51
|
Fan XW, Sun JL, Cai Z, Zhang F, Li YZ, Palta JA. MeSWEET15a/b genes play a role in the resistance of cassava (Manihot esculenta Crantz) to water and salt stress by modulating sugar distribution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:394-405. [PMID: 36481708 DOI: 10.1016/j.plaphy.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The sugar transporter SWEET plays a role in plant growth, carbon allocation, and abiotic stress resistance. We examined the function of SWEET in cassava (Manihot esculenta Crantz) under water and salt stress. Bioinformatics, subcellular localization, yeast deficient complementation, and virus-induced gene silencing (VIGS) were used to examine the function of SWEET in cassava. Twenty-eight MeSWEETs genes were found based on the conserved domain MtN3/saliva of SWEET transporters, two MeSWEET15a/b of them were identified by phylogenetic analysis, which were located on the cell membrane. They transfer sucrose, fructose, glucose, and mannitol from culture media to yeast cells, predominately transferring sucrose via bleeding fluid saps in plant. Leaf sucrose content was increased in MeSWEET15a/b-silenced cassava plants, resulting in changes in carbon distribution, with an increase in starch accumulation in the leaves and a decrease in starch accumulation in the roots. The silencing of MeSWEET15a/b genes led to tolerance to water and salt stress, consistent with a high accumulation of osmolytes, and low lipid membrane peroxidation. Changes in sugar distribution increased the expression of MeTOR and MeE2Fa in pTRV2-MeSWEET15a and pTRV2-MeSWEET15b cassava leaves. MeSWEET15a/b acts as pivotal modulators of sugar distribution and tolerance to water and high salt stress in cassava.
Collapse
Affiliation(s)
- Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China.
| | - Jin-Liang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Zheng Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Fan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University; 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jairo A Palta
- CSIRO, Agriculture Flagship, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Plant Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| |
Collapse
|
52
|
Pinpointing Genomic Regions and Candidate Genes Associated with Seed Oil and Protein Content in Soybean through an Integrative Transcriptomic and QTL Meta-Analysis. Cells 2022; 12:cells12010097. [PMID: 36611890 PMCID: PMC9818467 DOI: 10.3390/cells12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 12/28/2022] Open
Abstract
Soybean with enriched nutrients has emerged as a prominent source of edible oil and protein. In the present study, a meta-analysis was performed by integrating quantitative trait loci (QTLs) information, region-specific association and transcriptomic analysis. Analysis of about a thousand QTLs previously identified in soybean helped to pinpoint 14 meta-QTLs for oil and 16 meta-QTLs for protein content. Similarly, region-specific association analysis using whole genome re-sequenced data was performed for the most promising meta-QTL on chromosomes 6 and 20. Only 94 out of 468 genes related to fatty acid and protein metabolic pathways identified within the meta-QTL region were found to be expressed in seeds. Allele mining and haplotyping of these selected genes were performed using whole genome resequencing data. Interestingly, a significant haplotypic association of some genes with oil and protein content was observed, for instance, in the case of FAD2-1B gene, an average seed oil content of 20.22% for haplotype 1 compared to 15.52% for haplotype 5 was observed. In addition, the mutation S86F in the FAD2-1B gene produces a destabilizing effect of (ΔΔG Stability) -0.31 kcal/mol. Transcriptomic analysis revealed the tissue-specific expression of candidate genes. Based on their higher expression in seed developmental stages, genes such as sugar transporter, fatty acid desaturase (FAD), lipid transporter, major facilitator protein and amino acid transporter can be targeted for functional validation. The approach and information generated in the present study will be helpful in the map-based cloning of regulatory genes, as well as for marker-assisted breeding in soybean.
Collapse
|
53
|
Singh J, Das S, Jagadis Gupta K, Ranjan A, Foyer CH, Thakur JK. Physiological implications of SWEETs in plants and their potential applications in improving source-sink relationships for enhanced yield. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 36529911 PMCID: PMC10363763 DOI: 10.1111/pbi.13982] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
54
|
Zhang B, Li YN, Wu BH, Yuan YY, Zhao ZY. Plasma Membrane-Localized Transporter MdSWEET12 Is Involved in Sucrose Unloading in Apple Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15517-15530. [PMID: 36468541 DOI: 10.1021/acs.jafc.2c05102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sugar content is an important factor determining the flavor in apple fruit. Sugar unloading is a prerequisite step for sugar accumulation. However, little is known about sugar unloading mechanisms in apple. Transcriptomic sequencing of two apple varieties, "Envy" and "Pacific Rose," with significantly different sugar content was performed. MdSWEET12a from the SWEET transporter family was differentially expressed. Further study of the MdSWEET12a showed that this plasma membrane-localized transporter protein-encoding gene was mainly expressed in sieve element-companion cells (SE-CC) in the fruit, which was positively correlated with the sucrose accumulation during the development of "Envy" apple. Consistently manipulating the gene expression through either transient overexpression or silencing significantly increased or decreased the sugar content in apple fruit, respectively. Complementary growth experiments in mutant yeast cells indicated that MdSWEET12a transported sucrose. Heterologous expression of MdSWEET12a in tomato increased the expression of genes related to sugar metabolism and transport, leading to increased sugar content. These findings underpin the involvement of MdSWEET12a in sugar unloading in apple fruit.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Ya-Nan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| | - Bing-Hua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Horticulture, Fujian A&F University, Fuzhou 350002, China
| | - Yang-Yang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zheng-Yang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Shaanxi Research Center of Apple Engineering and Technology, Yangling 712100, Shaanxi, China
| |
Collapse
|
55
|
LoSWEET14, a Sugar Transporter in Lily, Is Regulated by Transcription Factor LoABF2 to Participate in the ABA Signaling Pathway and Enhance Tolerance to Multiple Abiotic Stresses in Tobacco. Int J Mol Sci 2022; 23:ijms232315093. [PMID: 36499419 PMCID: PMC9739489 DOI: 10.3390/ijms232315093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Sugar transport and distribution plays an important role in lily bulb development and resistance to abiotic stresses. In this study, a member of the Sugar Will Eventually be Exported Transporters (SWEET) gene family, LoSWEET14, from Oriental hybrid lily 'Sorbonne' was identified. LoSWEET14 encodes a protein of 278 amino acids and is capable of transporting sucrose and some types of hexoses. The transcript level of the LoSWEET14 gene was significantly increased under various stress conditions including drought, cold, salt stresses, and abscisic acid (ABA) treatment. Overexpression of LoSWEET14 in tobacco (Nicotiana tabacum) showed that the transgenic lines had larger leaves, accumulated more soluble sugars, and were more resistant to drought, cold, and salt stresses, while becoming more sensitive to ABA compared with wild-type lines. Promoter analysis revealed that multiple stress-related cis-acting elements were found in the promoter of LoSWEET14. According to the distribution of cis-acting elements, different lengths of 5'-deletion fragments were constructed and the LoSWEET14-pro3(-540 bp) was found to be able to drive GUS gene expression in response to abiotic stresses and ABA treatment. Furthermore, a yeast one hybrid (Y1H) assay proved that the AREB/ABF (ABRE-binding protein/ABRE-binding factor) from lilies (LoABF2) could bind to the promoter of LoSWEET14. These findings indicated that LoSWEET14 is induced by LoABF2 to participate in the ABA signaling pathway to promote soluble sugar accumulation in response to multiple abiotic stresses.
Collapse
|
56
|
Lin W, Pu Y, Liu S, Wu Q, Yao Y, Yang Y, Zhang X, Sun W. Genome-Wide Identification and Expression Patterns of AcSWEET Family in Pineapple and AcSWEET11 Mediated Sugar Accumulation. Int J Mol Sci 2022; 23:ijms232213875. [PMID: 36430356 PMCID: PMC9697096 DOI: 10.3390/ijms232213875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Pineapple (Ananas comosus L.) is an important fruit crop in tropical regions, and it requires efficient sugar allocation during fruit development. Sugars Will Eventually be Exported Transporters (SWEETs) are a group of novel sugar transporters which play critical roles in seed and fruit development. However, the function of AcSWEETs remains unknown in the sugar accumulation. Herein, 17 AcSWEETs were isolated and unevenly located in 11 chromosomes. Analysis of a phylogenetic tree indicated that 17 genes were classified into four clades, and the majority of AcSWEETs in each clade shared similar conserved motifs and gene structures. Tissue-specific gene expression showed that expression profiles of AcSWEETs displayed differences in different tissues and five AcSWEETs were strongly expressed during fruit development. AcSWEET11 was highly expressed in the stage of mature fruits in 'Tainong16' and 'Comte de paris', which indicates that AcSWEET11 was important to fruit development. Subcellular localization analysis showed that AcSWEET11 was located in the cell membrane. Notably, overexpression of AcSWEET11 could improve sugar accumulation in pineapple callus and transgenic tomato, which suggests that AcSWEET11 might positively contribute to sugar accumulation in pineapple fruit development. These results may provide insights to enhance sugar accumulation in fruit, thus improving pineapple quality in the future.
Collapse
Affiliation(s)
- Wenqiu Lin
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yue Pu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shenghui Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Qingsong Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yanli Yao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Yumei Yang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
| | - Xiumei Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Correspondence: (X.Z.); (W.S.)
| | - Weisheng Sun
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China
- Correspondence: (X.Z.); (W.S.)
| |
Collapse
|
57
|
Ren Z, Zhang D, Jiao C, Li D, Wu Y, Wang X, Gao C, Lin Y, Ruan Y, Xia Y. Comparative transcriptome and metabolome analyses identified the mode of sucrose degradation as a metabolic marker for early vegetative propagation in bulbs of Lycoris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:115-134. [PMID: 35942603 PMCID: PMC9826282 DOI: 10.1111/tpj.15935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/01/2023]
Abstract
Vegetative propagation (VP) is an important practice for production in many horticultural plants. Sugar supply constitutes the basis of VP in bulb flowers, but the underlying molecular basis remains elusive. By performing a combined sequencing technologies coupled with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry approach for metabolic analyses, we compared two Lycoris species with contrasting regeneration rates: high-regeneration Lycoris sprengeri and low-regeneration Lycoris aurea. A comprehensive multi-omics analyses identified both expected processes involving carbohydrate metabolism and transcription factor networks, as well as the metabolic characteristics for each developmental stage. A higher abundance of the differentially expressed genes including those encoding ethylene responsive factors was detected at bulblet initiation stage compared to the late stage of bulblet development. High hexose-to-sucrose ratio correlated to bulblet formation across all the species examined, indicating its role in the VP process in Lycoris bulb. Importantly, a clear difference between cell wall invertase (CWIN)-catalyzed sucrose unloading in high-regeneration species and the sucrose synthase-catalyzed pathway in low-regeneration species was observed at the bulblet initiation stage, which was supported by findings from carboxyfluorescein tracing and quantitative real-time PCR analyses. Collectively, the findings indicate a sugar-mediated model of the regulation of VP in which high CWIN expression or activity may promote bulblet initiation via enhancing apoplasmic unloading of sucrose or sugar signals, whereas the subsequent high ratio of hexose-to-sucrose likely supports cell division characterized in the next phase of bulblet formation.
Collapse
Affiliation(s)
- Zi‐Ming Ren
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Dong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and InsectsInstitute of Biotechnology, Zhejiang UniversityHangzhou310058China
| | - Dan‐Qing Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xiu‐Yun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Ye‐Fan Lin
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yong‐Ling Ruan
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Yazhou Bay LaboratorySanya572024China
| | - Yi‐Ping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| |
Collapse
|
58
|
Hooker JC, Nissan N, Luckert D, Zapata G, Hou A, Mohr RM, Glenn AJ, Barlow B, Daba KA, Warkentin TD, Lefebvre F, Golshani A, Cober ER, Samanfar B. GmSWEET29 and Paralog GmSWEET34 Are Differentially Expressed between Soybeans Grown in Eastern and Western Canada. PLANTS 2022; 11:plants11182337. [PMID: 36145738 PMCID: PMC9502396 DOI: 10.3390/plants11182337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Over the past two decades soybeans grown in western Canada have persistently had lower seed protein than those grown in eastern Canada. To understand the discrepancy in seed protein content between eastern- and western-grown soybeans, RNA-seq and differential expression analysis have been investigated. Ten soybean genotypes, ranging from low to high in seed protein content, were grown in four locations across eastern (Ottawa) and western (Morden, Brandon, and Saskatoon) Canada. Differential expression analysis revealed 34 differentially expressed genes encoding Glycine max Sugars Will Eventually be Exported Transporters (GmSWEETs), including paralogs GmSWEET29 and GmSWEET34 (AtSWEET2 homologs) that were consistently upregulated across all ten genotypes in each of the western locations over three years. GmSWEET29 and GmSWEET34 are likely candidates underlying the lower seed protein content of western soybeans. GmSWEET20 (AtSWEET12 homolog) was downregulated in the western locations and may also play a role in lower seed protein content. These findings are valuable for improving soybean agriculture in western growing regions, establishing more strategic and efficient agricultural practices.
Collapse
Affiliation(s)
- Julia C. Hooker
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Doris Luckert
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Gerardo Zapata
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada
| | - Anfu Hou
- Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Ramona M. Mohr
- Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada
| | - Aaron J. Glenn
- Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada
| | - Brent Barlow
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Ketema A. Daba
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Thomas D. Warkentin
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - François Lefebvre
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
59
|
Li J, Liu C, Yu Q, Cao Z, Yang Y, Jia B, Su Y, Li G, Qin G. Identification of sugar transporter (SWEET) genes involved in pomegranate seed coat sugar accumulation. 3 Biotech 2022; 12:181. [PMID: 35875178 PMCID: PMC9296756 DOI: 10.1007/s13205-022-03248-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Sugar content of the outer seed coat and hardness of the inner seed coat are important traits of the pomegranate fruit. The translocation of sugars across biological membranes, mediated by SWEET transporters, is critical to seed development. In this study, we identified 16 PgrSWEET genes distributed on six chromosomes in the pomegranate genome. According to the phylogenetic analysis, PgrSWEET proteins were divided into four groups. Tandem and segmental duplications contributed to the expansion of the PgrSWEET family, while functional redundancy and diversification may have occurred among SWEET members according to analyses of evolution and gene expression. RNA-seq and qRT-PCR analyses revealed that PgrSWEET1a and PgrSWEET9 were highly expressed in the inner seed coat, and the expression levels gradually increased during seed development. Moreover, the relative expression levels of PgrSWEET1a and PgrSWEET9 in a hard-seeded cultivar were higher than those in a soft-seeded cultivar, indicating that PgrSWEET1a and PgrSWEET9 might function in the inner seed coat development by accumulating sugar metabolites. We also found that PgrSWEET2 was highly expressed in the outer seed coat during seed development, and the protein was localized to the tonoplast, indicating that PgrSWEET2 is likely a candidate regulating sugar accumulation or reutilization in the vacuoles of the outer seed coat. Genes encoding transcription factors probably regulating the candidate PgrSWEET genes were chosen by co-expression analysis. These results not only helped to characterize PgrSWEET genes but also provided an insight into their functions in relation to seed coat development. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03248-6.
Collapse
Affiliation(s)
- Jiyu Li
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Chunyan Liu
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Qing Yu
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Zhen Cao
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Yuan Yang
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Botao Jia
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Ying Su
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Guixiang Li
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Gaihua Qin
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
- Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| |
Collapse
|
60
|
Li D, Liu B, Wang Z, Li X, Sun S, Ma C, Wang L, Wang S. Sugar accumulation may be regulated by a transcriptional cascade of ABA-VvGRIP55-VvMYB15-VvSWEET15 in grape berries under root restriction. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111288. [PMID: 35717774 DOI: 10.1016/j.plantsci.2022.111288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
In the southern of China, precipitation is abundant during the grape growing season, which results in lower sugar content, and finally reduces the quality and yield of grape berries and leads to lower economic benefits. The root restriction cultivation method is an important abiotic stress that limits the disordered growth and development of roots, and it favors the accumulation of sugar and abscisic acid. However, the relationship between ABA and sugar accumulation under root restriction remains unclear. Here, we tested the expression levels of several transcription factors and sugar metabolism-related genes and found that root restriction cultivation could induce higher expression of VvMYB15 and VvSWEET15. The VvMYB15 transcription factor was found to bind to the promoter of VvSWEET15 and activate its expression, furthermore, transient overexpression of VvMYB15 in strawberry fruits and grape berries can promote sugar accumulation and increase the expression level of sugar metabolism-related genes, indicating that VvMYB15 is a positive regulator of sugar accumulation. In addition, the endogenous ABA content and expression level of VvGRIP55, which is highly responsive to ABA, were significantly increased under root restriction, and VvGRIP55 could bind to the promoter of VvMYB15 and activate its expression. Therefore, our results demonstrated that the ABA-responsive factor VvGRIP55 can promote sugar accumulation through VvMYB15 and VvSWEET15, suggesting a mechanism by which ABA regulates sugar accumulation under root restriction.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyang Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenping Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sijie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Agro-food Science and Technology, Key Laboratory of Agro-products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
61
|
Characterization of the SWEET Gene Family in Longan (Dimocarpus longan) and the Role of DlSWEET1 in Cold Tolerance. Int J Mol Sci 2022; 23:ijms23168914. [PMID: 36012186 PMCID: PMC9408694 DOI: 10.3390/ijms23168914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Sugars will eventually be exported transporters (SWEET), a group of relatively novel sugar transporters, that play important roles in phloem loading, seed and fruit development, pollen development, and stress response in plants. Longan (Dimocarpus longan), a subtropic fruit tree with high economic value, is sensitive to cold. However, whether the SWEET gene family plays a role in conferring cold tolerance upon longan remains unknown. Here, a total of 20 longan SWEET (DlSWEET) genes were identified, and their phylogenetic relationships, gene structures, cis-acting elements, and tissue-specific expression patterns were systematically analyzed. This family is divided into four clades. Gene structures and motifs analyses indicated that the majority of DlSWEETs in each clade shared similar exon–intron organization and conserved motifs. Tissue-specific gene expression suggested diverse possible functions for DlSWEET genes. Cis-elements analysis and quantitative real-time PCR (qRT-PCR) analysis revealed that DlSWEET1 responded to cold stress. Notably, the overexpression of DlSWEET1 improved cold tolerance in transgenic Arabidopsis, suggesting that DlSWEET1 might play a positive role in D. longan’s responses to cold stress. Together, these results contribute to a better understanding of SWEET genes, which could serve as a foundation for the further functional identification of these genes.
Collapse
|
62
|
Cao Y, Jia S, Chen L, Zeng S, Zhao T, Karikari B. Identification of major genomic regions for soybean seed weight by genome-wide association study. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:38. [PMID: 37313505 PMCID: PMC10248628 DOI: 10.1007/s11032-022-01310-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The hundred-seed weight (HSW) is an important yield component and one of the principal breeding traits in soybean. More than 250 quantitative trait loci (QTL) for soybean HSW have been identified. However, most of them have a large genomic region or are environmentally sensitive, which provide limited information for improving the phenotype in marker-assisted selection (MAS) and identifying the candidate genes. Here, we utilized 281 soybean accessions with 58,112 single nucleotide polymorphisms (SNPs) to dissect the genetic basis of HSW in across years in the northern Shaanxi province of China through one single-locus (SL) and three multi-locus (ML) genome-wide association study (GWAS) models. As a result, one hundred and fifty-four SNPs were detected to be significantly associated with HSW in at least one environment via SL-GWAS model, and 27 of these 154 SNPs were detected in all (three) environments and located within 7 linkage disequilibrium (LD) block regions with the distance of each block ranged from 40 to 610 Kb. A total of 15 quantitative trait nucleotides (QTNs) were identified by three ML-GWAS models. Combined with the results of different GWAS models, the 7 LD block regions associated with HSW detected by SL-GWAS model could be verified directly or indirectly by the results of ML-GWAS models. Eleven candidate genes underlying the stable loci that may regulate seed weight in soybean were predicted. The significantly associated SNPs and the stable loci as well as predicted candidate genes may be of great importance for marker-assisted breeding, polymerization breeding, and gene discovery for HSW in soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01310-y.
Collapse
Affiliation(s)
- Yongce Cao
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Shihao Jia
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Liuxing Chen
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Shunan Zeng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, Shaanxi, 716000 China
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute of Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, 00233 Tamale, Ghana
| |
Collapse
|
63
|
Lu S, Fang C, Abe J, Kong F, Liu B. Current overview on the genetic basis of key genes involved in soybean domestication. ABIOTECH 2022; 3:126-139. [PMID: 36312442 PMCID: PMC9590488 DOI: 10.1007/s42994-022-00074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
Abstract
Modern crops were created through the domestication and genetic introgression of wild relatives and adaptive differentiation in new environments. Identifying the domestication-related genes and unveiling their molecular diversity provide clues for understanding how the domesticated variants were selected by ancient people, elucidating how and where these crops were domesticated. Molecular genetics and genomics have explored some domestication-related genes in soybean (Glycine max). Here, we summarize recent studies about the quantitative trait locus (QTL) and genes involved in the domestication traits, introduce the functions of these genes, clarify which alleles of domesticated genes were selected during domestication. A deeper understanding of soybean domestication could help to break the bottleneck of modern breeding by highlighting unused genetic diversity not selected in the original domestication process, as well as highlighting promising new avenues for the identification and research of important agronomic traits among different crop species.
Collapse
Affiliation(s)
- Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-0808 Japan
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
64
|
Liu M, Liu T, Lu J, Zhou Y, Liu S, Jiao P, Liu S, Qu J, Guan S, Ma Y. Characterization and Functional Analysis of ZmSWEET15a in Maize. DNA Cell Biol 2022; 41:564-574. [PMID: 35593918 PMCID: PMC9245729 DOI: 10.1089/dna.2021.1144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sugars will eventually be exported transporters (SWEETs) gene family is a new type of sugar transporters, which plays an important role in plant growth and development, physiological metabolism, and abiotic stress. In this study, we used quantitative real-time PCR to analyze the expression of ZmSWEET15a gene in different organs of maize and under different abiotic stresses. The results showed that ZmSWEET15a was expressed in roots, stems, leaves, and grains, with the highest expression level in leaves, which was highly correlated with leaf development. Under the treatment of polyethylene glycol (PEG), NaCl, H2O2, and abscisic acid stress, the expression of ZmSWEET15a was upregulated, while under the treatment of cold stress, the expression of ZmSWEET15a was inhibited. In sugar-specific experiments, we found that sucrose was the most effective carbon source for maize seed germination. The expression analysis of ZmSWEET15a in different carbon sources suggested that the expression of ZmSWEET15a was more likely to be induced by sucrose. Overexpression of ZmSWEET15a in maize plants could reduce the sucrose content in leaves and increase the sucrose content in grains. The heterologous expression of ZmSWEET15a in the yeast mutant strain SUSY7/ura indicated that ZmSWEET15a is a sucrose transporter and pH independent. This study provides new insight into sugar transport and carbohydrate partitioning in maize and other crops, and provide more genetic information for improving crop quality at the molecular level.
Collapse
Affiliation(s)
- Mengtong Liu
- Crop Genetics and Breeding Lines, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Tongyu Liu
- Crop Genetics and Breeding Lines, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jianyu Lu
- Crop Genetics and Breeding Lines, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Yangyang Zhou
- Crop Genetics and Breeding Lines, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Shubo Liu
- Crop Genetics and Breeding Lines, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- Crop Genetics and Breeding Lines, College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- Department of Biotechnology, College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Department of Biotechnology, College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- Department of Biotechnology, College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- Department of Biotechnology, College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
65
|
Xue X, Wang J, Shukla D, Cheung LS, Chen LQ. When SWEETs Turn Tweens: Updates and Perspectives. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:379-403. [PMID: 34910586 DOI: 10.1146/annurev-arplant-070621-093907] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields.
Collapse
Affiliation(s)
- Xueyi Xue
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Jiang Wang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Li-Qing Chen
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
66
|
Genome-Wide Identification, Expression Patterns and Sugar Transport of the Physic Nut SWEET Gene Family and a Functional Analysis of JcSWEET16 in Arabidopsis. Int J Mol Sci 2022; 23:ijms23105391. [PMID: 35628209 PMCID: PMC9142063 DOI: 10.3390/ijms23105391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
The Sugars Will Eventually be Exported Transporters (SWEET) family is a class of sugar transporters that play key roles in phloem loading, seed filling, pollen development and the stress response in plants. Here, a total of 18 JcSWEET genes were identified in physic nut (Jatropha curcas L.) and classified into four clades by phylogenetic analysis. These JcSWEET genes share similar gene structures, and alternative splicing of messenger RNAs was observed for five of the JcSWEET genes. Three (JcSWEET1/4/5) of the JcSWEETs were found to possess transport activity for hexose molecules in yeast. Real-time quantitative PCR analysis of JcSWEETs in different tissues under normal growth conditions and abiotic stresses revealed that most are tissue-specifically expressed, and 12 JcSWEETs responded to either drought or salinity. The JcSWEET16 gene responded to drought and salinity stress in leaves, and the protein it encodes is localized in both the plasma membrane and the vacuolar membrane. The overexpression of JcSWEET16 in Arabidopsis thaliana modified the flowering time and saline tolerance levels but not the drought tolerance of the transgenic plants. Together, these results provide insights into the characteristics of SWEET genes in physic nut and could serve as a basis for cloning and further functional analysis of these genes.
Collapse
|
67
|
Yao T, Gai XT, Pu ZJ, Gao Y, Xuan YH. From Functional Characterization to the Application of SWEET Sugar Transporters in Plant Resistance Breeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5273-5283. [PMID: 35446562 DOI: 10.1021/acs.jafc.2c00582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The occurrence of plant diseases severely affects the quality and quantity of plant production. Plants adapt to the constant invasion of pathogens and gradually form a series of defense mechanisms, such as pathogen-associated molecular pattern-triggered immunity and microbial effector-triggered immunity. Moreover, many pathogens have evolved to inhibit the immune defense system and acquire plant nutrients as a result of their coevolution with plants. The sugars will eventually be exported transporters (SWEETs) are a novel family of sugar transporters that function as uniporters. They provide a channel for pathogens, including bacteria, fungi, and viruses, to hijack sugar from the host. In this review, we summarize the functions of SWEETs in nectar secretion, grain loading, senescence, and long-distance transport. We also focus on the interaction between the SWEET genes and pathogens. In addition, we provide insight into the potential application of SWEET genes to enhance disease resistance through the use of genome editing tools. The summary and perspective of this review will deepen our understanding of the role of SWEETs during the process of pathogen infection and provide insights into resistance breeding.
Collapse
Affiliation(s)
- Tingshan Yao
- Citrus Research Institute, Southwest University, Chongqing 400712, People's Republic of China
- National Citrus Engineering Research Center, Chongqing 400712, People's Republic of China
| | - Xiao Tong Gai
- Agronomy Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, People's Republic of China
| | - Zhong Ji Pu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yue Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning 110866, People's Republic of China
| |
Collapse
|
68
|
Ko HY, Tseng HW, Ho LH, Wang L, Chang TF, Lin A, Ruan YL, Neuhaus HE, Guo WJ. Hexose translocation mediated by SlSWEET5b is required for pollen maturation in Solanum lycopersicum. PLANT PHYSIOLOGY 2022; 189:344-359. [PMID: 35166824 PMCID: PMC9070840 DOI: 10.1093/plphys/kiac057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 05/31/2023]
Abstract
Pollen fertility is critical for successful fertilization and, accordingly, for crop yield. While sugar unloading affects the growth and development of all types of sink organs, the molecular nature of sugar import to tomato (Solanum lycopersicum) pollen is poorly understood. However, sugar will eventually be exported transporters (SWEETs) have been proposed to be involved in pollen development. Here, reverse transcription-quantitative polymerase chain reaction (PCR) revealed that SlSWEET5b was markedly expressed in flowers when compared to the remaining tomato SlSWEETs, particularly in the stamens of maturing flower buds undergoing mitosis. Distinct accumulation of SlSWEET5b-β-glucuronidase activities was present in mature flower buds, especially in anther vascular and inner cells, symplasmic isolated microspores (pollen grains), and styles. The demonstration that SlSWEET5b-GFP fusion proteins are located in the plasma membrane supports the idea that the SlSWEET5b carrier functions in apoplasmic sugar translocation during pollen maturation. This is consistent with data from yeast complementation experiments and radiotracer uptake, showing that SlSWEET5b operates as a low-affinity hexose-specific passive facilitator, with a Km of ∼36 mM. Most importantly, RNAi-mediated suppression of SlSWEET5b expression resulted in shrunken nucleus-less pollen cells, impaired germination, and low seed yield. Moreover, stamens from SlSWEET5b-silenced tomato mutants showed significantly lower amounts of sucrose (Suc) and increased invertase activity, indicating reduced carbon supply and perturbed Suc homeostasis in these tissues. Taken together, our findings reveal the essential role of SlSWEET5b in mediating apoplasmic hexose import into phloem unloading cells and into developing pollen cells to support pollen mitosis and maturation in tomato flowers.
Collapse
Affiliation(s)
| | | | - Li-Hsuan Ho
- Plant Physiology, University of Kaiserslautern, 22 D-67663, Kaiserslautern, Erwin-Schrödinger-Straße, Germany
| | - Lu Wang
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Tzu-Fang Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 7013, Taiwan
| | - Annie Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 7013, Taiwan
| | - Yong-Ling Ruan
- School of Environmental and Life Sciences and Australia-China Research Centre for Crop Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, 22 D-67663, Kaiserslautern, Erwin-Schrödinger-Straße, Germany
| | | |
Collapse
|
69
|
Morin A, Maurousset L, Vriet C, Lemoine R, Doidy J, Pourtau N. Carbon fluxes and environmental interactions during legume development, with a specific focus on Pisum sativum. PHYSIOLOGIA PLANTARUM 2022; 174:e13729. [PMID: 35662039 PMCID: PMC9328368 DOI: 10.1111/ppl.13729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Grain legumes are major food crops cultivated worldwide for their seeds with high nutritional content. To answer the growing concern about food safety and protein autonomy, legume cultivation must increase in the coming years. In parallel, current agricultural practices are facing environmental challenges, including global temperature increase and more frequent and severe episodes of drought stress. Crop yield directly relies on carbon allocation and is particularly affected by these global changes. We review the current knowledge on source-sink relationships and carbon resource allocation at all developmental stages, from germination to vegetative growth and seed production in grain legumes, focusing on pea (Pisum sativum). We also discuss how these source-sink relationships and carbon fluxes are influenced by biotic and abiotic factors. Major agronomic traits, including seed yield and quality, are particularly impacted by drought, temperatures, salinity, waterlogging, or pathogens and can be improved through the promotion of beneficial soil microorganisms or through optimized plant carbon resource allocation. Altogether, our review highlights the need for a better understanding of the cellular and molecular mechanisms regulating carbon fluxes from source leaves to sink organs, roots, and seeds. These advancements will further improve our understanding of yield stability and stress tolerance and contribute to the selection of climate-resilient crops.
Collapse
Affiliation(s)
- Amélie Morin
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Laurence Maurousset
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Cécile Vriet
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Rémi Lemoine
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Joan Doidy
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| | - Nathalie Pourtau
- Université de Poitiers, UMR CNRS 7267, EBI "Ecologie et Biologie des Interactions"PoitiersFrance
| |
Collapse
|
70
|
Wen S, Neuhaus HE, Cheng J, Bie Z. Contributions of sugar transporters to crop yield and fruit quality. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2275-2289. [PMID: 35139196 DOI: 10.1093/jxb/erac043] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 05/09/2023]
Abstract
The flux, distribution, and storage of soluble sugars regulate crop yield in terms of starch, oil, protein, and total carbohydrates, and affect the quality of many horticultural products. Sugar transporters contribute to phloem loading and unloading. The mechanisms of phloem loading have been studied in detail, but the complex and diverse mechanisms of phloem unloading and sugar storage in sink organs are less explored. Unloading and subsequent transport mechanisms for carbohydrates vary in different sink organs. Analyzing the transport and storage mechanisms of carbohydrates in important storage organs, such as cereal seeds, fruits, or stems of sugarcane, will provide information for genetic improvements to increase crop yield and fruit quality. This review discusses current research progress on sugar transporters involved in carbohydrate unloading and storage in sink organs. The roles of sugar transporters in crop yield and the accumulation of sugars are also discussed to highlight their contribution to efficient breeding.
Collapse
Affiliation(s)
- Suying Wen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany
| | - Jintao Cheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China
| |
Collapse
|
71
|
Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, Kumar S. Emerging Roles of SWEET Sugar Transporters in Plant Development and Abiotic Stress Responses. Cells 2022; 11:cells11081303. [PMID: 35455982 PMCID: PMC9031177 DOI: 10.3390/cells11081303] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Sugars are the major source of energy in living organisms and play important roles in osmotic regulation, cell signaling and energy storage. SWEETs (Sugars Will Eventually be Exported Transporters) are the most recent family of sugar transporters that function as uniporters, facilitating the diffusion of sugar molecules across cell membranes. In plants, SWEETs play roles in multiple physiological processes including phloem loading, senescence, pollen nutrition, grain filling, nectar secretion, abiotic (drought, heat, cold, and salinity) and biotic stress regulation. In this review, we summarized the role of SWEET transporters in plant development and abiotic stress. The gene expression dynamics of various SWEET transporters under various abiotic stresses in different plant species are also discussed. Finally, we discuss the utilization of genome editing tools (TALENs and CRISPR/Cas9) to engineer SWEET genes that can facilitate trait improvement. Overall, recent advancements on SWEETs are highlighted, which could be used for crop trait improvement and abiotic stress tolerance.
Collapse
Affiliation(s)
- Tinku Gautam
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, India;
| | - Madhushree Dutta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (M.D.); (V.J.); (G.Z.); (S.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (M.D.); (V.J.); (G.Z.); (S.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (M.D.); (V.J.); (G.Z.); (S.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (M.D.); (V.J.); (G.Z.); (S.K.)
- Correspondence:
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (M.D.); (V.J.); (G.Z.); (S.K.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
72
|
Shen S, Ma S, Chen XM, Yi F, Li BB, Liang XG, Liao SJ, Gao LH, Zhou SL, Ruan YL. A transcriptional landscape underlying sugar import for grain set in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:228-242. [PMID: 35020972 DOI: 10.1111/tpj.15668] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/12/2023]
Abstract
Developing seed depends on sugar supply for its growth and yield formation. Maize (Zea mays L.) produces the largest grains among cereals. However, there is a lack of holistic understanding of the transcriptional landscape of genes controlling sucrose transport to, and utilization within, maize grains. By performing in-depth data mining of spatio-temporal transcriptomes coupled with histological and heterologous functional analyses, we identified transporter genes specifically expressed in the maternal-filial interface, including (i) ZmSWEET11/13b in the placento-chalazal zone, where sucrose is exported into the apoplasmic space, and (ii) ZmSTP3, ZmSWEET3a/4c (monosaccharide transporters), ZmSUT1, and ZmSWEET11/13a (sucrose transporters) in the basal endosperm transfer cells for retrieval of apoplasmic sucrose or hexoses after hydrolysis by extracellular invertase. In the embryo and its surrounding regions, an embryo-localized ZmSUT4 and a cohort of ZmSWEETs were specifically expressed. Interestingly, drought repressed those ZmSWEETs likely exporting sucrose but enhanced the expression of most transporter genes for uptake of apoplasmic sugars. Importantly, this drought-induced fluctuation in gene expression was largely attenuated by an increased C supply via controlled pollination, indicating that the altered gene expression is conditioned by C availability. Based on the analyses above, we proposed a holistic model on the spatio-temporal expression of genes that likely govern sugar transport and utilization across maize maternal and endosperm and embryo tissues during the critical stage of grain set. Collectively, the findings represent an advancement towards a holistic understanding of the transcriptional landscape underlying post-phloem sugar transport in maize grain and indicate that the drought-induced changes in gene expression are attributable to low C status.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xian-Min Chen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fei Yi
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bin-Bin Li
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- Research Center on Ecological Science, Jiangxi Agricultural University, Nanchang, China
| | - Sheng-Jin Liao
- Research Center of Agricultural Information & Technology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100193, China
| | - Li-Hong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, The University of Newcastle, New South Wales, 2308, Australia
| |
Collapse
|
73
|
Salvi P, Agarrwal R, Gandass N, Manna M, Kaur H, Deshmukh R. Sugar transporters and their molecular tradeoffs during abiotic stress responses in plants. PHYSIOLOGIA PLANTARUM 2022; 174:e13652. [PMID: 35174495 DOI: 10.1111/ppl.13652] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Sugars as photosynthates are well known as energy providers and as building blocks of various structural components of plant cells, tissues and organs. Additionally, as a part of various sugar signaling pathways, they interact with other cellular machinery and influence many important cellular decisions in plants. Sugar signaling is further reliant on the differential distribution of sugars throughout the plant system. The distribution of sugars from source to sink tissues or within organelles of plant cells is a highly regulated process facilitated by various sugar transporters located in plasma membranes and organelle membranes, respectively. Sugar distribution, as well as signaling, is impacted during unfavorable environments such as extreme temperatures, salt, nutrient scarcity, or drought. Here, we have discussed the mechanism of sugar transport via various types of sugar transporters as well as their differential response during environmental stress exposure. The functional involvement of sugar transporters in plant's abiotic stress tolerance is also discussed. Besides, we have also highlighted the challenges in engineering sugar transporter proteins as well as the undeciphered modules associated with sugar transporters in plants. Thus, this review provides a comprehensive discussion on the role and regulation of sugar transporters during abiotic stresses and enables us to target the candidate sugar transporter(s) for crop improvement to develop climate-resilient crops.
Collapse
Affiliation(s)
- Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | | - Nishu Gandass
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rupesh Deshmukh
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
74
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
75
|
Wang W, Xiong H, Sun K, Zhang B, Sun MX. New insights into cell-cell communications during seed development in flowering plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:215-229. [PMID: 34473416 DOI: 10.1111/jipb.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth. The developing seed is composed of two fertilization products, the embryo and endosperm, which are surrounded by a maternally derived seed coat. Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development. Cell communication within plant seeds has drawn much attention in recent years. In this study, we review current knowledge of cross-talk among the endosperm, embryo, and seed coat during seed development, and highlight recent advances in this field.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hanxian Xiong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kaiting Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
76
|
Lu MZ, Carter AM, Tegeder M. Altering ureide transport in nodulated soybean results in whole-plant adjustments of metabolism, assimilate partitioning, and sink strength. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153613. [PMID: 35033961 DOI: 10.1016/j.jplph.2021.153613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Legumes develop a symbiotic relationship with bacteria that are housed in root nodules and fix atmospheric di-nitrogen (N2) to ammonia. In soybean (Glycine max (L.) Merr.) nodules, the final products of nitrogen (N) fixation are amino acids, and the ureides allantoin and allantoic acid that also serve as the major long-distance N transport forms. Recently, we have shown that increased expression of UPS1 (ureide permease 1) in soybean nodules results in enhanced ureide export from nodules with positive effects on N fixation and seed yield. Here, we demonstrate that changes in the ureide transport processes trigger alterations in allantoin and allantoic acid pools and partitioning throughout the transgenic plants. They further result in adjustments in amino acid availability in, and translocation to, root and shoot sinks. In addition, leaf carbon (C) capture, assimilation and allocation to sinks are improved, accommodating the increased nodule function, and root and shoot growth. Overall, we demonstrate that enhanced ureide partitioning in nodulated soybean leads to a complex rebalancing of N and C acquisition, metabolism, and transport processes with positive consequences for above- and below-ground vegetative biomass, and whole-plant N and C gains.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - Amanda M Carter
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
77
|
Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, Lv H, Wang Y. Plant SWEET Family of Sugar Transporters: Structure, Evolution and Biological Functions. Biomolecules 2022; 12:biom12020205. [PMID: 35204707 PMCID: PMC8961523 DOI: 10.3390/biom12020205] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The SWEET (sugars will eventually be exported transporter) family was identified as a new class of sugar transporters that function as bidirectional uniporters/facilitators and facilitate the diffusion of sugars across cell membranes along a concentration gradient. SWEETs are found widely in plants and play central roles in many biochemical processes, including the phloem loading of sugar for long-distance transport, pollen nutrition, nectar secretion, seed filling, fruit development, plant–pathogen interactions and responses to abiotic stress. This review focuses on advances of the plant SWEETs, including details about their discovery, characteristics of protein structure, evolution and physiological functions. In addition, we discuss the applications of SWEET in plant breeding. This review provides more in-depth and comprehensive information to help elucidate the molecular basis of the function of SWEETs in plants.
Collapse
Affiliation(s)
- Jialei Ji
- Correspondence: ; Tel.: +86-10-82108756
| | | | | | | | | | | | | |
Collapse
|
78
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
79
|
Koseoglou E, van der Wolf JM, Visser RGF, Bai Y. Susceptibility reversed: modified plant susceptibility genes for resistance to bacteria. TRENDS IN PLANT SCIENCE 2022; 27:69-79. [PMID: 34400073 DOI: 10.1016/j.tplants.2021.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 05/26/2023]
Abstract
Plants have evolved complex defence mechanisms to avoid invasion of potential pathogens. Despite this, adapted pathogens deploy effector proteins to manipulate host susceptibility (S) genes, rendering plant defences ineffective. The identification and mutation of plant S genes exploited by bacterial pathogens are important for the generation of crops with durable and broad-spectrum resistance. Application of mutant S genes in the breeding of resistant crops is limited because of potential pleiotropy. New genome editing techniques open up new possibilities for the modification of S genes. In this review, we focus on S genes manipulated by bacteria and propose ways for their identification and precise modification. Finally, we propose that genes coding for transporter proteins represent a new group of S genes.
Collapse
Affiliation(s)
- Eleni Koseoglou
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan M van der Wolf
- Biointeractions & Plant Health, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
80
|
Hu X, Li S, Lin X, Fang H, Shi Y, Grierson D, Chen K. Transcription Factor CitERF16 Is Involved in Citrus Fruit Sucrose Accumulation by Activating CitSWEET11d. FRONTIERS IN PLANT SCIENCE 2021; 12:809619. [PMID: 35003195 PMCID: PMC8733390 DOI: 10.3389/fpls.2021.809619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 06/12/2023]
Abstract
Sugars are the primary products of photosynthesis and play an important role in plant growth and development. They contribute to sweetness and flavor of fleshy fruits and are pivotal to fruit quality, and their translocation and allocation are mainly dependent on sugar transporters. Genome-wide characterization of Satsuma mandarin identified eighteen SWEET family members that encode transporters which facilitate diffusion of sugar across cell membranes. Analysis of the expression profiles in tissues of mandarin fruit at different developmental stages showed that CitSWEET11d transcripts were significantly correlated with sucrose accumulation. Further studies indicated that overexpression of CitSWEET11d in citrus callus and tomato fruit showed a higher sucrose level compared to wild-type, suggesting that CitSWEET11d could enhance sucrose accumulation. In addition, we identified an ERF transcription factor CitERF16 by yeast one-hybrid screening assay which could directly bind to the DRE cis-element on the promoter of CitSWEET11d. Overexpression of CitERF16 in citrus callus significantly induced CitSWEET11d expression and elevated sucrose content, suggesting that CitERF16 acts as a positive regulator to promote sucrose accumulation via trans-activation of CitSWEET11d expression.
Collapse
Affiliation(s)
- Xiaobo Hu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xiahui Lin
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Heting Fang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
81
|
Ko HY, Ho LH, Neuhaus HE, Guo WJ. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. PLANT PHYSIOLOGY 2021; 187:2230-2245. [PMID: 34618023 PMCID: PMC8644451 DOI: 10.1093/plphys/kiab290] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/02/2021] [Indexed: 05/06/2023]
Abstract
Tomato (Solanum lycopersium), an important fruit crop worldwide, requires efficient sugar allocation for fruit development. However, molecular mechanisms for sugar import to fruits remain poorly understood. Expression of sugars will eventually be exported transporters (SWEETs) proteins is closely linked to high fructose/glucose ratios in tomato fruits and may be involved in sugar allocation. Here, we discovered that SlSWEET15 is highly expressed in developing fruits compared to vegetative organs. In situ hybridization and β-glucuronidase fusion analyses revealed SlSWEET15 proteins accumulate in vascular tissues and seed coats, major sites of sucrose unloading in fruits. Localizing SlSWEET15-green fluorescent protein to the plasma membrane supported its putative role in apoplasmic sucrose unloading. The sucrose transport activity of SlSWEET15 was confirmed by complementary growth assays in a yeast (Saccharomyces cerevisiae) mutant. Elimination of SlSWEET15 function by clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPR-associated protein gene editing significantly decreased average sizes and weights of fruits, with severe defects in seed filling and embryo development. Altogether, our studies suggest a role of SlSWEET15 in mediating sucrose efflux from the releasing phloem cells to the fruit apoplasm and subsequent import into storage parenchyma cells during fruit development. Furthermore, SlSWEET15-mediated sucrose efflux is likely required for sucrose unloading from the seed coat to the developing embryo.
Collapse
Affiliation(s)
- Han-Yu Ko
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 7013, Taiwan
| | - Li-Hsuan Ho
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 7013, Taiwan
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Woei-Jiun Guo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 7013, Taiwan
- Author for communication:
| |
Collapse
|
82
|
Guo Y, Song H, Zhao Y, Qin X, Cao Y, Zhang L. Switch from symplasmic to aspoplasmic phloem unloading in Xanthoceras sorbifolia fruit and sucrose influx XsSWEET10 as a key candidate for Sugar transport. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111089. [PMID: 34763874 DOI: 10.1016/j.plantsci.2021.111089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The process of phloem unloading and post-unloading transport of photoassimilate is critical to crop output. Xanthoceras sorbifolia is a woody oil species with great biomass energy prospects in China; however, underproduction of seeds seriously restricts its development. Here, our cytological studies by ultrastructural observation revealed that the sieve element-companion cell complex in carpellary bundle was symplasmically interconnected with surrounding parenchyma cells at the early and late fruit developmental stages, whereas it was symplasmically isolated at middle stage. Consistently, real-time imaging showed that fluorescent tracer 6(5)carboxyfluorescein was confined to phloem strands at middle stage but released into surrounding parenchymal cells at early and late stages. Enzymatic assay showed that sucrose synthase act as the key enzyme catalyzing the progress of Suc degradation post-unloading pathway whether in pericarp or in seed, while vacuolar acid invertase and neutral invertase play compensation roles in sucrose decomposition. Sugar transporter XsSWEET10 had a high expression profile in fruit, especially at middle stage. XsSWEET10 is a plasma membrane-localized protein and heterologous expression in SUC2-deficient yeast strain SUSY7/ura3 confirmed its ability to uptake sucrose. These findings approved the transition from symplasmic to apoplasmic phloem unloading in Xanthoceras sorbifolia fruit and XsSWEET10 as a key candidate in sugar transport.
Collapse
Affiliation(s)
- Yuxiao Guo
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Huifang Song
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yangyang Zhao
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Xuejing Qin
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Yibo Cao
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China
| | - Lingyun Zhang
- Research & Development Center of Blueberry, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
83
|
Anjali A, Fatima U, Senthil-Kumar M. The ins and outs of SWEETs in plants: Current understanding of the basics and their prospects in crop improvement. J Biosci 2021. [DOI: 10.1007/s12038-021-00227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
84
|
Rolletschek H, Mayer S, Boughton B, Wagner S, Ortleb S, Kiel C, Roessner U, Borisjuk L. The metabolic environment of the developing embryo: A multidisciplinary approach on oilseed rapeseed. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153505. [PMID: 34481359 DOI: 10.1016/j.jplph.2021.153505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Brassicaceae seeds consist of three genetically distinct structures: the embryo, endosperm and seed coat, all of which are involved in assimilate allocation during seed development. The complexity of their metabolic interrelations remains unresolved to date. In the present study, we apply state-of-the-art imaging and analytical approaches to assess the metabolic environment of the Brassica napus embryo. Nuclear magnetic resonance imaging (MRI) provided volumetric data on the living embryo and endosperm, revealing how the endosperm envelops the embryo, determining endosperm's priority in assimilate uptake from the seed coat during early development. MRI analysis showed higher levels of sugars in the peripheral endosperm facing the seed coat, but a lower sugar content within the central vacuole and the region surrounding the embryo. Feeding intact siliques with 13C-labeled sucrose allowed tracing of the post-phloem route of sucrose transfer within the seed at the heart stage of embryogenesis, by means of mass spectrometry imaging. Quantification of over 70 organic and inorganic compounds in the endosperm revealed shifts in their abundance over different stages of development, while sugars and potassium were the main determinants of osmolality throughout these stages. Our multidisciplinary approach allows access to the hidden aspects of endosperm metabolism, a task which remains unattainable for the small-seeded model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Simon Mayer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Berin Boughton
- Australian National Phenome Centre, Murdoch University, Western Australia, 6150, Australia.
| | - Steffen Wagner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Stefan Ortleb
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Christina Kiel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia.
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466, Seeland-Gatersleben, Germany.
| |
Collapse
|
85
|
Malovichko YV, Shikov AE, Nizhnikov AA, Antonets KS. Temporal Control of Seed Development in Dicots: Molecular Bases, Ecological Impact and Possible Evolutionary Ramifications. Int J Mol Sci 2021; 22:ijms22179252. [PMID: 34502157 PMCID: PMC8430901 DOI: 10.3390/ijms22179252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
In flowering plants, seeds serve as organs of both propagation and dispersal. The developing seed passes through several consecutive stages, following a conserved general outline. The overall time needed for a seed to develop, however, may vary both within and between plant species, and these temporal developmental properties remain poorly understood. In the present paper, we summarize the existing data for seed development alterations in dicot plants. For genetic mutations, the reported cases were grouped in respect of the key processes distorted in the mutant specimens. Similar phenotypes arising from the environmental influence, either biotic or abiotic, were also considered. Based on these data, we suggest several general trends of timing alterations and how respective mechanisms might add to the ecological plasticity of the families considered. We also propose that the developmental timing alterations may be perceived as an evolutionary substrate for heterochronic events. Given the current lack of plausible models describing timing control in plant seeds, the presented suggestions might provide certain insights for future studies in this field.
Collapse
Affiliation(s)
- Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (Y.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
86
|
Xuan C, Lan G, Si F, Zeng Z, Wang C, Yadav V, Wei C, Zhang X. Systematic Genome-Wide Study and Expression Analysis of SWEET Gene Family: Sugar Transporter Family Contributes to Biotic and Abiotic Stimuli in Watermelon. Int J Mol Sci 2021; 22:8407. [PMID: 34445115 PMCID: PMC8395094 DOI: 10.3390/ijms22168407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
The SWEET (Sugars Will Eventually be Exported Transporter) proteins are a novel family of sugar transporters that play key roles in sugar efflux, signal transduction, plant growth and development, plant-pathogen interactions, and stress tolerance. In this study, 22 ClaSWEET genes were identified in Citrullus lanatus (Thunb.) through homology searches and classified into four groups by phylogenetic analysis. The genes with similar structures, conserved domains, and motifs were clustered into the same groups. Further analysis of the gene promoter regions uncovered various growth, development, and biotic and abiotic stress responsive cis-regulatory elements. Tissue-specific analysis showed most of the genes were highly expressed in male flowers and the roots of cultivated varieties and wild cultivars. In addition, qRT-PCR results further imply that ClaSWEET proteins might be involved in resistance to Fusarium oxysporum infection. Moreover, a significantly higher expression level of these genes under various abiotic stresses suggests its multifaceted role in mediating plant responses to drought, salt, and low-temperature stress. The genome-wide characterization and phylogenetic analysis of ClaSWEET genes, together with the expression patterns in different tissues and stimuli, lays a solid foundation for future research into their molecular function in watermelon developmental processes and responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Changqing Xuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Guangpu Lan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Fengfei Si
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Zhilong Zeng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Chunxia Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (C.X.); (G.L.); (F.S.); (Z.Z.); (C.W.); (V.Y.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
87
|
Li W, Huang L, Liu N, Pandey MK, Chen Y, Cheng L, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Varshney RK, Liao B, Jiang H. Key Regulators of Sucrose Metabolism Identified through Comprehensive Comparative Transcriptome Analysis in Peanuts. Int J Mol Sci 2021; 22:7266. [PMID: 34298903 PMCID: PMC8306169 DOI: 10.3390/ijms22147266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/02/2022] Open
Abstract
Sucrose content is a crucial indicator of quality and flavor in peanut seed, and there is a lack of clarity on the molecular basis of sucrose metabolism in peanut seed. In this context, we performed a comprehensive comparative transcriptome study on the samples collected at seven seed development stages between a high-sucrose content variety (ICG 12625) and a low-sucrose content variety (Zhonghua 10). The transcriptome analysis identified a total of 8334 genes exhibiting significantly different abundances between the high- and low-sucrose varieties. We identified 28 differentially expressed genes (DEGs) involved in sucrose metabolism in peanut and 12 of these encoded sugars will eventually be exported transporters (SWEETs). The remaining 16 genes encoded enzymes, such as cell wall invertase (CWIN), vacuolar invertase (VIN), cytoplasmic invertase (CIN), cytosolic fructose-bisphosphate aldolase (FBA), cytosolic fructose-1,6-bisphosphate phosphatase (FBP), sucrose synthase (SUS), cytosolic phosphoglucose isomerase (PGI), hexokinase (HK), and sucrose-phosphate phosphatase (SPP). The weighted gene co-expression network analysis (WGCNA) identified seven genes encoding key enzymes (CIN, FBA, FBP, HK, and SPP), three SWEET genes, and 90 transcription factors (TFs) showing a high correlation with sucrose content. Furthermore, upon validation, six of these genes were successfully verified as exhibiting higher expression in high-sucrose recombinant inbred lines (RILs). Our study suggested the key roles of the high expression of SWEETs and enzymes in sucrose synthesis making the genotype ICG 12625 sucrose-rich. This study also provided insights into the molecular basis of sucrose metabolism during seed development and facilitated exploring key candidate genes and molecular breeding for sucrose content in peanuts.
Collapse
Affiliation(s)
- Weitao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Manish K. Pandey
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (M.K.P.); (R.K.V.)
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Liangqiang Cheng
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Science, Guiyang 550006, China;
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (M.K.P.); (R.K.V.)
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (W.L.); (L.H.); (N.L.); (Y.C.); (J.G.); (B.Y.); (H.L.); (X.Z.); (D.H.); (W.C.); (L.Y.); (X.W.); (Y.L.); (B.L.)
| |
Collapse
|
88
|
Zhang H, Hu Z, Yang Y, Liu X, Lv H, Song BH, An YQC, Li Z, Zhang D. Transcriptome profiling reveals the spatial-temporal dynamics of gene expression essential for soybean seed development. BMC Genomics 2021; 22:453. [PMID: 34134624 PMCID: PMC8207594 DOI: 10.1186/s12864-021-07783-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Seeds are the economic basis of oilseed crops, especially soybeans, the most widely cultivated oilseed crop worldwide. Seed development is accompanied by a multitude of diverse cellular processes, and revealing the underlying regulatory activities is critical for seed improvement. RESULTS In this study, we profiled the transcriptomes of developing seeds at 20, 25, 30, and 40 days after flowering (DAF), as these stages represent critical time points of seed development from early to full development. We identified a set of highly abundant genes and highlighted the importance of these genes in supporting nutrient accumulation and transcriptional regulation for seed development. We identified 8925 differentially expressed genes (DEGs) that exhibited temporal expression patterns over the course and expression specificities in distinct tissues, including seeds and nonseed tissues (roots, stems, and leaves). Genes specific to nonseed tissues might have tissue-associated roles, with relatively low transcript abundance in developing seeds, suggesting their spatially supportive roles in seed development. Coexpression network analysis identified several underexplored genes in soybeans that bridge tissue-specific gene modules. CONCLUSIONS Our study provides a global view of gene activities and biological processes critical for seed formation in soybeans and prioritizes a set of genes for further study. The results of this study help to elucidate the mechanism controlling seed development and storage reserves.
Collapse
Affiliation(s)
- Hengyou Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenbin Hu
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiyan Lv
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Yong-Qiang Charles An
- US Department of Agriculture, Agricultural Research Service, Midwest Area, Plant Genetics Research Unit at Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Zhimin Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
89
|
Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles. PLANT PHYSIOLOGY 2021; 186:836-852. [PMID: 33724398 PMCID: PMC8195505 DOI: 10.1093/plphys/kiab127] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant-pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant-pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant-pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Author for communication:
| | - Hélder Badim
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
| | - Ana Margarida Fortes
- Lisbon Science Faculty, BioISI, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Centre of Biological Engineering (CEB), Department of Engineering, University of Minho, Braga 4710-057, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia 46022, Spain
| |
Collapse
|
90
|
Wang J, Zhang M, Dong R, Liu C, Guan H, Liu Q, Liu T, Wang L, Qi S, He C. Heterologous expression of ZmGS5 enhances organ size and seed weight by regulating cell expansion in Arabidopsis thaliana. Gene 2021; 793:145749. [PMID: 34077776 DOI: 10.1016/j.gene.2021.145749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Maize ZmGS5 was reported to be positively associated with kernel-related traits, however, its regulatory mechanism on plant development and seed size remains unknown. In this study, ZmGS5 was demonstrated to be widely expressed in various maize tissues with the highest expression level in developing embryos, indicating its critical roles in early kernel development process. The ZmGS5 protein was subcellularly localized to both the nucleus and cytoplasm. Transgenic Arabidopsis plants overexpressing ZmGS5 under the control of either the constitutive maize Ubiquitin1 promotor or native ZmGS5 promoter resulted in increased plant size, biomass, seed size and weight, although no significant difference was observed between transgenic lines harboring the two constructs. In contrast, the antisense-ZmGS5 transgene resulted in opposite phenotypes. Our cytological data suggested that ZmGS5 enlarged petal size through enhancing cell expansion. Quantitative RT-PCR analysis indicated that ZmGS5 might enhance cell expansion and grain filling by upregulating expression levels of particular EXPA or SWEET genes. Collectively, these findings help us further understand the biological function and regulatory mechanism of ZmGS5 in improving organ size and seed weight, which imply its great potential for high-yield breeding in the future.
Collapse
Affiliation(s)
- Juan Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China
| | - Maolin Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China
| | - Rui Dong
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China
| | - Chunxiao Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China
| | - Haiying Guan
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China
| | - Qiang Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China
| | - Tieshan Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China
| | - Liming Wang
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China
| | - Shijun Qi
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China.
| | - Chunmei He
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan 250100, China.
| |
Collapse
|
91
|
Li Y, Liu H, Yao X, Wang J, Feng S, Sun L, Ma S, Xu K, Chen LQ, Sui X. Hexose transporter CsSWEET7a in cucumber mediates phloem unloading in companion cells for fruit development. PLANT PHYSIOLOGY 2021; 186:640-654. [PMID: 33604597 PMCID: PMC8154047 DOI: 10.1093/plphys/kiab046] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/14/2021] [Indexed: 05/20/2023]
Abstract
In the fleshy fruit of cucumbers (Cucumis sativus L.), the phloem flow is unloaded via an apoplasmic pathway, which requires protein carriers to export sugars derived from stachyose and raffinose into the apoplasm. However, transporter(s) involved in this process remain unidentified. Here, we report that a hexose transporter, CsSWEET7a (Sugar Will Eventually be Exported Transporter 7a), was highly expressed in cucumber sink tissues and localized to the plasma membrane in companion cells of the phloem. Its expression level increased gradually during fruit development. Down-regulation of CsSWEET7a by RNA interference (RNAi) resulted in smaller fruit size along with reduced soluble sugar levels and reduced allocation of 14C-labelled carbon to sink tissues. CsSWEET7a overexpression lines showed an opposite phenotype. Interestingly, genes encoding alkaline α-galactosidase (AGA) and sucrose synthase (SUS) were also differentially regulated in CsSWEET7a transgenic lines. Immunohistochemical analysis demonstrated that CsAGA2 co-localized with CsSWEET7a in companion cells, indicating cooperation between AGA and CsSWEET7a in fruit phloem unloading. Our findings indicated that CsSWEET7a is involved in sugar phloem unloading in cucumber fruit by removing hexoses from companion cells to the apoplasmic space to stimulate the raffinose family of oligosaccharides (RFOs) metabolism so that additional sugars can be unloaded to promote fruit growth. This study also provides a possible avenue towards improving fruit production in cucumber.
Collapse
Affiliation(s)
- Yaxin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiang Wang
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sheng Feng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lulu Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kang Xu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Li-Qing Chen
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
92
|
Fei H, Yang Z, Lu Q, Wen X, Zhang Y, Zhang A, Lu C. OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110851. [PMID: 33775358 DOI: 10.1016/j.plantsci.2021.110851] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The grain-filling process is crucial for cereal crop yields, but how the caryopsis of such plants is supplied with sugars, which are produced by photosynthesis in leaves and then transported long distance, is largely unknown. In rice (Oryza sativa), various SWEET family sucrose transporters are thought to have important roles in grain filling. Here, we report that OsSWEET14 plays a crucial part in this process in rice. ossweet14 knockout mutants did not show any detectable phenotypic differences from the wild type, whereas ossweet14;ossweet11 double-knockout mutants had much more severe phenotypes than ossweet11 single-knockout mutants, including strongly reduced grain weight and yield, reduced grain-filling rate, and increased starch accumulation in the pericarp. Both OsSWEET14 and OsSWEET11 exhibited distinct spatiotemporal expression patterns between the early stage of caryopsis development and the rapid grain-filling stage. During the rapid grain-filling stage, OsSWEET14 and OsSWEET11 localized to four key sites: vascular parenchyma cells, the nucellar projection, the nucellar epidermis, and cross cells. These results demonstrate that OsSWEET14 plays an important role in grain filling, and they suggest that four major apoplasmic pathways supply sucrose to the endosperm during the rapid grain-filling stage via the sucrose effluxers SWEET14 and SWEET11.
Collapse
Affiliation(s)
- Honghong Fei
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhipan Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingtao Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaogang Wen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
93
|
Wang X, Fang J, Liu P, Liu J, Fang W, Fang Z, Xiao Y. Mucoromycotina Fungi Possess the Ability to Utilize Plant Sucrose as a Carbon Source: Evidence From Gongronella sp. w5. Front Microbiol 2021; 11:591697. [PMID: 33584561 PMCID: PMC7874188 DOI: 10.3389/fmicb.2020.591697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/02/2020] [Indexed: 12/02/2022] Open
Abstract
Mucoromycotina is one of the earliest fungi to establish a mutualistic relationship with plants in the ancient land. However, the detailed information on their carbon supply from the host plants is largely unknown. In this research, a free-living Mucoromycotina called Gongronella sp. w5 (w5) was employed to explore its effect on Medicago truncatula growth and carbon source utilization from its host plant during the interaction process. W5 promoted M. truncatula growth and caused the sucrose accumulation in M. truncatula root tissue at 16 days post-inoculation (dpi). The transportation of photosynthetic product sucrose to the rhizosphere by M. truncatula root cells seemed accelerated by upregulating the SWEET gene. A predicted cytoplasmic invertase (GspInv) gene and a sucrose transporter (GspSUT1) homology gene in the w5 genome upregulated significantly at the transcriptional level during w5–M. truncatula interaction at 16 dpi, indicating the possibility of utilizing plant sucrose directly by w5 as the carbon source. Further investigation showed that the purified GspInv displayed an optimal pH of 5.0 and a specific activity of 3380 ± 26 U/mg toward sucrose. The heterologous expression of GspInv and GspSUT1 in Saccharomyces cerevisiae confirmed the function of GspInv as invertase and GspSUT1 as sugar transporter with high affinity to sucrose in vivo. Phylogenetic tree analysis showed that the ability of Mucoromycotina to utilize sucrose from its host plant underwent a process of “loss and gain.” These results demonstrated the capacity of Mucoromycotina to interact with extant land higher plants and may employ a novel strategy of directly up-taking and assimilating sucrose from the host plant during the interaction.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Junnan Fang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Pu Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
94
|
Wang Q, Shen X, Qiu T, Wu W, Li L, Wang Z, Shou H. Evaluation and application of an efficient plant DNA extraction protocol for laboratory and field testing. J Zhejiang Univ Sci B 2021; 22:99-111. [PMID: 33615751 DOI: 10.1631/jzus.b2000465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nucleic acids in plant tissue lysates can be captured quickly by a cellulose filter paper and prepared for amplification after a quick purification. In this study, a published filter paper strip method was modified by sticking the filter paper on a polyvinyl chloride resin (PVC) sheet. This modified method is named EZ-D, for EASY DNA extraction. Compared with the original cetyl trimethylammonium bromide (CTAB) method, DNA extracted by EZ-D is more efficient in polymerase chain reaction (PCR) amplification due to the more stable performance of the EZ-D stick. The EZ-D method is also faster, easier, and cheaper. PCR analyses showed that DNA extracted from several types of plant tissues by EZ-D was appropriate for specific identification of biological samples. A regular PCR reaction can detect the EZ-D-extracted DNA template at concentration as low as 0.1 ng/μL. Evaluation of the EZ-D showed that DNA extracts could be successfully amplified by PCR reaction for DNA fragments up to 3000 bp in length and up to 80% in GC content. EZ-D was successfully used for DNA extraction from a variety of plant species and plant tissues. Moreover, when EZ-D was combined with the loop-mediated isothermal amplification (LAMP) method, DNA identification of biological samples could be achieved without the need for specialized equipment. As an optimized DNA purification method, EZ-D shows great advantages in application and can be used widely in laboratories where equipment is limited and rapid results are required.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxia Shen
- Zhejiang Institute of Chinese Medicine, Hangzhou 310023, China
| | - Tian Qiu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Wu
- Shanghai YouLong Biotech Co., Ltd., Shanghai 200063, China
| | - Lin Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhi'an Wang
- Zhejiang Institute of Chinese Medicine, Hangzhou 310023, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
95
|
Galinousky D, Mokshina N, Padvitski T, Ageeva M, Bogdan V, Kilchevsky A, Gorshkova T. The Toolbox for Fiber Flax Breeding: A Pipeline From Gene Expression to Fiber Quality. Front Genet 2020; 11:589881. [PMID: 33281880 PMCID: PMC7690631 DOI: 10.3389/fgene.2020.589881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023] Open
Abstract
The goal of any plant breeding program is to improve quality of a target crop. Crop quality is a comprehensive feature largely determined by biological background. To improve the quality parameters of crops grown for the production of fiber, a functional approach was used to search for genes suitable for the effective manipulation of technical fiber quality. A key step was to identify genes with tissue and stage-specific pattern of expression in the developing fibers. In the current study, we investigated the relationship between gene expression evaluated in bast fibers of developing flax plants and the quality parameters of technical fibers measured after plant harvesting. Based on previously published transcriptomic data, two sets of genes that are upregulated in fibers during intrusive growth and tertiary cell wall deposition were selected. The expression level of the selected genes and fiber quality parameters were measured in fiber flax, linseed (oil flax) cultivars, and wild species that differ in type of yield and fiber quality parameters. Based on gene expression data, linear regression models for technical stem length, fiber tensile strength, and fiber flexibility were constructed, resulting in the identification of genes that have high potential for manipulating fiber quality. Chromosomal localization and single nucleotide polymorphism distribution in the selected genes were characterized for the efficacy of their use in conventional breeding and genome editing programs. Transcriptome-based selection is a highly targeted functional approach that could be used during the development of new cultivars of various crops.
Collapse
Affiliation(s)
- Dmitry Galinousky
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
- Laboratory of Ecological Genetics and Biotechnology, Institute of Genetics and Cytology, The National Academy of Sciences of Belarus, Minsk, Belarus
| | - Natalia Mokshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Tsimafei Padvitski
- Cellular Network and Systems Biology Group, University of Cologne, CECAD, Cologne, Germany
| | - Marina Ageeva
- Laboratory of Microscopy, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Victor Bogdan
- Laboratory of Fiber Flax Breeding, Institute of Flax, Ustie, Belarus
| | - Alexander Kilchevsky
- Laboratory of Ecological Genetics and Biotechnology, Institute of Genetics and Cytology, The National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
96
|
Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, Liu Z, Frommer WB, Ma JF, Chen LQ, Guan Y, Shou H, Tian Z. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev 2020; 7:1776-1786. [PMID: 34691511 PMCID: PMC8290959 DOI: 10.1093/nsr/nwaa110] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/02/2023] Open
Abstract
Soybean accounts for more than half of the global production of oilseed and more than a quarter of the protein used globally for human food and animal feed. Soybean domestication involved parallel increases in seed size and oil content, and a concomitant decrease in protein content. However, science has not yet discovered whether these effects were due to selective pressure on a single gene or multiple genes. Here, re-sequencing data from >800 genotypes revealed a strong selection during soybean domestication on GmSWEET10a. The selection of GmSWEET10a conferred simultaneous increases in soybean-seed size and oil content as well as a reduction in the protein content. The result was validated using both near-isogenic lines carrying substitution of haplotype chromosomal segments and transgenic soybeans. Moreover, GmSWEET10b was found to be functionally redundant with its homologue GmSWEET10a and to be undergoing selection in current breeding, leading the the elite allele GmSWEET10b, a potential target for present-day soybean breeding. Both GmSWEET10a and GmSWEET10b were shown to transport sucrose and hexose, contributing to sugar allocation from seed coat to embryo, which consequently determines oil and protein contents and seed size in soybean. We conclude that past selection of optimal GmSWEET10a alleles drove the initial domestication of multiple soybean-seed traits and that targeted selection of the elite allele GmSWEET10b may further improve the yield and seed quality of modern soybean cultivars.
Collapse
Affiliation(s)
- Shoudong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kengo Yokosho
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Bin Zhou
- Institute of Crop Science, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Ya-Chi Yu
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Li-Qing Chen
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Plant Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
97
|
Zhang H, Goettel W, Song Q, Jiang H, Hu Z, Wang ML, An YQC. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet 2020; 16:e1009114. [PMID: 33175845 PMCID: PMC7721174 DOI: 10.1371/journal.pgen.1009114] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/07/2020] [Accepted: 09/12/2020] [Indexed: 11/18/2022] Open
Abstract
Soybean [Glycine max (L.) Merr.] was domesticated from wild soybean (G. soja Sieb. and Zucc.) and has been further improved as a dual-use seed crop to provide highly valuable oil and protein for food, feed, and industrial applications. However, the underlying genetic and molecular basis remains less understood. Having combined high-confidence bi-parental linkage mapping with high-resolution association analysis based on 631 whole sequenced genomes, we mapped major soybean protein and oil QTLs on chromosome15 to a sugar transporter gene (GmSWEET39). A two-nucleotide CC deletion truncating C-terminus of GmSWEET39 was strongly associated with high seed oil and low seed protein, suggesting its pleiotropic effect on protein and oil content. GmSWEET39 was predominantly expressed in parenchyma and integument of the seed coat, and likely regulates oil and protein accumulation by affecting sugar delivery from maternal seed coat to the filial embryo. We demonstrated that GmSWEET39 has a dual function for both oil and protein improvement and undergoes two different paths of artificial selection. A CC deletion (CC-) haplotype H1 has been intensively selected during domestication and extensively used in soybean improvement worldwide. H1 is fixed in North American soybean cultivars. The protein-favored (CC+) haplotype H3 still undergoes ongoing selection, reflecting its sustainable role for soybean protein improvement. The comprehensive knowledge on the molecular basis underlying the major QTL and GmSWEET39 haplotypes associated with soybean improvement would be valuable to design new strategies for soybean seed quality improvement using molecular breeding and biotechnological approaches.
Collapse
Affiliation(s)
- Hengyou Zhang
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Wolfgang Goettel
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Qijian Song
- US Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, Beltsville, MD, United States of America
| | - He Jiang
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Zhenbin Hu
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| | - Ming Li Wang
- US Department of Agriculture, Agricultural Research Service, Plant Genetics Resource Conservation Unit, Griffin, GA, United States of America
| | - Yong-qiang Charles An
- Donald Danforth Plant Science Center, St. Louis, MO, United States of America
- US Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit at Donald Danforth Plant Science Center, St. Louis, MO, United States of America
| |
Collapse
|
98
|
Xu H, Zhang L, Zhang K, Ran Y. Progresses, Challenges, and Prospects of Genome Editing in Soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2020; 11:571138. [PMID: 33193504 PMCID: PMC7642200 DOI: 10.3389/fpls.2020.571138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 05/17/2023]
Abstract
Soybean is grown worldwide for oil and protein source as food, feed and industrial raw material for biofuel. Steady increase in soybean production in the past century mainly attributes to genetic mediation including hybridization, mutagenesis and transgenesis. However, genetic resource limitation and intricate social issues in use of transgenic technology impede soybean improvement to meet rapid increases in global demand for soybean products. New approaches in genomics and development of site-specific nucleases (SSNs) based genome editing technologies have expanded soybean genetic variations in its germplasm and have potential to make precise modification of genes controlling the important agronomic traits in an elite background. ZFNs, TALENS and CRISPR/Cas9 have been adapted in soybean improvement for targeted deletions, additions, replacements and corrections in the genome. The availability of reference genome assembly and genomic resources increases feasibility in using current genome editing technologies and their new development. This review summarizes the status of genome editing in soybean improvement and future directions in this field.
Collapse
Affiliation(s)
| | | | | | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| |
Collapse
|
99
|
Karikari B, Wang Z, Zhou Y, Yan W, Feng J, Zhao T. Identification of quantitative trait nucleotides and candidate genes for soybean seed weight by multiple models of genome-wide association study. BMC PLANT BIOLOGY 2020; 20:404. [PMID: 32873245 PMCID: PMC7466808 DOI: 10.1186/s12870-020-02604-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/16/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Seed weight is a complex yield-related trait with a lot of quantitative trait loci (QTL) reported through linkage mapping studies. Integration of QTL from linkage mapping into breeding program is challenging due to numerous limitations, therefore, Genome-wide association study (GWAS) provides more precise location of QTL due to higher resolution and diverse genetic diversity in un-related individuals. RESULTS The present study utilized 573 breeding lines population with 61,166 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and candidate genes for seed weight in Chinese summer-sowing soybean. GWAS was conducted with two single-locus models (SLMs) and six multi-locus models (MLMs). Thirty-nine SNPs were detected by the two SLMs while 209 SNPs were detected by the six MLMs. In all, two hundred and thirty-one QTNs were found to be associated with seed weight in YHSBLP with various effects. Out of these, seventy SNPs were concurrently detected by both SLMs and MLMs on 8 chromosomes. Ninety-four QTNs co-localized with previously reported QTL/QTN by linkage/association mapping studies. A total of 36 candidate genes were predicted. Out of these candidate genes, four hub genes (Glyma06g44510, Glyma08g06420, Glyma12g33280 and Glyma19g28070) were identified by the integration of co-expression network. Among them, three were relatively expressed higher in the high HSW genotypes at R5 stage compared with low HSW genotypes except Glyma12g33280. Our results show that using more models especially MLMs are effective to find important QTNs, and the identified HSW QTNs/genes could be utilized in molecular breeding work for soybean seed weight and yield. CONCLUSION Application of two single-locus plus six multi-locus models of GWAS identified 231 QTNs. Four hub genes (Glyma06g44510, Glyma08g06420, Glyma12g33280 & Glyma19g28070) detected via integration of co-expression network among the predicted candidate genes.
Collapse
Affiliation(s)
- Benjamin Karikari
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zili Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yilan Zhou
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenliang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianying Feng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
100
|
Yao L, Ding C, Hao X, Zeng J, Yang Y, Wang X, Wang L. CsSWEET1a and CsSWEET17 Mediate Growth and Freezing Tolerance by Promoting Sugar Transport across the Plasma Membrane. ACTA ACUST UNITED AC 2020; 61:1669-1682. [DOI: 10.1093/pcp/pcaa091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) are important in plant biological processes. Expression levels of CsSWEET1a and CsSWEET17 are induced by cold acclimation (CA) and cold stress in Camellia sinensis. Here, we found that CsSWEET17 was alternatively spliced, and its exclusion (Ex) transcript was associated with the CA process. Both plasma membrane-localized CsSWEET1a and CsSWEET17 transport hexoses, but cytoplasm-localized CsSWEET17-Ex does not. These results indicate that alternative splicing may be involved in regulating the function of SWEET transporters in response to low temperature in plants. The extra C-terminal of CsSWEET17, which is not found in the tonoplast fructose transporter AtSWEET17, did not affect its plasma membrane localization but promoted its sugar transport activities. The overexpression (OE) of CsSWEET1a and CsSWEET17 genes resulted in an increased sugar uptake in Arabidopsis, affecting plant germination and growth. The leaf and seed sizes of the CsSWEET17-OE lines were significantly larger than those of the wild type. Moreover, the OE of CsSWEET1a and CsSWEET17 significantly reduced the relative electrolyte leakage levels under freezing stress. Compared with the wild type, the expression of AtCWINV genes was suppressed in both CsSWEET1a-OE and CsSWEET17-OE lines, indicating the alteration in sugar contents in the cell walls of the OE lines. Furthermore, the interaction between CsSWEET1a and CsSWEET17 was confirmed using yeast two-hybrid and bimolecular fluorescence complementation assays. We showed that CsSWEET1a and CsSWEET17 form homo-/heterodimers in the plasma membrane and mediate the partitioning of sugars between the cytoplasm and the apoplast, thereby regulating plant growth and freezing tolerance.
Collapse
Affiliation(s)
- Lina Yao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Changqing Ding
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|