51
|
Singh V, Roy S, Giri MK, Chaturvedi R, Chowdhury Z, Shah J, Nandi AK. Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1079-88. [PMID: 23745676 DOI: 10.1094/mpmi-04-13-0096-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Localized infection in plants often induces systemic acquired resistance (SAR), which provides long-term protection against subsequent infections. A signal originating in the SAR-inducing organ is transported to the distal organs, where it stimulates salicylic acid (SA) accumulation and priming, a mechanism that results in more robust activation of defenses in response to subsequent pathogen infection. In recent years, several metabolites that promote long-distance SAR signaling have been identified. However, the mechanism or mechanisms by which plants perceive and respond to the SAR signals are largely obscure. Here, we show that, in Arabidopsis thaliana, the FLOWERING LOCUS D (FLD) is required for responding to the SAR signals leading to the systemic accumulation of SA and enhancement of disease resistance. Although the fld mutant was competent in accumulating the SAR-inducing signal, it was unable to respond to the SAR signal that accumulates in petiole exudates of wild-type leaves inoculated with a SAR-inducing pathogen. Supporting FLD's role in systemic SAR signaling, we observed that dehydroabietinal and azelaic acid, two metabolites that, in wild-type plants, promote SAR-associated systemic accumulation of SA and priming, respectively, were unable to promote SAR in the fld mutant. FLD also participates in flowering, where it functions to repress expression of the flowering repressor FLOWERING LOCUS C (FLC). However, epistasis analysis indicates that FLD's function in SAR is independent of FLC.
Collapse
Affiliation(s)
- Vijayata Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
52
|
Singh S, Giri MK, Singh PK, Siddiqui A, Nandi AK. Down-regulation of OsSAG12-1 results in enhanced senescence and pathogen-induced cell death in transgenic rice plants. J Biosci 2013; 38:583-92. [DOI: 10.1007/s12038-013-9334-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Wu Y, Yi G, Peng X, Huang B, Liu E, Zhang J. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1039-46. [PMID: 23702248 DOI: 10.1016/j.jplph.2013.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/30/2012] [Accepted: 02/21/2013] [Indexed: 05/20/2023]
Abstract
Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 μg g⁻¹ FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR.
Collapse
Affiliation(s)
- Yuanli Wu
- Fruit Tree Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
54
|
Kawano T, Bouteau F. Crosstalk between intracellular and extracellular salicylic acid signaling events leading to long-distance spread of signals. PLANT CELL REPORTS 2013; 32:1125-38. [PMID: 23689257 DOI: 10.1007/s00299-013-1451-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 05/08/2023]
Abstract
It is well recognized that salicylic acid (SA) acts as a natural signaling molecule involved in both local and systemic plant defense responses upon attacks by pathogens. Recently, cellular SA receptors and a number of SA-related phloem-mobile signals were identified. Here, we compare the old and up-to-date concepts of plant defense signaling events involving SA. Finally, the crosstalk between intracellular and extracellular SA signaling events leading to long-distance spread of signals was outlined by focusing on the modes of both the short- and long-distance signaling events involving the actions of SA. For the above purpose, two distinct conceptual models for local SA perception and signaling mechanisms in the intracellular and extracellular paths (referred to as models i and ii, respectively) were proposed. In addition to two local SA perception models, we propose that the long-distance SA action could be attributed to three different modes, namely, (iii) local increase in SA followed by transport of SA and SA intermediates, (iv) systemic propagation of SA-derived signals with both chemical and electrical natures without direct movement of SA, and (v) integrated crosstalk allowing alternately repeated secondary signal propagation and biosynthesis of SA and/or conversion of inert SA intermediates to free SA finally contributing to the systemic spread of SA-derived signals. We review here that the long-distance SA signaling events (models iii-v), inevitably involve the mechanisms described in the local signaling models (models i and ii) as the key pieces of the crosstalk.
Collapse
Affiliation(s)
- Tomonori Kawano
- Faculty and Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan.
| | | |
Collapse
|
55
|
Zhao J, Devaiah SP, Wang C, Li M, Welti R, Wang X. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. THE NEW PHYTOLOGIST 2013; 199:228-240. [PMID: 23577648 PMCID: PMC4066384 DOI: 10.1111/nph.12256] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/22/2013] [Indexed: 05/18/2023]
Abstract
Pathogen infection of higher plants often induces rapid production of phosphatidic acid (PA) and changes in lipid profiles, but the enzymatic basis and the function of the lipid change in pathogen-plant interactions are not well understood. Infection of phospholipase D β1 (PLDβ1)-deficient plants by Pseudomonas syringae tomato pv DC3000 (Pst DC30000) resulted in less bacterial growth than in wild-type plants, and the effect was more profound in virulent Pst DC3000 than avirulent Pst DC3000 (carrying the avirulence gene avrRpt2) infection. The expression levels of salicylic acid (SA)-inducible genes were higher, but those inducible by jasmonic acid (JA) showed lower expression in PLDβ1 mutants than in wild-type plants. However, PLDβ1-deficient plants were more susceptible than wild-type plants to the fungus Botrytis cinerea. The PLDβ1-deficient plants had lower levels of PA, JA and JA-related defense gene expression after B. cinerea inoculation. PLDβ1 plays a positive role in pathogen-induced JA production and plant resistance to the necrotrophic fungal pathogen B. cinerea, but a negative role in the SA-dependent signaling pathway and plant tolerance to infection with biotrophic Pst DC3000. PLDβ1 is responsible for most of the increase in PA production in response to necrotrophic B. cinerea and virulent Pst DC3000 infection, but contributes less to avirulent Pst DC3000 (avrRpt2)-induced PA production.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Cunxi Wang
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
| | - Maoyin Li
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
- Department of Biology, University of Missouri, St. Louis, MO 63121 and Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS, 66506 USA
| | - Xuemin Wang
- Department of Biochemistry, Kansas State University, Manhattan, KS, 66506 USA
- Department of Biology, University of Missouri, St. Louis, MO 63121 and Danforth Plant Science Center, St. Louis, MO 63132 USA
| |
Collapse
|
56
|
A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep 2013; 3:1266-78. [PMID: 23602565 DOI: 10.1016/j.celrep.2013.03.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 02/04/2013] [Accepted: 03/20/2013] [Indexed: 11/22/2022] Open
Abstract
Systemic acquired resistance (SAR), a highly desirable form of plant defense, provides broad-spectrum immunity against diverse pathogens. The recent identification of seemingly unrelated chemical inducers of SAR warrants an investigation of their mutual interrelationships. We show that SAR induced by the dicarboxylic acid azelaic acid (AA) requires the phosphorylated sugar derivative glycerol-3-phosphate (G3P). Pathogen inoculation induced the release of free unsaturated fatty acids (FAs) and thereby triggered AA accumulation, because these FAs serve as precursors for AA. AA accumulation in turn increased the levels of G3P, which is required for AA-conferred SAR. The lipid transfer proteins DIR1 and AZI1, both of which are required for G3P- and AA-induced SAR, were essential for G3P accumulation. Conversely, reduced G3P resulted in decreased AZI1 and DIR1 transcription. Our results demonstrate that an intricate feedback regulatory loop among G3P, DIR1, and AZI1 regulates SAR and that AA functions upstream of G3P in this pathway.
Collapse
|
57
|
Champigny MJ, Isaacs M, Carella P, Faubert J, Fobert PR, Cameron RK. Long distance movement of DIR1 and investigation of the role of DIR1-like during systemic acquired resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:230. [PMID: 23847635 PMCID: PMC3701462 DOI: 10.3389/fpls.2013.00230] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 05/19/2023]
Abstract
DIR1 is a lipid transfer protein (LTP) postulated to complex with and/or chaperone a signal(s) to distant leaves during Systemic Acquired Resistance (SAR) in Arabidopsis. DIR1 was detected in phloem sap-enriched petiole exudates collected from wild-type leaves induced for SAR, suggesting that DIR1 gains access to the phloem for movement from the induced leaf. Occasionally the defective in induced resistance1 (dir1-1) mutant displayed a partially SAR-competent phenotype and a DIR1-sized band in protein gel blots was detected in dir1-1 exudates suggesting that a highly similar protein, DIR1-like (At5g48490), may contribute to SAR. Recombinant protein studies demonstrated that DIR1 polyclonal antibodies recognize DIR1 and DIR1-like. Homology modeling of DIR1-like using the DIR1-phospholipid crystal structure as template, provides clues as to why the dir1-1 mutant is rarely SAR-competent. The contribution of DIR1 and DIR1-like during SAR was examined using an Agrobacterium-mediated transient expression-SAR assay and an estrogen-inducible DIR1-EGFP/dir1-1 line. We provide evidence that upon SAR induction, DIR1 moves down the leaf petiole to distant leaves. Our data also suggests that DIR1-like displays a reduced capacity to move to distant leaves during SAR and this may explain why dir1-1 is occasionally SAR-competent.
Collapse
Affiliation(s)
- Marc J. Champigny
- Department of Biology, McMaster UniversityHamilton, ON, Canada
- Plant Biotechnology InstituteSaskatoon, SK, Canada
| | - Marisa Isaacs
- Department of Biology, McMaster UniversityHamilton, ON, Canada
| | - Philip Carella
- Department of Biology, McMaster UniversityHamilton, ON, Canada
| | - Jennifer Faubert
- Department of Biology, McMaster UniversityHamilton, ON, Canada
- Plant Biotechnology InstituteSaskatoon, SK, Canada
| | | | - Robin K. Cameron
- Department of Biology, McMaster UniversityHamilton, ON, Canada
- *Correspondence: Robin K. Cameron, Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada e-mail:
| |
Collapse
|
58
|
Shah J, Zeier J. Long-distance communication and signal amplification in systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2013; 4:30. [PMID: 23440336 PMCID: PMC3579191 DOI: 10.3389/fpls.2013.00030] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/06/2013] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense mechanism in plants that confers enhanced resistance against a variety of pathogens. SAR is activated in the uninfected systemic (distal) organs in response to a prior (primary) infection elsewhere in the plant. SAR is associated with the activation of salicylic acid (SA) signaling and the priming of defense responses for robust activation in response to subsequent infections. The activation of SAR requires communication by the primary infected tissues with the distal organs. The vasculature functions as a conduit for the translocation of factors that facilitate long-distance intra-plant communication. In recent years, several metabolites putatively involved in long-distance signaling have been identified. These include the methyl ester of SA (MeSA), the abietane diterpenoid dehydroabietinal (DA), the dicarboxylic acid azelaic acid (AzA), and a glycerol-3-phosphate (G3P)-dependent factor. Long-distance signaling by some of these metabolites also requires the lipid-transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1). The relative contribution of these factors in long-distance signaling is likely influenced by environmental conditions, for example light. In the systemic leaves, the AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1)-dependent production of the lysine catabolite pipecolic acid (Pip), FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) signaling, as well as SA synthesis and downstream signaling are required for the activation of SAR. This review summarizes the involvement and interaction between long-distance SAR signals and details the recently discovered role of Pip in defense amplification and priming that allows plants to acquire immunity at the systemic level. Recent advances in SA signaling and perception are also highlighted.
Collapse
Affiliation(s)
- Jyoti Shah
- Department of Biological Sciences, University of North TexasDenton, TX, USA
- *Correspondence: Jyoti Shah, Department of Biological Sciences, University of North Texas, Life Sciences Building-B, Room # 418, 1155 Union Circle #305220, Denton, TX 76203, USA. e-mail:
| | - Jürgen Zeier
- Department of Biology, Heinrich-Heine-UniversityDüsseldorf, Germany
- Jürgen Zeier, Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany. e-mail:
| |
Collapse
|
59
|
Shah J, Zeier J. Long-distance communication and signal amplification in systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2013. [PMID: 23440336 DOI: 10.3390/fpls.2013.00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense mechanism in plants that confers enhanced resistance against a variety of pathogens. SAR is activated in the uninfected systemic (distal) organs in response to a prior (primary) infection elsewhere in the plant. SAR is associated with the activation of salicylic acid (SA) signaling and the priming of defense responses for robust activation in response to subsequent infections. The activation of SAR requires communication by the primary infected tissues with the distal organs. The vasculature functions as a conduit for the translocation of factors that facilitate long-distance intra-plant communication. In recent years, several metabolites putatively involved in long-distance signaling have been identified. These include the methyl ester of SA (MeSA), the abietane diterpenoid dehydroabietinal (DA), the dicarboxylic acid azelaic acid (AzA), and a glycerol-3-phosphate (G3P)-dependent factor. Long-distance signaling by some of these metabolites also requires the lipid-transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE 1). The relative contribution of these factors in long-distance signaling is likely influenced by environmental conditions, for example light. In the systemic leaves, the AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1)-dependent production of the lysine catabolite pipecolic acid (Pip), FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1) signaling, as well as SA synthesis and downstream signaling are required for the activation of SAR. This review summarizes the involvement and interaction between long-distance SAR signals and details the recently discovered role of Pip in defense amplification and priming that allows plants to acquire immunity at the systemic level. Recent advances in SA signaling and perception are also highlighted.
Collapse
Affiliation(s)
- Jyoti Shah
- Department of Biological Sciences, University of North Texas Denton, TX, USA
| | | |
Collapse
|
60
|
Canet JV, Dobón A, Tornero P. Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid. THE PLANT CELL 2012; 24:4220-35. [PMID: 23064321 PMCID: PMC3517246 DOI: 10.1105/tpc.112.103028] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/07/2010] [Accepted: 09/20/2012] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) signaling acts in defense and plant development. The only gene demonstrated to be required for the response to SA is Arabidopsis thaliana non-expresser of pathogenesis-related gene 1 (NPR1), and npr1 mutants are insensitive to SA. By focusing on the effect of analogs of SA on plant development, we identified mutants in additional genes acting in the SA response. In this work, we describe a gene necessary for the SA Non-Recognition-of-BTH4 (NRB4). Three nrb4 alleles recovered from the screen cause phenotypes similar to the wild type in the tested conditions, except for SA-related phenotypes. Plants with NRB4 null alleles express profound insensitivity to SA, even more than npr1. NRB4 null mutants are also sterile and their growth is compromised. Plants carrying weaker nrb4 alleles are also insensitive to SA, with some quantitative differences in some phenotypes, like systemic acquired resistance or pathogen growth restriction. When weak alleles are used, NPR1 and NRB4 mutations produce an additive phenotype, but we did not find evidence of a genetic interaction in F1 nor biochemical interaction in yeast or in planta. NRB4 is predicted to be a subunit of Mediator, the ortholog of MED15 in Arabidopsis. Mechanistically, NRB4 functions downstream of NPR1 to regulate the SA response.
Collapse
|
61
|
Dempsey DA, Klessig DF. SOS - too many signals for systemic acquired resistance? TRENDS IN PLANT SCIENCE 2012; 17:538-45. [PMID: 22749315 DOI: 10.1016/j.tplants.2012.05.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/17/2012] [Accepted: 05/23/2012] [Indexed: 05/18/2023]
Abstract
Following pathogen infection, activation of systemic acquired resistance (SAR) in uninfected tissues requires transmission of a signal(s) from the infected tissue via the vasculature. Several candidates for this long-distance signal have been identified, including methyl salicylate (MeSA), an SFD1/GLY1-derived glycerol-3-phosphate (G3P)-dependent signal, the lipid-transfer protein DIR1, the dicarboxylic acid azelaic acid (AzA), the abietane diterpenoid dehydroabietinal (DA), jasmonic acid (JA), and the amino acid-derivative pipecolic acid (Pip). Some of these signals work cooperatively to activate SAR and/or regulate MeSA metabolism. However, Pip appears to activate SAR via an independent pathway that may impinge on these other signaling pathway(s) during de novo salicylic acid (SA) biosynthesis in the systemic tissue. Thus, a complex web of cross-interacting signals appears to activate SAR.
Collapse
|
62
|
Chaturvedi R, Venables B, Petros RA, Nalam V, Li M, Wang X, Takemoto LJ, Shah J. An abietane diterpenoid is a potent activator of systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:161-72. [PMID: 22385469 DOI: 10.1111/j.1365-313x.2012.04981.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Abietane diterpenoids are major constituents of conifer resins that have important industrial and medicinal applications. However, their function in plants is poorly understood. Here we show that dehydroabietinal (DA), an abietane diterpenoid, is an activator of systemic acquired resistance (SAR), which is an inducible defense mechanism that is activated in the distal, non-colonized, organs of a plant that has experienced a local foliar infection. DA was purified as a SAR-activating factor from vascular sap of Arabidopsis thaliana leaves treated with a SAR-inducing microbe. Locally applied DA is translocated through the plant and systemically induces the accumulation of salicylic acid (SA), an important activator of defense, thus leading to enhanced resistance against subsequent infections. The NPR1 (NON-EXPRESSOR OF PR GENES1), FMO1 (FLAVIN-DEPENDENT MONOOXYGENASE1) and DIR1 (DEFECTIVE IN INDUCED RESISTANCE1) genes, which are critical for biologically induced SAR, are also required for the DA-induced SAR, which is further enhanced by azelaic acid, a defense priming molecule. In response to the biological induction of SAR, DA in vascular sap is redistributed into a SAR-inducing 'signaling DA' pool that is associated with a trypsin-sensitive high molecular weight fraction, a finding that suggests that DA-orchestrated SAR involves a vascular sap protein(s).
Collapse
Affiliation(s)
- Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.
Collapse
|
64
|
Lorenc-Kukula K, Chaturvedi R, Roth M, Welti R, Shah J. Biochemical and Molecular-Genetic Characterization of SFD1's Involvement in Lipid Metabolism and Defense Signaling. FRONTIERS IN PLANT SCIENCE 2012; 3:26. [PMID: 22645576 PMCID: PMC3355749 DOI: 10.3389/fpls.2012.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/21/2012] [Indexed: 05/11/2023]
Abstract
The Arabidopsis thaliana SFD1 (suppressor of fatty acid desaturase deficiency1) gene (also known as GLY1) is required for accumulation of 34:6 (i.e., 18:3-16:3) monogalactosyldiacylglycerol (MGDG) and for the activation of systemic acquired resistance (SAR), an inducible defense mechanism that confers resistance against a broad spectrum of pathogens. SFD1, which has been suggested to be involved in lipid-based signaling in SAR, contains a putative chloroplast transit peptide and has glycerol-3-phosphate synthesizing dihydroxyacetone phosphate (DHAP) reductase (also referred as glycerol-3-phosphate dehydrogenase) activity. The goals of this study were to determine if the DHAP reductase activity and chloroplast localization are required for SFD1's involvement in galactolipid metabolism and SAR signaling. The crystal structure of a Leishmania mexicana glycerol-3-phosphate dehydrogenase was used to model SFD1 structure and identify Lys194, Lys279, and Asp332 as potential catalytic site residues in SFD1. Mutational analysis of SFD1 confirmed that Lys194, Lys279, and Asp332 are critical for SFD1's DHAP reductase activity, and its involvement in SAR. SFD1 proteins with these residues individually substituted by Ala lacked DHAP reductase activity and were unable to complement the SAR defect of the sfd1 mutant. The SFD1-Ala279 protein was also unable to restore 34:6-MGDG content when expressed in the sfd1 mutant. In vivo imaging of a green fluorescent protein-tagged SFD1 protein demonstrated that SFD1 is targeted to the chloroplast. The N-terminal 43 amino acids, which are required for proper targeting of SFD1 to the chloroplast, are also required for SFD1's function in lipid metabolism and SAR. Taken together, these results demonstrate that SFD1's DHAP reductase activity is required in the chloroplast for lipid metabolism and defense signaling.
Collapse
Affiliation(s)
- Katarzyna Lorenc-Kukula
- Department of Biological Sciences and Center for Plant Lipid Research, University of North TexasDenton, TX, USA
| | - Ratnesh Chaturvedi
- Department of Biological Sciences and Center for Plant Lipid Research, University of North TexasDenton, TX, USA
| | - Mary Roth
- Division of Biology and Kansas Lipidomics Research Center, Kansas State UniversityManhattan, KS, USA
| | - Ruth Welti
- Division of Biology and Kansas Lipidomics Research Center, Kansas State UniversityManhattan, KS, USA
| | - Jyoti Shah
- Department of Biological Sciences and Center for Plant Lipid Research, University of North TexasDenton, TX, USA
- *Correspondence: Jyoti Shah, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA. e-mail:
| |
Collapse
|
65
|
Samarakoon T, Shiva S, Lowe K, Tamura P, Roth MR, Welti R. Arabidopsis thaliana membrane lipid molecular species and their mass spectral analysis. Methods Mol Biol 2012; 918:179-268. [PMID: 22893293 DOI: 10.1007/978-1-61779-995-2_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, current approaches to electrospray ionization mass spectrometry-based analyses of membrane lipid molecular species found in Arabidopsis thaliana are summarized. Additionally, the identities of over 500 reported membrane lipid molecular species are assembled.
Collapse
Affiliation(s)
- Thilani Samarakoon
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | |
Collapse
|
66
|
Swain S, Roy S, Shah J, Van Wees S, Pieterse CM, Nandi AK. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. MOLECULAR PLANT PATHOLOGY 2011; 12:855-65. [PMID: 21726384 PMCID: PMC6640339 DOI: 10.1111/j.1364-3703.2011.00717.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling.
Collapse
Affiliation(s)
- Swadhin Swain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
67
|
Jing B, Xu S, Xu M, Li Y, Li S, Ding J, Zhang Y. Brush and spray: a high-throughput systemic acquired resistance assay suitable for large-scale genetic screening. PLANT PHYSIOLOGY 2011; 157:973-80. [PMID: 21900483 PMCID: PMC3252141 DOI: 10.1104/pp.111.182089] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/04/2011] [Indexed: 05/20/2023]
Abstract
Systemic acquired resistance (SAR) is a defense mechanism induced in the distal parts of plants after primary infection. It confers long-lasting protection against a broad spectrum of microbial pathogens. Lack of high-throughput assays has hampered the forward genetic analysis of SAR. Here, we report the development of an easy and efficient assay for SAR and its application in a forward genetic screen for SAR-deficient mutants in Arabidopsis (Arabidopsis thaliana). Using the new assay for SAR, we identified six flavin-dependent monooxygenase1, four AGD2-like defense response protein1, three salicylic acid induction-deficient2, one phytoalexin deficient4, and one avrPphB-susceptible3 alleles as well as a gain-of-function mutant of CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR3 designated camta3-3D. Like transgenic plants overexpressing CAMTA3, camta3-3D mutant plants exhibit compromised SAR and enhanced susceptibility to virulent pathogens, suggesting that CAMTA3 is a critical regulator of both basal resistance and SAR.
Collapse
|
68
|
Champigny MJ, Shearer H, Mohammad A, Haines K, Neumann M, Thilmony R, He SY, Fobert P, Dengler N, Cameron RK. Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsis using DIR1:GUS and DIR1:EGFP reporters. BMC PLANT BIOLOGY 2011; 11:125. [PMID: 21896186 PMCID: PMC3180652 DOI: 10.1186/1471-2229-11-125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/06/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND Systemic Acquired Resistance (SAR) is an induced resistance response to pathogens, characterized by the translocation of a long-distance signal from induced leaves to distant tissues to prime them for increased resistance to future infection. DEFECTIVE in INDUCED RESISTANCE 1 (DIR1) has been hypothesized to chaperone a small signaling molecule to distant tissues during SAR in Arabidopsis. RESULTS DIR1 promoter:DIR1-GUS/dir1-1 lines were constructed to examine DIR1 expression. DIR1 is expressed in seedlings, flowers and ubiquitously in untreated or mock-inoculated mature leaf cells, including phloem sieve elements and companion cells. Inoculation of leaves with SAR-inducing avirulent or virulent Pseudomonas syringae pv tomato (Pst) resulted in Type III Secretion System-dependent suppression of DIR1 expression in leaf cells. Transient expression of fluorescent fusion proteins in tobacco and intercellular washing fluid experiments indicated that DIR1's ER signal sequence targets it for secretion to the cell wall. However, DIR1 expressed without a signal sequence rescued the dir1-1 SAR defect, suggesting that a cytosolic pool of DIR1 is important for the SAR response. CONCLUSIONS Although expression of DIR1 decreases during SAR induction, the protein localizes to all living cell types of the vasculature, including companion cells and sieve elements, and therefore DIR1 is well situated to participate in long-distance signaling during SAR.
Collapse
Affiliation(s)
- Marc J Champigny
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
- Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Heather Shearer
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
- Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Asif Mohammad
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Karen Haines
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| | - Melody Neumann
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Roger Thilmony
- Department of Plant Biology, Michigan State University, East Lansing MI, 48824 USA
- USDA-ARS, Western Regional Research Center, Crop Improvement and Utilization Research Unit, 800 Buchanan St., Albany, CA, 94710 USA
| | - Sheng Yang He
- Department of Plant Biology, Michigan State University, East Lansing MI, 48824 USA
| | - Pierre Fobert
- Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Nancy Dengler
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Robin K Cameron
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1 Canada
| |
Collapse
|
69
|
Xiao S, Chye ML. Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000. PLANT PHYSIOLOGY 2011; 156:2069-81. [PMID: 21670223 PMCID: PMC3149925 DOI: 10.1104/pp.111.176933] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/10/2011] [Indexed: 05/18/2023]
Abstract
ACBP3 is one of six Arabidopsis (Arabidopsis thaliana) genes, designated ACBP1 to ACBP6, that encode acyl-coenzyme A (CoA)-binding proteins (ACBPs). These ACBPs bind long-chain acyl-CoA esters and phospholipids and are involved in diverse cellular functions, including acyl-CoA homeostasis, development, and stress tolerance. Recombinant ACBP3 binds polyunsaturated acyl-CoA esters and phospholipids in vitro. Here, we show that ACBP3 plays a role in the plant defense response to the bacterial pathogen Pseudomonas syringae pv tomato DC3000. ACBP3 mRNA was up-regulated upon pathogen infection and treatments using pathogen elicitors and defense-related phytohormones. Transgenic Arabidopsis ACBP3 overexpressors (ACBP3-OEs) showed constitutive expression of pathogenesis-related genes (PR1, PR2, and PR5), cell death, and hydrogen peroxide accumulation in leaves. Consequently, ACBP3-OEs displayed enhanced resistance to the bacterial pathogen P. syringae DC3000. In contrast, the acbp3 T-DNA insertional mutant was more susceptible and exhibited lower PR gene transcript levels upon infection. Using the ACBP3 OE-1 line in combination with nonexpressor of PR genes1 (npr1-5) or coronatine-insensitive1 (coi1-2), we concluded that the enhanced PR gene expression and P. syringae DC3000 resistance in the ACBP3-OEs are dependent on the NPR1-mediated, but not the COI1-mediated, signaling pathway. Given that ACBP3-OEs showed greater susceptibility to infection by the necrotrophic fungus Botrytis cinerea while the acbp3 mutant was less susceptible, we suggest that ACBP3 plays a role in the plant defense response against biotrophic pathogens that is distinct from necrotrophic pathogens. ACBP3 function in plant defense was supported further by bioinformatics data showing up-regulation of many biotic and abiotic stress-related genes in ACBP3 OE-1 in comparison with the wild type.
Collapse
Affiliation(s)
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
70
|
Liu PP, von Dahl CC, Park SW, Klessig DF. Interconnection between methyl salicylate and lipid-based long-distance signaling during the development of systemic acquired resistance in Arabidopsis and tobacco. PLANT PHYSIOLOGY 2011; 155:1762-8. [PMID: 21311035 PMCID: PMC3091099 DOI: 10.1104/pp.110.171694] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/28/2011] [Indexed: 05/20/2023]
|
71
|
Chanda B, Xia Y, Mandal MK, Yu K, Sekine KT, Gao QM, Selote D, Hu Y, Stromberg A, Navarre D, Kachroo A, Kachroo P. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat Genet 2011; 43:421-7. [PMID: 21441932 DOI: 10.1038/ng.798] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/02/2011] [Indexed: 12/11/2022]
Abstract
Glycerol-3-phosphate (G3P) is an important metabolite that contributes to the growth and disease-related physiologies of prokaryotes, plants, animals and humans alike. Here we show that G3P serves as the inducer of an important form of broad-spectrum immunity in plants, termed systemic acquired resistance (SAR). SAR is induced upon primary infection and protects distal tissues from secondary infections. Genetic mutants defective in G3P biosynthesis cannot induce SAR but can be rescued when G3P is supplied exogenously. Radioactive tracer experiments show that a G3P derivative is translocated to distal tissues, and this requires the lipid transfer protein, DIR1. Conversely, G3P is required for the translocation of DIR1 to distal tissues, which occurs through the symplast. These observations, along with the fact that dir1 plants accumulate reduced levels of G3P in their petiole exudates, suggest that the cooperative interaction of DIR1 and G3P orchestrates the induction of SAR in plants.
Collapse
Affiliation(s)
- Bidisha Chanda
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
DeFraia CT, Zhang X, Mou Z. Elongator subunit 2 is an accelerator of immune responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:511-23. [PMID: 20807211 DOI: 10.1111/j.1365-313x.2010.04345.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Immune responses in eukaryotes involve rapid and profound transcriptional reprogramming. Although mechanisms regulating the amplitude of defense gene expression have been extensively characterized, those controlling the speed of defense gene induction are not well understood. Here, we show that the Arabidopsis Elongator subunit 2 (AtELP2) regulates the kinetics of defense gene induction. AtELP2 is required for rapid defense gene induction and the establishment of full basal and effector-triggered immunity (ETI). Surprisingly, biological or chemical induction of systemic acquired resistance (SAR), a long-lasting plant immunity against a broad spectrum of pathogens, restores pathogen resistance to Atelp2 mutant plants. Simultaneous removal of AtELP2 and NPR1, a transcription coactivator essential for full-scale expression of a subset of defense genes and the establishment of SAR, completely abolishes resistance to two different ETI-inducing pathogens. These results demonstrate that AtELP2 is an accelerator of defense gene induction, which functions largely independently of NPR1 in establishing plant immunity.
Collapse
Affiliation(s)
- Christopher T DeFraia
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
73
|
Xia Y, Yu K, Navarre D, Seebold K, Kachroo A, Kachroo P. The glabra1 mutation affects cuticle formation and plant responses to microbes. PLANT PHYSIOLOGY 2010; 154:833-46. [PMID: 20699396 PMCID: PMC2949009 DOI: 10.1104/pp.110.161646] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/04/2010] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is a form of defense that provides resistance against a broad spectrum of pathogens in plants. Previous work indicates a role for plastidial glycerolipid biosynthesis in SAR. Specifically, mutations in FATTY ACID DESATURASE7 (FAD7), which lead to reduced trienoic fatty acid levels and compromised plastidial lipid biosynthesis, have been associated with defective SAR. We show that the defective SAR in Arabidopsis (Arabidopsis thaliana) fad7-1 plants is not associated with a mutation in FAD7 but rather with a second-site mutation in GLABRA1 (GL1), a gene well known for its role in trichome formation. The compromised SAR in gl1 plants is associated with impairment in their cuticles. Furthermore, mutations in two other components of trichome development, GL3 and TRANSPARENT TESTA GLABRA1, also impaired cuticle development and SAR. This suggests an overlap in the biochemical pathways leading to cuticle and trichome development. Interestingly, exogenous application of gibberellic acid (GA) not only enhanced SAR in wild-type plants but also restored SAR in gl1 plants. In contrast to GA, the defense phytohoromes salicylic acid and jasmonic acid were unable to restore SAR in gl1 plants. GA application increased levels of cuticular components but not trichome formation on gl1 plants, thus implicating cuticle, but not trichomes, as an important component of SAR. Our findings question the prudence of using mutant backgrounds for genetic screens and underscore a need to reevaluate phenotypes previously studied in the gl1 background.
Collapse
Affiliation(s)
| | | | | | | | | | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (Y.X., K.Y., K.S., A.K., P.K.); United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.)
| |
Collapse
|
74
|
Manosalva PM, Park SW, Forouhar F, Tong L, Fry WE, Klessig DF. Methyl esterase 1 (StMES1) is required for systemic acquired resistance in potato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1151-63. [PMID: 20687805 DOI: 10.1094/mpmi-23-9-1151] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Whether salicylic acid (SA) plays a role in systemic acquired resistance (SAR) signaling in potato is currently unclear because potato, unlike tobacco and Arabidopsis, contains highly elevated levels of endogenous SA. Recent studies have indicated that the SA derivative methyl salicylate (MeSA) serves as a long-distance phloem-mobile SAR signal in tobacco and Arabidopsis. Once in the distal, uninfected tissue of these plant species, MeSA must be converted into biologically active SA by the esterase activity of SA-binding protein 2 (SABP2) in tobacco or members of the AtMES family in Arabidopsis. In this study, we have identified the potato ortholog of tobacco SABP2 (StMES1) and shown that the recombinant protein converts MeSA to SA; this MeSA esterase activity is feedback inhibited by SA or its synthetic analog, 2, 2, 2, 2'-tetra-fluoroacetophenone (tetraFA). Potato plants (cv. Désirée) in which StMES1 activity was suppressed, due to either tetraFA treatment or silencing of StMES1 expression, were compromised for arachidonic acid (AA)-induced SAR development against Phytophthora infestans. Presumably due to the inability of these plants to convert MeSA to SA, the SAR-defective phenotype correlated with elevated levels of MeSA and reduced expression of pathogenesis-related (PR) genes in the untreated distal tissue. Together, these results strongly suggest that SAR signaling in potato requires StMES1, its corresponding MeSA esterase activity, and MeSA. Furthermore, the similarities between SAR signaling in potato, tobacco, and Arabidopsis suggest that at least certain SAR signaling components are conserved among plants, regardless of endogenous SA levels.
Collapse
|
75
|
Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N. Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 2010; 49:128-58. [DOI: 10.1016/j.plipres.2009.10.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 01/14/2023]
|
76
|
Szalontai B, Jakab G. Differential expression of PRLIPs, a pathogenesis-related gene family encoding class 3 lipase-like proteins in Arabidopsis. ACTA BIOLOGICA HUNGARICA 2010; 61 Suppl:156-71. [PMID: 21565774 DOI: 10.1556/abiol.61.2010.suppl.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In plants plenty of inducible defense-related proteins classified into 17 pathogenesis-related (PR) families have been described. Expression of homologous PR genes from the same family can be induced by the different defense hormones, like salicylic acid (SA), jasmonic acid (JA) or ethylene (ET), and are also regulated in a organ- or tissue-specific manner. A recently identified pathogenesis-related gene family, the PRLIP (pathogenesis-related lipase) has 9 members in Arabidopsis and their organization and expression pattern - as it is summarized in this study - is similar to the one of genes coding for other PR proteins. PRLIP3, PRLIP8 and PRLIP9 showed a relatively high expression in all tissues tested with a maximum in root (PRLIP3), stem (PRLIP8) or siliques (PRLIP9). The activity of PRLIP3 gene was further induced by SA and JA treatment. Other members (PRLIP1, PRLIP2, PRLIP4 and PRLIP6), however, were detected only in some of the tested organs. High levels of PRLIP1 mRNA occurred in all green tissues and in siliques, while in the latter PRLIP2 also displayed high expression. PRLIP6 and PRLIP4 exhibited root specific transcription while no mRNAs of PRLIP5 and PRLIP7 were detected in any plant tissues examined. In leaves SA treatment enhanced PRLIP1 and PRLIP2 expression, JA treatment induced PRLIP6 and ET treatment upregulated both PRLIP1 and PRLIP6. This organization and expression diversity of the PRLIP gene family is typical to plant PR genes suggesting the encoded proteins might serve essential functions in plant defense or priming.
Collapse
Affiliation(s)
- B Szalontai
- Department of Plant Physiology, Institute of Biology, University of Pécs, Ifjúság útja 6 H-7624 Pécs, Hungary
| | | |
Collapse
|
77
|
Liu PP, Yang Y, Pichersky E, Klessig DF. Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase 1 compromises systemic acquired resistance and PAMP-triggered immunity in arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:82-90. [PMID: 19958141 DOI: 10.1094/mpmi-23-1-0082] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Methyl salicylate (MeSA), which is synthesized in plants from salicylic acid (SA) by methyltransferases, has roles in defense against microbial and insect pests. Most of the MeSA that accumulates after pathogen attack is synthesized by benzoic acid/SA carboxyl methyltransferase 1 (AtBSMT1). To investigate the role of AtBSMT1 in plant defense, transgenic Arabidopsis with altered AtBSMT1 function or expression were assessed for their ability to resist pathogen infection. A knockout mutant (Atbsmt1) failed to accumulate MeSA following pathogen infection; these plants also failed to accumulate SA or its glucoside in the uninoculated leaves and did not develop systemic acquired resistance (SAR). However, the Atbsmt1 mutant exhibited normal levels of effector-triggered immunity and pathogen-associated molecular pattern (PAMP)-triggered immunity to Pseudomonas syringae and Hyaloperonospora arabidopsidis. Analyses of transgenic Arabidopsis plants overexpressing AtBSMT1 revealed that they accumulate elevated levels of MeSA in pathogen-infected leaves but fail to develop SAR. Since the levels of SA and its glucoside were reduced in uninoculated systemic leaves of these plants whereas MeSA levels were elevated, AtBSMT1-mediated conversion of SA to MeSA probably compromised SAR development by suppressing SA accumulation in uninoculated leaves. PAMP-triggered immunity also was compromised in the AtBSMT1 overexpressing plants, although effector-triggered immunity was not.
Collapse
Affiliation(s)
- Po-Pu Liu
- Boyce Thompson Institute for plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
78
|
Arisz SA, Testerink C, Munnik T. Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:869-75. [DOI: 10.1016/j.bbalip.2009.04.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/09/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
79
|
Venugopal SC, Chanda B, Vaillancourt L, Kachroo A, Kachroo P. The common metabolite glycerol-3-phosphate is a novel regulator of plant defense signaling. PLANT SIGNALING & BEHAVIOR 2009; 4:746-9. [PMID: 19820353 PMCID: PMC2801388 DOI: 10.4161/psb.4.8.9111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Conversion of glycerol to glycerol-3-phosphate (G3P) is one of the highly conserved steps of glycerol metabolism in evolutionary diverse organisms. In plants, G3P is produced either via the glycerol kinase (GK)-mediated phosphorylation of glycerol, or via G3P dehydrogenase (G3Pdh)-mediated reduction of dihydroxyacetone phosphate (DHAP). We have recently shown that G3P levels contribute to basal resistance against the hemibiotrophic pathogen, Colletotrichum higginsianum. Since a mutation in the GLY1-encoded G3Pdh conferred more susceptibility compared to a mutation in the GLI1-encoded GK, we proposed that GLY1 is the major contributor of the total G3P pool that participates in defense against C. higginsianum.
Collapse
|
80
|
Tanz SK, Tetu SG, Vella NGF, Ludwig M. Loss of the transit peptide and an increase in gene expression of an ancestral chloroplastic carbonic anhydrase were instrumental in the evolution of the cytosolic C4 carbonic anhydrase in Flaveria. PLANT PHYSIOLOGY 2009; 150:1515-29. [PMID: 19448040 PMCID: PMC2705015 DOI: 10.1104/pp.109.137513] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Accepted: 05/11/2009] [Indexed: 05/05/2023]
Abstract
C(4) photosynthesis has evolved multiple times from ancestral C(3) species. Carbonic anhydrase (CA) catalyzes the reversible hydration of CO(2) and is involved in both C(3) and C(4) photosynthesis; however, its roles and the intercellular and intracellular locations of the majority of its activity differ between C(3) and C(4) plants. To understand the molecular changes underlying the evolution of the C(4) pathway, three cDNAs encoding distinct beta-CAs (CA1, CA2, and CA3) were isolated from the leaves of the C(3) plant Flaveria pringlei. The phylogenetic relationship of the F. pringlei proteins with other embryophyte beta-CAs was reconstructed. Gene expression and protein localization patterns showed that CA1 and CA3 demonstrate high expression in leaves and their products localize to the chloroplast, while CA2 expression is low in all organs examined and encodes a cytosolic enzyme. The roles of the F. pringlei enzymes were considered in light of these results, other angiosperm beta-CAs, and Arabidopsis (Arabidopsis thaliana) "omics" data. All three F. pringlei CAs have orthologs in the closely related C(4) plant Flaveria bidentis, and comparisons of ortholog sequences, expression patterns, and intracellular locations of their products indicated that CA1 and CA2 have maintained their ancestral role in C(4) plants, whereas modifications to the C(3) CA3 gene led to the evolution of the CA isoform that catalyzes the first step in the C(4) photosynthetic pathway. These changes included the loss of the chloroplast transit peptide and an increase in gene expression, which resulted in the high levels of CA activity seen in the cytosol of C(4) mesophyll cells.
Collapse
Affiliation(s)
- Sandra K Tanz
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | |
Collapse
|
81
|
Abstract
Plants induce long-lasting systemic immunity after local pathogen attack by emitting resistance-priming signals from infection sites. A number of plant molecules have been proposed as mobile factors for this response, but many do not fully satisfy criteria for timing and action in systemic immunity. Azelaic acid has been identified as a pathogen-induced metabolite in Arabidopsis vascular sap that has several properties of a long-distance resistance-priming signal.
Collapse
Affiliation(s)
- Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
82
|
Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. Priming in Systemic Plant Immunity. Science 2009; 324:89-91. [DOI: 10.1126/science.1170025] [Citation(s) in RCA: 636] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
83
|
Reina-Pinto JJ, Voisin D, Kurdyukov S, Faust A, Haslam RP, Michaelson LV, Efremova N, Franke B, Schreiber L, Napier JA, Yephremov A. Misexpression of FATTY ACID ELONGATION1 in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process. THE PLANT CELL 2009; 4:625-8. [PMID: 19376931 PMCID: PMC2685613 DOI: 10.1105/tpc.109.065565] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/09/2009] [Accepted: 03/31/2009] [Indexed: 05/20/2023]
Abstract
Very-long-chain fatty acids (VLCFAs) are important functional components of various lipid classes, including cuticular lipids in the higher plant epidermis and lipid-derived second messengers. Here, we report the characterization of transgenic Arabidopsis thaliana plants that epidermally express FATTY ACID ELONGATION1 (FAE1), the seed-specific beta-ketoacyl-CoA synthase (KCS) catalyzing the first rate-limiting step in VLCFA biosynthesis. Misexpression of FAE1 changes the VLCFAs in different classes of lipids but surprisingly does not complement the KCS fiddlehead mutant. FAE1 misexpression plants are similar to the wild type but display an essentially glabrous phenotype, owing to the selective death of trichome cells. This cell death is accompanied by membrane damage, generation of reactive oxygen species, and callose deposition. We found that nuclei of arrested trichome cells in FAE1 misexpression plants cell-autonomously accumulate high levels of DNA damage, including double-strand breaks characteristic of lipoapoptosis. A chemical genetic screen revealed that inhibitors of KCS and phospholipase A2 (PLA2), but not inhibitors of de novo ceramide biosynthesis, rescue trichome cells from death. These results support the functional role of acyl chain length of fatty acids and PLA2 as determinants for programmed cell death, likely involving the exchange of VLCFAs between phospholipids and the acyl-CoA pool.
Collapse
|
84
|
Kwon SJ, Jin HC, Lee S, Nam MH, Chung JH, Kwon SI, Ryu CM, Park OK. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:235-45. [PMID: 19077166 DOI: 10.1111/j.1365-313x.2008.03772.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Systemic resistance is induced by necrotizing pathogenic microbes and non-pathogenic rhizobacteria and confers protection against a broad range of pathogens. Here we show that Arabidopsis GDSL LIPASE-LIKE 1 (GLIP1) plays an important role in plant immunity, eliciting both local and systemic resistance in plants. GLIP1 functions independently of salicylic acid but requires ethylene signaling. Enhancement of GLIP1 expression in plants increases resistance to pathogens including Alternaria brassicicola, Erwinia carotovora and Pseudomonas syringae, and limits their growth at the infection site. Furthermore, local treatment with GLIP1 proteins is sufficient for the activation of systemic resistance, inducing both resistance gene expression and pathogen resistance in systemic leaves. The PDF1.2-inducing activity accumulates in petiole exudates in a GLIP1-dependent manner and is fractionated in the size range of less than 10 kDa as determined by size exclusion chromatography. Our results demonstrate that GLIP1-elicited systemic resistance is dependent on ethylene signaling and provide evidence that GLIP1 may mediate the production of a systemic signaling molecule(s).
Collapse
Affiliation(s)
- Sun Jae Kwon
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Mitton FM, Pinedo ML, de la Canal L. Phloem sap of tomato plants contains a DIR1 putative ortholog. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:543-7. [PMID: 18790546 DOI: 10.1016/j.jplph.2008.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 05/05/2023]
Abstract
Arabidopsis thaliana defective in induced resistance 1 (At-DIR1) has been characterized as a protein responsible for the generation or transmission of the still unknown signal involved in systemic acquired resistance. This acidic apoplastic protein is a member of the family of lipid transfer proteins and was detected in vascular fluids. To our knowledge, no DIR1-like protein has been described in other plant species. Hence, we have performed data mining to identify a putative ortholog of DIR1 in tomato. This strategy allowed the detection of a few gene products displaying sequence similarity to At-DIR1 whose structural features were further analysed in silico. The best match (unigene SGN-327306) encoded a protein with an acidic pI, a peculiar characteristic of DIR1 among lipid transfer proteins, and was hence selected as a putative tomato ortholog of At-DIR1. This sequence, named Le-DIR1, served for the design of a specific antigenic peptide and the generation of polyclonal antibodies. The antiserum anti-Le-DIR1 recognized a peptide of the expected size (7kDa) in phloem sap of tomato plants, hence confirming the existence of the predicted protein in vascular fluids. This result supports the notion of the existence of common systemic acquired resistance (SAR) signaling molecules in different species.
Collapse
Affiliation(s)
- Francesca M Mitton
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Funes, Mar del Plata, Argentina
| | | | | |
Collapse
|
86
|
Park SW, Liu PP, Forouhar F, Vlot AC, Tong L, Tietjen K, Klessig DF. Use of a synthetic salicylic acid analog to investigate the roles of methyl salicylate and its esterases in plant disease resistance. J Biol Chem 2009; 284:7307-17. [PMID: 19131332 PMCID: PMC2652267 DOI: 10.1074/jbc.m807968200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/08/2009] [Indexed: 12/28/2022] Open
Abstract
We previously demonstrated that salicylic acid-binding protein 2 (SABP2) of tobacco is an integral component of systemic acquired resistance (SAR). SABP2 is a methyl salicylate (MeSA) esterase that has high affinity for SA, which feedback inhibits its esterase activity. MeSA esterase activity is required in distal, healthy tissue of pathogen-infected plants to hydrolyze MeSA, which functions as a long-distance, phloem-mobile SAR signal; this hydrolysis releases the biologically active defense hormone SA. In this study, we examined the inhibitory interaction of SA with SABP2, and identified a synthetic SA analog, 2,2,2,2'-tetra-f luoroacetophenone (tetraFA) that, like SA, competitively inhibits the activity of SABP2 and targets esterases, which utilize MeSA as a substrate. However, in contrast to SA, tetraFA does not induce downstream defense responses and, therefore, is effective in planta at blocking SAR development in tobacco mosaic virus (TMV)-infected tobacco and Pseudomonas syringae-infected Arabidopsis. These results confirm the importance of SABP2 and MeSA for SAR development in tobacco and establish similar roles for MeSA and the orthologs of SABP2 in Arabidopsis. Moreover, they demonstrate that tetraFA can be used to determine whether MeSA and its corresponding esterase(s) play a role in SAR signaling in other plant species. In planta analyses using tetraFA, in conjunction with leaf detachment assays and MeSA quantification, were used to assess the kinetics with which MeSA is generated in pathogen-infected leaves, transmitted through the phloem, and processed in the distal healthy leaves. In TMV-infected tobacco, these studies revealed that critical amounts of MeSA are generated, transmitted, and processed between 48 and 72 h post primary infection.
Collapse
Affiliation(s)
- Sang-Wook Park
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Attaran E, Zeier TE, Griebel T, Zeier J. Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. THE PLANT CELL 2009; 21:954-71. [PMID: 19329558 PMCID: PMC2671706 DOI: 10.1105/tpc.108.063164] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) develops in response to local microbial leaf inoculation and renders the whole plant more resistant to subsequent pathogen infection. Accumulation of salicylic acid (SA) in noninfected plant parts is required for SAR, and methyl salicylate (MeSA) and jasmonate (JA) are proposed to have critical roles during SAR long-distance signaling from inoculated to distant leaves. Here, we address the significance of MeSA and JA during SAR development in Arabidopsis thaliana. MeSA production increases in leaves inoculated with the SAR-inducing bacterial pathogen Pseudomonas syringae; however, most MeSA is emitted into the atmosphere, and only small amounts are retained. We show that in several Arabidopsis defense mutants, the abilities to produce MeSA and to establish SAR do not coincide. T-DNA insertion lines defective in expression of a pathogen-responsive SA methyltransferase gene are completely devoid of induced MeSA production but increase systemic SA levels and develop SAR upon local P. syringae inoculation. Therefore, MeSA is dispensable for SAR in Arabidopsis, and SA accumulation in distant leaves appears to occur by de novo synthesis via isochorismate synthase. We show that MeSA production induced by P. syringae depends on the JA pathway but that JA biosynthesis or downstream signaling is not required for SAR. In compatible interactions, MeSA production depends on the P. syringae virulence factor coronatine, suggesting that the phytopathogen uses coronatine-mediated volatilization of MeSA from leaves to attenuate the SA-based defense pathway.
Collapse
Affiliation(s)
- Elham Attaran
- Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, D-97082 Würzburg, Germany
| | | | | | | |
Collapse
|
88
|
Xia Y, Gao QM, Yu K, Lapchyk L, Navarre D, Hildebrand D, Kachroo A, Kachroo P. An Intact Cuticle in Distal Tissues Is Essential for the Induction of Systemic Acquired Resistance in Plants. Cell Host Microbe 2009; 5:151-65. [DOI: 10.1016/j.chom.2009.01.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 10/14/2008] [Accepted: 01/14/2009] [Indexed: 11/26/2022]
|
89
|
Abstract
Fatty acids (FAs) consist of long hydrophobic, often unbranched chains of hydrocarbons, with hydrophilic carboxylic acid groups at one end. They are an important source of reserve energy and essential components of membrane lipids in all living organisms. In plants, FA metabolic pathways play significant roles in pathogen defense. Historically, FAs were only assigned passive roles in plant defense such as biosynthetic precursors for cuticular components or the phytohormone jasmonic acid. However, recent discoveries demonstrate more direct roles for FAs and their breakdown products in inducing various modes of plant defenses. Both 16- and 18-carbon FAs participate in defense to modulate basal, effector-triggered, and systemic immunity in plants. Studies of FA metabolic mutants also reveal an active signaling role for the cuticle in plant defense. This review summarizes the current knowledge of the involvement of FAs, FA-derived oxylipins, and enzymes catalyzing FA metabolism in plant defense.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA.
| | | |
Collapse
|
90
|
Vlot AC, Liu PP, Cameron RK, Park SW, Yang Y, Kumar D, Zhou F, Padukkavidana T, Gustafsson C, Pichersky E, Klessig DF. Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:445-56. [PMID: 18643994 DOI: 10.1111/j.1365-313x.2008.03618.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Salicylic acid-binding protein 2 (SABP2) is essential for the establishment of systemic acquired resistance (SAR) in tobacco; SABP2's methyl salicylate (MeSA) esterase activity is required in healthy systemic tissues of infected plants to release the active defense phytohormone SA from MeSA, which serves as a long-distance signal for SAR. In the current study, we characterize a new gene family from Arabidopsis thaliana encoding 18 potentially active alpha/beta fold hydrolases that share 32-57% identity with SABP2. Of 14 recombinant AtMES (MES for methyl esterase) proteins tested, five showed preference for MeSA as a substrate and displayed SA inhibition of MeSA esterase activity in vitro (AtMES1, -2, -4, -7, and -9). The two genes encoding MeSA esterases with the greatest activity, AtMES1 and -9, as well as AtMES7 were transcriptionally upregulated during infection of Arabidopsis with avirulent Pseudomonas syringae. In addition, conditional expression of AtMES1, -7, or -9 complemented SAR deficiency in SABP2-silenced tobacco, suggesting that these three members of the AtMES family are SABP2 functional homologs (orthologs). Underexpression by knockout mutation and/or RNAi-mediated silencing of multiple AtMES genes, including AtMES1, -2, -7, and -9, compromised SAR in Arabidopsis and correlated with enhanced accumulation of MeSA in the systemic tissue of SAR-induced plants. Together, the data show that several members of the AtMES gene family are functionally homologous to SABP2 and redundant for MeSA hydrolysis and probably SAR. These data suggest that MeSA is a conserved SAR signal in Arabidopsis and tobacco.
Collapse
Affiliation(s)
- Anna Corina Vlot
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Lee SC, Hwang IS, Choi HW, Hwang BK. Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance. PLANT PHYSIOLOGY 2008; 148:1004-20. [PMID: 18676663 PMCID: PMC2556820 DOI: 10.1104/pp.108.123836] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 07/27/2008] [Indexed: 05/18/2023]
Abstract
Pathogen-inducible antimicrobial defense-related proteins have emerged as key antibiotic peptides and enzymes involved in disease resistance in plants. A novel antimicrobial protein gene, CaAMP1 (for Capsicum annuum ANTIMICROBIAL PROTEIN1), was isolated from pepper (C. annuum) leaves infected with Xanthomonas campestris pv vesicatoria. Expression of the CaAMP1 gene was strongly induced in pepper leaves not only during pathogen infection but also after exposure to abiotic elicitors. The purified recombinant CaAMP1 protein possessed broad-spectrum antimicrobial activity against phytopathogenic bacteria and fungi. CaAMP1:smGFP fusion protein was localized mainly in the external and intercellular regions of onion (Allium cepa) epidermal cells. The virus-induced gene silencing technique and gain-of-function transgenic plants were used to determine the CaAMP1 gene function in plant defense. Silencing of CaAMP1 led to enhanced susceptibility to X. campestris pv vesicatoria and Colletotrichum coccodes infection, accompanied by reduced PATHOGENESIS-RELATED (PR) gene expression. In contrast, overexpression of CaAMP1 in Arabidopsis (Arabidopsis thaliana) conferred broad-spectrum resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora parasitica, and the fungal necrotrophic pathogens Fusarium oxysporum f. sp. matthiolae and Alternaria brassicicola. CaAMP1 overexpression induced the salicylic acid pathway-dependent genes PR1 and PR5 but not the jasmonic acid-dependent defense gene PDF1.2 during P. syringae pv tomato infection. Together, these results suggest that the antimicrobial CaAMP1 protein is involved in broad-spectrum resistance to bacterial and fungal pathogen infection.
Collapse
Affiliation(s)
- Sung Chul Lee
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
92
|
Quettier AL, Shaw E, Eastmond PJ. SUGAR-DEPENDENT6 encodes a mitochondrial flavin adenine dinucleotide-dependent glycerol-3-p dehydrogenase, which is required for glycerol catabolism and post germinative seedling growth in Arabidopsis. PLANT PHYSIOLOGY 2008; 148:519-28. [PMID: 18599644 PMCID: PMC2528096 DOI: 10.1104/pp.108.123703] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of this study was to clone and characterize the SUGAR-DEPENDENT6 (SDP6) gene, which is essential for postgerminative growth in Arabidopsis (Arabidopsis thaliana). Mutant alleles of sdp6 were able to break down triacylglycerol following seed germination but failed to accumulate soluble sugars, suggesting that they had a defect in gluconeogenesis. Map-based cloning of SDP6 revealed that it encodes a mitochondrial flavin adenine dinucleotide (FAD)-dependent glycerol-3-P (G3P) dehydrogenase:ubiquinone oxidoreductase called FAD-GPDH. This gene has previously been proposed to play a role both in the break down of glycerol (derived from triacylglycerol) and in NAD(+)/NADH homeostasis. Germinated seeds of sdp6 were severely impaired in the metabolism of [U-(14)C]glycerol to CO(2) and accumulated high levels of G3P. These data suggest that SDP6 is essential for glycerol catabolism. The activity of the glycolytic enzyme phosphoglucose isomerase is competitively inhibited by G3P in vitro. We show that phosphoglucose isomerase is likely to be inhibited in vivo because there is a 6-fold reduction in the transfer of (14)C-label into the opposing hexosyl moiety of sucrose when [U-(14)C]glucose or [U-(14)C]fructose is fed to sdp6 seedlings. A block in gluconeogenesis, at the level of hexose phosphate isomerization, would account for the arrested seedling growth phenotype of sdp6 and explain its rescue by sucrose and glucose but not by fructose. Measurements of NAD(+) and NADH levels in sdp6 seedlings also suggest that NAD(+)/NADH homeostasis is altered, and this observation is consistent with the hypothesis that SDP6 participates in a mitochondrial G3P shuttle by cooperating with the cytosolic NAD-dependent GPDH protein GPDHC1.
Collapse
Affiliation(s)
- Anne-Laure Quettier
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, United Kingdom
| | | | | |
Collapse
|
93
|
Gonorazky G, Laxalt AM, Testerink C, Munnik T, de la Canal L. Phosphatidylinositol 4-phosphate accumulates extracellularly upon xylanase treatment in tomato cell suspensions. PLANT, CELL & ENVIRONMENT 2008; 31:1051-1062. [PMID: 18419735 DOI: 10.1111/j.1365-3040.2008.01818.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Various phosphoinositides have been implicated in plant defence signalling. Until now, such molecules have been exclusively related to intracellular signalling. Here, evidence is provided for the detection of extracellular phosphatidylinositol 4-phosphate (PI4P) in tomato cell suspensions. We have analysed and compared the intracellular and extracellular phospholipid profiles of [(32)P(i)]-prelabelled tomato cells, challenged with the fungal elicitor xylanase. These phospholipid patterns were found to be different, being phosphatidylinositol phosphate (PIP) the most abundant phospholipid in the extracellular medium. Moreover, while cells responded with a typical increase in phosphatidic acid and a decrease in intracellular PIP upon xylanase treatment, extracellular PIP level increased in a time- and dose-dependent manner. Using two experimental approaches, the extracellular PIP isoform was identified as PI4P. Addition of PI4P to tomato cell suspensions triggered the same defence responses as those induced by xylanase treatment. These include production of reactive oxygen species, accumulation of defence-related gene transcripts and induction of cell death. We demonstrate that extracellular PI4P is accumulated in xylanase-elicited cells and that exogenous application of PI4P mimics xylanase effects, suggesting its putative role as an intercellular signalling molecule.
Collapse
Affiliation(s)
- Gabriela Gonorazky
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata CC (1245), CP (7600) Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
94
|
Vlot AC, Klessig DF, Park SW. Systemic acquired resistance: the elusive signal(s). CURRENT OPINION IN PLANT BIOLOGY 2008; 11:436-42. [PMID: 18614393 DOI: 10.1016/j.pbi.2008.05.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/07/2008] [Accepted: 05/16/2008] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is a form of inducible resistance that is triggered in systemic healthy tissues of locally infected plants. The nature of the mobile signal that travels through the phloem from the site of infection to establish systemic immunity has been sought after for decades. Several candidate signaling molecules have emerged in the past two years, including the methylated derivative of a well-known defense hormone (methyl salicylate), the defense hormone jasmonic acid, a yet undefined glycerolipid-derived factor, and a group of peptides that is involved in cell-to-cell basal defense signaling. Systemic SAR signal amplification increasingly appears to parallel salicylic acid-dependent defense responses, and is concomitantly fine-tuned by auxin.
Collapse
Affiliation(s)
- A Corina Vlot
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | | |
Collapse
|
95
|
Chanda B, Venugopal SC, Kulshrestha S, Navarre DA, Downie B, Vaillancourt L, Kachroo A, Kachroo P. Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. PLANT PHYSIOLOGY 2008; 147:2017-29. [PMID: 18567828 PMCID: PMC2492641 DOI: 10.1104/pp.108.121335] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 06/10/2008] [Indexed: 05/20/2023]
Abstract
Glycerol-3-phosphate (G3P) is an important component of carbohydrate and lipid metabolic processes. In this article, we provide evidence that G3P levels in plants are associated with defense to a hemibiotrophic fungal pathogen Colletotrichum higginsianum. Inoculation of Arabidopsis (Arabidopsis thaliana) with C. higginsianum was correlated with an increase in G3P levels and a concomitant decrease in glycerol levels in the host. Plants impaired in utilization of plastidial G3P (act1) accumulated elevated levels of pathogen-induced G3P and displayed enhanced resistance. Furthermore, overexpression of the host GLY1 gene, which encodes a G3P dehydrogenase (G3Pdh), conferred enhanced resistance. In contrast, the gly1 mutant accumulated reduced levels of G3P after pathogen inoculation and showed enhanced susceptibility to C. higginsianum. Unlike gly1, a mutation in a cytosolic isoform of G3Pdh did not alter basal resistance to C. higginsianum. Furthermore, act1 gly1 double-mutant plants were as susceptible as the gly1 plants. Increased resistance or susceptibility of act1 and gly1 plants to C. higginsianum, respectively, was not due to effects of these mutations on salicylic acid- or ethylene-mediated defense pathways. The act1 mutation restored a wild-type-like response in camalexin-deficient pad3 plants, which were hypersusceptible to C. higginsianum. These data suggest that G3P-associated resistance to C. higginsianum occurs independently or downstream of the camalexin pathway. Together, these results suggest a novel and specific link between G3P metabolism and plant defense.
Collapse
Affiliation(s)
- Bidisha Chanda
- Department of Plant Pathology , University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L. Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. THE ARABIDOPSIS BOOK 2008; 6:e0113. [PMID: 22303238 PMCID: PMC3243342 DOI: 10.1199/tab.0113] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the life cycle of higher plants, seed development is a key process connecting two distinct sporophytic generations. Seed development can be divided into embryo morphogenesis and seed maturation. An essential metabolic function of maturing seeds is the deposition of storage compounds that are mobilised to fuel post-germinative seedling growth. Given the importance of seeds for food and animal feed and considering the tremendous interest in using seed storage products as sustainable industrial feedstocks to replace diminishing fossil reserves, understanding the metabolic and developmental control of seed filling constitutes a major focus of plant research. Arabidopsis thaliana is an oilseed species closely related to the agronomically important Brassica oilseed crops. The main storage compounds accumulated in seeds of A. thaliana consist of oil stored as triacylglycerols (TAGs) and seed storage proteins (SSPs). Extensive tools developed for the molecular dissection of A. thaliana development and metabolism together with analytical and cytological procedures adapted for very small seeds have led to a good description of the biochemical pathways producing storage compounds. In recent years, studies using these tools have shed new light on the intricate regulatory network controlling the seed maturation process. This network involves sugar and hormone signalling together with a set of developmentally regulated transcription factors. Although much remains to be elucidated, the framework of the regulatory system controlling seed filling is coming into focus.
Collapse
Affiliation(s)
- Sébastien Baud
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Bertrand Dubreucq
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Martine Miquel
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Christine Rochat
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| | - Loïc Lepiniec
- Seed Biology Laboratory, Institut Jean-Pierre Bourgin (IJPB), UMR 204, INRA, AgroParisTech, 78000 Versailles, France
| |
Collapse
|
97
|
Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J. Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:106-17. [PMID: 18088304 DOI: 10.1111/j.1365-313x.2007.03400.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible defense mechanism that is activated throughout the plant, subsequent to localized inoculation with a pathogen. The establishment of SAR requires translocation of an unknown signal from the pathogen-inoculated leaf to the distal organs, where salicylic acid-dependent defenses are activated. We demonstrate here that petiole exudates (PeXs) collected from Arabidopsis leaves inoculated with an avirulent (Avr) Pseudomonas syringae strain promote resistance when applied to Arabidopsis, tomato (Lycopersicum esculentum) and wheat (Triticum aestivum). Arabidopsis FATTY ACID DESATURASE7 (FAD7), SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 (SFD1) and SFD2 genes are required for accumulation of the SAR-inducing activity. In contrast to Avr PeX from wild-type plants, Avr PeXs from fad7, sfd1 and sfd2 mutants were unable to activate SAR when applied to wild-type plants. However, the SAR-inducing activity was reconstituted by mixing Avr PeXs collected from fad7 and sfd1 with Avr PeX from the SAR-deficient dir1 mutant. Since FAD7, SFD1 and SFD2 are involved in plastid glycerolipid biosynthesis and SAR is also compromised in the Arabidopsis monogalactosyldiacylglycerol synthase1 mutant we suggest that a plastid glycerolipid-dependent factor is required in Avr PeX along with the DIR1-encoded lipid transfer protein for long-distance signaling in SAR. FAD7-synthesized lipids provide fatty acids for synthesis of jasmonic acid (JA). However, co-infiltration of JA and methylJA with Avr PeX from fad7 and sfd1 did not reconstitute the SAR-inducing activity. In addition, JA did not co-purify with the SAR-inducing activity confirming that JA is not the mobile signal in SAR.
Collapse
Affiliation(s)
- Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Tamaoki M. The role of phytohormone signaling in ozone-induced cell death in plants. PLANT SIGNALING & BEHAVIOR 2008; 3:166-74. [PMID: 19513211 PMCID: PMC2634110 DOI: 10.4161/psb.3.3.5538] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 01/08/2008] [Indexed: 05/20/2023]
Abstract
Ozone is the main photochemical oxidant that causes leaf damage in many plant species, and can thereby significantly decrease the productivity of crops and forests. When ozone is incorporated into plants, it produces reactive oxygen species (ROS), such as superoxide radicals and hydrogen peroxide. These ROS induce the synthesis of several plant hormones, such as ethylene, salicylic acid, and jasmonic acid. These phytohormones are required for plant growth, development, and defense responses, and regulate the extent of leaf injury in ozone-fumigated plants. Recently, responses to ozone have been studied using genetically modified plants and mutants with altered hormone levels or signaling pathways. These researches have clarified the roles of phytohormones and the complexity of their signaling pathways. The present paper reviews the biosynthesis of the phytohormones ethylene, salicylic acid, and jasmonic acid, their roles in plant responses to ozone, and multiple interactions between these phytohormones in ozone-exposed plants.
Collapse
Affiliation(s)
- Masanori Tamaoki
- Environmental Biology Division; National Institute for Environmental Studies; Tsukuba; Ibaraki, Japan
| |
Collapse
|
99
|
Regente M, Corti Monzón G, de la Canal L. Phospholipids are present in extracellular fluids of imbibing sunflower seeds and are modulated by hormonal treatments. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:553-62. [PMID: 18212025 DOI: 10.1093/jxb/erm329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phospholipids are well known messengers involved in developmental and stress responses mediating intracellular signalling. It has been hypothesized that phospholipids exist which could participate in intercellular communication events through the apoplast of sunflower (Helianthus annuus) seeds. Here it is shown that extracellular washing fluids (EWFs) obtained from seeds imbibed for 2 h contain diverse phospholipids. Lipid profiling by electrospray ionization tandem mass spectrometry revealed that the EWFs have a particular composition, with phosphatidic acid (PA) and phosphatidylinositol (PI) being the major phospholipids. These profiles are clearly distinct from those of seed extract (SE), and comparative SDS-PAGE of EWF and SE, followed by intracellular and plasma membrane marker analyses, allowed a significant contamination of the EWF to be discarded. Treatment of the seeds with 100 microM jasmonic acid (JA) induces changes in the profile of EWF phospholipids, leading to a decrease in PI content, while the accumulation of phosphatidylinositol 4-phosphate (PI4P) and specific PA species is observed. On the other hand, the EWF from seeds subjected to 50 microM abscisic acid (ABA) treatment exhibit an increase in PA and phosphatidylglycerol levels. To our knowledge, this is the first report on the existence of phospholipids as extracellular components of seeds. Moreover, the modulation of PA, PI, and PI4P levels by hormonal treatments further suggests their contribution to intercellular communication in planta.
Collapse
Affiliation(s)
- Mariana Regente
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Buenos Aires, Argentina.
| | | | | |
Collapse
|
100
|
Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 2007; 318:113-6. [PMID: 17916738 DOI: 10.1126/science.1147113] [Citation(s) in RCA: 583] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In plants, the mobile signal for systemic acquired resistance (SAR), an organism-wide state of enhanced defense to subsequent infections, has been elusive. By stimulating immune responses in mosaic tobacco plants created by grafting different genetic backgrounds, we showed that the methyl salicylate (MeSA) esterase activity of salicylic acid-binding protein 2 (SABP2), which converts MeSA into salicylic acid (SA), is required for SAR signal perception in systemic tissue, the tissue that does not receive the primary (initial) infection. Moreover, in plants expressing mutant SABP2 with unregulated MeSA esterase activity in SAR signal-generating, primary infected leaves, SAR was compromised and the associated increase in MeSA levels was suppressed in primary infected leaves, their phloem exudates, and systemic leaves. SAR was also blocked when SA methyl transferase (which converts SA to MeSA) was silenced in primary infected leaves, and MeSA treatment of lower leaves induced SAR in upper untreated leaves. Therefore, we conclude that MeSA is a SAR signal in tobacco.
Collapse
Affiliation(s)
- Sang-Wook Park
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|