51
|
dos Santos EC, Pirovani CP, Correa SC, Micheli F, Gramacho KP. The pathogen Moniliophthora perniciosa promotes differential proteomic modulation of cacao genotypes with contrasting resistance to witches´ broom disease. BMC PLANT BIOLOGY 2020; 20:1. [PMID: 31898482 PMCID: PMC6941324 DOI: 10.1186/s12870-019-2170-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Witches' broom disease (WBD) of cacao (Theobroma cacao L.), caused by Moniliophthora perniciosa, is the most important limiting factor for the cacao production in Brazil. Hence, the development of cacao genotypes with durable resistance is the key challenge for control the disease. Proteomic methods are often used to study the interactions between hosts and pathogens, therefore helping classical plant breeding projects on the development of resistant genotypes. The present study compared the proteomic alterations between two cacao genotypes standard for WBD resistance and susceptibility, in response to M. perniciosa infection at 72 h and 45 days post-inoculation; respectively the very early stages of the biotrophic and necrotrophic stages of the cacao x M. perniciosa interaction. RESULTS A total of 554 proteins were identified, being 246 in the susceptible Catongo and 308 in the resistant TSH1188 genotypes. The identified proteins were involved mainly in metabolism, energy, defense and oxidative stress. The resistant genotype showed more expressed proteins with more variability associated with stress and defense, while the susceptible genotype exhibited more repressed proteins. Among these proteins, stand out pathogenesis related proteins (PRs), oxidative stress regulation related proteins, and trypsin inhibitors. Interaction networks were predicted, and a complex protein-protein interaction was observed. Some proteins showed a high number of interactions, suggesting that those proteins may function as cross-talkers between these biological functions. CONCLUSIONS We present the first study reporting the proteomic alterations of resistant and susceptible genotypes in the T. cacao x M. perniciosa pathosystem. The important altered proteins identified in the present study are related to key biologic functions in resistance, such as oxidative stress, especially in the resistant genotype TSH1188, that showed a strong mechanism of detoxification. Also, the positive regulation of defense and stress proteins were more evident in this genotype. Proteins with significant roles against fungal plant pathogens, such as chitinases, trypsin inhibitors and PR 5 were also identified, and they may be good resistance markers. Finally, important biological functions, such as stress and defense, photosynthesis, oxidative stress and carbohydrate metabolism were differentially impacted with M. perniciosa infection in each genotype.
Collapse
Affiliation(s)
- Everton Cruz dos Santos
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
| | - Stephany Cristiane Correa
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Fabienne Micheli
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- CIRAD, UMR AGAP, F-34398, Montpellier, France
| | - Karina Peres Gramacho
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Molecular Plant Pathology Laboratory, Cocoa Research Center (CEPEC), CEPLAC, Km 22 Rod. Ilhéus-Itabuna, Ilhéus, Bahia 45600-970 Brazil
| |
Collapse
|
52
|
Yang YB, Yin J, Huang LQ, Li J, Chen DK, Yao N. Salt Enhances Disease Resistance and Suppresses Cell Death in Ceramide Kinase Mutants. PLANT PHYSIOLOGY 2019; 181:319-331. [PMID: 31243063 PMCID: PMC6716259 DOI: 10.1104/pp.19.00613] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 05/26/2023]
Abstract
Sphingolipids act as structural components of cellular membranes and as signals in a variety of plant developmental processes and defense responses, including programmed cell death. Recent studies have uncovered an interplay between abiotic or biotic stress and programmed cell death. In a previous study, we characterized an Arabidopsis (Arabidopsis thaliana) cell-death mutant, accelerated cell death5 (acd5), which accumulates ceramides and exhibits spontaneous cell death late in development. In this work, we report that salt (NaCl) treatment inhibits cell death in the acd5 mutant and prevents the accumulation of sphingolipids. Exogenous application of abscisic acid (ABA) and the salicylic acid (SA) analog benzothiadiazole demonstrated that the effect of NaCl was partly dependent on the antagonistic interaction between endogenous SA and ABA. However, the use of mutants deficient in the ABA pathway suggested that the intact ABA pathway may not be required for this effect. Furthermore, pretreatment with salt enhanced the resistance response to biotic stress, and this enhanced resistance did not involve the pathogen-associated molecular pattern-triggered immune response. Taken together, our findings indicate that salt inhibits sphingolipid accumulation and cell death in acd5 mutants partly via a mechanism that depends on SA and ABA antagonistic interaction, and enhances disease resistance independent of pattern-triggered immune responses.
Collapse
Affiliation(s)
- Yu-Bing Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Li-Qun Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jian Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
53
|
Zhang C, Gao M, Seitz NC, Angel W, Hallworth A, Wiratan L, Darwish O, Alkharouf N, Dawit T, Lin D, Egoshi R, Wang X, McClung CR, Lu H. LUX ARRHYTHMO mediates crosstalk between the circadian clock and defense in Arabidopsis. Nat Commun 2019. [PMID: 31186426 DOI: 10.1038/s41467-019-10485-10486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The circadian clock is known to regulate plant innate immunity but the underlying mechanism of this regulation remains largely unclear. We show here that mutations in the core clock component LUX ARRHYTHMO (LUX) disrupt circadian regulation of stomata under free running and Pseudomonas syringae challenge conditions as well as defense signaling mediated by SA and JA, leading to compromised disease resistance. RNA-seq analysis reveals that both clock- and defense-related genes are regulated by LUX. LUX binds to clock gene promoters that have not been shown before, expanding the clock gene networks that require LUX function. LUX also binds to the promoters of EDS1 and JAZ5, likely acting through these genes to affect SA- and JA-signaling. We further show that JA signaling reciprocally affects clock activity. Thus, our data support crosstalk between the circadian clock and plant innate immunity and imply an important role of LUX in this process.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Min Gao
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Nicholas C Seitz
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - William Angel
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Amelia Hallworth
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Linda Wiratan
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Omar Darwish
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Nadim Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Teklu Dawit
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Daniela Lin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Riki Egoshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
54
|
Zhang C, Gao M, Seitz NC, Angel W, Hallworth A, Wiratan L, Darwish O, Alkharouf N, Dawit T, Lin D, Egoshi R, Wang X, McClung CR, Lu H. LUX ARRHYTHMO mediates crosstalk between the circadian clock and defense in Arabidopsis. Nat Commun 2019; 10:2543. [PMID: 31186426 PMCID: PMC6560066 DOI: 10.1038/s41467-019-10485-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/13/2019] [Indexed: 01/02/2023] Open
Abstract
The circadian clock is known to regulate plant innate immunity but the underlying mechanism of this regulation remains largely unclear. We show here that mutations in the core clock component LUX ARRHYTHMO (LUX) disrupt circadian regulation of stomata under free running and Pseudomonassyringae challenge conditions as well as defense signaling mediated by SA and JA, leading to compromised disease resistance. RNA-seq analysis reveals that both clock- and defense-related genes are regulated by LUX. LUX binds to clock gene promoters that have not been shown before, expanding the clock gene networks that require LUX function. LUX also binds to the promoters of EDS1 and JAZ5, likely acting through these genes to affect SA- and JA-signaling. We further show that JA signaling reciprocally affects clock activity. Thus, our data support crosstalk between the circadian clock and plant innate immunity and imply an important role of LUX in this process. Circadian control of plant defence likely reflects plants’ ability to coordinate development and defense. Here, Zhang et al. show that LUX regulates stomatal defense and SA/JA signaling, leading to broad-spectrum disease resistance, and that JA signaling can, in turn, regulate clock activity.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.,Genetic Improvement of Fruits and Vegetables Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Min Gao
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Nicholas C Seitz
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - William Angel
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Amelia Hallworth
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Linda Wiratan
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Omar Darwish
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Nadim Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, 21252, USA
| | - Teklu Dawit
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Daniela Lin
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Riki Egoshi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, China
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
55
|
Zhang Z, Guo J, Zhao Y, Chen J. Identification and characterization of maize ACD6-like gene reveal ZmACD6 as the maize orthologue conferring resistance to Ustilago maydis. PLANT SIGNALING & BEHAVIOR 2019; 14:e1651604. [PMID: 31397626 PMCID: PMC6768228 DOI: 10.1080/15592324.2019.1651604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 05/22/2023]
Abstract
Enhancing broad-spectrum resistance is a major goal of crop breeding. However, broad-spectrum resistance has not been thoroughly investigated, and its underlying molecular mechanisms remain elusive. In the model plant Arabidopsis (Arabidopsis thaliana), ACCELERATED CELL DEATH6 (ACD6) is a key component of broad-spectrum resistance that acts in a positive feedback loop with salicylic acid (SA) to regulate multiple pattern recognition receptors. However, the role of ACD6 in disease resistance in crop plants is unclear. Here, we show that the transcript of ANK23, one of the 15 ACD6-like genes in maize (Zea mays), is induced by SA and by infection with the pathogenic fungus Ustilago maydis. Heterologous expression of ANK23 restored disease resistance in the Arabidopsis mutant acd6-2. We show that ANK23 is a maize ortholog of ACD6 and therefore rename ANK23 as ZmACD6. Furthermore, using CRISPR/Cas9, we generated ZmACD6 knockout maize plants, which are more susceptible to U. maydis than wild-type plants. We also identified a maize line (SC-9) with relatively high ZmACD6 expression levels from a diverse natural maize population. SC-9 has increased disease resistance to U. maydis and defense activation, suggesting a practical approach to cultivate elite varieties with enhanced disease resistance.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
- CONTACT Zhongqin Zhang Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Jinjie Guo
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Yongfeng Zhao
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Jingtang Chen
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
56
|
Vaid N, Laitinen RAE. Diverse paths to hybrid incompatibility in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:199-213. [PMID: 30098060 DOI: 10.1111/tpj.14061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/28/2023]
Abstract
One of the most essential questions of biology is to understand how different species have evolved. Hybrid incompatibility, a phenomenon in which hybrids show reduced fitness in comparison with their parents, can result in reproductive isolation and speciation. Therefore, studying hybrid incompatibility provides an entry point in understanding speciation. Hybrid incompatibilities are known throughout taxa, and the underlying mechanisms have mystified scientists since the theory of evolution by means of natural selection was introduced. In plants, it is only in recent years that the high-throughput genetic and molecular tools have become available for the Arabidopsis genus, thus helping to shed light on the different genes and molecular and evolutionary mechanisms that underlie hybrid incompatibilities. In this review, we highlight the current knowledge of diverse mechanisms that are known to contribute to hybrid incompatibility.
Collapse
Affiliation(s)
- Neha Vaid
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
57
|
Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ. Pandemonium Breaks Out: Disruption of Salicylic Acid-Mediated Defense by Plant Pathogens. MOLECULAR PLANT 2018; 11:1427-1439. [PMID: 30336330 DOI: 10.1016/j.molp.2018.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate in the chloroplast through the ICS1 (isochorismate synthase I) pathway during pathogen infection. The transcription co-activator NPR1 (Non-Expresser of Pathogenesis-Related Gene 1), as the master regulator of SA signaling, interacts with transcription factors to induce the expression of anti-microbial PR (Pathogenesis-Related) genes. To establish successful infections, plant bacterial, oomycete, fungal, and viral pathogens have evolved at least three major strategies to disrupt SA-mediated defense. The first strategy is to reduce SA accumulation directly by converting SA into its inactive derivatives. The second strategy is to interrupt SA biosynthesis by targeting the ICS1 pathway. In the third major strategy, plant pathogens deploy different mechanisms to interfere with SA downstream signaling. The wide array of strategies deployed by plant pathogens highlights the crucial role of disruption of SA-mediated plant defense in plant pathogenesis. A deeper understanding of this topic will greatly expand our knowledge of how plant pathogens cause diseases and consequently pave the way for the development of more effective ways to control these diseases.
Collapse
Affiliation(s)
- Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ming Chang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katherine Hall
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John Korin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
58
|
Nozue K, Devisetty UK, Lekkala S, Mueller-Moulé P, Bak A, Casteel CL, Maloof JN. Network Analysis Reveals a Role for Salicylic Acid Pathway Components in Shade Avoidance. PLANT PHYSIOLOGY 2018; 178:1720-1732. [PMID: 30348816 PMCID: PMC6288734 DOI: 10.1104/pp.18.00920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/08/2018] [Indexed: 05/21/2023]
Abstract
Plants have sophisticated mechanisms for sensing neighbor shade. To maximize their ability to compete for light, plants respond to shade through enhanced elongation and physiological changes. The shade avoidance response affects many different organs and growth stages, yet the signaling pathways underlying this response have mostly been studied in seedlings. We assayed transcriptome changes in response to shade across a 2-d time course in the wild type and 12 Arabidopsis (Arabidopsis thaliana) mutants. The resulting temporal map of transcriptional responses to shade defines early and late responses in adult plants, enabling us to determine connections between key signaling genes and downstream responses. We found a pervasive and unexpectedly strong connection between shade avoidance and genes related to salicylic acid, suggesting salicylic acid signaling to be an important shade avoidance growth regulator. We tested this connection and found that several mutants disrupting salicylic acid levels or signaling were defective in shade avoidance. The effect of these mutations on shade avoidance was specific to petiole elongation; neither hypocotyl nor flowering time responses were altered, thereby defining important stage-specific differences in the downstream shade avoidance signaling pathway. Shade treatment did not change salicylic acid levels, indicating that the mediation of shade avoidance by salicylic acid is not dependent on the modulation of salicylic acid levels. These results demonstrate that salicylic acid pathway genes also are key components of petiole shade avoidance.
Collapse
Affiliation(s)
- Kazunari Nozue
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Saradadevi Lekkala
- Department of Plant Biology, University of California, Davis, California 95616
| | | | - Aurélie Bak
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Clare L Casteel
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
59
|
Chakraborty J, Ghosh P, Das S. Autoimmunity in plants. PLANTA 2018; 248:751-767. [PMID: 30046903 DOI: 10.1007/s00425-018-2956-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/15/2018] [Indexed: 05/22/2023]
Abstract
Attenuation in the activity of the negative regulators or the hyperactivity of plant innate immune receptors often causes ectopic defense activation manifested in severe growth retardation and spontaneous lesion formations, referred to as autoimmunity. In this review, we have described the cellular and molecular basis of the development of autoimmune responses for their useful applications in plant defense. Plants are exposed to diverse disease-causing pathogens, which bring infections by taking over the control on host immune machineries. To counter the challenges of evolving pathogenic races, plants recruit specific types of intracellular immune receptors that mostly belong to the family of polymorphic nucleotide-binding oligomerization domain-containing leucine-rich repeat (NLR) proteins. Upon recognition of effector molecules, NLR triggers hyperimmune signaling, which culminates in the form of a typical programmed cell death, designated hypersensitive response. Besides, few plant NLRs also guard certain host proteins known as 'guardee' that are modified by effector proteins. However, this fine-tuned innate immune system can be lopsided upon knock-out of the alleles that correspond to the host guardees, which mimick the presence of pathogen. The absence of pathogens causes inappropriate activation of the respective NLRs and results in the constitutive activation of plant defense and exhibiting autoimmunity. In plants, autoimmune mutants are readily scorable due to their dwarf phenotype and development of characteristic macroscopic disease lesions. Here, we summarize recent reports on autoimmune response in plants, how it is triggered, and phenotypic consequences associated with this phenomenon.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Prithwi Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
60
|
Osella AV, Mengarelli DA, Mateos J, Dong S, Yanovsky MJ, Balazadeh S, Valle EM, Zanor MI. FITNESS, a CCT domain-containing protein, deregulates reactive oxygen species levels and leads to fine-tuning trade-offs between reproductive success and defence responses in Arabidopsis. PLANT, CELL & ENVIRONMENT 2018; 41:2328-2341. [PMID: 29852518 DOI: 10.1111/pce.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/18/2018] [Indexed: 05/22/2023]
Abstract
Environmental stresses are the major factors that limit productivity in plants. Here, we report on the function of an uncharacterized gene At1g07050, encoding a CCT domain-containing protein, from Arabidopsis thaliana. At1g07050 expression is highly repressed by oxidative stress. We used metabolomics, biochemical, and genomic approaches to analyse performance of transgenic lines with altered expression of At1g07050 under normal and oxidative stress conditions. At1g07050 overexpressing lines showed increased levels of reactive oxygen species (ROS), whereas knock-out mutants exhibited decreased levels of ROS and higher tolerance to oxidative stress generated in the chloroplast. Our results uncover a role for At1g07050 in cellular redox homeostasis controlling H2 O2 levels, due to changes in enzymes, metabolites, and transcripts related to ROS detoxification. Therefore, we call this gene FITNESS. Additionally, several genes such as ACD6, PCC1, and ICS1 related to salicylic acid signalling and defence were found differentially expressed among the lines. Notably, FITNESS absence significantly improved seed yield suggesting an effective fine-tuning trade-off between reproductive success and defence responses.
Collapse
Affiliation(s)
- Ana Virginia Osella
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Diego Alberto Mengarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Julieta Mateos
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Shuchao Dong
- Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Salma Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Estela Marta Valle
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - María Inés Zanor
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| |
Collapse
|
61
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
62
|
Hamdoun S, Gao M, Gill M, Kwon A, Norelli JL, Lu H. Signalling requirements for Erwinia amylovora-induced disease resistance, callose deposition and cell growth in the non-host Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2018; 19:1090-1103. [PMID: 28756640 PMCID: PMC6638093 DOI: 10.1111/mpp.12588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 05/11/2023]
Abstract
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
| | - Min Gao
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F UniversityYangling 712100ShaanxiChina
| | - Manroop Gill
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
| | - Ashley Kwon
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
| | - John L. Norelli
- United States Department of Agriculture, Agricultural Research Service, Appalachian Fruit Research Station2217 Wiltshire RoadKearneysville, WV 25430USA
| | - Hua Lu
- Department of Biological SciencesUniversity of Maryland Baltimore County1000 Hilltop CircleBaltimore, MD 21250USA
| |
Collapse
|
63
|
Qin P, Fan S, Deng L, Zhong G, Zhang S, Li M, Chen W, Wang G, Tu B, Wang Y, Chen X, Ma B, Li S. LML1, Encoding a Conserved Eukaryotic Release Factor 1 Protein, Regulates Cell Death and Pathogen Resistance by Forming a Conserved Complex with SPL33 in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:887-902. [PMID: 29566164 DOI: 10.1093/pcp/pcy056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Lesion mimic mutants are powerful tools for unveiling the molecular connections between cell death and pathogen resistance. Various proteins responsible for lesion mimics have been identified; however, the mechanisms underlying lesion formation and pathogen resistance are still unknown. Here, we identify a lesion mimic mutant in rice, lesion mimic leaf 1 (lml1). The lml1 mutant exhibited abnormal cell death and resistance to both bacterial blight and rice blast. LML1 is expressed in all types of leaf cells, and encodes a novel eukaryotic release factor 1 (eRF1) protein located in the endoplasmic reticulum. Protein sequences of LML1 orthologs are conserved in yeast, animals and plants. LML1 can partially rescue the growth delay phenotype of the LML1 yeast ortholog mutant, dom34. Both lml1 and mutants of AtLML1 (the LML1 Arabidopsis ortholog) exhibited a growth delay phenotype like dom34. This indicates that LML1 and its orthologs are functionally conserved. LML1 forms a functional complex with a eukaryotic elongation factor 1A (eEF1A)-like protein, SPL33/LMM5.1, whose mutant phenotype was similar to the lml1 phenotype. This complex was conserved between rice and yeast. Our work provides new insight into understanding the mechanism of cell death and pathogen resistance, and also lays a good foundation for studying the fundamental molecular function of Pelota/DOM34 and its orthologs in plants.
Collapse
Affiliation(s)
- Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Shijun Fan
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Luchang Deng
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, China
| | - Guangrong Zhong
- Hybrid Rice Research Center of Neijiang Academy of Agricultural, Neijiang, Sichuan 641000, China
| | - Siwei Zhang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Meng Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Weilan Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Geling Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Bin Tu
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Yuping Wang
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Xuewei Chen
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Bingtian Ma
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| | - Shigui Li
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu Wenjiang, Sichuan 611130, China
| |
Collapse
|
64
|
Seguel A, Jelenska J, Herrera-Vásquez A, Marr SK, Joyce MB, Gagesch KR, Shakoor N, Jiang SC, Fonseca A, Wildermuth MC, Greenberg JT, Holuigue L. PROHIBITIN3 Forms Complexes with ISOCHORISMATE SYNTHASE1 to Regulate Stress-Induced Salicylic Acid Biosynthesis in Arabidopsis. PLANT PHYSIOLOGY 2018; 176:2515-2531. [PMID: 29438088 PMCID: PMC5841719 DOI: 10.1104/pp.17.00941] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/22/2018] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is a major defense signal in plants. In Arabidopsis (Arabidopsis thaliana), the chloroplast-localized isochorismate pathway is the main source of SA biosynthesis during abiotic stress or pathogen infections. In the first step of the pathway, the enzyme ISOCHORISMATE SYNTHASE1 (ICS1) converts chorismate to isochorismate. An unknown enzyme subsequently converts isochorismate to SA. Here, we show that ICS1 protein levels increase during UV-C stress. To identify proteins that may play roles in SA production by regulating ICS1, we analyzed proteins that coimmunoprecipitated with ICS1 via mass spectrometry. The ICS1 complexes contained a large number of peptides from the PROHIBITIN (PHB) protein family, with PHB3 the most abundant. PHB proteins have diverse biological functions that include acting as scaffolds for protein complex formation and stabilization. PHB3 was reported previously to localize to mitochondria. Using fractionation, protease protection, and live imaging, we show that PHB3 also localizes to chloroplasts, where ICS1 resides. Notably, loss of PHB3 function led to decreased ICS1 protein levels in response to UV-C stress. However, ICS1 transcript levels remain unchanged, indicating that ICS1 is regulated posttranscriptionally. The phb3 mutant displayed reduced levels of SA, the SA-regulated protein PR1, and hypersensitive cell death in response to UV-C and avirulent strains of Pseudomonas syringae and, correspondingly, supported increased growth of P. syringae The expression of a PHB3 transgene in the phb3 mutant complemented all of these phenotypes. We suggest a model in which the formation of PHB3-ICS1 complexes stabilizes ICS1 to promote SA production in response to stress.
Collapse
Affiliation(s)
- Aldo Seguel
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Ariel Herrera-Vásquez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Sharon K Marr
- Department of Plant and Microbial Pathology, University of California, Berkeley, California 94720
| | - Michael B Joyce
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Kelsey R Gagesch
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Nadia Shakoor
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Shang-Chuan Jiang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Alejandro Fonseca
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Mary C Wildermuth
- Department of Plant and Microbial Pathology, University of California, Berkeley, California 94720
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Loreto Holuigue
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
65
|
Poque S, Wu HW, Huang CH, Cheng HW, Hu WC, Yang JY, Wang D, Yeh SD. Potyviral Gene-Silencing Suppressor HCPro Interacts with Salicylic Acid (SA)-Binding Protein 3 to Weaken SA-Mediated Defense Responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:86-100. [PMID: 29090655 DOI: 10.1094/mpmi-06-17-0128-fi] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The viral infection process is a battle between host defense response and pathogen antagonizing action. Several studies have established a tight link between the viral RNA silencing suppressor (RSS) and the repression of salicylic acid (SA)-mediated defense responses, nonetheless host factors directly linking an RSS and the SA pathway remains unidentified. From yeast two-hybrid analysis, we identified an interaction between the potyviral RSS helper-component proteinase (HCPro) and SA-binding protein SABP3. Co-localization and bimolecular fluorescence complementation analyses validated the direct in vivo interaction between Turnip mosaic virus (TuMV) HCPro and the Arabidopsis homologue of SABP3, AtCA1. Additionally, transient expression of TuMV HCPro demonstrated its ability to act as a negative regulator of AtCA1. When the plants of the AtCA1 knockout mutant line were inoculated with TuMV, our results indicated that AtCA1 is essential to restrict viral spreading and accumulation, induce SA accumulation, and trigger the SA pathway. Unexpectedly, the AtCA1 overexpression line also displayed a similar phenotype, suggesting that the constitutive expression of AtCA1 antagonizes the SA pathway. Taken together, our results depict AtCA1 as an essential regulator of SA defense responses. Moreover, the interaction of potyviral HCPro with this regulator compromises the SA pathway to weaken host defense responses and facilitate viral infection.
Collapse
Affiliation(s)
- Sylvain Poque
- 1 Department of Plant Pathology, National Chung-Hsing University, Taichung City 40227, Taiwan, R.O.C
| | - Hui-Wen Wu
- 2 Agricultural Biotechnology Center, National Chung-Hsing University
| | - Chung-Hao Huang
- 1 Department of Plant Pathology, National Chung-Hsing University, Taichung City 40227, Taiwan, R.O.C
| | - Hao-Wen Cheng
- 3 NCHU-UCD Plant and Food Biotechnology Center, National Chung-Hsing University
| | - Wen-Chi Hu
- 3 NCHU-UCD Plant and Food Biotechnology Center, National Chung-Hsing University
| | - Jun-Yi Yang
- 4 Institute of Biochemistry, National Chung-Hsing University; and
| | - David Wang
- 5 Department of Forestry, National Chung-Hsing University
| | - Shyi-Dong Yeh
- 1 Department of Plant Pathology, National Chung-Hsing University, Taichung City 40227, Taiwan, R.O.C
- 2 Agricultural Biotechnology Center, National Chung-Hsing University
- 3 NCHU-UCD Plant and Food Biotechnology Center, National Chung-Hsing University
| |
Collapse
|
66
|
Florez JC, Mofatto LS, do Livramento Freitas-Lopes R, Ferreira SS, Zambolim EM, Carazzolle MF, Zambolim L, Caixeta ET. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection. PLANT MOLECULAR BIOLOGY 2017; 95:607-623. [PMID: 29094279 DOI: 10.1007/s11103-017-0676-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.
Collapse
Affiliation(s)
- Juan Carlos Florez
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Luciana Souto Mofatto
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, Campinas, SP, 13083-970, Brazil
| | - Rejane do Livramento Freitas-Lopes
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Sávio Siqueira Ferreira
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Eunize Maciel Zambolim
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, Campinas, SP, 13083-970, Brazil
| | - Laércio Zambolim
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Eveline Teixeira Caixeta
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil.
- Embrapa Café, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil.
| |
Collapse
|
67
|
Cagirici HB, Biyiklioglu S, Budak H. Assembly and Annotation of Transcriptome Provided Evidence of miRNA Mobility between Wheat and Wheat Stem Sawfly. FRONTIERS IN PLANT SCIENCE 2017; 8:1653. [PMID: 29038661 PMCID: PMC5630980 DOI: 10.3389/fpls.2017.01653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/08/2017] [Indexed: 05/23/2023]
Abstract
Wheat Stem Sawfly (WSS), Cephus Cinctus Norton (Hymenoptera: Cephidae), is one of the most important pests, causing yield and economic losses in wheat and barley. The lack of information about molecular mechanisms of WSS for defeating plant's resistance prevents application of effective pest control strategies therefore, it is essential to identify the genes and their regulators behind WSS infestations. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are recognized with their regulatory functions on gene expression, tuning protein production by controlling transcriptional and post-transcriptional activities. A transcriptome-guided approach was followed in order to identify miRNAs, lncRNAs, and mRNA of WSS, and their interaction networks. A total of 1,893 were presented here as differentially expressed between larva and adult WSS insects. There were 11 miRNA families detected in WSS transcriptome. Together with the annotation of 1,251 novel mRNAs, the amount of genetic information available for WSS was expanded. The network between WSS miRNAs, lncRNAs, and mRNAs suggested miRNA-mediated regulatory roles of lncRNAs as competing endogenous RNAs. In the light of the previous evidence that small RNA molecules of a pathogen could suppress the immune response of host plant, we analyzed the putative interactions between larvae and wheat at the miRNA level. Overall, this study provides a profile of larva and adult WSS life stages in terms of coding and non-coding elements. These findings also emphasize the potential roles of wheat and larval miRNAs in wheat resistance to infestation and in the suppression of resistance which is critical for the development of effective pest control strategies.
Collapse
Affiliation(s)
- Halise B. Cagirici
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Sezgi Biyiklioglu
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
68
|
Lu H, McClung CR, Zhang C. Tick Tock: Circadian Regulation of Plant Innate Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:287-311. [PMID: 28590878 DOI: 10.1146/annurev-phyto-080516-035451] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many living organisms on Earth have evolved the ability to integrate environmental and internal signals to determine time and thereafter adjust appropriately their metabolism, physiology, and behavior. The circadian clock is the endogenous timekeeper critical for multiple biological processes in many organisms. A growing body of evidence supports the importance of the circadian clock for plant health. Plants activate timed defense with various strategies to anticipate daily attacks of pathogens and pests and to modulate responses to specific invaders in a time-of-day-dependent manner (gating). Pathogen infection is also known to reciprocally modulate clock activity. Such a cross talk likely reflects the adaptive nature of plants to coordinate limited resources for growth, development, and defense. This review summarizes recent progress in circadian regulation of plant innate immunity with a focus on the molecular events linking the circadian clock and defense. More and better knowledge of clock-defense cross talk could help to improve disease resistance and productivity in economically important crops.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, Maryland 21052;
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland-Baltimore County, Baltimore, Maryland 21052;
| |
Collapse
|
69
|
Miwa A, Sawada Y, Tamaoki D, Yokota Hirai M, Kimura M, Sato K, Nishiuchi T. Nicotinamide mononucleotide and related metabolites induce disease resistance against fungal phytopathogens in Arabidopsis and barley. Sci Rep 2017; 7:6389. [PMID: 28743869 PMCID: PMC5526872 DOI: 10.1038/s41598-017-06048-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), is known to act as a functional molecule in animals, whereas its function in plants is largely unknown. In this study, we found that NMN accumulated in barley cultivars resistant to phytopathogenic fungal Fusarium species. Although NMN does not possess antifungal activity, pretreatment with NMN and related metabolites enhanced disease resistance to Fusarium graminearum in Arabidopsis leaves and flowers and in barley spikes. The NMN-induced Fusarium resistance was accompanied by activation of the salicylic acid-mediated signalling pathway and repression of the jasmonic acid/ethylene-dependent signalling pathways in Arabidopsis. Since NMN-induced disease resistance was also observed in the SA-deficient sid2 mutant, an SA-independent signalling pathway also regulated the enhanced resistance induced by NMN. Compared with NMN, NAD and NADP, nicotinamide pretreatment had minor effects on resistance to F. graminearum. Constitutive expression of the NMNAT gene, which encodes a rate-limiting enzyme for NAD biosynthesis, resulted in enhanced disease resistance in Arabidopsis. Thus, modifying the content of NAD-related metabolites can be used to optimize the defence signalling pathways activated in response to F. graminearum and facilitates the control of disease injury and mycotoxin accumulation in plants.
Collapse
Affiliation(s)
- Akihiro Miwa
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Daisuke Tamaoki
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Makoto Kimura
- Division of Molecular and Cellular Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
| | - Takumi Nishiuchi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-cho, Kanazawa, Ishikawa, 920-1192, Japan.
- Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan.
| |
Collapse
|
70
|
Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:764-787. [PMID: 28109168 DOI: 10.1111/tpj.13485] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/19/2023]
Abstract
Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.
Collapse
Affiliation(s)
- Amit Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Kazuki Saito
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
71
|
Silvia Sebastiani M, Bagnaresi P, Sestili S, Biselli C, Zechini A, Orrù L, Cattivelli L, Ficcadenti N. Transcriptome Analysis of the Melon- Fusarium oxysporum f. sp. melonis Race 1.2 Pathosystem in Susceptible and Resistant Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:362. [PMID: 28367157 PMCID: PMC5356040 DOI: 10.3389/fpls.2017.00362] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/01/2017] [Indexed: 05/20/2023]
Abstract
Fusarium oxysporum f. sp. melonis Snyd. & Hans race 1.2 (FOM1.2) is the most virulent and yield-limiting pathogen of melon (Cucumis melo L.) worldwide. Current information suggest that the resistance to race 1.2 is controlled by multiple recessive genes and strongly affected by the environment. RNA-Seq analysis was used to identify candidate resistance genes and to dissect the early molecular processes deployed during melon-FOM1.2 interaction in the resistant doubled haploid line NAD and in the susceptible genotype Charentais-T (CHT) at 24 and 48 h post-inoculation (hpi). The transcriptome analysis of the NAD-FOM1.2 interaction identified 2,461 and 821 differentially expressed genes (DEGs) at 24 hpi and at 48 hpi, respectively, while in susceptible combination CHT-FOM1.2, 882 and 2,237 DEGs were recovered at 24 hpi and at 48 hpi, respectively. The overall expression profile suggests a prompt activation of the defense responses in NAD due to its basal defense-related machinery that allows an early pathogen recognition. Gene Ontology (GO) enrichment analyses revealed a total of 57 GO terms shared by both genotypes and consistent with response to fungal infection. GO classes named "chitinase activity," "cellulase activity," "defense response, incompatible interaction," "auxin polar transport" emerged as major factors of resistance to FOM1.2. The data indicated that NAD reacts to FOM1.2 with a fine regulation of Ca2+-mediated signaling pathways, cell wall reorganization, and hormone crosstalk (jasmonate and ethylene, auxin and abscissic acid). Several unannotated transcripts were recovered providing a basis for a further exploration of the melon resistance genes. DEGs belonging to the FOM1.2 genome were also detected in planta as a resource for the identification of potential pathogenicity factors. This work provides a broader view of the dynamic changes of the melon transcriptome triggered by FOM1.2 and highlights that the resistance response of NAD is mainly signaled by jasmonic acid and ethylene pathways mediated by ABA and auxin. The role of candidate plant and fungal responsive genes involved in the resistance is discussed.
Collapse
Affiliation(s)
- M. Silvia Sebastiani
- Research Unit for Vegetable Crops in Central Areas, Council for Agricultural Research and EconomicsAscoli Piceno, Italy
| | - Paolo Bagnaresi
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Sara Sestili
- Research Unit for Vegetable Crops in Central Areas, Council for Agricultural Research and EconomicsAscoli Piceno, Italy
| | - Chiara Biselli
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Antonella Zechini
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Luigi Orrù
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Luigi Cattivelli
- Genomics Research Centre, Council for Agricultural Research and EconomicsPiacenza, Italy
| | - Nadia Ficcadenti
- Research Unit for Vegetable Crops in Central Areas, Council for Agricultural Research and EconomicsAscoli Piceno, Italy
| |
Collapse
|
72
|
Zhang Z, Tateda C, Jiang SC, Shrestha J, Jelenska J, Speed DJ, Greenberg JT. A Suite of Receptor-Like Kinases and a Putative Mechano-Sensitive Channel Are Involved in Autoimmunity and Plasma Membrane-Based Defenses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:150-160. [PMID: 28051349 DOI: 10.1094/mpmi-09-16-0184-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, cell surface pattern recognition receptors (PRRs) provide a first line of defense against pathogens. Although each PRR recognizes a specific ligand, they share common signaling outputs, such as callose and other cell wall-based defenses. Several PRRs are also important for callose induction in response to the defense signal salicylic acid (SA). The extent to which common components are needed for PRR signaling outputs is not known. The gain-of-function Arabidopsis mutant of ACCELERATED CELL DEATH6 (ACD6) acd6-1 shows constitutive callose production that partially depends on PRRs. ACD6-1 (and ACD6) forms complexes with the PRR FLAGELLIN SENSING2, and ACD6 is needed for responses to several PRR ligands. Thus, ACD6-1 could serve as a probe to identify additional proteins important for PRR-mediated signaling. Candidate signaling proteins (CSPs), identified in our proteomic screen after immunoprecipitation of hemagglutinin (HA)-tagged ACD6-1, include several subfamilies of receptor-like kinase (RLK) proteins and a MECHANO-SENSITIVE CHANNEL OF SMALL CONDUCTANCE-LIKE 4 (MSL4). In acd6-1, CSPs contribute to autoimmunity. In wild type, CSPs are needed for defense against bacteria and callose responses to two or more microbial-derived patterns and an SA agonist. CSPs may function to either i) promote the assembly of signaling complexes, ii) regulate the output of known PRRs, or both.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Shang-Chuan Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | | | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| |
Collapse
|
73
|
Świadek M, Proost S, Sieh D, Yu J, Todesco M, Jorzig C, Rodriguez Cubillos AE, Plötner B, Nikoloski Z, Chae E, Giavalisco P, Fischer A, Schröder F, Kim ST, Weigel D, Laitinen RAE. Novel allelic variants in ACD6 cause hybrid necrosis in local collection of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 213:900-915. [PMID: 27588563 DOI: 10.1111/nph.14155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Hybrid necrosis is a common type of hybrid incompatibility in plants. This phenomenon is caused by deleterious epistatic interactions, resulting in spontaneous activation of plant defenses associated with leaf necrosis, stunted growth and reduced fertility in hybrids. Specific combinations of alleles of ACCELERATED CELL DEATH 6 (ACD6) have been shown to be a common cause of hybrid necrosis in Arabidopsis thaliana. Increased ACD6 activity confers broad-spectrum resistance against biotrophic pathogens but reduces biomass production. We generated 996 crosses among individuals derived from a single collection area around Tübingen (Germany) and screened them for hybrid necrosis. Necrotic hybrids were further investigated by genetic linkage, amiRNA silencing, genomic complementation and metabolic profiling. Restriction site associated DNA (RAD)-sequencing was used to understand genetic diversity in the collection sites containing necrosis-inducing alleles. Novel combinations of ACD6 alleles found in neighbouring stands were found to activate the A. thaliana immune system. In contrast to what we observed in controlled conditions, necrotic hybrids did not show reduced fitness in the field. Metabolic profiling revealed changes associated with the activation of the immune system in ACD6-dependent hybrid necrosis. This study expands our current understanding of the active role of ACD6 in mediating trade-offs between defense responses and growth in A. thaliana.
Collapse
Affiliation(s)
- Magdalena Świadek
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- University of Potsdam, Potsdam, 14476, Germany
| | - Daniela Sieh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Jing Yu
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Marco Todesco
- Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Christian Jorzig
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | | | - Björn Plötner
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Eunyoung Chae
- Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Florian Schröder
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Sang-Tae Kim
- Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| |
Collapse
|
74
|
Tremblay A, Seabolt S, Zeng H, Zhang C, Böckler S, Tate DN, Duong VT, Yao N, Lu H. A Role of the FUZZY ONIONS LIKE Gene in Regulating Cell Death and Defense in Arabidopsis. Sci Rep 2016; 6:37797. [PMID: 27898102 PMCID: PMC5127180 DOI: 10.1038/srep37797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
Programmed cell death (PCD) is critical for development and responses to environmental stimuli in many organisms. FUZZY ONIONS (FZO) proteins in yeast, flies, and mammals are known to affect mitochondrial fusion and function. Arabidopsis FZO-LIKE (FZL) was shown as a chloroplast protein that regulates chloroplast morphology and cell death. We cloned the FZL gene based on the lesion mimic phenotype conferred by an fzl mutation. Here we provide evidence to support that FZL has evolved new function different from its homologs from other organisms. We found that fzl mutants showed enhanced disease resistance to the bacterial pathogen Pseudomonas syringae and the oomycete pathogen Hyaloperonospora arabidopsidis. Besides altered chloroplast morphology and cell death, fzl showed the activation of reactive oxygen species (ROS) and autophagy pathways. FZL and the defense signaling molecule salicylic acid form a negative feedback loop in defense and cell death control. FZL did not complement the yeast strain lacking the FZO1 gene. Together these data suggest that the Arabidopsis FZL gene is a negative regulator of cell death and disease resistance, possibly through regulating ROS and autophagy pathways in the chloroplast.
Collapse
Affiliation(s)
- Arianne Tremblay
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Savanna Seabolt
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Hongyun Zeng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Stefan Böckler
- Institut für Zellbiologie, Universität Bayreuth, Bayreuth 95440, Germany
| | - Dominique N. Tate
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Vy Thuy Duong
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
75
|
Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapati P, Steinhoff HJ, Hase T, Scheibe R, Klare JP, Hanke GT. Ferredoxin:NADP(H) Oxidoreductase Abundance and Location Influences Redox Poise and Stress Tolerance. PLANT PHYSIOLOGY 2016; 172:1480-1493. [PMID: 27634426 PMCID: PMC5100767 DOI: 10.1104/pp.16.01084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/13/2016] [Indexed: 05/20/2023]
Abstract
In linear photosynthetic electron transport, ferredoxin:NADP(H) oxidoreductase (FNR) transfers electrons from ferredoxin (Fd) to NADP+ Both NADPH and reduced Fd (Fdred) are required for reductive assimilation and light/dark activation/deactivation of enzymes. FNR is therefore a hub, connecting photosynthetic electron transport to chloroplast redox metabolism. A correlation between FNR content and tolerance to oxidative stress is well established, although the precise mechanism remains unclear. We investigated the impact of altered FNR content and localization on electron transport and superoxide radical evolution in isolated thylakoids, and probed resulting changes in redox homeostasis, expression of oxidative stress markers, and tolerance to high light in planta. Our data indicate that the ratio of Fdred to FNR is critical, with either too much or too little FNR potentially leading to increased superoxide production, and perception of oxidative stress at the level of gene transcription. In FNR overexpressing plants, which show more NADP(H) and glutathione pools, improved tolerance to high-light stress indicates that disturbance of chloroplast redox poise and increased free radical generation may help "prime" the plant and induce protective mechanisms. In fnr1 knock-outs, the NADP(H) and glutathione pools are more oxidized relative to the wild type, and the photoprotective effect is absent despite perception of oxidative stress at the level of gene transcription.
Collapse
Affiliation(s)
- Marina Kozuleva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Tatjana Goss
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Manuel Twachtmann
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Katherina Rudi
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Jennifer Trapka
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Jennifer Selinski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Boris Ivanov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Prashanth Garapati
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Heinz-Juergen Steinhoff
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Toshiharu Hase
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Renate Scheibe
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Johann P Klare
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.)
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| | - Guy T Hanke
- Institute of Basic Biological Problems, Russian Academy of Sciences, Puschino, 142290 Russia (M.K., B.I.);
- Department of Plant Physiology (T.G., M.T., J.T., J.S., P.G., R.S., G.T.H.) and Department of Biophysics (K.R., H.-J.S., J.P.K.), Osnabrück University, Osnabrück 49076, Germany;
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan (T.H.); and
- School of Biochemistry and Chemistry, Queen Mary University of London, London E1 4NS, United Kingdom (G.T.H.)
| |
Collapse
|
76
|
Ngaki MN, Wang B, Sahu BB, Srivastava SK, Farooqi MS, Kambakam S, Swaminathan S, Bhattacharyya MK. Tanscriptomic Study of the Soybean-Fusarium virguliforme Interaction Revealed a Novel Ankyrin-Repeat Containing Defense Gene, Expression of Whose during Infection Led to Enhanced Resistance to the Fungal Pathogen in Transgenic Soybean Plants. PLoS One 2016; 11:e0163106. [PMID: 27760122 PMCID: PMC5070833 DOI: 10.1371/journal.pone.0163106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/04/2016] [Indexed: 12/13/2022] Open
Abstract
Fusarium virguliforme causes the serious disease sudden death syndrome (SDS) in soybean. Host resistance to this pathogen is partial and is encoded by a large number of quantitative trait loci, each conditioning small effects. Breeding SDS resistance is therefore challenging and identification of single-gene encoded novel resistance mechanisms is becoming a priority to fight this devastating this fungal pathogen. In this transcriptomic study we identified a few putative soybean defense genes, expression of which is suppressed during F. virguliforme infection. The F. virguliforme infection-suppressed genes were broadly classified into four major classes. The steady state transcript levels of many of these genes were suppressed to undetectable levels immediately following F. virguliforme infection. One of these classes contains two novel genes encoding ankyrin repeat-containing proteins. Expression of one of these genes, GmARP1, during F. virguliforme infection enhances SDS resistance among the transgenic soybean plants. Our data suggest that GmARP1 is a novel defense gene and the pathogen presumably suppress its expression to establish compatible interaction.
Collapse
Affiliation(s)
- Micheline N. Ngaki
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Bing Wang
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Binod B. Sahu
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Subodh K. Srivastava
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Mohammad S. Farooqi
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Sekhar Kambakam
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | | | | |
Collapse
|
77
|
van Wersch R, Li X, Zhang Y. Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1717. [PMID: 27909443 PMCID: PMC5112265 DOI: 10.3389/fpls.2016.01717] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/01/2016] [Indexed: 05/17/2023]
Abstract
Plants lack the adaptive immune system possessed by mammals. Instead they rely on innate immunity to defend against pathogen attacks. Genomes of higher plants encode a large number of plant immune receptors belonging to different protein families, which are involved in the detection of pathogens and activation of downstream defense pathways. Plant immunity is tightly controlled to avoid activation of defense responses in the absence of pathogens, as failure to do so can lead to autoimmunity that compromises plant growth and development. Many autoimmune mutants have been reported, most of which are associated with dwarfism and often spontaneous cell death. In this review, we summarize previously reported Arabidopsis autoimmune mutants, categorizing them based on their functional groups. We also discuss how their obvious morphological phenotypes make them ideal tools for epistatic analysis and suppressor screens, and summarize genetic screens that have been carried out in various autoimmune mutant backgrounds.
Collapse
Affiliation(s)
- Rowan van Wersch
- Department of Botany, University of British Columbia, VancouverBC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, VancouverBC, Canada
- The Michael Smith Laboratories, University of British Columbia, VancouverBC, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, VancouverBC, Canada
- *Correspondence: Yuelin Zhang,
| |
Collapse
|
78
|
Hamdoun S, Zhang C, Gill M, Kumar N, Churchman M, Larkin JC, Kwon A, Lu H. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:515-27. [PMID: 26561564 PMCID: PMC4704592 DOI: 10.1104/pp.15.01466] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/06/2015] [Indexed: 05/03/2023]
Abstract
Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Manroop Gill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Narender Kumar
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Michelle Churchman
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - John C Larkin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Ashley Kwon
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| |
Collapse
|
79
|
Fan X, Wu J, Chen T, Tie W, Chen H, Zhou F, Lin Y. Loss-of-function mutation of rice SLAC7 decreases chloroplast stability and induces a photoprotection mechanism in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:1063-77. [PMID: 25739330 PMCID: PMC5029597 DOI: 10.1111/jipb.12350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/25/2015] [Indexed: 05/11/2023]
Abstract
Plants absorb sunlight to power the photochemical reactions of photosynthesis, which can potentially damage the photosynthetic machinery. However, the mechanism that protects chloroplasts from the damage remains unclear. In this work, we demonstrated that rice (Oryza sativa L.) SLAC7 is a generally expressed membrane protein. Loss-of-function of SLAC7 caused continuous damage to the chloroplasts of mutant leaves under normal light conditions. Ion leakage indicators related to leaf damage such as H2 O2 and abscisic acid levels were significantly higher in slac7-1 than in the wild type. Consistently, the photosynthesis efficiency and Fv/Fm ratio of slac7-1 were significantly decreased (similar to photoinhibition). In response to chloroplast damage, slac7-1 altered its leaf morphology (curled or fused leaf) by the synergy between plant hormones and transcriptional factors to decrease the absorption of light, suggesting that a photoprotection mechanism for chloroplast damage was activated in slac7-1. When grown in dark conditions, slac7-1 displayed a normal phenotype. SLAC7 under the control of the AtSLAC1 promoter could partially complement the phenotypes of Arabidopsis slac1 mutants, indicating a partial conservation of SLAC protein functions. These results suggest that SLAC7 is essential for maintaining the chloroplast stability in rice.
Collapse
Affiliation(s)
- Xiaolei Fan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiemin Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taiyu Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weiwei Tie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
80
|
Lee J, Manning AJ, Wolfgeher D, Jelenska J, Cavanaugh KA, Xu H, Fernandez SM, Michelmore RW, Kron SJ, Greenberg JT. Acetylation of an NB-LRR Plant Immune-Effector Complex Suppresses Immunity. Cell Rep 2015; 13:1670-82. [PMID: 26586425 PMCID: PMC4967551 DOI: 10.1016/j.celrep.2015.10.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/10/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
Modifications of plant immune complexes by secreted pathogen effectors can trigger strong immune responses mediated by the action of nucleotide binding-leucine-rich repeat immune receptors. Although some strains of the pathogen Pseudomonas syringae harbor effectors that individually can trigger immunity, the plant's response may be suppressed by other virulence factors. This work reveals a robust strategy for immune suppression mediated by HopZ3, an effector in the YopJ family of acetyltransferases. The suppressing HopZ3 effector binds to and can acetylate multiple members of the RPM1 immune complex, as well as two P. syringae effectors that together activate the RPM1 complex. These acetylations modify serine, threonine, lysine, and/or histidine residues in the targets. Through HopZ3-mediated acetylation, it is possible that the whole effector-immune complex is inactivated, leading to increased growth of the pathogen.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Andrew J Manning
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Keri A Cavanaugh
- The Genome Center & Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Huaqin Xu
- The Genome Center & Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Sandra M Fernandez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Richard W Michelmore
- The Genome Center & Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
81
|
Micol-Ponce R, Sánchez-García AB, Xu Q, Barrero JM, Micol JL, Ponce MR. Arabidopsis INCURVATA2 Regulates Salicylic Acid and Abscisic Acid Signaling, and Oxidative Stress Responses. PLANT & CELL PHYSIOLOGY 2015; 56:2207-2219. [PMID: 26423959 DOI: 10.1093/pcp/pcv132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Epigenetic regulatory states can persist through mitosis and meiosis, but the connection between chromatin structure and DNA replication remains unclear. Arabidopsis INCURVATA2 (ICU2) encodes the catalytic subunit of DNA polymerase α, and null alleles of ICU2 have an embryo-lethal phenotype. Analysis of icu2-1, a hypomorphic allele of ICU2, demonstrated that ICU2 functions in chromatin-mediated cellular memory; icu2-1 strongly impairs ICU2 function in the maintenance of repressive epigenetic marks but does not seem to affect ICU2 polymerase activity. To better understand the global function of ICU2 in epigenetic regulation, here we performed a microarray analysis of icu2-1 mutant plants. We found that the genes up-regulated in the icu2-1 mutant included genes encoding transcription factors and targets of the Polycomb Repressive Complexes. The down-regulated genes included many known players in salicylic acid (SA) biosynthesis and accumulation, ABA signaling and ABA-mediated responses. In addition, we found that icu2-1 plants had reduced SA levels in normal conditions; infection by Fusarium oxysporum induced SA accumulation in the En-2 wild type but not in the icu2-1 mutant. The icu2-1 plants were also hypersensitive to salt stress and exogenous ABA in seedling establishment, post-germination growth and stomatal closure, and accumulated more ABA than the wild type in response to salt stress. The icu2-1 mutant also showed high tolerance to the oxidative stress produced by 3-amino-1,2,4-triazole (3-AT). Our results uncover a role for ICU2 in the regulation of genes involved in ABA signaling as well as in SA biosynthesis and accumulation.
Collapse
Affiliation(s)
- Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Ana Belén Sánchez-García
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Qian Xu
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - José María Barrero
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
82
|
Cecchini NM, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. ALD1 Regulates Basal Immune Components and Early Inducible Defense Responses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:455-66. [PMID: 25372120 DOI: 10.1094/mpmi-06-14-0187-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Robust immunity requires basal defense machinery to mediate timely responses and feedback cycles to amplify defenses against potentially spreading infections. AGD2-LIKE DEFENSE RESPONSE PROTEIN 1 (ALD1) is needed for the accumulation of the plant defense signal salicylic acid (SA) during the first hours after infection with the pathogen Pseudomonas syringae and is also upregulated by infection and SA. ALD1 is an aminotransferase with multiple substrates and products in vitro. Pipecolic acid (Pip) is an ALD1-dependent bioactive product induced by P. syringae. Here, we addressed roles of ALD1 in mediating defense amplification as well as the levels and responses of basal defense machinery. ALD1 needs immune components PAD4 and ICS1 (an SA synthesis enzyme) to confer disease resistance, possibly through a transcriptional amplification loop between them. Furthermore, ALD1 affects basal defense by controlling microbial-associated molecular pattern (MAMP) receptor levels and responsiveness. Vascular exudates from uninfected ALD1-overexpressing plants confer local immunity to the wild type and ald1 mutants yet are not enriched for Pip. We infer that, in addition to affecting Pip accumulation, ALD1 produces non-Pip metabolites that play roles in immunity. Thus, distinct metabolite signals controlled by the same enzyme affect basal and early defenses versus later defense responses, respectively.
Collapse
Affiliation(s)
- Nicolás M Cecchini
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago 60637, U.S.A
| | | | | | | | | |
Collapse
|
83
|
Luo Q, Li Y, Wang W, Fei X, Deng X. Genome-wide survey and expression analysis of Chlamydomonas reinhardtii U-box E3 ubiquitin ligases (CrPUBs) reveal a functional lipid metabolism module. PLoS One 2015; 10:e0122600. [PMID: 25822994 PMCID: PMC4378952 DOI: 10.1371/journal.pone.0122600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/11/2015] [Indexed: 11/18/2022] Open
Abstract
E3 ubiquitin ligases determine the substrate specificity of ubiquitination. Plant U-box (PUB) E3 ligases, with a typical 70-amino acid U-box domain, participate in plant developmental processes and environmental responses. Thus far, 64 PUB proteins have been identified in Arabidopsis and 77 PUB proteins have been identified in Oryza. However, detailed studies on U-box genes in the model microalgae Chlamydomonas reinhardtii are lacking. Here, we present a comprehensive analysis of the genes encoding U-box family proteins in C. reinhardtii. Following BLASTP analysis, 30 full-length U-box genes were identified in the C. reinhardtii genome sequence. Bioinformatics analyses of CrPUB genes were performed to characterize the phylogenetic relationships, chromosomal locations and gene structures of each member. The 30 identified CrPUB proteins are clustered into 3 distinct subfamilies, and the genes for these proteins are unevenly distributed among 14 chromosomes. Furthermore, the quantitative real-time RT-PCR or semi-quantitative RT-PCR analysis of 30 CrPUB mRNA abundances under nitrogen starvation showed that 18 CrPUB genes were induced by N starvation and that 7 genes were repressed in the N-poor environment. We selected five CrPUB genes exhibiting marked changes in expression under N-free conditions for further analysis in RNAi experiments and examined the oil content of these gene-silenced transgenic strains. The silencing of CrPUB5 and CrPUB14, which are typically down-regulated under N starvation, induced 9.8%-45.0% and 14.4%-61.8% lipid accumulation, respectively. In contrast, the silencing of CrPUB11, CrPUB23 and CrPUB28, which are markedly up-regulated under N-free conditions, decreased the lipid content by 5.5%-27.8%, 8.1%-27.3% and 6.6%-27.9%, respectively. These results provide a useful reference for the identification and functional analysis of this gene family and fundamental information for microalgae lipid metabolism research.
Collapse
Affiliation(s)
- Qiulan Luo
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Yajun Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Wenquan Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
| | - Xiaowen Fei
- School of Science, Hainan Medical College, Haikou, 571101, China
| | - Xiaodong Deng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, 571101, China
- * E-mail:
| |
Collapse
|
84
|
Gao D, Appiano M, Huibers RP, Loonen AEHM, Visser RGF, Wolters AMA, Bai Y. Natural loss-of-function mutation of EDR1 conferring resistance to tomato powdery mildew in Arabidopsis thaliana accession C24. MOLECULAR PLANT PATHOLOGY 2015; 16:71-82. [PMID: 24925473 PMCID: PMC6638503 DOI: 10.1111/mpp.12165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To screen for potentially novel types of resistance to tomato powdery mildew Oidium neolycopersici, a disease assay was performed on 123 Arabidopsis thaliana accessions. Forty accessions were fully resistant, and one, C24, was analysed in detail. By quantitative trait locus (QTL) analysis of an F2 population derived from C24 × Sha (susceptible accession), two QTLs associated with resistance were identified in C24. Fine mapping of QTL-1 on chromosome 1 delimited the region to an interval of 58 kb encompassing 15 candidate genes. One of these was Enhanced Disease Resistance 1 (EDR1). Evaluation of the previously obtained edr1 mutant of Arabidopsis accession Col-0, which was identified because of its resistance to powdery mildew Golovinomyces cichoracearum, showed that it also displayed resistance to O. neolycopersici. Sequencing of EDR1 in our C24 germplasm (referred to as C24-W) revealed two missing nucleotides in the second exon of EDR1 resulting in a premature stop codon. Remarkably, C24 obtained from other laboratories does not contain the EDR1 mutation. To verify the identity of C24-W, a DNA region containing a single nucleotide polymorphism (SNP) unique to C24 was sequenced showing that C24-W contains the C24-specific nucleotide. C24-W showed enhanced resistance to O. neolycopersici compared with C24 not containing the edr1 mutation. Furthermore, C24-W displayed a dwarf phenotype, which was not associated with the mutation in EDR1 and was not caused by the differential accumulation of pathogenesis-related genes. In conclusion, we identified a natural edr1 mutant in the background of C24.
Collapse
Affiliation(s)
- Dongli Gao
- Wageningen UR Plant Breeding, Wageningen University, Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
85
|
Sharma M, Pandey GK. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1218. [PMID: 26793205 PMCID: PMC4707873 DOI: 10.3389/fpls.2015.01218] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein-protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants.
Collapse
|
86
|
Tateda C, Zhang Z, Greenberg JT. Linking pattern recognition and salicylic acid responses in Arabidopsis through ACCELERATED CELL DEATH6 and receptors. PLANT SIGNALING & BEHAVIOR 2015; 10:e1010912. [PMID: 26442718 PMCID: PMC4883847 DOI: 10.1080/15592324.2015.1010912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 05/19/2023]
Abstract
The Arabidopsis membrane protein ACCELERATED CELL DEATH 6 (ACD6) and the defense signal salicylic acid (SA) are part of a positive feedback loop that regulates the levels of at least 2 pathogen-associated molecular patterns (PAMP) receptors, including FLAGELLIN SENSING 2 (FLS2) and CHITIN ELICITOR RECEPTOR (LYSM domain receptor-like kinase 1, CERK1). ACD6- and SA-mediated regulation of these receptors results in potentiation of responses to FLS2 and CERK1 ligands (e.g. flg22 and chitin, respectively). ACD6, FLS2 and CERK1 are also important for callose induction in response to an SA agonist even in the absence of PAMPs. Here, we report that another receptor, EF-Tu RECEPTOR (EFR) is also part of the ACD6/SA signaling network, similar to FLS2 and CERK1.
Collapse
Affiliation(s)
- Chika Tateda
- Department of Molecular Genetics and Cell Biology; The University of Chicago; Chicago, IL USA
| | - Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology; The University of Chicago; Chicago, IL USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology; The University of Chicago; Chicago, IL USA
- Correspondence to: Jean T Greenberg;
| |
Collapse
|
87
|
Bruggeman Q, Raynaud C, Benhamed M, Delarue M. To die or not to die? Lessons from lesion mimic mutants. FRONTIERS IN PLANT SCIENCE 2015; 6:24. [PMID: 25688254 PMCID: PMC4311611 DOI: 10.3389/fpls.2015.00024] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting in an activation of finely controlled signaling pathways that lead to cellular suicide. Although some aspects of PCD control appear evolutionary conserved between plants, animals and fungi, the extent of conservation remains controversial. Over the last decades, identification and characterization of several lesion mimic mutants (LMM) has been a powerful tool in the quest to unravel PCD pathways in plants. Thanks to progress in molecular genetics, mutations causing the phenotype of a large number of LMM and their related suppressors were mapped, and the identification of the mutated genes shed light on major pathways in the onset of plant PCD such as (i) the involvements of chloroplasts and light energy, (ii) the roles of sphingolipids and fatty acids, (iii) a signal perception at the plasma membrane that requires efficient membrane trafficking, (iv) secondary messengers such as ion fluxes and ROS and (v) the control of gene expression as the last integrator of the signaling pathways.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- *Correspondence: Marianne Delarue, Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant Sciences, Bâtiment 630, Route de Noetzlin, 91405 Orsay Cedex, France e-mail:
| |
Collapse
|
88
|
Petutschnig EK, Stolze M, Lipka U, Kopischke M, Horlacher J, Valerius O, Rozhon W, Gust AA, Kemmerling B, Poppenberger B, Braus GH, Nürnberger T, Lipka V. A novel Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) mutant with enhanced pathogen-induced cell death and altered receptor processing. THE NEW PHYTOLOGIST 2014; 204:955-67. [PMID: 25041086 DOI: 10.1111/nph.12920] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/02/2014] [Indexed: 05/23/2023]
Abstract
Plants detect pathogens by sensing microbe-associated molecular patterns (MAMPs) through pattern recognition receptors. Pattern recognition receptor complexes also have roles in cell death control, but the underlying mechanisms are poorly understood. Here, we report isolation of cerk1-4, a novel mutant allele of the Arabidopsis chitin receptor CERK1 with enhanced defense responses. We identified cerk1-4 in a forward genetic screen with barley powdery mildew and consequently characterized it by pathogen assays, mutant crosses and analysis of defense pathways. CERK1 and CERK1-4 proteins were analyzed biochemically. The cerk1-4 mutation causes an amino acid exchange in the CERK1 ectodomain. Mutant plants maintain chitin signaling capacity but exhibit hyper-inducible salicylic acid concentrations and deregulated cell death upon pathogen challenge. In contrast to chitin signaling, the cerk1-4 phenotype does not require kinase activity and is conferred by the N-terminal part of the receptor. CERK1 undergoes ectodomain shedding, a well-known process in animal cell surface proteins. Wild-type plants contain the full-length CERK1 receptor protein as well as a soluble form of the CERK1 ectodomain, whereas cerk1-4 plants lack the N-terminal shedding product. Our work suggests that CERK1 may have a chitin-independent role in cell death control and is the first report of ectodomain shedding in plants.
Collapse
Affiliation(s)
- Elena K Petutschnig
- Department of Plant Cell Biology, Albrecht von Haller Institute, Georg August University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany; The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Chae E, Bomblies K, Kim ST, Karelina D, Zaidem M, Ossowski S, Martín-Pizarro C, Laitinen RAE, Rowan BA, Tenenboim H, Lechner S, Demar M, Habring-Müller A, Lanz C, Rätsch G, Weigel D. Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 2014; 159:1341-51. [PMID: 25467443 DOI: 10.1016/j.cell.2014.10.049] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/22/2014] [Accepted: 10/07/2014] [Indexed: 01/07/2023]
Abstract
Intraspecific genetic incompatibilities prevent the assembly of specific alleles into single genotypes and influence genome- and species-wide patterns of sequence variation. A common incompatibility in plants is hybrid necrosis, characterized by autoimmune responses due to epistatic interactions between natural genetic variants. By systematically testing thousands of F1 hybrids of Arabidopsis thaliana strains, we identified a small number of incompatibility hot spots in the genome, often in regions densely populated by nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes. In several cases, these immune receptor loci interact with each other, suggestive of conflict within the immune system. A particularly dangerous locus is a highly variable cluster of NLR genes, DM2, which causes multiple independent incompatibilities with genes that encode a range of biochemical functions, including NLRs. Our findings suggest that deleterious interactions of immune receptors limit the combinations of favorable disease resistance alleles accessible to plant genomes.
Collapse
Affiliation(s)
- Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Kirsten Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Darya Karelina
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Friedrich Miescher Laboratory, Max Planck Society, 72076 Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Stephan Ossowski
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Carmen Martín-Pizarro
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Roosa A E Laitinen
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Beth A Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Hezi Tenenboim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Sarah Lechner
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Anette Habring-Müller
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gunnar Rätsch
- Friedrich Miescher Laboratory, Max Planck Society, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
90
|
Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics 2014; 15:949. [PMID: 25363865 PMCID: PMC4237293 DOI: 10.1186/1471-2164-15-949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/22/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Vascular wilt caused by Fusarium oxysporum f. sp. ciceri Race 1 (Foc1) is a serious disease of chickpea (Cicer arietinum L.) accounting for approximately 10-15% annual crop loss. The fungus invades the plant via roots, colonizes the xylem vessels and prevents the upward translocation of water and nutrients, finally resulting in wilting of the entire plant. Although comparative transcriptomic profiling have highlighted some important signaling molecules, but proteomic studies involving chickpea-Foc1 are limited. The present study focuses on comparative root proteomics of susceptible (JG62) and resistant (WR315) chickpea genotypes infected with Foc1, to understand the mechanistic basis of susceptibility and/or resistance. RESULTS The differential and unique proteins of both genotypes were identified at 48 h, 72 h, and 96 h post Foc1 inoculation. 2D PAGE analyses followed by MALDI-TOF MS and MS/MS identified 100 differentially (>1.5 fold<, p<0.05) or uniquely expressed proteins. These proteins were further categorized into 10 functional classes and grouped into GO (gene ontology) categories. Network analyses of identified proteins revealed intra and inter relationship of these proteins with their neighbors as well as their association with different defense signaling pathways. qRT-PCR analyses were performed to correlate the mRNA and protein levels of some proteins of representative classes. CONCLUSIONS The differential and unique proteins identified indicate their involvement in early defense signaling of the host. Comparative analyses of expression profiles of obtained proteins suggest that albeit some common components participate in early defense signaling in both susceptible and resistant genotypes, but their roles and regulation differ in case of compatible and/or incompatible interactions. Thus, functional characterization of identified PR proteins (PR1, BGL2, TLP), Trypsin protease inhibitor, ABA responsive protein, cysteine protease, protein disulphide isomerase, ripening related protein and albumins are expected to serve as important molecular components for biotechnological application and development of sustainable resistance against Foc1.
Collapse
Affiliation(s)
- Moniya Chatterjee
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sumanti Gupta
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Anirban Bhar
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Dipankar Chakraborti
- />Post Graduate Department of Biotechnology, St. Xavier’s College (Autonomous), 30 Park Street, Kolkata, 700016 India
| | - Debabrata Basu
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| | - Sampa Das
- />Division of Plant Biology, Bose Institute, Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054 West Bengal India
| |
Collapse
|
91
|
Ung H, Moeder W, Yoshioka K. Arabidopsis triphosphate tunnel metalloenzyme2 is a negative regulator of the salicylic acid-mediated feedback amplification loop for defense responses. PLANT PHYSIOLOGY 2014; 166:1009-21. [PMID: 25185123 PMCID: PMC4213072 DOI: 10.1104/pp.114.248757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The triphosphate tunnel metalloenzyme (TTM) superfamily represents a group of enzymes that is characterized by their ability to hydrolyze a range of tripolyphosphate substrates. Arabidopsis (Arabidopsis thaliana) encodes three TTM genes, AtTTM1, AtTTM2, and AtTTM3. Although AtTTM3 has previously been reported to have tripolyphosphatase activity, recombinantly expressed AtTTM2 unexpectedly exhibited pyrophosphatase activity. AtTTM2 knockout mutant plants exhibit an enhanced hypersensitive response, elevated pathogen resistance against both virulent and avirulent pathogens, and elevated accumulation of salicylic acid (SA) upon infection. In addition, stronger systemic acquired resistance compared with wild-type plants was observed. These enhanced defense responses are dependent on SA, PHYTOALEXIN-DEFICIENT4, and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. Despite their enhanced pathogen resistance, ttm2 plants did not display constitutively active defense responses, suggesting that AtTTM2 is not a conventional negative regulator but a negative regulator of the amplification of defense responses. The transcriptional suppression of AtTTM2 by pathogen infection or treatment with SA or the systemic acquired resistance activator benzothiadiazole further supports this notion. Such transcriptional regulation is conserved among TTM2 orthologs in the crop plants soybean (Glycine max) and canola (Brassica napus), suggesting that TTM2 is involved in immunity in a wide variety of plant species. This indicates the possible usage of TTM2 knockout mutants for agricultural applications to generate pathogen-resistant crop plants.
Collapse
Affiliation(s)
- Huoi Ung
- Department of Cell and Systems Biology (H.U., W.M., K.Y.) andCenter for the Analysis of Genome Evolution and Function (K.Y.), University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Wolfgang Moeder
- Department of Cell and Systems Biology (H.U., W.M., K.Y.) andCenter for the Analysis of Genome Evolution and Function (K.Y.), University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | - Keiko Yoshioka
- Department of Cell and Systems Biology (H.U., W.M., K.Y.) andCenter for the Analysis of Genome Evolution and Function (K.Y.), University of Toronto, Toronto, Ontario, Canada M5S 3B2
| |
Collapse
|
92
|
Tateda C, Zhang Z, Shrestha J, Jelenska J, Chinchilla D, Greenberg JT. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. THE PLANT CELL 2014; 26:4171-87. [PMID: 25315322 PMCID: PMC4247590 DOI: 10.1105/tpc.114.131938] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/19/2014] [Accepted: 09/27/2014] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, responses to pathogen-associated molecular patterns (PAMPs) are mediated by cell surface pattern recognition receptors (PRRs) and include the accumulation of reactive oxygen species, callose deposition in the cell wall, and the generation of the signal molecule salicylic acid (SA). SA acts in a positive feedback loop with ACCELERATED CELL DEATH6 (ACD6), a membrane protein that contributes to immunity. This work shows that PRRs associate with and are part of the ACD6/SA feedback loop. ACD6 positively regulates the abundance of several PRRs and affects the responsiveness of plants to two PAMPs. SA accumulation also causes increased levels of PRRs and potentiates the responsiveness of plants to PAMPs. Finally, SA induces PRR- and ACD6-dependent signaling to induce callose deposition independent of the presence of PAMPs. This PAMP-independent effect of SA causes a transient reduction of PRRs and ACD6-dependent reduced responsiveness to PAMPs. Thus, SA has a dynamic effect on the regulation and function of PRRs. Within a few hours, SA signaling promotes defenses and downregulates PRRs, whereas later (within 24 to 48 h) SA signaling upregulates PRRs, and plants are rendered more responsive to PAMPs. These results implicate multiple modes of signaling for PRRs in response to PAMPs and SA.
Collapse
Affiliation(s)
- Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Delphine Chinchilla
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
93
|
Zhang Z, Shrestha J, Tateda C, Greenberg JT. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6. MOLECULAR PLANT 2014; 7:1365-1383. [PMID: 24923602 PMCID: PMC4168298 DOI: 10.1093/mp/ssu072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA.
| |
Collapse
|
94
|
Zhang N, Lariviere A, Tonsor SJ, Traw MB. Constitutive camalexin production and environmental stress response variation in Arabidopsis populations from the Iberian Peninsula. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:77-85. [PMID: 25017162 DOI: 10.1016/j.plantsci.2014.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/07/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
Optimal defense theory predicts that induction of defensive secondary metabolites in plants will be inversely correlated with constitutive expression of those compounds. Here, we asked whether camalexin, an important defense against fungal and bacterial pathogens, support this prediction in structured natural populations of Arabidopsis thaliana from the Iberian Peninsula. In common garden experiments, we found that genotypes from the VIE population constitutively hyper-accumulated camalexin. Camalexin concentrations were not induced significantly when plants were exposed to a temperature of 10°C for 48h. However, they were induced when plants were exposed to 48h of infection by the virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Genotypes from the VIE population with the hyper-accumulation of camalexin were significantly more resistant to bacterial growth. Induction of camalexin was negatively correlated with constitutive camalexin concentrations following log transformation and two different corrections for autocorrelation, thus supporting the tradeoff predicted by optimal defense theory. Constitutive overexpression of camalexin was not explained by the only known natural genetic polymorphism at the Accelerated Cell Death 6, ACD6, locus. Collectively, the results support an important role of camalexin in defense against P. syringae as well as significant structured variation in defense levels within wild populations.
Collapse
Affiliation(s)
- Nana Zhang
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, United States
| | - Andy Lariviere
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, United States
| | - Stephen J Tonsor
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, United States
| | - M Brian Traw
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, United States.
| |
Collapse
|
95
|
Todesco M, Kim ST, Chae E, Bomblies K, Zaidem M, Smith LM, Weigel D, Laitinen RAE. Activation of the Arabidopsis thaliana immune system by combinations of common ACD6 alleles. PLoS Genet 2014; 10:e1004459. [PMID: 25010663 PMCID: PMC4091793 DOI: 10.1371/journal.pgen.1004459] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/09/2014] [Indexed: 11/23/2022] Open
Abstract
A fundamental question in biology is how multicellular organisms distinguish self and non-self. The ability to make this distinction allows animals and plants to detect and respond to pathogens without triggering immune reactions directed against their own cells. In plants, inappropriate self-recognition results in the autonomous activation of the immune system, causing affected individuals to grow less well. These plants also suffer from spontaneous cell death, but are at the same time more resistant to pathogens. Known causes for such autonomous activation of the immune system are hyperactive alleles of immune regulators, or epistatic interactions between immune regulators and unlinked genes. We have discovered a third class, in which the Arabidopsis thaliana immune system is activated by interactions between natural alleles at a single locus, ACCELERATED CELL DEATH 6 (ACD6). There are two main types of these interacting alleles, one of which has evolved recently by partial resurrection of a pseudogene, and each type includes multiple functional variants. Most previously studies hybrid necrosis cases involve rare alleles found in geographically unrelated populations. These two types of ACD6 alleles instead occur at low frequency throughout the range of the species, and have risen to high frequency in the Northeast of Spain, suggesting a role in local adaptation. In addition, such hybrids occur in these populations in the wild. The extensive functional variation among ACD6 alleles points to a central role of this locus in fine-tuning pathogen defenses in natural populations. Plants and their pathogens are engaged in an endless evolutionary battle. The invention of new strategies by pathogens pushes plants to continuously update their defenses. This in turn leads the pathogens to circumvent these new defenses, and so on. Given the abundance of potential enemies, it is therefore not surprising that genes involved in defense against pathogens are among the most variable in plants. A drawback of this extreme variation in pathogen-recognition mechanisms is that at times the plant mistakes itself for an enemy, leading to autonomous activation of defense responses in the absence of pathogens. Conventional models for this phenomenon, called hybrid necrosis, require the interaction between two different genes. Here we show instead that hybrid necrosis can be triggered by interactions between variants of a single gene, ACD6 (ACCELERATED CELL DEATH 6). Several of these variants are common in natural Arabidopsis thaliana populations and can interact to give different levels of activation of the immune system. Our results provide important information into the evolution and operation of the plant defense system. Moreover, the abundant presence of ACD6 functional variation suggests a major role for this gene in modulating plant defenses in nature.
Collapse
Affiliation(s)
- Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Kirsten Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lisa M. Smith
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| | - Roosa A. E. Laitinen
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
96
|
Brosché M, Blomster T, Salojärvi J, Cui F, Sipari N, Leppälä J, Lamminmäki A, Tomai G, Narayanasamy S, Reddy RA, Keinänen M, Overmyer K, Kangasjärvi J. Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1. PLoS Genet 2014; 10:e1004112. [PMID: 24550736 PMCID: PMC3923667 DOI: 10.1371/journal.pgen.1004112] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/02/2013] [Indexed: 11/18/2022] Open
Abstract
Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR. Reactive oxygen species (ROS) are utilized in plants as signaling molecules to regulate development, stress responses and cell death. One extreme form of defense uses programmed cell death (PCD) in a scorched earth strategy to deliberately kill off cells invaded by a pathogen. Compared to animals, the regulation of plant PCD remains largely uncharacterized, particularly with regard to how ROS regulate changes in gene expression leading to PCD. Using comparative transcriptome analysis of mutants deficient in PCD regulation and publicly available cell death microarray data, we show that quantitative rather than qualitative differences in cell death gene expression appear to better explain the cell death response. In a genetic analysis with double mutants we also found the transcription factor WRKY70 and a component of ubiquitin mediated protein degradation, SGT1b, to be involved in regulation of ROS induced PCD.
Collapse
Affiliation(s)
- Mikael Brosché
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| | - Tiina Blomster
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jarkko Salojärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Fuqiang Cui
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Johanna Leppälä
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Airi Lamminmäki
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Gloria Tomai
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Shaman Narayanasamy
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Ramesha A. Reddy
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Markku Keinänen
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Kirk Overmyer
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
97
|
Wang G, Zhang C, Battle S, Lu H. The phosphate transporter PHT4;1 is a salicylic acid regulator likely controlled by the circadian clock protein CCA1. FRONTIERS IN PLANT SCIENCE 2014; 5:701. [PMID: 25566276 PMCID: PMC4267192 DOI: 10.3389/fpls.2014.00701] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/25/2014] [Indexed: 05/08/2023]
Abstract
The small phenolic compound salicylic acid (SA) plays a critical role in plant defense against broad-spectrum of pathogens. The phosphate transporter gene PHT4;1 was previously shown to affect SA-mediated defense and its expression is regulated by the circadian clock. To further understand how PHT4;1 affects SA accumulation, here we analyzed the genetic interactions between the gain-of-function mutant pht4;1-1 and several known SA mutants, including sid2-1, ald1-1, eds5-3, and pad4-1. The genetic analysis was conducted in the acd6-1 background since the change of acd6-1 dwarfism can be used as a convenient readout for the change of defense levels caused by impairments in some SA genes. We found that compared with the corresponding double mutants, the triple mutants acd6-1pht4;1-1ald1-1, acd6-1pht4;1-1eds5-3, and acd6-1pht4;1-1pad4-1 accumulated lower levels of SA and PR1 transcripts, suggesting that PHT4;1 contributes to acd6-1-conferred defense phenotypes independently of these known SA regulators. Although some triple mutants had wild type (wt)-like levels of SA and PR1 transcripts, these plants were smaller than wt and displayed minor cell death, suggesting that additional regulatory pathways contribute to acd6-1-conferred dwarfism and cell death. Our data further showed that circadian expression of PHT4;1 was dependent on CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a central oscillator component of Arabidopsis circadian clock. Recombinant CCA1 protein was demonstrated to bind to the PHT4;1 promoter in electrophoretic mobility shift assays, suggesting a direct transcriptional regulation of PHT4;1 by CCA1. Together these results indicate that PHT4;1 is a SA regulator acting independently of several known SA genes and they also implicate a role of the circadian clock mediated by CCA1 in regulating phosphate transport and/or innate immunity in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | - Hua Lu
- *Correspondence: Hua Lu, Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA e-mail:
| |
Collapse
|
98
|
Hamdoun S, Liu Z, Gill M, Yao N, Lu H. Dynamics of defense responses and cell fate change during Arabidopsis-Pseudomonas syringae interactions. PLoS One 2013; 8:e83219. [PMID: 24349466 PMCID: PMC3859648 DOI: 10.1371/journal.pone.0083219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/01/2013] [Indexed: 11/24/2022] Open
Abstract
Plant-pathogen interactions involve sophisticated action and counteraction strategies from both parties. Plants can recognize pathogen derived molecules, such as conserved pathogen associated molecular patterns (PAMPs) and effector proteins, and subsequently activate PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, pathogens can evade such recognitions and suppress host immunity with effectors, causing effector-triggered susceptibility (ETS). The differences among PTI, ETS, and ETI have not been completely understood. Toward a better understanding of PTI, ETS, and ETI, we systematically examined various defense-related phenotypes of Arabidopsis infected with different Pseudomonas syringae pv. maculicola ES4326 strains, using the virulence strain DG3 to induce ETS, the avirulence strain DG34 that expresses avrRpm1 (recognized by the resistance protein RPM1) to induce ETI, and HrcC- that lacks the type three secretion system to activate PTI. We found that plants infected with different strains displayed dynamic differences in the accumulation of the defense signaling molecule salicylic acid, expression of the defense marker gene PR1, cell death formation, and accumulation/localization of the reactive oxygen species, H2O2. The differences between PTI, ETS, and ETI are dependent on the doses of the strains used. These data support the quantitative nature of PTI, ETS, and ETI and they also reveal qualitative differences between PTI, ETS, and ETI. Interestingly, we observed the induction of large cells in the infected leaves, most obviously with HrcC- at later infection stages. The enlarged cells have increased DNA content, suggesting a possible activation of endoreplication. Consistent with strong induction of abnormal cell growth by HrcC-, we found that the PTI elicitor flg22 also activates abnormal cell growth, depending on a functional flg22-receptor FLS2. Thus, our study has revealed a comprehensive picture of dynamic changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Manroop Gill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
99
|
Singh A, Srivastava AK, Singh AK. Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L. ENVIRONMENTAL TOXICOLOGY 2013; 28:666-672. [PMID: 21954193 DOI: 10.1002/tox.20745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 05/31/2023]
Abstract
The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from insecticides toxicity. The seeds of Vicia faba var IIVR Selection-1 were treated with different concentrations (1.5, 3.0, and 6.0 ppm) of the insecticides alphamethrin (AM) and endosulfan (ES) for 6 h with and without 12 h conditioning treatment of SA (0.01 mM). Insecticides treatment caused a significant decrease in mitotic index (MI) and induction of different types of chromosomal abnormalities in the meristematic cells of broad bean roots. Pretreatment of seeds with SA resulted in increased MI and significant reduction of chromosomal abnormalities. SA application also regulated proline accumulation and carotenoid content in the leaf tissues. SA resulted in the decrement of insecticides induced increase in proline content and increased the carotenoids content. These results illustrate the ameliorating effect of SA under stress conditions and reveal that SA is more effective in alleviating the toxic effects of insecticides at higher concentrations than that at lower concentrations.
Collapse
Affiliation(s)
- Aradhana Singh
- Genotoxic Lab, Department of Botany, Udai Pratap Autonomous College, Varanasi, 221002, Uttar Pradesh, India
| | | | | |
Collapse
|
100
|
Song GC, Ryu SY, Kim YS, Lee JY, Choi JS, Ryu CM. Elicitation of induced resistance against Pectobacterium carotovorum and Pseudomonas syringae by specific individual compounds derived from native Korean plant species. Molecules 2013; 18:12877-95. [PMID: 24135942 PMCID: PMC6269703 DOI: 10.3390/molecules181012877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/30/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022] Open
Abstract
Plants have developed general and specific defense mechanisms for protection against various enemies. Among the general defenses, induced resistance has distinct characteristics, such as broad-spectrum resistance and long-lasting effectiveness. This study evaluated over 500 specific chemical compounds derived from native Korean plant species to determine whether they triggered induced resistance against Pectobacterium carotovorum supsp. carotovorum (Pcc) in tobacco (Nicotiana tabacum) and Pseudomonas syringae pv. tomato (Pst) in Arabidopsis thaliana. To select target compound(s) with direct and indirect (volatile) effects, a new Petri-dish-based in vitro disease assay system with four compartments was developed. The screening assay showed that capsaicin, fisetin hydrate, jaceosidin, and farnesiferol A reduced the disease severity significantly in tobacco. Of these four compounds, capsaicin and jaceosidin induced resistance against Pcc and Pst, which depended on both salicylic acid (SA) and jasmonic acid (JA) signaling, using Arabidopsis transgenic and mutant lines, including npr1 and NahG for SA signaling and jar1 for JA signaling. The upregulation of the PR2 and PDF1.2 genes after Pst challenge with capsaicin pre-treatment indicated that SA and JA signaling were primed. These results demonstrate that capsaicin and jaceosidin can be effective triggers of strong induced resistance against both necrotrophic and biotrophic plant pathogens.
Collapse
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology Laboratory, Superbacteria Research Center, KRIBB, Daejeon 305-806, Korea; E-Mail:
- Biosystems and Bioengineering Program, School of Science, University of Science and Technology, Daejeon 305-333, Korea
| | - Shi Yong Ryu
- Korea Research Institute of Chemical Technology, P.O. Bos 107, 141 Gajeong-ro, Yuseong, Daejeon 305-600, Korea; E-Mails: (S.Y.R.); (Y.S.K.); (J.Y.L.); (J.S.C.)
| | - Young Sup Kim
- Korea Research Institute of Chemical Technology, P.O. Bos 107, 141 Gajeong-ro, Yuseong, Daejeon 305-600, Korea; E-Mails: (S.Y.R.); (Y.S.K.); (J.Y.L.); (J.S.C.)
| | - Ji Young Lee
- Korea Research Institute of Chemical Technology, P.O. Bos 107, 141 Gajeong-ro, Yuseong, Daejeon 305-600, Korea; E-Mails: (S.Y.R.); (Y.S.K.); (J.Y.L.); (J.S.C.)
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 305-764, Korea
| | - Jung Sup Choi
- Korea Research Institute of Chemical Technology, P.O. Bos 107, 141 Gajeong-ro, Yuseong, Daejeon 305-600, Korea; E-Mails: (S.Y.R.); (Y.S.K.); (J.Y.L.); (J.S.C.)
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Superbacteria Research Center, KRIBB, Daejeon 305-806, Korea; E-Mail:
- Biosystems and Bioengineering Program, School of Science, University of Science and Technology, Daejeon 305-333, Korea
| |
Collapse
|