51
|
Yang X, Gu X, Ding J, Yao L, Gao X, Zhang M, Meng Q, Wei S, Fu J. Gene expression analysis of resistant and susceptible rice cultivars to sheath blight after inoculation with Rhizoctonia solani. BMC Genomics 2022; 23:278. [PMID: 35392815 PMCID: PMC8991730 DOI: 10.1186/s12864-022-08524-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rice sheath blight, caused by Rhizoctonia solani Kühn (teleomorph: Thanatephorus cucumeris), is one of the most severe diseases in rice (Oryza sativa L.) worldwide. Studies on resistance genes and resistance mechanisms of rice sheath blight have mainly focused on indica rice. Rice sheath blight is a growing threat to rice production with the increasing planting area of japonica rice in Northeast China, and it is therefore essential to explore the mechanism of sheath blight resistance in this rice subspecies. RESULTS In this study, RNA-seq technology was used to analyse the gene expression changes of leaf sheath at 12, 24, 36, 48, and 72 h after inoculation of the resistant cultivar 'Shennong 9819' and susceptible cultivar 'Koshihikari' with R. solani. In the early stage of R. solani infection of rice leaf sheaths, the number of differentially expressed genes (DEGs) in the inoculated leaf sheaths of resistant and susceptible cultivars showed different regularity. After inoculation, the number of DEGs in the resistant cultivar fluctuated, while the number of DEGs in the susceptible cultivar increased first and then decreased. In addition, the number of DEGs in the susceptible cultivar was always higher than that in the resistant cultivar. After inoculation with R. solani, the overall transcriptome changes corresponding to multiple biological processes, molecular functions, and cell components were observed in both resistant and susceptible cultivars. These included metabolic process, stimulus response, biological regulation, catalytic activity, binding and membrane, and they were differentially regulated. The phenylalanine metabolic pathway; tropane, piperidine, and pyridine alkaloid biosynthesis pathways; and plant hormone signal transduction were significantly enriched in the early stage of inoculation of the resistant cultivar Shennong 9819, but not in the susceptible cultivar Koshihikari. This indicates that the response of the resistant cultivar Shennong 9819 to pathogen stress was faster than that of the susceptible cultivar. The expression of plant defense response marker PR1b gene, transcription factor OsWRKY30 and OsPAL1 and OsPAL6 genes that induce plant resistance were upregulated in the resistant cultivar. These data suggest that in the early stage of rice infection by R. solani, there is a pathogen-induced defence system in resistant rice cultivars, involving the expression of PR genes, key transcription factors, PAL genes, and the enrichment of defence-related pathways. CONCLUSION The transcriptome data revealed the molecular and biochemical differences between resistant and susceptible cultivars of rice after inoculation with R. solani, indicating that resistant cultivars have an immune response mechanism in the early stage of pathogen infection. Disease resistance is related to the overexpression of PR genes, key transcriptome factors, and PAL genes, which are potential targets for crop improvement.
Collapse
Affiliation(s)
- Xiaohe Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, Liaoning, China.,Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Xin Gu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Xuedong Gao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Maoming Zhang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Qingying Meng
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, Heilongjiang, China
| | - Songhong Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, Liaoning, China.
| | - Junfan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, Liaoning, China.
| |
Collapse
|
52
|
Li Z, Song L, Liu Y, Han F, Liu W. Electrophysiological, Morphologic, and Transcriptomic Profiling of the Ogura-CMS, DGMS and Maintainer Broccoli Lines. PLANTS (BASEL, SWITZERLAND) 2022; 11:561. [PMID: 35214894 PMCID: PMC8880064 DOI: 10.3390/plants11040561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
To better serve breeding of broccoli, the electrophysiological, morphological and transcriptomic profiling of the isogenic Ogura-CMS, DGMS and their maintainer fertile lines, were carried out by scanning electron microscopy, investigation of agronomic traits and RNA-sequencing analysis. The agronomic traits of plant height, length of the largest leaf, plant spread angle, single head weight, head width and stem diameter showed stronger performance in Ogura-CMS broccoli than in DGMS line or maintainer fertile line. However, the Ogura-CMS broccoli was poorer in the seed yield and seed germination than in the DGMS line and maintainer fertile line. Additionally, the DGMS broccoli had longer maturation and flowering periods than the Ogura-CMS and maintainer fertile lines. There were obvious differences in the honey gland, happening in the male sterility and fertile lines of broccoli. Additionally, the mechanism regulating Ogura-CMS and DGMS in broccoli was investigated using florets transcriptome analyses of the Ogura-CMS, DGMS and maintainer fertile lines. As a result, a total of 2670 differentially expressed genes (DEGs) were detected, including 1054 up- and 1616 downregulated genes in the Ogura-CMS and DGMS lines compared to the maintainer fertile line. A number of functionally known genes involved in plant hormones (auxin, salicylic acid and brassinosteroid), five Mitochondrial Oxidative Phosphorylation (OXPHOS) genes of atp8, LOC106319879, LOC106324734, LOC106314622 and LOC106298585, and three upregulated genes (Lhcb1, Lhcb3 and Lhcb5) associated with the photosynthesis-antenna protein pathway, were obviously detected to be highly associated with reproductive development including flowering time, maturity and reproductive period in the Ogura-CMS and DGMS broccoli comparing to their maintainer fertile line. Our research would provide a comprehensive foundation for understanding the differences of electrophysiological, morphological and transcriptomic profiles in the Ogura-CMS, DGMS and maintainer broccoli, and as well as being beneficial to exploring the mechanism of male sterility in Brassica crops.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing 100081, China; (Y.L.); (F.H.)
- China Vegetable Biotechnology (Shouguang) Co., Ltd., Shouguang 262700, China;
| | - Lixiao Song
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Yumei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing 100081, China; (Y.L.); (F.H.)
| | - Fengqing Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing 100081, China; (Y.L.); (F.H.)
| | - Wei Liu
- China Vegetable Biotechnology (Shouguang) Co., Ltd., Shouguang 262700, China;
| |
Collapse
|
53
|
Kashyap AS, Manzar N, Nebapure SM, Rajawat MVS, Deo MM, Singh JP, Kesharwani AK, Singh RP, Dubey SC, Singh D. Unraveling Microbial Volatile Elicitors Using a Transparent Methodology for Induction of Systemic Resistance and Regulation of Antioxidant Genes at Expression Levels in Chili against Bacterial Wilt Disease. Antioxidants (Basel) 2022; 11:antiox11020404. [PMID: 35204287 PMCID: PMC8869530 DOI: 10.3390/antiox11020404] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
Microbial volatiles benefit the agricultural ecological system by promoting plant growth and systemic resistance against diseases without harming the environment. To explore the plant growth-promoting efficiency of VOCs produced by Pseudomonas fluorescens PDS1 and Bacillus subtilis KA9 in terms of chili plant growth and its biocontrol efficiency against Ralstonia solanacearum, experiments were conducted both in vitro and in vivo. A closure assembly was designed using a half-inverted plastic bottle to demonstrate plant–microbial interactions via volatile compounds. The most common volatile organic compounds were identified and reported; they promoted plant development and induced systemic resistance (ISR) against wilt pathogen R. solanacearum. The PDS1 and KA9 VOCs significantly increased defensive enzyme activity and overexpressed the antioxidant genes PAL, POD, SOD, WRKYa, PAL1, DEF-1, CAT-2, WRKY40, HSFC1, LOX2, and NPR1 related to plant defense. The overall gene expression was greater in root tissue as compared to leaf tissue in chili plant. Our findings shed light on the relationship among rhizobacteria, pathogen, and host plants, resulting in plant growth promotion, disease suppression, systemic resistance-inducing potential, and antioxidant response with related gene expression in the leaf and root tissue of chili.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| | - Nazia Manzar
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | | | - Mahendra Vikram Singh Rajawat
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | - Man Mohan Deo
- Farm Machinery and Power, ICAR-Indian Institute of Pulses Research, Kanpur 208024, India;
| | - Jyoti Prakash Singh
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Amit Kumar Kesharwani
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - Ravinder Pal Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - S. C. Dubey
- Division of Plant Quarantine, ICAR-NBPGR, New Delhi 110012, India;
- Krishi Bhawan, Indian Council of Agricultural Research, New Delhi 110001, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| |
Collapse
|
54
|
Yuan P, Tanaka K, Poovaiah BW. Calcium/Calmodulin-Mediated Defense Signaling: What Is Looming on the Horizon for AtSR1/CAMTA3-Mediated Signaling in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 12:795353. [PMID: 35087556 PMCID: PMC8787297 DOI: 10.3389/fpls.2021.795353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/15/2021] [Indexed: 05/14/2023]
Abstract
Calcium (Ca2+) signaling in plant cells is an essential and early event during plant-microbe interactions. The recognition of microbe-derived molecules activates Ca2+ channels or Ca2+ pumps that trigger a transient increase in Ca2+ in the cytoplasm. The Ca2+ binding proteins (such as CBL, CPK, CaM, and CML), known as Ca2+ sensors, relay the Ca2+ signal into down-stream signaling events, e.g., activating transcription factors in the nucleus. For example, CaM and CML decode the Ca2+ signals to the CaM/CML-binding protein, especially CaM-binding transcription factors (AtSRs/CAMTAs), to induce the expressions of immune-related genes. In this review, we discuss the recent breakthroughs in down-stream Ca2+ signaling as a dynamic process, subjected to continuous variation and gradual change. AtSR1/CAMTA3 is a CaM-mediated transcription factor that represses plant immunity in non-stressful environments. Stress-triggered Ca2+ spikes impact the Ca2+-CaM-AtSR1 complex to control plant immune response. We also discuss other regulatory mechanisms in which Ca2+ signaling activates CPKs and MAPKs cascades followed by regulating the function of AtSR1 by changing its stability, phosphorylation status, and subcellular localization during plant defense.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - B. W. Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
55
|
Khan MSS, Islam F, Chen H, Chang M, Wang D, Liu F, Fu ZQ, Chen J. Transcriptional Coactivators: Driving Force of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:823937. [PMID: 35154230 PMCID: PMC8831314 DOI: 10.3389/fpls.2022.823937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a plant defense signal that mediates local and systemic immune responses against pathogen invasion. However, the underlying mechanism of SA-mediated defense is very complex due to the involvement of various positive and negative regulators to fine-tune its signaling in diverse pathosystems. Upon pathogen infections, elevated level of SA promotes massive transcriptional reprogramming in which Non-expresser of PR genes 1 (NPR1) acts as a central hub and transcriptional coactivator in defense responses. Recent findings show that Enhanced Disease Susceptibility 1 (EDS1) also functions as a transcriptional coactivator and stimulates the expression of PR1 in the presence of NPR1 and SA. Furthermore, EDS1 stabilizes NPR1 protein level, while NPR1 sustains EDS1 expression during pathogenic infection. The interaction of NPR1 and EDS1 coactivators initiates transcriptional reprogramming by recruiting cyclin-dependent kinase 8 in the Mediator complex to control immune responses. In this review, we highlight the recent breakthroughs that considerably advance our understanding on how transcriptional coactivators interact with their functional partners to trigger distinct pathways to facilitate immune responses, and how SA accumulation induces dynamic changes in NPR1 structure for transcriptional reprogramming. In addition, the functions of different Mediator subunits in SA-mediated plant immunity are also discussed in light of recent discoveries. Taken together, the available evidence suggests that transcriptional coactivators are essential and potent regulators of plant defense pathways and play crucial roles in coordinating plant immune responses during plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Ming Chang
- The Key Laboratory of Bio-interactions and Plant Health, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Fengquan Liu,
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Zheng Qing Fu,
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
- Jian Chen,
| |
Collapse
|
56
|
Wei Y, Zhao S, Liu N, Zhang Y. Genome-wide identification, evolution, and expression analysis of the NPR1-like gene family in pears. PeerJ 2021; 9:e12617. [PMID: 35003927 PMCID: PMC8684321 DOI: 10.7717/peerj.12617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/18/2021] [Indexed: 01/17/2023] Open
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) plays a master regulatory role in the salicylic acid (SA) signal transduction pathway and plant systemic acquired resistance (SAR). Members of the NPR1-like gene family have been reported to the associated with biotic/abiotic stress in many plants, however the genome-wide characterization of NPR1-like genes has not been carried out in Chinese pear (Pyrus bretschneideri Reld). In this study, a systematic analysis was conducted on the characteristics of the NPR1-like genes in P. bretschneideri Reld at the whole-genome level. A total nine NPR1-like genes were detected which eight genes were located on six chromosomes and one gene was mapped to scaffold. Based on the phylogenetic analysis, the nine PbrNPR1-like proteins were divided into three clades (Clades I–III) had similar gene structure, domain and conserved motifs. We sorted the cis-acting elements into three clades, including plant growth and development, stress responses, and hormone responses in the promoter regions of PbrNPR1-like genes. The result of qPCR analysis showed that expression diversity of PbrNPR1-like genes in various tissues. All the genes were up-regulated after SA treatment in leaves except for Pbrgene8896. PbrNPR1-like genes showed circadian rhythm and significantly different expression levels after inoculation with Alternaria alternata. These findings provide a solid insight for understanding the functions and evolution of PbrNPR1-like genes in Chinese pear.
Collapse
Affiliation(s)
- Yarui Wei
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China
| | - Shuliang Zhao
- Hebei University of Engineering, School of Landscape and Ecological Engineering, Handan, Hebei, China
| | - Na Liu
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China
| | - Yuxing Zhang
- Hebei Agricultural University, College of Horticulture, Baoding, Hebei, China
| |
Collapse
|
57
|
Qi G, Chen H, Wang D, Zheng H, Tang X, Guo Z, Cheng J, Chen J, Wang Y, Bai MY, Liu F, Wang D, Fu ZQ. The BZR1-EDS1 module regulates plant growth-defense coordination. MOLECULAR PLANT 2021; 14:2072-2087. [PMID: 34416351 DOI: 10.1016/j.molp.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/07/2021] [Accepted: 08/12/2021] [Indexed: 05/13/2023]
Abstract
Plants have developed sophisticated strategies to coordinate growth and immunity, but our understanding of the underlying mechanism remains limited. In this study, we identified a novel molecular module that regulates plant growth and defense in both compatible and incompatible infections. This module consisted of BZR1, a key transcription factor in brassinosteroid (BR) signaling, and EDS1, an essential positive regulator of plant innate immunity. We found that EDS1 interacts with BZR1 and suppresses its transcriptional activities. Consistently, upregulation of EDS1 function by a virulent Pseudomonas syringae strain or salicylic acid treatment inhibited BZR1-regulated expression of BR-responsive genes and BR-promoted growth. Furthermore, we showed that the cytoplasmic fraction of BZR1 positively regulates effector-triggered immunity (ETI) controlled by the TIR-NB-LRR protein RPS4, which is attenuated by BZR1's nuclear translocation. Mechanistically, cytoplasmic BZR1 facilitated AvrRps4-triggered dissociation of EDS1 and RPS4 by binding to EDS1, thus leading to efficient activation of RPS4-controlled ETI. Notably, transgenic expression of a mutant BZR1 that accumulates exclusively in the cytoplasm improved pathogen resistance without compromising plant growth. Collectively, these results shed new light on plant growth-defense coordination and reveal a previously unknown function for the cytoplasmic fraction of BZR1. The BZR1-EDS1 module may be harnessed for the simultaneous improvement of crop productivity and pathogen resistance.
Collapse
Affiliation(s)
- Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Dian Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Xianfeng Tang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266109, China
| | - Zhengzheng Guo
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiayu Cheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yiping Wang
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266109, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237 Qingdao, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
58
|
Research Progress of ATGs Involved in Plant Immunity and NPR1 Metabolism. Int J Mol Sci 2021; 22:ijms222212093. [PMID: 34829975 PMCID: PMC8623690 DOI: 10.3390/ijms222212093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an important pathway of degrading excess and abnormal proteins and organelles through their engulfment into autophagosomes that subsequently fuse with the vacuole. Autophagy-related genes (ATGs) are essential for the formation of autophagosomes. To date, about 35 ATGs have been identified in Arabidopsis, which are involved in the occurrence and regulation of autophagy. Among these, 17 proteins are related to resistance against plant pathogens. The transcription coactivator non-expressor of pathogenesis-related genes 1 (NPR1) is involved in innate immunity and acquired resistance in plants, which regulates most salicylic acid (SA)-responsive genes. This paper mainly summarizes the role of ATGs and NPR1 in plant immunity and the advancement of research on ATGs in NPR1 metabolism, providing a new idea for exploring the relationship between ATGs and NPR1.
Collapse
|
59
|
Chen H, Li M, Qi G, Zhao M, Liu L, Zhang J, Chen G, Wang D, Liu F, Fu ZQ. Two interacting transcriptional coactivators cooperatively control plant immune responses. SCIENCE ADVANCES 2021; 7:eabl7173. [PMID: 34739308 PMCID: PMC8570602 DOI: 10.1126/sciadv.abl7173] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The phytohormone salicylic acid (SA) plays a pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. NPR1 and EDS1 function as two central hubs in plant local and systemic immunity. However, it is unclear how NPR1 orchestrates gene regulation and whether EDS1 directly participates in transcriptional reprogramming. Here, we show that NPR1 and EDS1 synergistically activate pathogenesis-related (PR) genes and plant defenses by forming a protein complex and recruiting Mediator. We discover that EDS1 functions as an autonomous transcriptional coactivator with intrinsic transactivation domains and physically interacts with the CDK8 subunit of Mediator. Upon SA induction, EDS1 is directly recruited by NPR1 onto the PR1 promoter via physical NPR1-EDS1 interactions, thereby potentiating PR1 activation. We further demonstrate that EDS1 stabilizes NPR1 protein and NPR1 transcriptionally up-regulates EDS1. Our results reveal an elegant interplay of key coactivators with Mediator and elucidate important molecular mechanisms for activating transcription during immune responses.
Collapse
Affiliation(s)
- Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety–State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Min Li
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Guang Qi
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ming Zhao
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Longyu Liu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyi Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety–State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety–State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- Corresponding author. (F.L.); (Z.Q.F.)
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
- Corresponding author. (F.L.); (Z.Q.F.)
| |
Collapse
|
60
|
He H, Denecker J, Van Der Kelen K, Willems P, Pottie R, Phua SY, Hannah MA, Vertommen D, Van Breusegem F, Mhamdi A. The Arabidopsis mediator complex subunit 8 regulates oxidative stress responses. THE PLANT CELL 2021; 33:2032-2057. [PMID: 33713138 PMCID: PMC8290281 DOI: 10.1093/plcell/koab079] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 05/13/2023]
Abstract
Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Jordi Denecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Present address: Illumina Cambridge Ltd, Cambridge, CB21 6DF, UK; Present address: Sciensano, 1050 Brussels, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Su Yin Phua
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Matthew A Hannah
- BASF Belgium Coordination Center, Innovation Center Gent, 9052 Gent, Belgium
| | - Didier Vertommen
- de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Author for correspondence: (A.M.)
| |
Collapse
|
61
|
Abstract
Salicylic acid (SA) is an essential plant defense hormone that promotes immunity against biotrophic and semibiotrophic pathogens. It plays crucial roles in basal defense and the amplification of local immune responses, as well as the establishment of systemic acquired resistance. During the past three decades, immense progress has been made in understanding the biosynthesis, homeostasis, perception, and functions of SA. This review summarizes the current knowledge regarding SA in plant immunity and other biological processes. We highlight recent breakthroughs that substantially advanced our understanding of how SA is biosynthesized from isochorismate, how it is perceived, and how SA receptors regulate different aspects of plant immunity. Some key questions in SA biosynthesis and signaling, such as how SA is produced via another intermediate, benzoic acid, and how SA affects the activities of its receptors in the transcriptional regulation of defense genes, remain to be addressed.
Collapse
Affiliation(s)
- Yujun Peng
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| | - Jianfei Yang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| |
Collapse
|
62
|
Chen J, Zhang J, Kong M, Freeman A, Chen H, Liu F. More stories to tell: NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1, a salicylic acid receptor. PLANT, CELL & ENVIRONMENT 2021; 44:1716-1727. [PMID: 33495996 DOI: 10.1111/pce.14003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) plays pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. Tremendous progress has been made in the field of SA biosynthesis and SA signaling pathways over the past three decades. Among the key immune players in SA signaling pathway, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) functions as a master regulator of SA-mediated plant defense. The function of NPR1 as an SA receptor has been controversial; however, after years of arguments among several laboratories, NPR1 has finally been proven as one of the SA receptors. The function of NPR1 is strictly regulated via post-translational modifications and transcriptional regulation that were recently found. More recent advances in NPR1 biology, including novel functions of NPR1 and the structure of SA receptor proteins, have brought this field forward immensely. Therefore, based on these recent discoveries, this review acts to provide a full picture of how NPR1 functions in plant immunity and how NPR1 gene and NPR1 protein are regulated at multiple levels. Finally, we also discuss potential challenges in future studies of SA signaling pathway.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Jingyi Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Mengmeng Kong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Lab of Biocontrol & Bacterial Molecular Biology, Nanjing, China
| | - Andrew Freeman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
63
|
Zhang D, Zhu Z, Gao J, Zhou X, Zhu S, Wang X, Wang X, Ren G, Kuai B. The NPR1-WRKY46-WRKY6 signaling cascade mediates probenazole/salicylic acid-elicited leaf senescence in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:924-936. [PMID: 33270345 DOI: 10.1111/jipb.13044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Endogenous salicylic acid (SA) regulates leaf senescence, but the underlying mechanism remains largely unexplored. The exogenous application of SA to living plants is not efficient for inducing leaf senescence. By taking advantage of probenazole (PBZ)-induced biosynthesis of endogenous SA, we previously established a chemical inducible leaf senescence system that depends on SA biosynthesis and its core signaling receptor NPR1 in Arabidopsis thaliana. Here, using this system, we identified WRKY46 and WRKY6 as key components of the transcriptional machinery downstream of NPR1 signaling. Upon PBZ treatment, the wrky46 mutant exhibited significantly delayed leaf senescence. We demonstrate that NPR1 is essential for PBZ/SA-induced WRKY46 activation, whereas WRKY46 in turn enhances NPR1 expression. WRKY46 interacts with NPR1 in the nucleus, binding to the W-box of the WRKY6 promoter to induce its expression in response to SA signaling. Dysfunction of WRKY6 abolished PBZ-induced leaf senescence, while overexpression of WRKY6 was sufficient to accelerate leaf senescence even under normal growth conditions, suggesting that WRKY6 may serve as an integration node of multiple leaf senescence signaling pathways. Taken together, these findings reveal that the NPR1-WRKY46-WRKY6 signaling cascade plays a critical role in PBZ/SA-mediated leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Dingyu Zhang
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zheng Zhu
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiong Gao
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xin Zhou
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shuai Zhu
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaoyan Wang
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaolei Wang
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
64
|
Defects in Cell Wall Differentiation of the Arabidopsis Mutant rol1-2 Is Dependent on Cyclin-Dependent Kinase CDK8. Cells 2021; 10:cells10030685. [PMID: 33808926 PMCID: PMC8003768 DOI: 10.3390/cells10030685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition.
Collapse
|
65
|
Agrawal R, Jiří F, Thakur JK. The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:224-240. [PMID: 32945869 DOI: 10.1093/jxb/eraa439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Mediator, a multisubunit protein complex, is a signal processor that conveys regulatory information from transcription factors to RNA polymerase II and therefore plays an important role in the regulation of gene expression. This megadalton complex comprises four modules, namely, the head, middle, tail, and kinase modules. The first three modules form the core part of the complex, whereas association of the kinase module is facultative. The kinase module is able to alter the function of Mediator and has been established as a major transcriptional regulator of numerous developmental and biochemical processes. The kinase module consists of MED12, MED13, CycC, and kinase CDK8. Upon association with Mediator, the kinase module can alter its structure and function dramatically. In the past decade, research has established that the kinase module is very important for plant growth and development, and in the fight against biotic and abiotic challenges. However, there has been no comprehensive review discussing these findings in detail and depth. In this review, we survey the regulation of kinase module subunits and highlight their many functions in plants. Coordination between the subunits to process different signals for optimum plant growth and development is also discussed.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Fajkus Jiří
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
66
|
Sun T, Zhang Y. Short- and long-distance signaling in plant defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:505-517. [PMID: 33145833 DOI: 10.1111/tpj.15068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/29/2020] [Indexed: 05/24/2023]
Abstract
When encountering microbial pathogens, plant cells can recognize danger signals derived from pathogens, activate plant immune responses and generate cell-autonomous as well as non-cell-autonomous defense signaling molecules, which promotes defense responses at the infection site and in the neighboring cells. Meanwhile, local damages can result in the release of immunogenic signals including damage-associated molecule patterns and phytocytokines, which also serve as danger signals to potentiate immune responses in cells surrounding the infection site. Activation of local defense responses further induces the production of long-distance defense signals, which can move to distal tissue to activate systemic acquired resistance. In this review, we summarize current knowledge on various signaling molecules involved in short- and long-distance defense signaling, and emphasize the roles of regulatory proteins involved in the processes.
Collapse
Affiliation(s)
- Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
67
|
Kong M, Sheng T, Liang J, Ali Q, Gu Q, Wu H, Chen J, Liu J, Gao X. Melatonin and Its Homologs Induce Immune Responses via Receptors trP47363-trP13076 in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2021; 12:691835. [PMID: 34276740 PMCID: PMC8278317 DOI: 10.3389/fpls.2021.691835] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/17/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a naturally occurring small molecule, can protect plants against abiotic stress after exogenous treatmenting with it. It is not known if melatonin homologs, such as 5-methoxytryptamine and 5-methoxyindole, that are easy and more cost-effective to synthesize can stimulate the plant immune system in the same manner as melatonin. In the present study, we assessed the biological activity of the melatonin homologs, 5-methoxytryptamin and 5-methoxyindole. The results showed that melatonin and its homologs all induced disease resistance against Phytophthora nicotianae in Nicotiana benthamiana plants. The application of all three compounds also induced stomatal closure and the production of reactive oxygen species. Gene expression analysis indicated that the expression of genes involved in hydrogen peroxide (H2O2), nitric oxide (NO) production, and salicylic acid (SA) biosynthesis was significantly upregulated by all three compounds. Four homologs of the melatonin receptors were identified by blasting search with the phytomelatonin receptor in Arabidopsis. Molecular docking studies were also used to identify four putative melatonin receptors in N. benthamiana. Further experimentation revealed that silencing of the melatonin receptors trP47363 and trP13076 in N. benthamiana compromised the induction of stomatal closure, PR-1a gene expression and SA accumulation by all three compounds. Collectively, our data indicate that the induction of defense responses in N. benthamiana by melatonin, 5-methoxytryptamine, and 5-methoxyindole involves the melatonin receptors trP47363 and trP13076.
Collapse
Affiliation(s)
- Mengmeng Kong
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Tao Sheng
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Jing Liang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Qurban Ali
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
- Jian Chen,
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
- Jia Liu,
| | - Xuewen Gao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xuewen Gao,
| |
Collapse
|
68
|
Zhou Q, Meng Q, Tan X, Ding W, Ma K, Xu Z, Huang X, Gao H. Protein Phosphorylation Changes During Systemic Acquired Resistance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:748287. [PMID: 34858456 PMCID: PMC8632492 DOI: 10.3389/fpls.2021.748287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/08/2021] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) in plants is a defense response that provides resistance against a wide range of pathogens at the whole-plant level following primary infection. Although the molecular mechanisms of SAR have been extensively studied in recent years, the role of phosphorylation that occurs in systemic leaves of SAR-induced plants is poorly understood. We used a data-independent acquisition (DIA) phosphoproteomics platform based on high-resolution mass spectrometry in an Arabidopsis thaliana model to identify phosphoproteins related to SAR establishment. A total of 8011 phosphorylation sites from 3234 proteins were identified in systemic leaves of Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) and mock locally inoculated plants. A total of 859 significantly changed phosphoproteins from 1119 significantly changed phosphopeptides were detected in systemic leaves of Psm ES4326 locally inoculated plants, including numerous transcription factors and kinases. A variety of defense response-related proteins were found to be differentially phosphorylated in systemic leaves of Psm ES4326 locally inoculated leaves, suggesting that these proteins may be functionally involved in SAR through phosphorylation or dephosphorylation. Significantly changed phosphoproteins were enriched mainly in categories related to response to abscisic acid, regulation of stomatal movement, plant-pathogen interaction, MAPK signaling pathway, purine metabolism, photosynthesis-antenna proteins, and flavonoid biosynthesis. A total of 28 proteins were regulated at both protein and phosphorylation levels during SAR. RT-qPCR analysis revealed that changes in phosphorylation levels of proteins during SAR did not result from changes in transcript abundance. This study provides comprehensive details of key phosphoproteins associated with SAR, which will facilitate further research on the molecular mechanisms of SAR.
Collapse
Affiliation(s)
- Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiaomin Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
| | - Wei Ding
- Shanghai Omicsspace Biotechnology Co., Ltd., Shanghai, China
| | - Kang Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Ziqin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Xuan Huang,
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Hang Gao,
| |
Collapse
|
69
|
Signal Integration by Cyclin-Dependent Kinase 8 (CDK8) Module and Other Mediator Subunits in Biotic and Abiotic Stress Responses. Int J Mol Sci 2020; 22:ijms22010354. [PMID: 33396301 PMCID: PMC7795602 DOI: 10.3390/ijms22010354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Environmental stresses have driven plants to develop various mechanisms to acclimate in adverse conditions. Extensive studies have demonstrated that a significant reprogramming occurs in the plant transcriptome in response to biotic and abiotic stresses. The highly conserved and large multi-subunit transcriptional co-activator of eukaryotes, known as the Mediator, has been reported to play a substantial role in the regulation of important genes that help plants respond to environmental perturbances. CDK8 module is a relatively new component of the Mediator complex that has been shown to contribute to plants' defense, development, and stress responses. Previous studies reported that CDK8 module predominantly acts as a transcriptional repressor in eukaryotic cells by reversibly associating with core Mediator. However, growing evidence has demonstrated that depending on the type of biotic and abiotic stress, the CDK8 module may perform a contrasting regulatory role. This review will summarize the current knowledge of CDK8 module as well as other previously documented Mediator subunits in plant cell signaling under stress conditions.
Collapse
|
70
|
Zhu Y, Huang P, Guo P, Chong L, Yu G, Sun X, Hu T, Li Y, Hsu CC, Tang K, Zhou Y, Zhao C, Gao W, Tao WA, Mengiste T, Zhu JK. CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1573-1590. [PMID: 32619295 DOI: 10.1111/nph.16787] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
CDK8 is a key subunit of Mediator complex, a large multiprotein complex that is a fundamental part of the conserved eukaryotic transcriptional machinery. However, the biological functions of CDK8 in plant abiotic stress responses remain largely unexplored. Here, we demonstrated CDK8 as a critical regulator in the abscisic acid (ABA) signaling and drought response pathways in Arabidopsis. Compared to wild-type, cdk8 mutants showed reduced sensitivity to ABA, impaired stomatal apertures and hypersensitivity to drought stress. Transcriptomic and chromatin immunoprecipitation analysis revealed that CDK8 positively regulates the transcription of several ABA-responsive genes, probably through promoting the recruitment of RNA polymerase II to their promoters. We discovered that both CDK8 and SnRK2.6 interact physically with an ERF/AP2 transcription factor RAP2.6, which can directly bind to the promoters of RD29A and COLD-REGULATED 15A (COR15A) with GCC or DRE elements, thereby promoting their expression. Importantly, we also showed that CDK8 is essential for the ABA-induced expression of RAP2.6 and RAP2.6-mediated upregulation of ABA-responsive genes, indicating that CDK8 could link the SnRK2.6-mediated ABA signaling to RNA polymerase II to promote immediate transcriptional response to ABA and drought signals. Overall, our data provide new insights into the roles of CDK8 in modulating ABA signaling and drought responses.
Collapse
Affiliation(s)
- Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Pengcheng Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Pengcheng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Gaobo Yu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163711, China
| | - Xiaoli Sun
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163711, China
| | - Tao Hu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Gao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
71
|
Ma Q, Liu Y, Fang H, Wang P, Ahammed GJ, Zai W, Shi K. An Essential Role of Mitochondrial α-Ketoglutarate Dehydrogenase E2 in the Basal Immune Response Against Bacterial Pathogens in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:579772. [PMID: 33193523 PMCID: PMC7661389 DOI: 10.3389/fpls.2020.579772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/18/2020] [Indexed: 06/01/2023]
Abstract
Plants intensely modulate respiration when pathogens attack, but the function of mitochondrial respiration-related genes in plant-bacteria interaction is largely unclear. Here, the functions of α-ketoglutarate dehydrogenase (α-kGDH) E2 subunit and alternative oxidase (AOX) were investigated in the interaction between tomato and the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). Pst inoculation suppressed the transcript abundance of α-kGDH E2, but enhanced AOX expression and salicylic acid (SA) accumulation. Gene silencing and transient overexpression approaches revealed that plant susceptibility to Pst was significantly reduced by silencing α-kGDH E2 in tomato, but increased by overexpressing α-kGDH E2 in Nicotiana benthamiana, whereas silencing or overexpressing of AOX1a did not affect plant defense. Moreover, silencing octanoyltransferase (LIP2), engaged in the lipoylation of α-kGDH E2, significantly reduced disease susceptibility and hydrogen peroxide accumulation. Use of transgenic NahG tomato plants that cannot accumulate SA as well as the exogenous SA application experiment evidenced that α-kGDH E2 acts downstream of SA defense pathway. These results demonstrate tomato α-kGDH E2 plays a negative role in plant basal defense against Pst in an AOX-independent pathway but was associated with lipoylation and SA defense pathways. The findings help to elucidate the mechanisms of mitochondria-involved plant basal immunity.
Collapse
Affiliation(s)
- Qiaomei Ma
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yaru Liu
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Hanmo Fang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Ping Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Wenshan Zai
- Wenzhou Vocational College of Science & Technology, Wenzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
72
|
Chong L, Guo P, Zhu Y. Mediator Complex: A Pivotal Regulator of ABA Signaling Pathway and Abiotic Stress Response in Plants. Int J Mol Sci 2020; 21:ijms21207755. [PMID: 33092161 PMCID: PMC7588972 DOI: 10.3390/ijms21207755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
As an evolutionarily conserved multi-protein complex, the Mediator complex modulates the association between transcription factors and RNA polymerase II to precisely regulate gene transcription. Although numerous studies have shown the diverse functions of Mediator complex in plant development, flowering, hormone signaling, and biotic stress response, its roles in the Abscisic acid (ABA) signaling pathway and abiotic stress response remain largely unclear. It has been recognized that the phytohormone, ABA, plays a predominant role in regulating plant adaption to various abiotic stresses as ABA can trigger extensive changes in the transcriptome to help the plants respond to environmental stimuli. Over the past decade, the Mediator complex has been revealed to play key roles in not only regulating the ABA signaling transduction but also in the abiotic stress responses. In this review, we will summarize current knowledge of the Mediator complex in regulating the plants’ response to ABA as well as to the abiotic stresses of cold, drought and high salinity. We will particularly emphasize the involvement of multi-functional subunits of MED25, MED18, MED16, and CDK8 in response to ABA and environmental perturbation. Additionally, we will discuss potential research directions available for further deciphering the role of Mediator complex in regulating ABA and other abiotic stress responses.
Collapse
|
73
|
Sun LM, Fang JB, Zhang M, Qi XJ, Lin MM, Chen JY. Molecular Cloning and Functional Analysis of the NPR1 Homolog in Kiwifruit ( Actinidia eriantha). FRONTIERS IN PLANT SCIENCE 2020; 11:551201. [PMID: 33042179 PMCID: PMC7524898 DOI: 10.3389/fpls.2020.551201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/01/2020] [Indexed: 05/23/2023]
Abstract
Kiwifruit bacterial canker, caused by the bacterial pathogen Pseudomonas syringae pv. actinidiae (Psa), is a destructive disease in the kiwifruit industry globally. Consequently, understanding the mechanism of defense against pathogens in kiwifruit could facilitate the development of effective novel protection strategies. The Non-expressor of Pathogenesis-Related genes 1 (NPR1) is a critical component of the salicylic acid (SA)-dependent signaling pathway. Here, a novel kiwifruit NPR1-like gene, designated AeNPR1a, was isolated by using PCR and rapid amplification of cDNA ends techniques. The full-length cDNA consisted of 1952 base pairs with a 1,746-bp open-reading frame encoding a 582 amino acid protein. Homology analysis showed that the AeNPR1a protein is significantly similar to the VvNPR1 of grape. A 2.0 Kb 5'-flanking region of AeNPR1a was isolated, and sequence identification revealed the presence of several putative cis-regulatory elements, including basic elements, defense and stress response elements, and binding sites for WRKY transcription factors. Real-time quantitative PCR results demonstrated that AeNPR1a had different expression patterns in various tissues, and its transcription could be induced by phytohormone treatment and Psa inoculation. The yeast two-hybrid assay revealed that AeNPR1a interacts with AeTGA2. Constitutive expression of AeNPR1a induced the expression of pathogenesis-related gene in transgenic tobacco plants and enhanced tolerance to bacterial pathogens. In addition, AeNPR1a expression could restore basal resistance to Pseudomonas syringae pv. tomato DC3000 (Pst) in Arabidopsis npr1-1 mutant. Our data suggest that AeNPR1a gene is likely to play a pivotal role in defense responses in kiwifruit.
Collapse
|
74
|
Li P, Zhang Q, He D, Zhou Y, Ni H, Tian D, Chang G, Jing Y, Lin R, Huang J, Hu X. AGAMOUS-LIKE67 Cooperates with the Histone Mark Reader EBS to Modulate Seed Germination under High Temperature. PLANT PHYSIOLOGY 2020; 184:529-545. [PMID: 32576643 PMCID: PMC7479893 DOI: 10.1104/pp.20.00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/10/2020] [Indexed: 05/03/2023]
Abstract
Seed germination is a vital developmental process that is tightly controlled by environmental signals, ensuring germination under favorable conditions. High temperature (HT) suppresses seed germination. This process, known as thermoinhibition, is achieved by activating abscisic acid and inhibiting gibberellic acid biosynthesis. The zinc-finger protein SOMNUS (SOM) participates in thermoinhibition of seed germination by altering gibberellic acid/abscisic acid metabolism, but the underlying regulatory mechanism is poorly understood. In this study, we report that SOM binds to its own promoter and activates its own expression in Arabidopsis (Arabidopsis thaliana) and identify the MADS-box transcription factor AGAMOUS-LIKE67 (AGL67) as a critical player in SOM function, based on its ability to recognize CArG-boxes within the SOM promoter and mediate the trans-activation of SOM under HTs. In addition, AGL67 recruits the histone mark reader EARLY BOLTING IN SHORT DAY (EBS), which recognizes H3K4me3 at SOM chromatin. In response to HTs, AGL67 and EBS are highly enriched around the SOM promoter. The AGL67-EBS complex is also necessary for histone H4K5 acetylation, which activates SOM expression, ultimately inhibiting seed germination. Taken together, our results reveal an essential mechanism in which AGL67 cooperates with the histone mark reader EBS, which bridges the process of H3K4me3 recognition with H4K5 acetylation, thereby epigenetically activating SOM expression to suppress seed germination under HT stress.
Collapse
Affiliation(s)
- Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Qili Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Danni He
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Huanhuan Ni
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Dagang Tian
- Biotechnology Research Institute, Fujian Key Laboratory of Genetic Engineering for Agriculture, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Guanxiao Chang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Department of Biology, East Carolina University, Greenville, North Carolina 27858
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
75
|
Chen J, Clinton M, Qi G, Wang D, Liu F, Fu ZQ. Reprogramming and remodeling: transcriptional and epigenetic regulation of salicylic acid-mediated plant defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5256-5268. [PMID: 32060527 DOI: 10.1093/jxb/eraa072] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/11/2020] [Indexed: 05/13/2023]
Abstract
As a plant hormone, salicylic acid (SA) plays essential roles in plant defense against biotrophic and hemibiotrophic pathogens. Significant progress has been made in understanding the SA biosynthesis pathways and SA-mediated defense signaling networks in the past two decades. Plant defense responses involve rapid and massive transcriptional reprogramming upon the recognition of pathogens. Plant transcription factors and their co-regulators are critical players in establishing a transcription regulatory network and boosting plant immunity. A multitude of transcription factors and epigenetic regulators have been discovered, and their roles in SA-mediated defense responses have been reported. However, our understanding of plant transcriptional networks is still limited. As such, novel genomic tools and bioinformatic techniques will be necessary if we are to fully understand the mechanisms behind plant immunity. Here, we discuss current knowledge, provide an update on the SA biosynthesis pathway, and describe the transcriptional and epigenetic regulation of SA-mediated plant immune responses.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, P. R. China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Michael Clinton
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Guang Qi
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, P. R. China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, P. R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, P. R. China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
76
|
Unravelling Cotton Nonexpressor of Pathogenesis-Related 1(NPR1)-Like Genes Family: Evolutionary Analysis and Putative Role in Fiber Development and Defense Pathway. PLANTS 2020; 9:plants9080999. [PMID: 32781507 PMCID: PMC7463611 DOI: 10.3390/plants9080999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
The nonexpressor of pathogenesis-related 1 (NPR1) family plays diverse roles in gene regulation in the defense and development signaling pathways in plants. Less evidence is available regarding the significance of the NPR1-like gene family in cotton (Gossypium species). Therefore, to address the importance of the cotton NPR1-like gene family in the defense pathway, four Gossypium species were studied: two tetraploid species, G.hirsutum and G. barbadense, and their two potential ancestral diploids, G. raimondii and G. arboreum. In this study, 12 NPR1-like family genes in G. hirsutum were recognized, including six genes in the A-subgenome and six genes in the D-subgenome. Based on the phylogenetic analysis, gene and protein structural features, cotton NPR-like proteins were grouped into three different clades. Our analysis suggests the significance of cis-regulatory elements in the upstream region of cotton NPR1-like genes in hormonal signaling, biotic stress conditions, and developmental processes. The quantitative expression analysis for different developmental tissues and fiber stages (0 to 25 days post-anthesis), as well as salicylic acid induction, confirmed the distinct function of different cotton NPR genes in defense and fiber development. Altogether, this study presents specifications of conservation in the cotton NPR1-like gene family and their functional divergence for development of fiber and defense properties.
Collapse
|
77
|
Ding P, Ding Y. Stories of Salicylic Acid: A Plant Defense Hormone. TRENDS IN PLANT SCIENCE 2020; 25:549-565. [PMID: 32407695 DOI: 10.1016/j.tplants.2020.01.004] [Citation(s) in RCA: 341] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 05/04/2023]
Abstract
Salicylic acid (SA) is a key plant hormone required for establishing resistance to many pathogens. SA biosynthesis involves two main metabolic pathways with multiple steps: the isochorismate and the phenylalanine ammonia-lyase pathways. Transcriptional regulations of SA biosynthesis are important for fine-tuning SA level in plants. We highlight here recent discoveries on SA biosynthesis and transcriptional regulations of SA biosynthesis. In addition, SA perception by NPR proteins is important to fulfil its function as a defense hormone. We highlight recent work to give a full picture of how NPR proteins support the role of SA in plant immunity. We also discuss challenges and potential opportunities for future research and application related to the functions of SA in plants.
Collapse
Affiliation(s)
- Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Yuli Ding
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
78
|
Lei WX, An ZS, Zhang BH, Wu Q, Gong WJ, Li JM, Chen WL. Construction of gold-siRNA NPR1 nanoparticles for effective and quick silencing of NPR1 in Arabidopsis thaliana. RSC Adv 2020; 10:19300-19308. [PMID: 35515443 PMCID: PMC9054099 DOI: 10.1039/d0ra02156c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
In recent years, gold nanoparticles (AuNPs) have been widely used as gene silencing agents and therapeutics for treatment of cancers due to their high transfection efficiency and lack of cytotoxicity, but their roles in gene silencing in plants have not yet been reported. Here, we report synthesis of AuNPs-branched polyethylenimine and its integration with the small interfering RNAs (siRNA) of NPR1 to form a AuNPs-siRNANPR1 compound. Our results showed that AuNPs-siRNANPR1 was capable of infiltrating into Arabidopsis cells. AuNPs-siRNANPR1 silenced 80% of the NPR1 gene in Arabidopsis. Bacteriostatic and ion leakage experiments suggest that the NPR1 gene in Arabidopsis leaves was silenced by AuNPs-siRNANPR1. In Columbia-0 plants, compared with the control group treated with buffer solution, the AuNPs-siRNANPR1 treatment significantly increased the number of colonies and cell death, and the leaves turned yellow, similar to the phenotype of the npr1 leaves. These results indicated this AuNPs-siRNANPR1 silencing the NPR1 gene method is simple, effective and quick (3 days), and a powerful tool to study gene functions in plants. Gold nanoparticles (AuNPs) have been widely used as gene silencing agents and therapeutics for treatment due to their high transfection efficiency and lack of cytotoxicity, but their roles in gene silencing in plants have not yet been reported.![]()
Collapse
Affiliation(s)
- Wen-Xue Lei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Zi-Shuai An
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Bai-Hong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Qian Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Wen-Jun Gong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Jin-Ming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| | - Wen-Li Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China +86-20-85216052 +86-20-85211436-8611.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University Guangzhou 510631 China
| |
Collapse
|
79
|
Kuki Y, Ohno R, Yoshida K, Takumi S. Heterologous expression of wheat WRKY transcription factor genes transcriptionally activated in hybrid necrosis strains alters abiotic and biotic stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 150:71-79. [PMID: 32120271 DOI: 10.1016/j.plaphy.2020.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Hybrid necrosis and hybrid chlorosis are sometimes observed in interspecific hybrids between the tetraploid wheat cultivar Langdon and diploid wild wheat Aegilops tauschii. Many WRKY transcription factor genes are dramatically upregulated in necrosis and chlorosis wheat hybrids. Here, we isolated cDNA clones for four wheat WRKY transcription factor genes, TaWRKY49, TaWRKY92, TaWRKY112, and TaWRKY142, that were commonly upregulated in the hybrid necrosis and hybrid chlorosis and belonged to the same clade of the WRKY gene family. Expression patterns of the four TaWRKY genes in response to several stress conditions were similar in wheat seeding leaves. The four TaWRKY-GFP fusion proteins were targeted to the nucleus in onion epidermal cells. The TaWRKY gene expression levels were increased by high salt, dehydration, darkness, and blast fungus treatment in common wheat. Expression of either of the TaWRKY genes increased salinity and osmotic stress tolerance accompanied with overexpression of STZ/Zat10, and induced overexpression of the salicylic acid-signal pathway marker gene AtPR1 in transgenic Arabidopsis. TaWRKY142 expression also induced the jasmonic acid-pathway marker gene AtPDF1.2 and enhanced resistance against the fungal pathogen Colletotrichum higginsianum in transgenic Arabidopsis. These results suggest that the four TaWRKY genes act as integrated hubs of multiple stress signaling pathways in wheat and play important roles in autoimmune response-inducing hybrid necrosis and hybrid chlorosis.
Collapse
Affiliation(s)
- Yasunobu Kuki
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan
| | - Ryoko Ohno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan.
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, Kobe, 657-8501, Japan.
| |
Collapse
|
80
|
Crawford T, Karamat F, Lehotai N, Rentoft M, Blomberg J, Strand Å, Björklund S. Specific functions for Mediator complex subunits from different modules in the transcriptional response of Arabidopsis thaliana to abiotic stress. Sci Rep 2020; 10:5073. [PMID: 32193425 PMCID: PMC7081235 DOI: 10.1038/s41598-020-61758-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022] Open
Abstract
Adverse environmental conditions are detrimental to plant growth and development. Acclimation to abiotic stress conditions involves activation of signaling pathways which often results in changes in gene expression via networks of transcription factors (TFs). Mediator is a highly conserved co-regulator complex and an essential component of the transcriptional machinery in eukaryotes. Some Mediator subunits have been implicated in stress-responsive signaling pathways; however, much remains unknown regarding the role of plant Mediator in abiotic stress responses. Here, we use RNA-seq to analyze the transcriptional response of Arabidopsis thaliana to heat, cold and salt stress conditions. We identify a set of common abiotic stress regulons and describe the sequential and combinatorial nature of TFs involved in their transcriptional regulation. Furthermore, we identify stress-specific roles for the Mediator subunits MED9, MED16, MED18 and CDK8, and putative TFs connecting them to different stress signaling pathways. Our data also indicate different modes of action for subunits or modules of Mediator at the same gene loci, including a co-repressor function for MED16 prior to stress. These results illuminate a poorly understood but important player in the transcriptional response of plants to abiotic stress and identify target genes and mechanisms as a prelude to further biochemical characterization.
Collapse
Affiliation(s)
- Tim Crawford
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fazeelat Karamat
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 901 87, Sweden
| | - Nóra Lehotai
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Matilda Rentoft
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 901 87, Sweden
| | - Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 901 87, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, 901 87, Sweden.
| |
Collapse
|
81
|
Margaritopoulou T, Toufexi E, Kizis D, Balayiannis G, Anagnostopoulos C, Theocharis A, Rempelos L, Troyanos Y, Leifert C, Markellou E. Reynoutria sachalinensis extract elicits SA-dependent defense responses in courgette genotypes against powdery mildew caused by Podosphaera xanthii. Sci Rep 2020; 10:3354. [PMID: 32098979 PMCID: PMC7042220 DOI: 10.1038/s41598-020-60148-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew (PM) caused by Podosphaera xanthii is one of the most important courgette diseases with high yield losses and is currently controlled by fungicides and sulphur applications in conventional and organic production. Plant derived elicitors/inducers of resistance are natural compounds that induce resistance to pathogen attack and promote a faster and/or more robust activation of plant defense responses. Giant knotweed (Reynoutria sachalinensis, RS) extract is a known elicitor of plant defenses but its mode of action remains elusive. The aim of this study was to investigate the mechanisms of foliar RS applications and how these affect PM severity and crop performance when used alone or in combination with genetic resistance. RS foliar treatments significantly reduced conidial germination and PM severity on both an intermediate resistance (IR) and a susceptible (S) genotype. RS application triggered plant defense responses, which induced the formation of callose papillae, hydrogen peroxide accumulation and the Salicylic acid (SA) - dependent pathway. Increased SA production was detected along with increased p-coumaric and caffeic acid concentrations. These findings clearly indicate that RS elicits plant defenses notably as a consequence of SA pathway induction.
Collapse
Affiliation(s)
- Theoni Margaritopoulou
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Eleftheria Toufexi
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
- Newcastle University, Nafferton Ecological Farming Group, School of Agriculture Food and Rural Development, Newcastle upon Tyne, NE1 7RU, UK
| | - Dimosthenis Kizis
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - George Balayiannis
- Benaki Phytopathological Institute, Department of Pesticides Control & Phytopharmacy, Laboratory of Chemical Control of Pesticides, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Christos Anagnostopoulos
- Benaki Phytopathological Institute, Department of Pesticides Control & Phytopharmacy, Laboratory of Pesticide Residues, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Andreas Theocharis
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Leonidas Rempelos
- Newcastle University, Nafferton Ecological Farming Group, School of Agriculture Food and Rural Development, Newcastle upon Tyne, NE1 7RU, UK
| | - Yerasimos Troyanos
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Non-Parasitic Diseases, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Carlo Leifert
- Centre for Organics Research, Southern Cross University, Military Rd., Lismore, NSW, Australia
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372, Oslo, Norway
| | - Emilia Markellou
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece.
| |
Collapse
|
82
|
The RNA-Dependent RNA Polymerase NIb of Potyviruses Plays Multifunctional, Contrasting Roles during Viral Infection. Viruses 2020; 12:v12010077. [PMID: 31936267 PMCID: PMC7019339 DOI: 10.3390/v12010077] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Potyviruses represent the largest group of known plant RNA viruses and include many agriculturally important viruses, such as Plum pox virus, Soybean mosaic virus, Turnip mosaic virus, and Potato virus Y. Potyviruses adopt polyprotein processing as their genome expression strategy. Among the 11 known viral proteins, the nuclear inclusion protein b (NIb) is the RNA-dependent RNA polymerase responsible for viral genome replication. Beyond its principal role as an RNA replicase, NIb has been shown to play key roles in diverse virus–host interactions. NIb recruits several host proteins into the viral replication complexes (VRCs), which are essential for the formation of functional VRCs for virus multiplication, and interacts with the sumoylation pathway proteins to suppress NPR1-mediated immunity response. On the other hand, NIb serves as a target of selective autophagy as well as an elicitor of effector-triggered immunity, resulting in attenuated virus infection. These contrasting roles of NIb provide an excellent example of the complex co-evolutionary arms race between plant hosts and potyviruses. This review highlights the current knowledge about the multifunctional roles of NIb in potyvirus infection, and discusses future research directions.
Collapse
|
83
|
Ding Y, Dommel MR, Wang C, Li Q, Zhao Q, Zhang X, Dai S, Mou Z. Differential Quantitative Requirements for NPR1 Between Basal Immunity and Systemic Acquired Resistance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:570422. [PMID: 33072146 PMCID: PMC7530841 DOI: 10.3389/fpls.2020.570422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/03/2020] [Indexed: 05/13/2023]
Abstract
Non-expressor of pathogenesis-related (PR) genes1 (NPR1) is a key transcription coactivator of plant basal immunity and systemic acquired resistance (SAR). Two mutant alleles, npr1-1 and npr1-3, have been extensively used for dissecting the role of NPR1 in various signaling pathways. However, it is unknown whether npr1-1 and npr1-3 are null mutants. Moreover, the NPR1 transcript levels are induced two- to threefold upon pathogen infection or salicylic acid (SA) treatment, but the biological relevance of the induction is unclear. Here, we used molecular and biochemical approaches including quantitative PCR, immunoblot analysis, site-directed mutagenesis, and CRISPR/Cas9-mediated gene editing to address these questions. We show that npr1-3 is a potential null mutant, whereas npr1-1 is not. We also demonstrated that a truncated npr1 protein longer than the hypothesized npr1-3 protein is not active in SA signaling. Furthermore, we revealed that TGACG-binding (TGA) factors are required for NPR1 induction, but the reverse TGA box in the 5'UTR of NPR1 is dispensable for the induction. Finally, we show that full induction of NPR1 is required for basal immunity, but not for SAR, whereas sufficient basal transcription is essential for full-scale establishment of SAR. Our results indicate that induced transcript accumulation may be differentially required for different functions of a specific gene. Moreover, as npr1-1 is not a null mutant, we recommend that future research should use npr1-3 and potential null T-DNA insertion mutants for dissecting NPR1's function in various physiopathological processes.
Collapse
Affiliation(s)
- Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Matthew R. Dommel
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Qi Zhao
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Shaojun Dai
- Alkali Soil Natural Environmental Science Center, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
- *Correspondence: Zhonglin Mou,
| |
Collapse
|
84
|
Genome-Wide Identification and Analysis of the NPR1-Like Gene Family in Bread Wheat and Its Relatives. Int J Mol Sci 2019; 20:ijms20235974. [PMID: 31783558 PMCID: PMC6928982 DOI: 10.3390/ijms20235974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022] Open
Abstract
NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and its paralogues NPR3 and NPR4, are bona fide salicylic acid (SA) receptors and play critical regulatory roles in plant immunity. However, comprehensive identification and analysis of the NPR1-like gene family had not been conducted so far in bread wheat and its relatives. Here, a total of 17 NPR genes in Triticum aestivum, five NPR genes in Triticum urartu, 12 NPR genes in Triticum dicoccoides, and six NPR genes in Aegilops tauschii were identified using bioinformatics approaches. Protein properties of these putative NPR1-like genes were also described. Phylogenetic analysis showed that the 40 NPR1-like proteins, together with 40 NPR1-related proteins from other plant species, were clustered into three major clades. The TaNPR1-like genes belonging to the same Arabidopsis subfamilies shared similar exon-intron patterns and protein domain compositions, as well as conserved motifs and amino acid residues. The cis-regulatory elements related to SA were identified in the promoter regions of TaNPR1-like genes. The TaNPR1-like genes were intensively mapped on the chromosomes of homoeologous groups 3, 4, and 5, except TaNPR2-D. Chromosomal distribution and collinearity analysis of NPR1-like genes among bread wheat and its relatives revealed that the evolution of this gene family was more conservative following formation of hexaploid wheat. Transcriptome data analysis indicated that TaNPR1-like genes exhibited tissue/organ-specific expression patterns and some members were induced under biotic stress. These findings lay the foundation for further functional characterization of NPR1-like proteins in bread wheat and its relatives.
Collapse
|
85
|
Affiliation(s)
- Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, VIB Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|