast V-ATPase Activity in Arabidopsis thaliana. Int J Mol Sci 2020; 22:ijms22010002. [PMID: 33374906 PMCID: PMC7792577 DOI: 10.3390/ijms22010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Plant vacuoles are unique compartments that play a critical role in plant growth and development. The vacuolar H+-ATPase (V-ATPase), together with the vacuolar H+-pyrophosphatase (V-PPase), generates the proton motive force that regulates multiple cell functions and impacts all aspects of plant life. We investigated the effect of V-ATPase activity in the vacuole on plant growth and development. We used an Arabidopsisthaliana (L.) Heynh. double mutant, vha-a2 vha-a3, which lacks two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a. The mutant is viable but exhibits impaired growth and leaf chlorosis. Nitrate assimilation led to excessive ammonium accumulation in the shoot and lower nitrogen uptake, which exacerbated growth retardation of vha-a2 vha-a3. Ion homeostasis was disturbed in plants with missing VHA-a2 and VHA-a3 genes, which might be related to limited growth. The reduced growth and excessive ammonium accumulation of the double mutant was alleviated by potassium supplementation. Our results demonstrate that plants lacking the two tonoplast-localized subunits of V-ATPase can be viable, although with defective growth caused by multiple factors, which can be alleviated by adding potassium. This study provided a new insight into the relationship between V-ATPase, growth, and ammonium accumulation, and revealed the role of potassium in mitigating ammonium toxicity.
Collapse
|
84
|
Iosip AL, Böhm J, Scherzer S, Al-Rasheid KAS, Dreyer I, Schultz J, Becker D, Kreuzer I, Hedrich R. The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling. PLoS Biol 2020; 18:e3000964. [PMID: 33296375 PMCID: PMC7725304 DOI: 10.1371/journal.pbio.3000964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
The carnivorous plant Dionaea muscipula harbors multicellular trigger hairs designed to sense mechanical stimuli upon contact with animal prey. At the base of the trigger hair, mechanosensation is transduced into an all-or-nothing action potential (AP) that spreads all over the trap, ultimately leading to trap closure and prey capture. To reveal the molecular basis for the unique functional repertoire of this mechanoresponsive plant structure, we determined the transcriptome of D. muscipula’s trigger hair. Among the genes that were found to be highly specific to the trigger hair, the Shaker-type channel KDM1 was electrophysiologically characterized as a hyperpolarization- and acid-activated K+-selective channel, thus allowing the reuptake of K+ ions into the trigger hair’s sensory cells during the hyperpolarization phase of the AP. During trap development, the increased electrical excitability of the trigger hair is associated with the transcriptional induction of KDM1. Conversely, when KDM1 is blocked by Cs+ in adult traps, the initiation of APs in response to trigger hair deflection is reduced, and trap closure is suppressed. KDM1 thus plays a dominant role in K+ homeostasis in the context of AP and turgor formation underlying the mechanosensation of trigger hair cells and thus D. muscipula’s hapto-electric signaling. Transcriptomic and electrophysiological studies of the carnivorous Venus flytrap reveal that potassium uptake via a trigger hair-specific potassium channel builds the basis for mechanosensation of likely prey and generation of an action potential that triggers closure of the trap.
Collapse
Affiliation(s)
- Anda L. Iosip
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | | | - Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
- * E-mail: (IK); (RH)
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
- * E-mail: (IK); (RH)
| |
Collapse
|
85
|
Lv S, Wang L, Zhang X, Li X, Fan L, Xu Y, Zhao Y, Xie H, Sawchuk MG, Scarpella E, Qiu QS. Arabidopsis NHX5 and NHX6 regulate PIN6-mediated auxin homeostasis and growth. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153305. [PMID: 33129075 DOI: 10.1016/j.jplph.2020.153305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
NHX5 and NHX6, endosomal Na+,K+/H+ antiporters in Arabidopsis thaliana, play a vital role in growth and development. Our previous study has shown that NHX5 and NHX6 function as H+ leak to regulate auxin-mediated growth in Arabidopsis. In this report, we investigated the function of NHX5 and NHX6 in controlling PIN6-mediated auxin homeostasis and growth in Arabidopsis. Phenotypic analyses found that NHX5 and NHX6 were critical for the function of PIN6, an auxin transporter. We further showed that PIN6 depended on NHX5 and NHX6 in regulating auxin homeostasis. NHX5 and NHX6 were colocalized with PIN6, but they did not interact physically. The conserved acidic residues that are vital for the activity of NHX5 and NHX6 were critical for PIN6 function. Together, NHX5 and NHX6 may regulate PIN6 function by their transport activity.
Collapse
Affiliation(s)
- Shasha Lv
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Xiaojiao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Ligang Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yanli Xu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Yingjia Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB T6G 2E9, Canada
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| |
Collapse
|
86
|
Zhang X, Li Z, Li X, Xu Y, Xie H, Qiu QS. CBL3 and CIPK18 are required for the function of NHX5 and NHX6 in mediating Li + homeostasis in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2020; 255:153295. [PMID: 33129077 DOI: 10.1016/j.jplph.2020.153295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Arabidopsis NHX5 and NHX6 are endosomal Na+,K+/H+ antiporters that function in mediating Na+, K+ and pH homeostasis. Here, we report that NHX5 and NHX6 mediate Li+ homeostasis in Arabidopsis. We found that the nhx5 nhx6 double mutant was defective in growth and had a high pale rate under Li+ stress; complementation with either NHX5 or NHX6 restored the growth of the double mutant under LiCl treatments. We further found that CBL3 and CIPK18 collaborate with NHX5 and NHX6 in controlling seedling growth. CBL3 and CIPK18 are involved in the NHX5- and NHX6-mediated response to Li+ stress but not to salt or low K+ stress. In addition, NHX5 and NHX6 coordinate NHX8, a plasma membrane antiporter, in mediating Li+ homeostasis. NHX8 may function differently from NHX5 and NHX6 in mediating Li+ homeostasis. NHX8 was not controlled by CBL3 and CIPK18. Overall, CBL3 and CIPK18 are required for the function of NHX5 and NHX6 in mediating Li+ homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhanchao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojiao Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanli Xu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
87
|
Bomblies K. When everything changes at once: finding a new normal after genome duplication. Proc Biol Sci 2020; 287:20202154. [PMID: 33203329 PMCID: PMC7739491 DOI: 10.1098/rspb.2020.2154] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Whole-genome duplication (WGD), which leads to polyploidy, is implicated in adaptation and speciation. But what are the immediate effects of WGD and how do newly polyploid lineages adapt to them? With many studies of new and evolved polyploids now available, along with studies of genes under selection in polyploids, we are in an increasingly good position to understand how polyploidy generates novelty. Here, I will review consistent effects of WGD on the biology of plants, such as an increase in cell size, increased stress tolerance and more. I will discuss how a change in something as fundamental as cell size can challenge the function of some cell types in particular. I will also discuss what we have learned about the short- to medium-term evolutionary response to WGD. It is now clear that some of this evolutionary response may 'lock in' traits that happen to be beneficial, while in other cases, it might be more of an 'emergency response' to work around physiological changes that are either deleterious, or cannot be undone in the polyploid context. Yet, other traits may return rapidly to a diploid-like state. Polyploids may, by re-jigging many inter-related processes, find a new, conditionally adaptive, normal.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
88
|
Isayenkov SV, Dabravolski SA, Pan T, Shabala S. Phylogenetic Diversity and Physiological Roles of Plant Monovalent Cation/H + Antiporters. FRONTIERS IN PLANT SCIENCE 2020; 11:573564. [PMID: 33123183 PMCID: PMC7573149 DOI: 10.3389/fpls.2020.573564] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/02/2020] [Indexed: 05/23/2023]
Abstract
The processes of plant nutrition, stress tolerance, plant growth, and development are strongly dependent on transport of mineral nutrients across cellular membranes. Plant membrane transporters are key components of these processes. Among various membrane transport proteins, the monovalent cation proton antiporter (CPA) superfamily mediates a broad range of physiological and developmental processes such as ion and pH homeostasis, development of reproductive organs, chloroplast operation, and plant adaptation to drought and salt stresses. CPA family includes plasma membrane-bound Na+/H+ exchanger (NhaP) and intracellular Na+/H+ exchanger NHE (NHX), K+ efflux antiporter (KEA), and cation/H+ exchanger (CHX) family proteins. In this review, we have completed the phylogenetic inventory of CPA transporters and undertaken a comprehensive evolutionary analysis of their development. Compared with previous studies, we have significantly extended the range of plant species, including green and red algae and Acrogymnospermae into phylogenetic analysis. Our data suggest that the multiplication and complexation of CPA isoforms during evolution is related to land colonisation by higher plants and associated with an increase of different tissue types and development of reproductive organs. The new data extended the number of clades for all groups of CPAs, including those for NhaP/SOS, NHE/NHX, KEA, and CHX. We also critically evaluate the latest findings on the biological role, physiological functions and regulation of CPA transporters in relation to their structure and phylogenetic position. In addition, the role of CPA members in plant tolerance to various abiotic stresses is summarized, and the future priority directions for CPA studies in plants are discussed.
Collapse
Affiliation(s)
- Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| | - Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], Vitebsk, Belarus
| | - Ting Pan
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
89
|
Rajagopal D, Mathew MK. Role of Arabidopsis RAB5 GEF vps9a in maintaining potassium levels under sodium chloride stress. PLANT DIRECT 2020; 4:e00273. [PMID: 33103044 PMCID: PMC7576885 DOI: 10.1002/pld3.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 05/07/2023]
Abstract
Salt stress is one of the major factors impacting crop productivity worldwide. Through a variety of effector and signaling pathways, plants achieve survival under salinity stress by maintaining high cytosolic potassium/sodium ion (K+/Na+) ratios, preventing Na+ cytotoxicity, and retaining osmotic balance. Ras-related protein 5 (Rab5) members are involved in the trafficking of endosomes to the vacuole or plasma membrane (PM). The vacuolar protein sorting- associated protein 9 (vps9a) encodes the single guanine nucleotide exchange factor (GEF) that activates all three known Rab5 proteins in Arabidopsis thaliana. Previous work from our group has reported the critical function of vps9a for the operation of salt-induced endocytic pathway, as well as the expansion of endomembrane compartments under saline stress conditions. Here we show an additional role of vps9a in plant response to salt stress via maintenance of K+ status of the cell rather than Na+ homeostasis. Our results show that roots from vps9a-2 mutant, subjected to 100 mM NaCl, display alterations in transcript levels of genes involved in the K+ homeostasis pathway. Concurrent with the observed sensitivity of vps9a-2 mutant under NaCl stress, exposure to low K+ environments resulted in growth retardation, and reduced rate of endocytosis. Furthermore, vps9a-2 mutant displays reduced expression of auxin reporter, Direct Repeat-5 (DR5), and alterations in polarity and abundance of auxin efflux carrier PIN- FORMED2 (PIN2). Imposition of NaCl stress was found to be restrictive to the elongation capacity of cells in the root elongation zone of vps9a-2 mutant. Together our results indicate that alterations in K+ homeostasis and associated cellular changes causing increased cell wall pH, contribute to diminished root growth and compromised survival of vps9a-2 mutant under salt stress conditions.
Collapse
Affiliation(s)
- Divya Rajagopal
- National Centre for Biological SciencesTIFRBangaloreKarnatakaIndia
| | - M. K. Mathew
- National Centre for Biological SciencesTIFRBangaloreKarnatakaIndia
| |
Collapse
|
90
|
Yang T, Feng H, Zhang S, Xiao H, Hu Q, Chen G, Xuan W, Moran N, Murphy A, Yu L, Xu G. The Potassium Transporter OsHAK5 Alters Rice Architecture via ATP-Dependent Transmembrane Auxin Fluxes. PLANT COMMUNICATIONS 2020; 1:100052. [PMID: 33367257 PMCID: PMC7747981 DOI: 10.1016/j.xplc.2020.100052] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/29/2019] [Accepted: 04/27/2020] [Indexed: 05/24/2023]
Abstract
Plant HAK/KUP/KT family members function as plasma membrane (PM) H+/K+ symporters and may modulate chemiosmotically-driven polar auxin transport (PAT). Here, we show that inactivation of OsHAK5, a rice K+ transporter gene, decreased rootward and shootward PAT, tiller number, and the length of both lateral roots and root hairs, while OsHAK5 overexpression increased PAT, tiller number, and root hair length, irrespective of the K+ supply. Inhibitors of ATP-binding-cassette type-B transporters, NPA and BUM, abolished the OsHAK5-overexpression effect on PAT. The mechanistic basis of these changes included the OsHAK5-mediated decrease of transmembrane potential (depolarization), increase of extracellular pH, and increase of PM-ATPase activity. These findings highlight the dual roles of OsHAK5 in altering cellular chemiosmotic gradients (generated continuously by PM H+-ATPase) and regulating ATP-dependent auxin transport. Both functions may underlie the prominent effect of OsHAK5 on rice architecture, which may be exploited in the future to increase crop yield via genetic manipulations.
Collapse
Affiliation(s)
- Tianyuan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huimin Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Huojun Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingdi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Nava Moran
- The R.H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Angus Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ling Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
91
|
Fu X, Lu Z, Wei H, Zhang J, Yang X, Wu A, Ma L, Kang M, Lu J, Wang H, Yu S. Genome-Wide Identification and Expression Analysis of the NHX (Sodium/Hydrogen Antiporter) Gene Family in Cotton. Front Genet 2020; 11:964. [PMID: 32973884 PMCID: PMC7461838 DOI: 10.3389/fgene.2020.00964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 01/17/2023] Open
Abstract
The sodium/hydrogen antiporter (NHX) gene family with the Na+/H+ exchange protein domain is a transporter of sodium and hydrogen ions and plays an important role in the response of plants to salt stress. Studying the response of cotton to salt stress through comprehensive identification and analysis of NHX genes in several species and their roles in salt tolerance mechanisms is of great significance. In this study, 23, 24, 12, and 12 NHX genes were identified from Gossypium hirsutum (Gh), G. barbadense, G. arboreum and G. raimondii, respectively. Phylogenetic analysis showed that these genes were mainly divided into three clades with significant subcellular localization, namely, endosome (Endo-class), plasma membrane (PM-class) and vacuole (Vac-class). By analyzing the structure of NHX genes and proteins, each branch of the NHX gene family was found to be structurally conserved, and collinearity analysis showed that NHX genes were mainly expressed through whole genome and segmental duplication. The non-synonymous (Ka)/synonymous (Ks) values showed that the NHX gene family experienced strong purifying selection during long-term evolution. Cis-acting element analysis showed that the NHX gene family may be related to the regulation of abscisic acid (ABA) and methyl jasmonate (MeJA) hormones. Additionally, transcriptomic data analysis and qRT-PCR showed that GhNHXs exhibited different expression patterns in each tissue and under different salinities. These results provide an important reference for us to further understand and analyze the molecular regulation mechanism of cotton NHX genes.
Collapse
Affiliation(s)
- Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhengying Lu
- Handan Academy of Agricultural Sciences, Handan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xu Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Meng Kang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
92
|
Waadt R, Köster P, Andrés Z, Waadt C, Bradamante G, Lampou K, Kudla J, Schumacher K. Dual-Reporting Transcriptionally Linked Genetically Encoded Fluorescent Indicators Resolve the Spatiotemporal Coordination of Cytosolic Abscisic Acid and Second Messenger Dynamics in Arabidopsis. THE PLANT CELL 2020; 32:2582-2601. [PMID: 32471862 PMCID: PMC7401017 DOI: 10.1105/tpc.19.00892] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 05/16/2023]
Abstract
Deciphering signal transduction processes is crucial for understanding how plants sense and respond to environmental changes. Various chemical compounds function as central messengers within deeply intertwined signaling networks. How such compounds act in concert remains to be elucidated. We have developed dual-reporting transcriptionally linked genetically encoded fluorescent indicators (2-in-1-GEFIs) for multiparametric in vivo analyses of the phytohormone abscisic acid (ABA), Ca2+, protons (H+), chloride (anions), the glutathione redox potential, and H2O2 Simultaneous analyses of two signaling compounds in Arabidopsis (Arabidopsis thaliana) roots revealed that ABA treatment and uptake did not trigger rapid cytosolic Ca2+ or H+ dynamics. Glutamate, ATP, Arabidopsis PLANT ELICITOR PEPTIDE, and glutathione disulfide (GSSG) treatments induced rapid spatiotemporally overlapping cytosolic Ca2+, H+, and anion dynamics, but except for GSSG, only weakly affected the cytosolic redox state. Overall, 2-in-1-GEFIs enable complementary, high-resolution in vivo analyses of signaling compound dynamics and facilitate an advanced understanding of the spatiotemporal coordination of signal transduction processes in Arabidopsis.
Collapse
Affiliation(s)
- Rainer Waadt
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Philipp Köster
- Molekulare Genetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Zaida Andrés
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | | | - Gabriele Bradamante
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Konstantinos Lampou
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| | - Jörg Kudla
- Molekulare Genetik und Zellbiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Karin Schumacher
- Entwicklungsbiologie der Pflanzen, Centre for Organismal Studies, Ruprecht-Karls-Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
93
|
Genome-Wide Characterization and Expression Analysis of NHX Gene Family under Salinity Stress in Gossypium barbadense and Its Comparison with Gossypium hirsutum. Genes (Basel) 2020; 11:genes11070803. [PMID: 32708576 PMCID: PMC7397021 DOI: 10.3390/genes11070803] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cotton is an important economic crop affected by different abiotic stresses at different developmental stages. Salinity limits the growth and productivity of crops worldwide. Na+/H+ antiporters play a key role during the plant development and in its tolerance to salt stress. The aim of the present study was a genome-wide characterization and expression pattern analysis under the salinity stress of the sodium-proton antiporter (NHX) of Gossypium barbadense in comparison with Gossypium hirsutum. In G. barbadense, 25 NHX genes were identified on the basis of the Na+_H+ exchanger domain. All except one of the G. barbadense NHX transporters have an Amiloride motif that is a known inhibitor of Na+ ions in plants. A phylogenetic analysis inferred three classes of GbNHX genes-viz., Vac (GbNHX1, 2 and 4), Endo (GbNHX6), and PM (GbNHX7). A high number of the stress-related cis-acting elements observed in promoters show their role in tolerance against abiotic stresses. The Ka/Ks values show that the majority of GbNHX genes are subjected to strong purifying selection under the course of evolution. To study the functional divergence of G. barbadense NHX transporters, the real-time gene expression was analyzed under salt stress in the root, stem, and leaf tissues. In G. barbadense, the expression was higher in the stem, while in G. hirsutum the leaf and root showed a high expression. Moreover, our results revealed that NHX2 homologues in both species have a high expression under salinity stress at higher time intervals, followed by NHX7. The protein-protein prediction study revealed that GbNHX7 is involved in the CBL-CIPK protein interaction pathway. Our study also provided valuable information explaining the molecular mechanism of Na+ transport for the further functional study of Gossypium NHX genes.
Collapse
|
94
|
Channels and transporters for inorganic ions in plant mitochondria: Prediction and facts. Mitochondrion 2020; 53:224-233. [PMID: 32540403 DOI: 10.1016/j.mito.2020.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are crucial bioenergetic organelles for providing different metabolites, including ATP, to sustain cell growth both in animals and in plants. These organelles, delimited by two membranes (outer and inner mitochondrial membrane), maintain their function by an intensive communication with other organelles as well as with the cytosol. Transport of metabolites across the two membranes, but also that of inorganic ions, takes place through specific ion channels and transporters and plays a crucial role in ensuring an adequate ionic milieu within the mitochondria. In the present review we briefly summarize the current knowledge about plant mitochondrial ion channels and transporters in comparison to those of animal mitochondria and examine the possible molecular identity of the so far unidentified transport systems taking into account subcellular targeting predictions and data from literature.
Collapse
|
95
|
Effect of Soil Salinity and Foliar Application of Jasmonic Acid on Mineral Balance of Carrot Plants Tolerant and Sensitive to Salt Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10050659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of the study is to determine the effects of soil salinity stress and foliar application of jasmonic acid (JA) on the mineral balance in plants of salt-sensitive doubled haploid carrot line (DH1) and salt-tolerant local DLBA variety (DLBA). Concentrations of 28 elements were determined in roots and leaves and in the soil. The DcNHX4 gene (cation:proton exchange antiporter) expression was assessed. The salinity stress reduced the mass of roots and leaves more in DH1 than in DLBA. DLBA plants accumulated larger amounts of Na and Cl in the roots and had an increased transport of these elements to the leaves. The salt-tolerant and salt-sensitive carrot varieties differed in their ability to uptake and accumulate some elements, such as K, Mg, Zn, S, Cd, P and B, and this response was organ-specific. A selective uptake of K in the presence of high Na concentration was evident in the tolerant variety, and a high Na content in its leaves correlated with the expression of DcNHX4 gene, which was expressed in DLBA leaves only. JA application did not affect the growth of DLBA or DH1 plants. In the sensitive DH1 variety grown under salinity stress, JA induced changes in the mineral balance by limiting the uptake of the sum of all elements, especially Na and Cl, and by limiting Zn and Cd accumulation.
Collapse
|
96
|
Long L, Zhao JR, Guo DD, Ma XN, Xu FC, Yang WW, Gao W. Identification of NHXs in Gossypium species and the positive role of GhNHX1 in salt tolerance. BMC PLANT BIOLOGY 2020; 20:147. [PMID: 32268879 PMCID: PMC7140369 DOI: 10.1186/s12870-020-02345-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/20/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant Na+/H+ antiporters (NHXs) are membrane-localized proteins that maintain cellular Na+/K+ and pH homeostasis. Considerable evidence highlighted the critical roles of NHX family in plant development and salt response; however, NHXs in cotton are rarely studied. RESULTS The comprehensive and systematic comparative study of NHXs in three Gossypium species was performed. We identified 12, 12, and 23 putative NHX proteins from G. arboreum, G. raimondii, and G. hirsutum, respectively. Phylogenetic study revealed that repeated polyploidization of Gossypium spp. contributed to the expansion of NHX family. Gene structure analysis showed that cotton NHXs contain many introns, which will lead to alternative splicing and help plants to adapt to high salt concentrations in soil. The expression changes of NHXs indicate the possible differences in the roles of distinct NHXs in salt response. GhNHX1 was proved to be located in the vacuolar system and intensively induced by salt stress in cotton. Silencing of GhNHX1 resulted in enhanced sensitivity of cotton seedlings to high salt concentrations, which suggests that GhNHX1 positively regulates cotton tolerance to salt stress. CONCLUSION We characterized the gene structure, phylogenetic relationship, chromosomal location, and expression pattern of NHX genes from G. arboreum, G. raimondii, and G. hirsutum. Our findings indicated that the cotton NHX genes are regulated meticulously and differently at the transcription level with possible alternative splicing. The tolerance of plants to salt stress may rely on the expression level of a particular NHX, rather than the number of NHXs in the genome. This study could provide significant insights into the function of plant NHXs, as well as propose promising candidate genes for breeding salt-resistant cotton cultivars.
Collapse
Affiliation(s)
- Lu Long
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan P. R. China
| | - Jing-Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Dan-Dan Guo
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Xiao-Nan Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan P. R. China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Wen-Wen Yang
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan P. R. China
| |
Collapse
|
97
|
Sellamuthu G, Jegadeeson V, Sajeevan RS, Rajakani R, Parthasarathy P, Raju K, Shabala L, Chen ZH, Zhou M, Sowdhamini R, Shabala S, Venkataraman G. Distinct Evolutionary Origins of Intron Retention Splicing Events in NHX1 Antiporter Transcripts Relate to Sequence Specific Distinctions in Oryza Species. FRONTIERS IN PLANT SCIENCE 2020; 11:267. [PMID: 32218795 PMCID: PMC7078337 DOI: 10.3389/fpls.2020.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/20/2020] [Indexed: 05/30/2023]
Abstract
The genome of Asian cultivated rice (Oryza sativa L.) shows the presence of six organelle-specific and one plasma membrane (OsNHX1-7) NHX-type cation proton antiporters. Of these, vacuolar-localized OsNHX1 is extensively characterized. The genus Oryza consists of 27 species and 11 genome-types, with cultivated rice, diploid O. sativa, having an AA-type genome. Oryza NHX1 orthologous regions (gene organization, 5' upstream cis elements, amino acid residues/motifs) from closely related Oryza AA genomes cluster distinctly from NHX1 regions from more ancestral Oryza BB, FF and KKLL genomes. These sequence-specific distinctions also extend to two separate intron retention (IR) events involving Oryza NHX1 transcripts that occur at the 5' and 3' ends of the NHX1 transcripts. We demonstrate that the IR event involving the 5' UTR is present only in more recently evolved Oryza AA genomes while the IR event governing retention of the 13th intron of Oryza NHX1 (terminal intron) is more ancient in origin, also occurring in halophytic wild rice, Oryza coarctata (KKLL). We also report presence of a retro-copy of the OcNHX1 cDNA in the genome of O. coarctata (rOcNHX1). Preferential species and tissue specific up- or down-regulation of the correctly spliced NHX1 transcript/5' UTR/13th intron-retaining splice variants under salinity was observed. The implications of IR on NHX1 mRNA stability and ORF diversity in Oryza spp. is discussed.
Collapse
Affiliation(s)
| | - Vidya Jegadeeson
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Radha Sivarajan Sajeevan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Pavithra Parthasarathy
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Kalaimani Raju
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| |
Collapse
|
98
|
Raddatz N, Morales de los Ríos L, Lindahl M, Quintero FJ, Pardo JM. Coordinated Transport of Nitrate, Potassium, and Sodium. FRONTIERS IN PLANT SCIENCE 2020; 11:247. [PMID: 32211003 PMCID: PMC7067972 DOI: 10.3389/fpls.2020.00247] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 05/19/2023]
Abstract
Potassium (K+) and nitrogen (N) are essential nutrients, and their absorption and distribution within the plant must be coordinated for optimal growth and development. Potassium is involved in charge balance of inorganic and organic anions and macromolecules, control of membrane electrical potential, pH homeostasis and the regulation of cell osmotic pressure, whereas nitrogen is an essential component of amino acids, proteins, and nucleic acids. Nitrate (NO3 -) is often the primary nitrogen source, but it also serves as a signaling molecule to the plant. Nitrate regulates root architecture, stimulates shoot growth, delays flowering, regulates abscisic acid-independent stomata opening, and relieves seed dormancy. Plants can sense K+/NO3 - levels in soils and adjust accordingly the uptake and root-to-shoot transport to balance the distribution of these ions between organs. On the other hand, in small amounts sodium (Na+) is categorized as a "beneficial element" for plants, mainly as a "cheap" osmolyte. However, at high concentrations in the soil, Na+ can inhibit various physiological processes impairing plant growth. Hence, plants have developed specific mechanisms to transport, sense, and respond to a variety of Na+ conditions. Sodium is taken up by many K+ transporters, and a large proportion of Na+ ions accumulated in shoots appear to be loaded into the xylem by systems that show nitrate dependence. Thus, an adequate supply of mineral nutrients is paramount to reduce the noxious effects of salts and to sustain crop productivity under salt stress. In this review, we will focus on recent research unraveling the mechanisms that coordinate the K+-NO3 -; Na+-NO3 -, and K+-Na+ transports, and the regulators controlling their uptake and allocation.
Collapse
Affiliation(s)
| | | | | | | | - José M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
99
|
Li W, Du J, Feng H, Wu Q, Xu G, Shabala S, Yu L. Function of NHX-type transporters in improving rice tolerance to aluminum stress and soil acidity. PLANTA 2020; 251:71. [PMID: 32108903 DOI: 10.1007/s00425-020-03361-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
In this study, we show that ectopic expression of either HtNHX1 or HtNHX2, from Helianthus tuberosus plant (located at vacuolar and endosome membranes, respectively), in rice plants could enhance its tolerance to aluminum (Al3+) stress and soil acidity. Plant sodium (potassium)/proton (Na+(K+)/H+ antiporters of the NHX family have been extensively characterized as they are related to the enhancement of salt tolerance. However, no previous study has reported NHX transporter functions in plant tolerance to Al3+ toxicity. In this study, we demonstrate their role as a component of the Al3+ stress tolerance mechanism. We show that the ectopic expression of either HtNHX1 or HtNHX2 , from Helianthus tuberosus plant, in rice (located at vacuole and endosome, respectively) could also enhance rice tolerance to Al3+ stress and soil acidity. Expression of either HtNHX1 or HtNHX2 reduced the inhibitory effect of Al3+ on the rice root elongation rate; both genes were reported to be equally effective in improvement of stress conditions. Expression of HtNHX1 enhanced Al3+-trigged-secretion of citrate acids, rhizosphere acidification, and also reduced K+ efflux from root tissues. In contrast, expression of HtNHX2 prevented Al3+-trigged-decrease of H+ influx into root tissues. Al3+-induced damage of the cell wall extensibility at the root tips was impaired by either HtNHX1 or HtNHX2. Co-expression of HtNHX1 and HtNHX2 further improved rice growth, particularly under the Al3+ stress conditions. The results demonstrate that HtNHX1 and HtNHX2 improved rice tolerance to Al3+ via different mechanisms by altering the K+ and H+ fluxes and the cell wall structure.
Collapse
Affiliation(s)
- Weihong Li
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Du
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huimin Feng
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Wu
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, TAS, 7005, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Guohua Xu
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, TAS, 7005, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Ling Yu
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
100
|
Ding C, Zhang W, Li D, Dong Y, Liu J, Huang Q, Su X. Effect of Overexpression of JERFs on Intracellular K +/Na + Balance in Transgenic Poplar ( Populus alba × P. berolinensis) Under Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:1192. [PMID: 32922413 PMCID: PMC7456863 DOI: 10.3389/fpls.2020.01192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Salt stress is one of the main factors that affect both growth and development of plants. Maintaining K+/Na+ balance in the cytoplasm is important for metabolism as well as salt resistance in plants. In the present study, we monitored the growth (height and diameter) of transgenic Populus alba × P. berolinensis trees (ABJ01) carrying JERF36s gene (a tomato jasmonic/ethylene responsive factors gene) over 4 years, which showed faster growth and significant salt tolerance compared with non-transgenic poplar trees (9#). The expression of NHX1 and SOS1 genes that encode Na+/H+ antiporters in the vacuole and plasma membranes was measured in leaves under NaCl stress. Non-invasive micro-test techniques (NMT) were used to analyse ion flux of Na+, K+, and H+ in the root tip of seedlings under treatment with100 mM NaCl for 7, 15, and 30 days. Results showed that the expression of NHX1 and SOS1 was much higher in ABJ01 compared with 9#, and the Na+ efflux and H+ influx fluxes of root were remarkable higher in ABJ01 than in 9#, but K+ efflux exhibited lower level. All above suggest that salt stress induces NHX1 and SOS1 to a greater expression level in ABJ01, resulting in the accumulation of Na+/H+ antiporter to better maintain K+/Na+ balance in the cytoplasm of this enhanced salt resistant variety. This may help us to better understand the mechanism of transgenic poplars with improving salt tolerance by overexpressing JERF36s and could provide a basis for future breeding programs aimed at improving salt resistance in transgenic poplar.
Collapse
Affiliation(s)
- Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yufeng Dong
- Shandong Provincial Key Laboratory of Forest Tree Genetic Improvement, Shandong Academy of Forestry, Jinan, China
| | - Junlong Liu
- Industry of Timber and Bamboo, Anhui Academy of Forestry, Hefei, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Qinjun Huang, ; Xiaohua Su,
| |
Collapse
|