51
|
Functional analysis of the ABA-responsive protein family in ABA and stress signal transduction in Arabidopsis. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5941-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
52
|
Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis 2013. [DOI: 10.1007/s13199-013-0251-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
53
|
Wang H, Liu G, Li C, Powell ALT, Reid MS, Zhang Z, Jiang CZ. Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2013; 14:453-69. [PMID: 23437935 PMCID: PMC6638649 DOI: 10.1111/mpp.12017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter-regulated expression of the Arabidopsis ethylene receptor mutant ethylene-insensitive1-1 (etr1-1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1-1-expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1-1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1-1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence-related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1-1 expression alters tolerance to pathogens.
Collapse
Affiliation(s)
- Hong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
54
|
Feng BH, Yang Y, Shi YF, Shen HC, Wang HM, Huang QN, Xu X, Lü XG, Wu JL. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:473-83. [PMID: 23210861 DOI: 10.1111/jipb.12021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/21/2012] [Indexed: 05/05/2023]
Abstract
A stable inherited rice spotted-leaf mutant HM47 derived from an EMS-induced IR64 mutant bank was identified. The mutant expressed hypersensitive response (HR)-like symptoms throughout its whole life from the first leaf to the flag leaf, without pathogen invasion. Initiation of the lesions was induced by light under natural summer field conditions. Expression of pathogenesis-related genes including PAL, PO-C1, POX22.3 and PBZ1 was enhanced significantly in association with cell death and accumulation of H2 O2 at and around the site of lesions in the mutant in contrast to that in the wild-type (WT). Disease reaction to Xanthomonas oryzae pv. oryzae from the Philippines and China showed that HM47 is a broad-spectrum disease-resistant mutant with enhanced resistance to multiple races of bacterial blight pathogens tested. An F2 progeny test showed that bacterial blight resistance to race HB-17 was co-segregated with the expression of lesions. Genetic analysis indicated that the spotted-leaf trait was controlled by a single recessive gene, tentatively named spl(HM47) , flanked by two insertion/deletion markers in a region of approximately 74 kb on the long arm of chromosome 4. Ten open reading frames are predicted, and all of them are expressed proteins. Isolation and validation of the putative genes are currently underway.
Collapse
Affiliation(s)
- Bao-Hua Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Faurez F, Baldwin T, Tribodet M, Jacquot E. Identification of new Potato virus Y (PVY) molecular determinants for the induction of vein necrosis in tobacco. MOLECULAR PLANT PATHOLOGY 2012; 13:948-59. [PMID: 22537230 PMCID: PMC6638754 DOI: 10.1111/j.1364-3703.2012.00803.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Two tobacco vein necrosis (TVN) determinants, the residues K(400) and E(419) , have been identified previously in the helper component-protease (HC-Pro) protein sequence of Potato virus Y (PVY). However, since their description, non-necrotic PVY isolates with both K(400) and E(419) necrotic determinants have been reported in the literature. This suggests the presence in the viral genome of other, as yet uncharacterized, TVN determinant(s). The identification of PVY(N) pathogenicity determinants was approached through the replacement of genomic regions of the necrotic PVY(N) -605 infectious clone by corresponding sequences from the non-necrotic PVY(O) -139 isolate. Series of PVY(N/O) chimeras and site-directed PVY mutants were constructed to test the involvement of different parts of the PVY genome (from nucleotide 421 to nucleotide 9629) in the induction of TVN symptoms. The analysis of both the genomic characteristics and biological properties of these mutants made it possible to highlight the involvement, in addition to residues K(400) and E(419), of the residue N(339) of the HC-Pro protein and two regions in the cytoplasmic inclusion (CI) protein to nuclear inclusion protein a-protease (NIa-Pro) sequence (nucleotides 5496-5932 and 6233-6444) in the induction of vein necrosis in tobacco infected by PVY isolates.
Collapse
Affiliation(s)
- Florence Faurez
- INRA-Agrocampus Ouest-Université Rennes1, UMR1099 BiO3P Biology of Organisms and Populations Applied to Plant Protection, F-35653 Le Rheu, France
| | | | | | | |
Collapse
|
56
|
Leba LJ, Cheval C, Ortiz-Martín I, Ranty B, Beuzón CR, Galaud JP, Aldon D. CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:976-89. [PMID: 22563930 DOI: 10.1111/j.1365-313x.2012.05045.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many stimuli such as hormones and elicitors induce changes in intracellular calcium levels to integrate information and activate appropriate responses. The Ca(2+) signals are perceived by various Ca(2+) sensors, and calmodulin (CaM) is one of the best characterized in eukaryotes. Calmodulin-like (CML) proteins extend the Ca(2+) toolkit in plants; they share sequence similarity with the ubiquitous and highly conserved CaM but their roles at physiological and molecular levels are largely unknown. Knowledge of the contribution of Ca(2+) decoding proteins to plant immunity is emerging, and we report here data on Arabidopsis thaliana CML9, whose expression is rapidly induced by phytopathogenic bacteria, flagellin and salicylic acid. Using a reverse genetic approach, we present evidence that CML9 is involved in plant defence by modulating responses to bacterial strains of Pseudomonas syringae. Compared to wild-type plants, the later responses normally observed upon flagellin application are altered in knockout mutants and over-expressing transgenic lines. Collectively, using PAMP treatment and P. syringae strains, we have established that CML9 participates in plant innate immunity.
Collapse
Affiliation(s)
- Louis-Jérôme Leba
- Université de Toulouse, Université de Toulouse, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | |
Collapse
|
57
|
Li J, Brader G, Helenius E, Kariola T, Palva ET. Biotin deficiency causes spontaneous cell death and activation of defense signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:315-26. [PMID: 22126457 DOI: 10.1111/j.1365-313x.2011.04871.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In addition to its essential metabolic functions, biotin has been suggested to play a critical role in regulating gene expression. The first committed enzyme in biotin biosynthesis in Arabidopsis, 7-keto-8-aminopelargonic acid synthase, is encoded by At5g04620 (BIO4). We isolated a T-DNA insertion mutant of BIO4 (bio4-1) with a spontaneous cell death phenotype, which was rescued both by exogenous biotin and genetic complementation. The bio4-1 plants exhibited massive accumulation of hydrogen peroxide and constitutive up-regulation of a number of genes that are diagnostic for defense and reactive oxygen species signaling. The cell-death phenotype was independent of salicylic acid and jasmonate signaling. Interestingly, the observed increase in defense gene expression was not accompanied by enhanced resistance to bacterial pathogens, which may be explained by uncoupling of defense gene transcription from accumulation of the corresponding protein. Characterization of biotinylated protein profiles showed a substantial reduction of both chloroplastic biotinylated proteins and a nuclear biotinylated polypeptide in the mutant. Our results suggest that biotin deficiency results in light-dependent spontaneous cell death and modulates defense gene expression. The isolation and molecular characterization of the bio4-1 mutant provides a valuable tool for elucidating new functions of biotin.
Collapse
Affiliation(s)
- Jing Li
- Division of Genetics, Department of Biosciences, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
58
|
Kangasjärvi S, Neukermans J, Li S, Aro EM, Noctor G. Photosynthesis, photorespiration, and light signalling in defence responses. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1619-36. [PMID: 22282535 DOI: 10.1093/jxb/err402] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Visible light is the basic energetic driver of plant biomass production through photosynthesis. The constantly fluctuating availability of light and other environmental factors means that the photosynthetic apparatus must be able to operate in a dynamic fashion appropriate to the prevailing conditions. Dynamic regulation is achieved through an array of homeostatic control mechanisms that both respond to and influence cellular energy and reductant status. In addition, light availability and quality are continuously monitored by plants through photoreceptors. Outside the laboratory growth room, it is within the context of complex changes in energy and signalling status that plants must regulate pathways to deal with biotic challenges, and this can be influenced by changes in the highly energetic photosynthetic pathways and in the turnover of the photosynthetic machinery. Because of this, defence responses are neither simple nor easily predictable, but rather conditioned by the nutritional and signalling status of the plant cell. This review discusses recent data and emerging concepts of how recognized defence pathways interact with and are influenced by light-dependent processes. Particular emphasis is placed on the potential roles of the chloroplast, photorespiration, and photoreceptor-associated pathways in regulating the outcome of interactions between plants and pathogenic organisms.
Collapse
Affiliation(s)
- Saijaliisa Kangasjärvi
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | | | | | | | |
Collapse
|
59
|
Carvalho RN, Bopp SK, Lettieri T. Transcriptomics responses in marine diatom Thalassiosira pseudonana exposed to the polycyclic aromatic hydrocarbon benzo[a]pyrene. PLoS One 2011; 6:e26985. [PMID: 22073232 PMCID: PMC3207822 DOI: 10.1371/journal.pone.0026985] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/07/2011] [Indexed: 01/06/2023] Open
Abstract
Diatoms are unicellular, photosynthetic, eukaryotic algae with a ubiquitous distribution in water environments and they play an important role in the carbon cycle. Molecular or morphological changes in these species under ecological stress conditions are expected to serve as early indicators of toxicity and can point to a global impact on the entire ecosystem. Thalassiosira pseudonana, a marine diatom and the first with a fully sequenced genome has been selected as an aquatic model organism for ecotoxicological studies using molecular tools. A customized DNA microarray containing probes for the available gene sequences has been developed and tested to analyze the effects of a common pollutant, benzo(a)pyrene (BaP), at a sub-lethal concentration. This approach in diatoms has helped to elucidate pathway/metabolic processes involved in the mode of action of this pollutant, including lipid metabolism, silicon metabolism and stress response. A dose-response of BaP on diatoms has been made and the effect of this compound on the expression of selected genes was assessed by quantitative real time-PCR. Up-regulation of the long-chain acyl-CoA synthetase and the anti-apoptotic transmembrane Bax inhibitor, as well as down-regulation of silicon transporter 1 and a heat shock factor was confirmed at lower concentrations of BaP, but not the heat-shock protein 20. The study has allowed the identification of molecular biomarkers to BaP to be later on integrated into environmental monitoring for water quality assessment.
Collapse
Affiliation(s)
- Raquel N. Carvalho
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
| | - Stephanie K. Bopp
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
| | - Teresa Lettieri
- Rural, Water, and Ecosystem Resources Unit, Institute for Environment and Sustainability, European Commission - Joint Research Centre, Ispra, Varese, Italy
- * E-mail:
| |
Collapse
|
60
|
Perazza D, Laporte F, Balagué C, Chevalier F, Remo S, Bourge M, Larkin J, Herzog M, Vachon G. GeBP/GPL transcription factors regulate a subset of CPR5-dependent processes. PLANT PHYSIOLOGY 2011; 157:1232-42. [PMID: 21875893 PMCID: PMC3252139 DOI: 10.1104/pp.111.179804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/28/2011] [Indexed: 05/22/2023]
Abstract
The CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene of Arabidopsis (Arabidopsis thaliana) encodes a putative membrane protein of unknown biochemical function and displays highly pleiotropic functions, particularly in pathogen responses, cell proliferation, cell expansion, and cell death. Here, we demonstrate a link between CPR5 and the GLABRA1 ENHANCER BINDING PROTEIN (GeBP) family of transcription factors. We investigated the primary role of the GeBP/GeBP-like (GPL) genes using transcriptomic analysis of the quadruple gebp gpl1,2,3 mutant and one overexpressing line that displays several cpr5-like phenotypes including dwarfism, spontaneous necrotic lesions, and increased pathogen resistance. We found that GeBP/GPLs regulate a set of genes that represents a subset of the CPR5 pathway. This subset includes genes involved in response to stress as well as cell wall metabolism. Analysis of the quintuple gebp gpl1,2,3 cpr5 mutant indicates that GeBP/GPLs are involved in the control of cell expansion in a CPR5-dependent manner but not in the control of cell proliferation. In addition, to our knowledge, we provide the first evidence that the CPR5 protein is localized in the nucleus of plant cells and that a truncated version of the protein with no transmembrane domain can trigger cpr5-like processes when fused to the VP16 constitutive transcriptional activation domain. Our results provide clues on how CPR5 and GeBP/GPLs play opposite roles in the control of cell expansion and suggest that the CPR5 protein is involved in transcription.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gilles Vachon
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale/Université Joseph Fourier U823, Equipe Interference ARN et Epigenetique, Rond-point de la Chantourne, 38706 La Tronche cedex, France (D.P.); Laboratoire d’Ecologie Alpine, Université Joseph Fourier and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5553, 2233, F–38041 Grenoble cedex 9, France (F.L., M.H.); Laboratoire des Interactions Plantes-Microorganismes Unité Mixte de Recherche Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 2594/441 BP 52627, 31326 Castanet-Tolosan cedex, France (C.B.); Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2594, F–31326 Castanet-Tolosan, France (C.B.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808 (S.R., J.L.); Institut des Sciences Végétales Centre National de la Recherche Scientifique, F–91198 Gif-sur-Yvette cedex, France (M.B.); Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique et aux Energies Alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier, Commissariat à l'Energie Atomique et aux Energies Alternatives, 38054 Grenoble cedex 9, France (G.V.)
| |
Collapse
|
61
|
Huang QN, Shi YF, Yang Y, Feng BH, Wei YL, Chen J, Baraoidan M, Leung H, Wu JL. Characterization and genetic analysis of a light- and temperature-sensitive spotted-leaf mutant in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:671-81. [PMID: 21605341 DOI: 10.1111/j.1744-7909.2011.01056.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A rice spotted-leaf mutant was isolated from an ethane methyl sulfonate (EMS) -induced IR64 mutant bank. The mutant, designated as spl30 (spotted-leaf30), displayed normal green leaf color under shade but exhibited red-brown lesions under natural summer field conditions. Initiation of the lesions was induced by light and the symptom was enhanced at 33 (°) C relative to 26 (°) C. Histochemical staining did not show cell death around the red-brown lesions. Chlorophyll contents in the mutant were significantly lower than those of the wild type while the ratio of chlorophyll a/b remained the same, indicating that spl30 was impaired in biosynthesis or degradation of chlorophyll. Disease reaction patterns of the mutant to Xanthomonas oryzae pv. oryzae were largely unchanged to most races tested except for a few strains. Genetic analysis showed that the mutation was controlled by a single recessive gene, tentatively named spl30(t), which co-segregated with RM15380 on chromosome 3, and was delimited to a 94 kb region between RM15380 and RM15383. Spl30(t) is likely a novel rice spotted-leaf gene since no other similar genes have been identified near the chromosomal region. The genetic data and recombination populations provided in this study will enable further fine-mapping and cloning of the gene.
Collapse
Affiliation(s)
- Qi-Na Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
63
|
Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Joubès J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. PLANT PHYSIOLOGY 2011; 156:29-45. [PMID: 21386033 PMCID: PMC3091054 DOI: 10.1104/pp.111.172320] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/07/2011] [Indexed: 05/18/2023]
Abstract
Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.
Collapse
|
64
|
Cecchini NM, Monteoliva MI, Alvarez ME. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1947-59. [PMID: 21311034 PMCID: PMC3091113 DOI: 10.1104/pp.110.167163] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/03/2011] [Indexed: 05/19/2023]
Abstract
L-proline (Pro) catabolism is activated in plants recovering from abiotic stresses associated with water deprivation. In this catabolic pathway, Pro is converted to glutamate by two reactions catalyzed by proline dehydrogenase (ProDH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH), with Δ(1)-pyrroline-5-carboxylate (P5C) as the intermediate. Alternatively, under certain conditions, the P5C derived from Pro is converted back to Pro by P5C reductase, thus stimulating the Pro-P5C cycle, which may generate reactive oxygen species (ROS) as a consequence of the ProDH activity. We previously observed that Pro biosynthesis is altered in Arabidopsis (Arabidopsis thaliana) tissues that induce the hypersensitive response (HR) in response to Pseudomonas syringae. In this work, we characterized the Pro catabolic pathway and ProDH activity in this model. Induction of ProDH expression was found to be dependent on salicylic acid, and an increase in ProDH activity was detected in cells destined to die. To evaluate the role of ProDH in the HR, ProDH-silenced plants were generated. These plants displayed reduced ROS and cell death levels as well as enhanced susceptibility in response to avirulent pathogens. Interestingly, the early activation of ProDH was accompanied by an increase in P5C reductase but not in P5CDH transcripts, with few changes occurring in the Pro and P5C levels. Therefore, our results suggest that in wild-type plants, ProDH is a defense component contributing to HR and disease resistance, which apparently potentiates the accumulation of ROS. The participation of the Pro-P5C cycle in the latter response is discussed.
Collapse
|
65
|
Choi DS, Hwang BK. Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. THE PLANT CELL 2011; 23:823-42. [PMID: 21335377 PMCID: PMC3077778 DOI: 10.1105/tpc.110.082081] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/10/2011] [Accepted: 01/25/2011] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) is a key regulator of plant growth and development, as well as plant defense responses. A high-throughput in planta proteome screen identified the pepper (Capsicum annuum) GRAM (for glucosyltransferases, Rab-like GTPase activators, and myotubularins) domain-containing ABA-RESPONSIVE1 (ABR1), which is highly induced by infection with avirulent Xanthomonas campestris pv vesicatoria and also by treatment with ABA. The GRAM domain is essential for the cell death response and for the nuclear localization of ABR1. ABR1 is required for priming cell death and reactive oxygen species production, as well as ABA-salicylic acid (SA) antagonism. Silencing of ABR1 significantly compromised the hypersensitive response but enhanced bacterial pathogen growth and ABA levels in pepper. High levels of ABA in ABR1-silenced plants antagonized the SA levels induced by pathogen infection. Heterologous transgenic expression of ABR1 in Arabidopsis thaliana conferred enhanced resistance to Pseudomonas syringae pv tomato and Hyaloperonospora arabidopsidis infection. The susceptibility of the Arabidopsis ABR1 putative ortholog mutant, abr1, to these pathogens also supports the involvement of ABR1 in disease resistance. Together, these results reveal ABR1 as a novel negative regulator of ABA signaling and suggest that the nuclear ABR1 pool is essential for the cell death induction associated with ABA-SA antagonism.
Collapse
|
66
|
Gaussand GMDJM, Jia Q, van der Graaff E, Lamers GEM, Fransz PF, Hooykaas PJJ, de Pater S. Programmed Cell Death in the Leaves of the Arabidopsis Spontaneous Necrotic Spots (sns-D) Mutant Correlates with Increased Expression of the Eukaryotic Translation Initiation Factor eIF4B2. FRONTIERS IN PLANT SCIENCE 2011; 2:9. [PMID: 22639576 PMCID: PMC3355676 DOI: 10.3389/fpls.2011.00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/28/2011] [Indexed: 05/20/2023]
Abstract
From a pool of transgenic Arabidopsis (Arabidopsis thaliana) plants harboring an activator T-DNA construct, one mutant was identified that developed spontaneous necrotic spots (sns-D) on the rosette leaves under aseptic conditions. The sns-D mutation is dominant and homozygous plants are embryo lethal. The mutant produced smaller rosettes with a different number of stomata than the wild-type. DNA fragmentation in the nuclei of cells in the necrotic spots and a significant increase of caspase-3 and caspase-6 like activities in sns-D leaf extracts indicated that the sns-D mutation caused programmed cell death (PCD). The integration of the activator T-DNA caused an increase of the expression level of At1g13020, which encodes the eukaryotic translation initiation factor eIF4B2. The expression level of eIF4B2 was positively correlated with the severity of sns-D mutant phenotype. Overexpression of the eIF4B2 cDNA mimicked phenotypic traits of the sns-D mutant indicating that the sns-D mutant phenotype is indeed caused by activation tagging of eIF4B2. Thus, incorrect regulation of translation initiation may result in PCD.
Collapse
Affiliation(s)
- Gwénaël M. D. J.-M. Gaussand
- Molecular and Developmental Genetics Department, Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Qi Jia
- Molecular and Developmental Genetics Department, Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Eric van der Graaff
- Molecular and Developmental Genetics Department, Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Gerda E. M. Lamers
- Molecular and Developmental Genetics Department, Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Paul F. Fransz
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Paul J. J. Hooykaas
- Molecular and Developmental Genetics Department, Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
| | - Sylvia de Pater
- Molecular and Developmental Genetics Department, Institute of Biology Leiden, Leiden UniversityLeiden, Netherlands
- *Correspondence: Sylvia de Pater, Sylvius Laboratory, Molecular and Developmental Genetics Department, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands. e-mail:
| |
Collapse
|
67
|
Beattie GA. Water relations in the interaction of foliar bacterial pathogens with plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:533-55. [PMID: 21438680 DOI: 10.1146/annurev-phyto-073009-114436] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review examines the many ways in which water influences the relations between foliar bacterial pathogens and plants. As a limited resource in aerial plant tissues, water is subject to manipulation by both plants and pathogens. A model is emerging that suggests that plants actively promote localized desiccation at the infection site and thus restrict pathogen growth as one component of defense. Similarly, many foliar pathogens manipulate water relations as one component of pathogenesis. Nonvascular pathogens do this using effectors and other molecules to alter hormonal responses and enhance intercellular watersoaking, whereas vascular pathogens use many mechanisms to cause wilt. Because of water limitations on phyllosphere surfaces, bacterial colonists, including pathogens, benefit from the protective effects of cellular aggregation, synthesis of hygroscopic polymers, and uptake and production of osmoprotective compounds. Moreover, these bacteria employ tactics for scavenging and distributing water to overcome water-driven barriers to nutrient acquisition, movement, and signal exchange on plant surfaces.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011-3211, USA.
| |
Collapse
|
68
|
Jeong RD, Kachroo A, Kachroo P. Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:1504-9. [PMID: 21057210 PMCID: PMC3115268 DOI: 10.4161/psb.5.11.13705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This light-perciving ability of plants requires the activities of proteins termed photoreceptors. In addition to various growth and developmental processes, light also plays a role in plant defense against pathogens and is required for activation of several defense genes and regulation of the cell death response. However, the molecular or biochemical basis of light modulated regulation of defense signaling is largely unclear. We demonstrate a direct role for blue-light photoreceptors in resistance (R) protein-mediated plant defense against Turnip Crinkle Virus (TCV) in Arabidopsis. The blue-light photoreceptors, cryptochrome (CRY) 2 and phototropin (PHOT) 2, are specifically required for maintaining the stability of the R protein HRT, and thereby resistance to TCV. Exogenous application of the phytohormone salicylic acid elevates HRT levels in phot2 but not in cry2 background. These data indicate that CRY2 and PHOT2 function distinctly in maintaining post-transcriptional stability of HRT. HRT-mediated resistance is also dependent on CRY1 and PHOT1 proteins, but these do not contribute to the stability of HRT. HRT interacts with the CRY2/PHOT2-interacting protein COP1, a E3 ubiquitin ligase. Exogenous application of a proteasome inhibitor prevents blue-light-dependent degradation of HRT, suggesting that HRT is degraded via the 26S proteasome. These and the fact that PHOT2 interacts directly with the R protein RPS2 suggest that blue-light photoreceptors might be involved in regulation and/or signaling mediated by several R proteins.
Collapse
Affiliation(s)
- Rae-Dong Jeong
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
69
|
Boursiac Y, Lee SM, Romanowsky S, Blank R, Sladek C, Chung WS, Harper JF. Disruption of the vacuolar calcium-ATPases in Arabidopsis results in the activation of a salicylic acid-dependent programmed cell death pathway. PLANT PHYSIOLOGY 2010; 154:1158-71. [PMID: 20837703 PMCID: PMC2971596 DOI: 10.1104/pp.110.159038] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/09/2010] [Indexed: 05/18/2023]
Abstract
Calcium (Ca(2+)) signals regulate many aspects of plant development, including a programmed cell death pathway that protects plants from pathogens (hypersensitive response). Cytosolic Ca(2+) signals result from a combined action of Ca(2+) influx through channels and Ca(2+) efflux through pumps and cotransporters. Plants utilize calmodulin-activated Ca(2+) pumps (autoinhibited Ca(2+)-ATPase [ACA]) at the plasma membrane, endoplasmic reticulum, and vacuole. Here, we show that a double knockout mutation of the vacuolar Ca(2+) pumps ACA4 and ACA11 in Arabidopsis (Arabidopsis thaliana) results in a high frequency of hypersensitive response-like lesions. The appearance of macrolesions could be suppressed by growing plants with increased levels (greater than 15 mm) of various anions, providing a method for conditional suppression. By removing plants from a conditional suppression, lesion initials were found to originate primarily in leaf mesophyll cells, as detected by aniline blue staining. Initiation and spread of lesions could also be suppressed by disrupting the production or accumulation of salicylic acid (SA), as shown by combining aca4/11 mutations with a sid 2 (for salicylic acid induction-deficient2) mutation or expression of the SA degradation enzyme NahG. This indicates that the loss of the vacuolar Ca(2+) pumps by itself does not cause a catastrophic defect in ion homeostasis but rather potentiates the activation of a SA-dependent programmed cell death pathway. Together, these results provide evidence linking the activity of the vacuolar Ca(2+) pumps to the control of a SA-dependent programmed cell death pathway in plants.
Collapse
|
70
|
Cacas JL. Devil inside: does plant programmed cell death involve the endomembrane system? PLANT, CELL & ENVIRONMENT 2010; 33:1453-1473. [PMID: 20082668 DOI: 10.1111/j.1365-3040.2010.02117.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in-depth, as well as compared and contrasted with what is known in animal and yeast systems.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Institut de Recherche pour le Développement, Equipe 2, Mécanismes des Résistances, Montpellier Cedex 5, France.
| |
Collapse
|
71
|
Perchepied L, Balagué C, Riou C, Claudel-Renard C, Rivière N, Grezes-Besset B, Roby D. Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:846-60. [PMID: 20521948 DOI: 10.1094/mpmi-23-7-0846] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Studies of the interaction between Arabidopsis thaliana and the necrotrophic fungal pathogen Sclerotinia sclerotiorum have been hampered by the extreme susceptibility of this model plant to the fungus. In addition, analyses of the plant defense response suggested the implication of a complex interplay of hormonal and signaling pathways. To get a deeper insight into this host-pathogen interaction, we first analyzed the natural variation in Arabidopsis for resistance to S. sclerotiorum. The results revealed a large variation of resistance and susceptibility in Arabidopsis, with some ecotypes, such as Ws-4, Col-0, and Rbz-1, being strongly resistant, and others, such as Shahdara, Ita-0, and Cvi-0, exhibiting an extreme susceptibility. The role of different signaling pathways in resistance was then determined by assessing the symptoms of mutants affected in the perception, production, or transduction of hormonal signals after inoculation with S. sclerotiorum. This analysis led to the conclusions that i) signaling of inducible defenses is predominantly mediated by jasmonic acid and abscisic acid, influenced by ethylene, and independent of salicylic acid; and ii) nitric oxide (NO) and reactive oxygen species are important signals required for plant resistance to S. sclerotiorum. Defense gene expression analysis supported the specific role of NO in defense activation.
Collapse
Affiliation(s)
- Laure Perchepied
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNrS-INRA 2594/441, BP 52627, Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
72
|
Takano S, Niihama M, Smith HMS, Tasaka M, Aida M. gorgon, a Novel Missense Mutation in the SHOOT MERISTEMLESS Gene, Impairs Shoot Meristem Homeostasis in Arabidopsis. ACTA ACUST UNITED AC 2010; 51:621-34. [DOI: 10.1093/pcp/pcq028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
73
|
Donahue JL, Alford SR, Torabinejad J, Kerwin RE, Nourbakhsh A, Ray WK, Hernick M, Huang X, Lyons BM, Hein PP, Gillaspy GE. The Arabidopsis thaliana Myo-inositol 1-phosphate synthase1 gene is required for Myo-inositol synthesis and suppression of cell death. THE PLANT CELL 2010; 22:888-903. [PMID: 20215587 PMCID: PMC2861443 DOI: 10.1105/tpc.109.071779] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/28/2010] [Accepted: 02/18/2010] [Indexed: 05/19/2023]
Abstract
l-myo-inositol 1-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the rate-limiting step in the synthesis of myo-inositol, a critical compound in the cell. Plants contain multiple MIPS genes, which encode highly similar enzymes. We characterized the expression patterns of the three MIPS genes in Arabidopsis thaliana and found that MIPS1 is expressed in most cell types and developmental stages, while MIPS2 and MIPS3 are mainly restricted to vascular or related tissues. MIPS1, but not MIPS2 or MIPS3, is required for seed development, for physiological responses to salt and abscisic acid, and to suppress cell death. Specifically, a loss in MIPS1 resulted in smaller plants with curly leaves and spontaneous production of lesions. The mips1 mutants have lower myo-inositol, ascorbic acid, and phosphatidylinositol levels, while basal levels of inositol (1,4,5)P(3) are not altered in mips1 mutants. Furthermore, mips1 mutants exhibited elevated levels of ceramides, sphingolipid precursors associated with cell death, and were complemented by a MIPS1-green fluorescent protein (GFP) fusion construct. MIPS1-, MIPS2-, and MIPS3-GFP each localized to the cytoplasm. Thus, MIPS1 has a significant impact on myo-inositol levels that is critical for maintaining levels of ascorbic acid, phosphatidylinositol, and ceramides that regulate growth, development, and cell death.
Collapse
Affiliation(s)
- Janet L. Donahue
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Shannon R. Alford
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Javad Torabinejad
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Rachel E. Kerwin
- Department of Plant Biology, University of California, Davis, California 95616
| | - Aida Nourbakhsh
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - W. Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Marcy Hernick
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Xinyi Huang
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Blair M. Lyons
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Pyae P. Hein
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Glenda E. Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
- Address correspondence to
| |
Collapse
|
74
|
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol 2010; 91:29-66. [PMID: 20705178 DOI: 10.1016/s0070-2153(10)91002-8] [Citation(s) in RCA: 458] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
75
|
Tronchet M, Balagué C, Kroj T, Jouanin L, Roby D. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2010; 11:83-92. [PMID: 20078778 PMCID: PMC6640239 DOI: 10.1111/j.1364-3703.2009.00578.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The deposition of lignin during plant-pathogen interactions is thought to play a role in plant defence. However, the function of lignification genes in plant disease resistance is poorly understood. In this article, we provide genetic evidence that the primary genes involved in lignin biosynthesis in Arabidopsis, CAD-C and CAD-D, act as essential components of defence to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae pv. tomato, possibly through the salicylic acid defence pathway. Thus, in contrast with cellulose synthesis, whose alteration leads to an increase in disease resistance, alteration of the cell wall lignin content leads directly or indirectly to defects in some defence components.
Collapse
Affiliation(s)
- Maurice Tronchet
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS-INRA 2594/441, BP 52627, F-31326 Castanet-Tolosan cedex, France
| | | | | | | | | |
Collapse
|
76
|
Qiao Y, Jiang W, Lee J, Park B, Choi MS, Piao R, Woo MO, Roh JH, Han L, Paek NC, Seo HS, Koh HJ. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). THE NEW PHYTOLOGIST 2010; 185:258-74. [PMID: 19825016 DOI: 10.1111/j.1469-8137.2009.03047.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To expand our understanding of cell death in plant defense responses, we isolated a novel rice (Oryza sativa) spotted leaf mutant (spl28) that displays a lesion mimic phenotype in the absence of pathogen attack through treatment of Hwacheongbyeo (an elite Korean japonica cultivar) with N-methyl-N-nitrosourea (MNU). Early stage development of the spl28 mutant was normal. However, after flowering, spl28 mutants exhibited a significant decrease in chlorophyll content, soluble protein content, and photosystem II efficiency, and high concentrations of reactive oxygen species (ROS), phytoalexin, callose, and autofluorescent phenolic compounds that localized in or around the lesions. The spl28 mutant also exhibited significantly enhanced resistance to rice blast and bacterial blight. Using a map-based cloning approach, we determined that SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1), which is involved in the post-Golgi trafficking pathway. A green fluorescent protein (GFP) fusion protein of SPL28 (SPL28::GFP) localized to the Golgi apparatus, and expression of SPL28 complemented the membrane trafficking defect of apm1-1 Delta yeast mutants. SPL28 was ubiquitously expressed and contained a highly conserved adaptor complex medium subunit (ACMS) family domain. SPL28 appears to be involved in the regulation of vesicular trafficking, and SPL28 dysfunction causes the formation of hypersensitive response (HR)-like lesions, leading to the initiation of leaf senescence.
Collapse
Affiliation(s)
- Yongli Qiao
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Donner TJ, Sherr I, Scarpella E. Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 2009; 136:3235-46. [DOI: 10.1242/dev.037028] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The principles underlying the formation of veins in the leaf have long intrigued developmental biologists. In Arabidopsis leaves, files of anatomically inconspicuous subepidermal cells that will elongate into vein-forming procambial cells selectively activate ATHB8 gene expression. The biological role of ATHB8 in vein formation and the molecular events that culminate in acquisition of the ATHB8preprocambial cell state are unknown, but intertwined pathways of auxin transport and signal transduction have been implicated in defining paths of vascular strand differentiation. Here we show that ATHB8 is required to stabilize preprocambial cell specification against auxin transport perturbations, to restrict preprocambial cell state acquisition to narrow fields and to coordinate procambium formation within and between veins. We further show that ATHB8 expression at preprocambial stages is directly and positively controlled by the auxin-response transcription factor MONOPTEROS (MP) through an auxin-response element in the ATHB8promoter. We finally show that the consequences of loss of ATHB8function for vein formation are masked by MP activity. Our observations define, at the molecular level, patterning inputs of auxin signaling in vein formation.
Collapse
Affiliation(s)
- Tyler J. Donner
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB, T6G 2E9, Canada
| | - Ira Sherr
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB, T6G 2E9, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton AB, T6G 2E9, Canada
| |
Collapse
|
78
|
Persson M, Falk A, Dixelius C. Studies on the mechanism of resistance to Bipolaris sorokiniana in the barley lesion mimic mutant bst1. MOLECULAR PLANT PATHOLOGY 2009; 10:587-98. [PMID: 19694950 PMCID: PMC6640378 DOI: 10.1111/j.1364-3703.2009.00555.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY The Bipolaris sorokiniana tolerant 1 (bst1) barley mutant is derived from fast neutron-irradiated seeds of wild-type Bowman(Rph3). The induced mutation was genetically localized to a position on chromosome 5HL distal to the centromere using amplified fragment length polymorphism markers. In addition, the defence responses and related gene expression in the bst1 mutant after fungal challenge were compared with those occurring in wild-type plants. Hydrogen peroxide generation, determined by 3,3-diaminobenzidine staining, revealed a clearly reduced level of bst1, compared with the wild-type, during the entire experimental time: 8-120 h post-inoculation (hpi). At 48 hpi, the wild-type samples displayed twice as much fungal mass and three times greater H(2)O(2) production than bst1. At the same time, staining of B. sorokiniana showed less fungal growth in the spontaneous lesions of bst1 compared with the wild-type. Monitoring of defence-related genes at 48 hpi demonstrated strong expression of PR-1a, PR-2, PR-5 and PR-10 in bst1. A gene coding for a unique oxidoreductase enzyme, designated as HCP1, was expressed at much higher levels in inoculated leaves of the bst1 mutant than in those of the wild-type plant. Taken together, the results suggest that the defence to B. sorokiniana largely relies on salicylic acid-responsive pathogenesis-related (PR) genes, as well as selected reactive oxygen species and unknown HCP1-associated factors.
Collapse
Affiliation(s)
- Mattias Persson
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, SLU, PO Box 7080, 750 07 Uppsala, Sweden.
| | | | | |
Collapse
|
79
|
Kangasjärvi S, Nurmi M, Tikkanen M, Aro EM. Cell-specific mechanisms and systemic signalling as emerging themes in light acclimation of C3 plants. PLANT, CELL & ENVIRONMENT 2009; 32:1230-1240. [PMID: 19344335 DOI: 10.1111/j.1365-3040.2009.01982.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chloroplasts perform essential signalling functions in light acclimation and various stress responses in plants. Research on chloroplast signalling has provided fundamental information concerning the diversity of cellular responses to changing environmental conditions. Evidence has also accumulated indicating that different cell types possess specialized roles in regulation of leaf development and stress acclimation when challenged by environmental cues. Leaf veins are flanked by a layer of elongated chloroplast-containing bundle sheath cells, which due to their central position hold the potential to control the flux of information inside the leaves. Indeed, a specific role for bundle sheath cells in plant acclimation to various light regimes is currently emerging. Moreover, perception of light stress initiates systemic signals that spread through the vasculature to confer stress resistance in non-exposed parts of the plant. Such long-distance signalling functions are related to unique characteristics of reactive oxygen species and their detoxification in bundle sheath cells. Novel techniques for analysis of distinct tissue types, together with Arabidopsis thaliana mutants with vasculature-specific phenotypes, have proven instrumental in dissection of structural hierarchy among regulatory processes in leaves. This review emphasizes the current knowledge concerning the role of vascular bundle sheath cells in light-dependent acclimation processes of C3 plants.
Collapse
|
80
|
Lu H. Dissection of salicylic acid-mediated defense signaling networks. PLANT SIGNALING & BEHAVIOR 2009; 4:713-7. [PMID: 19820324 PMCID: PMC2801381 DOI: 10.4161/psb.4.8.9173] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 05/18/2023]
Abstract
The small phenolic molecule salicylic acid (SA) plays a key role in plant defense. Significant progress has been made recently in understanding SA-mediated defense signaling networks. Functional analysis of a large number of genes involved in SA biosynthesis and regulation of SA accumulation and signal transduction has revealed distinct but interconnecting pathways that orchestrate the control of plant defense. Further studies utilizing combinatorial approaches in genetics, molecular biology, biochemistry and genomics will uncover finer details of SA-mediated defense networks as well as further insights into the crosstalk of SA with other defense signaling pathways. The complexity of defense networks illustrates the capacity of plants to integrate multiple developmental and environmental signals into a tight control of the costly defense responses.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
81
|
Zou YM, Yu SC, Zhang FL, Yu YJ, Zhao XY, Zhang DS. [cDNA-AFLP analysis on transcripts associated with bolting in Brassica rapa L. ssp. pekinensis]. YI CHUAN = HEREDITAS 2009; 31:755-62. [PMID: 19586882 DOI: 10.3724/sp.j.1005.2009.00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Premature bolting, caused by low temperature in spring and summer cultivation in low land and high land respectively, leads to reduction of the yield and quality of the harvested products in Chinese cabbage. Therefore, exploring genes involved in vernalization response is important to the improvement of Chinese cabbage varieties. Here, one extremely early bolting line (DH-54) and one extremely late bolting line (DH-43) were employed, and the cDNA-AFLP approach was used to identify key components involved in the low-temperature required vernalization response. Of 256 primer recombinations screened, a total of 191 differential expressed transcript-derived fragments (TDFs) were identified, and 82 TDFs were sequenced. BLAST and alignments showed that 52 candidate TDFs shared high levels of similarity with genes of known function, 22 TDFs of unknown function and 8 novel ESTs. The TDFs of known function were involved in genes encoding enzymes working in metabolism, proteins related to stress and defense, signal transduction, and transcription regulation, etc.
Collapse
Affiliation(s)
- Yan-Min Zou
- College of Life Science, Capital Normal University, Beijing 100037, China.
| | | | | | | | | | | |
Collapse
|
82
|
Freeman BC, Beattie GA. Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:857-67. [PMID: 19522568 DOI: 10.1094/mpmi-22-7-0857] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The physiological mechanisms by which plants limit the growth of bacterial pathogens during gene-for-gene resistance are poorly understood. We characterized early events in the Arabidopsis thaliana-Pseudomonas syringae pathosystem to identify physiological changes for which the kinetics are consistent with bacterial growth restriction. Using a safranine-O dye solution to detect vascular activity, we demonstrated that A. thaliana Col-0 resistance to P. syringae pv. tomato DC3000 cells expressing avrRpm1 involved virtually complete cessation of vascular water movement into the infection site within only 3 h postinoculation (hpi), under the conditions tested. This vascular restriction preceded or was simultaneous with precipitous decreases in photosynthesis, stomatal conductance, and leaf transpiration, with the latter two remaining at detectable levels. Microscopic plant cell death was detected as early as 2 hpi. Interestingly, suppression of bacterial growth during AvrRpm1-mediated resistance was eliminated by physically blocking leaf water loss through the stomata without altering plant cell death and was nearly eliminated by incubating plants at high relative humidity. The majority of the population growth benefit from blocking leaf water loss occurred early after inoculation, i.e., between 4 and 8 hpi. Collectively, these results support a model in which A. thaliana suppresses P. syringae growth during gene-for-gene resistance, at least in part, by coupling restricted vascular flow to the infection site with water loss through partially open stomata; that is, the plants effectively starve the invading bacteria for water.
Collapse
Affiliation(s)
- Brian C Freeman
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
83
|
Li T, Bai G. Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:13-21. [PMID: 19330313 DOI: 10.1007/s00122-009-1012-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 03/08/2009] [Indexed: 05/27/2023]
Abstract
Lesion mimics (LM) that resemble plant disease symptoms in the absence of plant pathogens may confer enhanced plant disease resistance to a wide range of pathogens. Wheat line Ning7840 has adult plant resistance (APR) to leaf rust (Puccinia triticina) and shows LM symptoms at heading. A recessive gene (lm) was found to be responsible for LM in Ning7840 and located near the proximal region of chromosome 1BL using a population of 179 recombinant inbred lines (RIL) derived from the cross Ning7840/Chokwang. Genomic in situ hybridization showed that Ning7840 carries the short arm of 1R chromosome from rye (Secale cereale L.), on which the race-specific gene Lr26 resides. The RILs were infected with the isolate PRTUS 55, an isolate virulent to Lr26, at anthesis in two greenhouse experiments. The result showed that the lines with LM phenotype had a significantly higher rust resistance than the non-LM lines. Composite interval mapping consistently detected a QTL, Qlr.pser.1BL, for APR on chromosome 1BL. Qlr.pser.1BL peaked at lm and explained up to 60.8% of phenotypic variation for leaf rust resistance in two greenhouse experiments, therefore, lm from Ning7840 may have pleiotropic effects on APR to leaf rust.
Collapse
Affiliation(s)
- Tao Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
84
|
La Camera S, Balagué C, Göbel C, Geoffroy P, Legrand M, Feussner I, Roby D, Heitz T. The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:469-81. [PMID: 19271961 DOI: 10.1094/mpmi-22-4-0469] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We previously reported that patatin-like protein 2 (PLP2), a pathogen-induced patatin-like lipid acyl hydrolase, promotes cell death and negatively affects Arabidopsis resistance to the fungus Botrytis cinerea and to the bacteria Pseudomonas syringae. We show here that, on the contrary, PLP2 contributes to resistance to Cucumber mosaic virus, an obligate parasite inducing the hypersensitive response. These contrasted impacts on different pathosystems were also reflected by differential effects on defense gene induction. To examine a possible link between PLP2 lipolytic activity and oxylipin metabolism, gene expression profiling was performed and identified B. cinerea among these pathogens as the strongest inducer of most oxylipin biosynthetic genes. Quantitative oxylipin profiling in wild-type and PLP2-modified, Botrytis-challenged plants established the massive accumulation of oxidized fatty acid derivatives in infected leaves. Several compounds previously described as modulating plant tissue damage and issued from the alpha-dioxygenase pathway were found to accumulate in a PLP2-dependent manner. Finally, the contribution of PLP2 to genetically controlled cell death was evaluated using PLP2-silenced or -overexpressing plants crossed with the lesion mimic mutant vascular-associated death 1 (vad1). Phenotypic analysis of double-mutant progeny showed that PLP2 expression strongly promotes necrotic symptoms in vad1 leaves. Collectively, our data indicate that PLP2 is an integral component of the plant cell death execution machinery, possibly providing fatty acid precursors for the biosynthesis of specific oxylipins and differentially affecting resistance to pathogens with distinct lifestyles.
Collapse
Affiliation(s)
- Sylvain La Camera
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR, conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Persson M, Staal J, Oide S, Dixelius C. Layers of defense responses to Leptosphaeria maculans below the RLM1- and camalexin-dependent resistances. THE NEW PHYTOLOGIST 2009; 182:470-482. [PMID: 19220763 DOI: 10.1111/j.1469-8137.2009.02763.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants have evolved different defense components to counteract pathogen attacks. The resistance locus resistance to Leptosphaeria maculans 1 (RLM1) is a key factor for Arabidopsis thaliana resistance to L. maculans. The present work aimed to reveal downstream defense responses regulated by RLM1. Quantitative assessment of fungal colonization in the host was carried out using quantitative polymerase chain reaction (qPCR) and GUS expression analyses, to further characterize RLM1 resistance and the role of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) in disease development. Additional assessments of A. thaliana mutants were performed to expand our understanding of this pathosystem. Resistance responses such as lignification and the formation of vascular plugs were found to occur in an RLM1-dependent manner, in contrast to the RLM1-independent increase in reactive oxygen species at the stomata and hydathodes. Analyses of mutants defective in hormone signaling in the camalexin-free rlm1(Ler)pad3 background revealed a significant influence of JA and ET on symptom development and pathogen colonization. The overall results indicate that the defense responses of primary importance induced by RLM1 are all associated with physical barriers, and that responses of secondary importance involve complex cross-talk among SA, JA and ET. Our observations further suggest that ET positively affects fungal colonization.
Collapse
Affiliation(s)
- Mattias Persson
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, PO Box 7080, 750 07 Uppsala, Sweden
| | - Jens Staal
- Department of Molecular Biomedical Research, Unit for Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Molecular Biology, Ghent University, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
| | - Shinichi Oide
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, PO Box 7080, 750 07 Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, PO Box 7080, 750 07 Uppsala, Sweden
| |
Collapse
|
86
|
Tedman-Jones JD, Lei R, Jay F, Fabro G, Li X, Reiter WD, Brearley C, Jones JDG. Characterization of Arabidopsis mur3 mutations that result in constitutive activation of defence in petioles, but not leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:691-703. [PMID: 18657237 DOI: 10.1111/j.1365-313x.2008.03636.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A screen was established for mutants in which the plant defence response is de-repressed. The pathogen-inducible isochorismate synthase (ICS1) promoter was fused to firefly luciferase (luc) and a homozygous transgenic line generated in which the ICS1:luc fusion is co-regulated with ICS1. This line was mutagenized and M(2) seedlings screened for constitutive ICS1:luc expression (cie). The cie mutants fall into distinct phenotypic classes based on tissue-specific localization of luciferase activity. One mutant, cie1, that shows constitutive luciferase activity specifically in petioles, was chosen for further analysis. In addition to ICS1, PR and other defence-related genes are constitutively expressed in cie1 plants. The cie1 mutant is also characterized by an increased production of conjugated salicylic acid and reactive oxygen intermediates, as well as spontaneous lesion formation, all confined to petiole tissue. Significantly, defences activated in cie1 are sufficient to prevent infection by a virulent isolate of Hyaloperonospora parasitica, and this enhanced resistance response protects petiole tissue alone. Furthermore, cie1-mediated resistance, along with PR gene expression, is abolished in a sid2-1 mutant background, consistent with a requirement for salicylic acid. A positional cloning approach was used to identify cie1, which carries two point mutations in a gene required for cell wall biosynthesis and actin organization, MUR3. A mur3 knockout mutant also resists infection by H. parasitica in its petioles and this phenotype is complemented by transformation with wild-type MUR3. We propose that perturbed cell wall biosynthesis may activate plant defence and provide a rationale for the cie1 and the mur3 knockout phenotypes.
Collapse
MESH Headings
- Actins/metabolism
- Alleles
- Arabidopsis/genetics
- Arabidopsis/immunology
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cell Wall/genetics
- Cell Wall/metabolism
- Chromosome Mapping
- Cloning, Molecular
- Galactosyltransferases/genetics
- Galactosyltransferases/metabolism
- Gene Expression Regulation, Plant
- Gene Knockout Techniques
- Genes, Plant
- Genes, Reporter
- Genetic Complementation Test
- Immunity, Innate
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
- Mutagenesis
- Plant Leaves/genetics
- Plant Leaves/immunology
- Plant Leaves/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Point Mutation
- Promoter Regions, Genetic
- RNA, Plant/genetics
- Reactive Oxygen Species/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Salicylic Acid/metabolism
Collapse
|
87
|
Zhou S, Liu W, Kong L, Wang M. Systemic PCD occurs in TMV-tomato interaction. ACTA ACUST UNITED AC 2008; 51:1009-19. [PMID: 18989644 DOI: 10.1007/s11427-008-0117-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/27/2008] [Indexed: 01/07/2023]
Abstract
In hypersensitive response (HR), programmed cell death (PCD) is reported as a powerful defense mechanism in plant immune responses to pathogen. However, little is known about the PCD in systemic acquired resistance (SAR). Using tobacco mosaic virus (TMV) to infect the tomato (Lycopersicon esculentum cv. Jiafen 16) we found that localized TMV-infection could induce cell death in the uninoculated parts of the tomatoes, where the enzyme-linked immunosorbent assay (ELISA) showed no spreading virus. The biological and molecular characterization of this cell death was shown as following: chromatin condensed and formed peripheral conglomeration in nuclei; cell nucleus were TUNEL positive labeled; genomic DNA was fragmented and showed DNA laddering; mitochondria and chloroplast were disrupted; tonoplast and plasma membrane were shrunk and degradated. These results suggested that with an absence of TMV spread, the local TMV-infection on certain tomato leaves could induce systemic PCD in the root-tips, stem-apices and uninoculated leaves. The systemic PCD has various initiation and synchronization in such tissues and is distinct in inducement and exhibition from HR-PCD and SAR.
Collapse
Affiliation(s)
- ShuMin Zhou
- College of Biological Sciences, China Agriculture University, Beijing, 100094, China.
| | | | | | | |
Collapse
|
88
|
Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. THE PLANT CELL 2008; 20:3163-79. [PMID: 19001565 PMCID: PMC2613663 DOI: 10.1105/tpc.108.060053] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 10/14/2008] [Accepted: 10/21/2008] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana resistance gene RPW8 triggers the hypersensitive response (HR) to restrict powdery mildew infection via the salicylic acid-dependent signaling pathway. To further understand how RPW8 signaling is regulated, we have conducted a genetic screen to identify mutations enhancing RPW8-mediated HR-like cell death (designated erh). Here, we report the isolation and characterization of the Arabidopsis erh1 mutant, in which the At2g37940 locus is knocked out by a T-DNA insertion. Loss of function of ERH1 results in salicylic acid accumulation, enhanced transcription of RPW8 and RPW8-dependent spontaneous HR-like cell death in leaf tissues, and reduction in plant stature. Sequence analysis suggests that ERH1 may encode the long-sought Arabidopsis functional homolog of yeast and protozoan inositolphosphorylceramide synthase (IPCS), which converts ceramide to inositolphosphorylceramide. Indeed, ERH1 is able to rescue the yeast aur1 mutant, which lacks the IPCS, and the erh1 mutant plants display reduced ( approximately 53% of wild type) levels of leaf IPCS activity, indicating that ERH1 encodes a plant IPCS. Consistent with its biochemical function, the erh1 mutation causes ceramide accumulation in plants expressing RPW8. These data reinforce the concept that sphingolipid metabolism (specifically, ceramide accumulation) plays an important role in modulating plant programmed cell death associated with defense.
Collapse
Affiliation(s)
- Wenming Wang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics 2008; 279:605-19. [PMID: 18357468 DOI: 10.1007/s00438-008-0337-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/29/2008] [Indexed: 01/08/2023]
Abstract
Lesion mimic mutants are characterized by the formation of necrotic lesions in the absence of pathogens. Such genetic defects often result in enhanced resistance to pathogen infection and constitutive expression of defense response genes. To understand the genetic mechanisms leading to these mutations, we characterized 21 lesion mimic mutants isolated from IR64 rice mutant populations produced by mutagenesis with diepoxybutane (D), gamma rays (G), and fast neutrons (F). Four mutations are controlled by single dominant genes, one of which is inherited maternally. Five lesion mimics are allelic to known spotted leaf (spl) mutants spl1, spl2, spl3, or spl6. In total, 11 new lesion mimic mutations, named spl16, spl17, and spl19 through Spl27, were established based on allelism tests. Two lesion mimics, spl17 and Spl26 showed enhanced resistance to multiple strains of Magnaporthe oryzae, the rice blast pathogen, and Xanthomonas oryzae pv. oryzae, the bacterial blight (BB) pathogen. Co-segregation analyses of blast and BB resistance and lesion mimic phenotypes in segregating populations of spl17 and Spl26 indicate that enhanced resistance to the two diseases is conferred by mutations in the lesion mimic genes. A double mutant produced from two independent lesion mimics showed more severe lesions and higher level of resistance to X. o. pv. oryzae than their single mutant parents indicating a synergistic effect of the two mutations. In mutants that exhibit enhanced disease resistance to both pathogens, increases in expression of defense response genes PR-10a, POX22.3, and PO-C1 were correlated with lesion mimic development and enhancement of resistance. These lesion mimic mutants may provide essential materials for a comprehensive dissection of the disease resistance pathways in rice.
Collapse
|
90
|
Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. THE PLANT CELL 2008; 20:752-67. [PMID: 18326828 PMCID: PMC2329921 DOI: 10.1105/tpc.107.054858] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/30/2007] [Accepted: 02/20/2008] [Indexed: 05/18/2023]
Abstract
Plant immune responses to pathogen attack include the hypersensitive response (HR), a form of programmed cell death occurring at invasion sites. We previously reported on Arabidopsis thaliana MYB30, a transcription factor that acts as a positive regulator of a cell death pathway conditioning the HR. Here, we show by microarray analyses of Arabidopsis plants misexpressing MYB30 that the genes encoding the four enzymes forming the acyl-coA elongase complex are putative MYB30 targets. The acyl-coA elongase complex synthesizes very-long-chain fatty acids (VLCFAs), and the accumulation of extracellular VLCFA-derived metabolites (leaf epidermal wax components) was affected in MYB30 knockout mutant and overexpressing lines. In the same lines, a lipid extraction procedure allowing high recovery of sphingolipids revealed changes in VLCFA contents that were amplified in response to inoculation. Finally, the exacerbated HR phenotype of MYB30-overexpressing lines was altered by the loss of function of the acyl-ACP thioesterase FATB, which causes severe defects in the supply of fatty acids for VLCFA biosynthesis. Based on these findings, we propose a model in which MYB30 modulates HR via VLCFAs by themselves, or VLCFA derivatives, as cell death messengers in plants.
Collapse
Affiliation(s)
- Sylvain Raffaele
- Unité Mixte de Recherche 2594/441, 31320 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Kim B, Masuta C, Matsuura H, Takahashi H, Inukai T. Veinal necrosis induced by turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:260-8. [PMID: 18184069 DOI: 10.1094/mpmi-21-2-0260] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the pathosystems of Turnip mosaic virus (TuMV) with Brassicaceae crops, various symptoms, including mosaic and necrosis, are observed. We previously reported a necrosis-inducing factor TuNI in Arabidopsis thaliana, a model species. In this study, we show that the necrotic symptom induced by TuNI, observed along the veins, was actually a form of defense response accompanying a hypersensitive reaction (HR)-like cell death in the veinal area. The virus is often localized in the necrotic region. The necrotic response is associated with the production of H2O2, accumulation of salicylic acid (SA), emission of ethylene, and subsequent expression of defense-related genes. Additionally, this HR-like cell death is eased or erased by a shading treatment. These features are similar to the HR-associated resistance reaction to pathogens. However, unlike HR, two phytohormones--SA and ethylene--are involved in the necrosis induction, and both SA- and ethylene-dependent pathogenesis-related genes are activated. We concluded that the veinal necrosis induced by TuMV is regulated by a complex and unique network of at least two signaling pathways, which differs from the signal transduction for the known HR-associated resistance.
Collapse
Affiliation(s)
- Bomin Kim
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
92
|
Jiang SY, Ramamoorthy R, Ramachandran S. Comparative transcriptional profiling and evolutionary analysis of the GRAM domain family in eukaryotes. Dev Biol 2007; 314:418-32. [PMID: 18201690 DOI: 10.1016/j.ydbio.2007.11.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/25/2007] [Accepted: 11/17/2007] [Indexed: 01/14/2023]
Abstract
The GRAM domain was found in glucosyltransferases, myotubularins and other membrane-associated proteins. So far, functions for majority of these proteins are yet to be uncovered. In order to address the evolutionary and functional significance of this family members, we have performed a comprehensive investigation on their genome-wide identification, phylogenetic relationship and expression divergence in five different organisms representing monocot/dicot plants, vertebrate/invertebrate animals and yeast, namely, Oryza sativa, Arabidopsis thaliana, Mus musculus, Drosophila melanogaster and Saccharomyces cerevisiae, respectively. We have identified 65 members of GRAM domain family from these organisms. Our data revealed that this family was an ancient group and various organisms had evolved into different family sizes. Large-scale genome duplication and divergence in both expression patterns and functions were significantly contributed to the expansion and retention of this family. Mouse and Drosophila members showed higher divergences in their proteins as indicated by higher Ka/Ks ratios and possessed multiple domains in various combinations. However, in plants, their protein functions were possibly retained with a relatively low divergence as signified by lower Ka/Ks ratios and only one additional domain was combined during evolution. On the other hand, this family in all five organisms exhibited high divergence in their expression patterns both at tissue level and under various biotic and abiotic stresses. These highly divergent expression patterns unraveled the complexity of functions of GRAM domain family. Each member may play specialized roles in a specific tissue or stress condition and may function as regulators of environmental and hormonal signaling.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore, Singapore
| | | | | |
Collapse
|
93
|
Caro E, Gutierrez C. A green GEM: intriguing analogies with animal geminin. Trends Cell Biol 2007; 17:580-5. [PMID: 17997094 DOI: 10.1016/j.tcb.2007.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/21/2007] [Accepted: 09/24/2007] [Indexed: 01/16/2023]
Abstract
The transition of precursor cells from an undifferentiated proliferative state to differentiated cells with specific fates is of primary importance for multicellular organisms. Animals and plants have evolved two unrelated proteins, geminin and GEM, respectively, that play analogous roles in regulating this transition. These proteins are involved, probably in early G1 phase of the cell cycle, in regulating the expression of genes involved in cell fate and initiation of differentiation. They also interact with Cdt1, a component of the pre-replication complexes involved in DNA replication licensing in early G1 phase. The interaction of geminin and GEM with Cdt1 and transcriptional regulators is competitive, suggesting that these interactions can play a pivotal role in coordinating DNA replication, cell division and cell fate decisions.
Collapse
Affiliation(s)
- Elena Caro
- Centro de Biologia Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
94
|
Bouchez O, Huard C, Lorrain S, Roby D, Balagué C. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. PLANT PHYSIOLOGY 2007; 145:465-77. [PMID: 17720753 PMCID: PMC2048732 DOI: 10.1104/pp.107.106302] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although ethylene is involved in the complex cross talk of signaling pathways regulating plant defense responses to microbial attack, its functions remain to be elucidated. The lesion mimic mutant vad1-1 (for vascular associated death), which exhibits the light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, is a good model for studying the role of ethylene in programmed cell death and defense. Here, we demonstrate that expression of genes associated with ethylene synthesis and signaling is enhanced in vad1-1 under lesion-promoting conditions and after plant-pathogen interaction. Analyses of the progeny from crosses between vad1-1 plants and either 35SERF1 transgenic plants or ein2-1, ein3-1, ein4-1, ctr1-1, or eto2-1 mutants revealed that the vad1-1 cell death and defense phenotypes are dependent on ethylene biosynthesis and signaling. In contrast, whereas vad1-1-dependent increased resistance was abolished by ein2, ein3, and ein4 mutations, positive regulation of ethylene biosynthesis (eto2-1) or ethylene responses (35SERF1) did not exacerbate this phenotype. In addition, VAD1 expression in response to a hypersensitive response-inducing bacterial pathogen is dependent on ethylene perception and signaling. These results, together with previous data, suggest that VAD1 could act as an integrative node in hormonal signaling, with ethylene acting in concert with salicylic acid as a positive regulator of cell death propagation.
Collapse
Affiliation(s)
- Olivier Bouchez
- Laboratoire des Interactions Plantes-Microorganismes, UMR INRA/CNRS 441/2594, 31320 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
95
|
Hirota A, Kato T, Fukaki H, Aida M, Tasaka M. The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. THE PLANT CELL 2007; 19:2156-68. [PMID: 17630277 PMCID: PMC1955702 DOI: 10.1105/tpc.107.050674] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Organ primordia develop from founder cells into organs due to coordinated patterns of cell division. How patterned cell division is regulated during organ formation, however, is not well understood. Here, we show that the PUCHI gene, which encodes a putative APETALA2/ethylene-responsive element binding protein transcription factor, is required for the coordinated pattern of cell divisions during lateral root formation in Arabidopsis thaliana. Recessive mutations in PUCHI disturbed cell division patterns in the lateral root primordium, resulting in swelling of the proximal region of lateral roots. PUCHI expression was initially detected in all of the cells in early lateral root primordia, and later it was restricted to the proximal region of the primordia. Stable expression of PUCHI required auxin-responsive elements in its promoter region, and exogenous auxin increased the level of PUCHI mRNA accumulation. These results suggest that PUCHI acts downstream of auxin signaling and that this gene contributes to lateral root morphogenesis through affecting the pattern of cell divisions during the early stages of primordium development.
Collapse
Affiliation(s)
- Atsuko Hirota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
96
|
Quecini V, Torres GA, Rosa Jr VED, Gimenes MA, Machado JBDM, Figueira AVDO, Benedito V, Targon MLP, Cristofani-Yaly M. In silico analysis of phytohormone metabolism and communication pathways in citrus transcriptome. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | - Marcos A. Gimenes
- Empresa Brasileira de Pesquisa Agropecuária, Recursos Genéticos e Biotecnologia, Brazil
| | | | | | | | | | | |
Collapse
|
97
|
Perchepied L, Kroj T, Tronchet M, Loudet O, Roby D. Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana. PLoS One 2006; 1:e123. [PMID: 17205127 PMCID: PMC1762404 DOI: 10.1371/journal.pone.0000123] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/30/2006] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Low-level, partial resistance is pre-eminent in natural populations, however, the mechanisms underlying this form of resistance are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we used the model pathosystem Pseudomonas syringae pv. tomato DC3000 (Pst) - Arabidopsis thaliana to study the genetic basis of this form of resistance. Phenotypic analysis of a set of Arabidopsis accessions, based on evaluation of in planta pathogen growth revealed extensive quantitative variation for partial resistance to Pst. It allowed choosing a recombinant inbred line (RIL) population derived from a cross between the accessions Bayreuth and Shahdara for quantitative genetic analysis. Experiments performed under two different environmental conditions led to the detection of two major and two minor quantitative trait loci (QTLs) governing partial resistance to Pst and called PRP-Ps1 to PRP-Ps4. The two major QTLs, PRP-Ps1 and PRP-Ps2, were confirmed in near isogenic lines (NILs), following the heterogeneous inbred families (HIFs) strategy. Analysis of marker gene expression using these HIFs indicated a negative correlation between the induced amount of transcripts of SA-dependent genes PR1, ICS and PR5, and the in planta bacterial growth in the HIF segregating at PRP-Ps2 locus, suggesting an implication of PRP-Ps2 in the activation of SA dependent responses. CONCLUSIONS/SIGNIFICANCE These results show that variation in partial resistance to Pst in Arabidopsis is governed by relatively few loci, and the validation of two major loci opens the way for their fine mapping and their cloning, which will improve our understanding of the molecular mechanisms underlying partial resistance.
Collapse
Affiliation(s)
- Laure Perchepied
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR Centre National de la Recherche Scientifique/National Institute for Agronomical Research 2594, Castanet-Tolosan, France
| | - Thomas Kroj
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR Centre National de la Recherche Scientifique/National Institute for Agronomical Research 2594, Castanet-Tolosan, France
| | - Maurice Tronchet
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR Centre National de la Recherche Scientifique/National Institute for Agronomical Research 2594, Castanet-Tolosan, France
| | - Olivier Loudet
- National Institute for Agronomical Research (INRA), Versailles, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR Centre National de la Recherche Scientifique/National Institute for Agronomical Research 2594, Castanet-Tolosan, France
| |
Collapse
|
98
|
Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. THE PLANT CELL 2006; 18:3289-302. [PMID: 17114354 PMCID: PMC1693958 DOI: 10.1105/tpc.106.044149] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Transcription factors are believed to play a pivotal role in the activation and fine-tuning of plant defense responses, but little is known about the exact function of individual transcription factors in this process. We analyzed the role of the IId subfamily of WRKY transcription factors in the regulation of basal resistance to Pseudomonas syringae pv tomato (Pst). The expression of four members of the subfamily was induced upon challenge with virulent and avirulent strains of Pst. Mutant analyses revealed that loss of WRKY11 function increased resistance toward avirulent and virulent Pst strains and that resistance was further enhanced in wrky11 wrky17 double mutant plants. Thus, WRKY11 and WRKY17 act as negative regulators of basal resistance to Pst. Genome-wide expression analysis and expression studies of selected genes in single and double mutants demonstrated that both transcription factors modulate transcriptional changes in response to pathogen challenge. Depending on the target gene, WRKY11 and WRKY17 act either specifically or in a partially redundant manner. We demonstrate complex cross-regulation within the IId WRKY subfamily and provide evidence that both WRKY transcription factors are involved in the regulation of Pst-induced jasmonic acid-dependent responses. These results provide genetic evidence for the importance of WRKY11 and WRKY17 in plant defense.
Collapse
|
99
|
Danon A, Sánchez Coll N, Apel K. Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2006; 103:17036-41. [PMID: 17075038 PMCID: PMC1636574 DOI: 10.1073/pnas.0608139103] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Programmed cell death (PCD) plays an important role during the life cycle of higher organisms. Although several regulatory mechanisms governing PCD are thought to be conserved in animals and plants, light-dependent cell death represents a form of PCD that is unique to plants. The light requirement of PCD has often been associated with the production of reactive oxygen species during photosynthesis. In support of this hypothesis, hydrogen peroxide and superoxide have been shown to be involved in triggering a PCD response. In the present work, we have used the conditional flu mutant of Arabidopsis to analyze the impact of another reactive oxygen species, singlet oxygen, on cell death. Unexpectedly, the light-dependent release of singlet oxygen alone is not sufficient to induce PCD of flu seedlings but has to act together with a second concurrent blue light reaction. This blue-light-specific trigger of PCD could not be attributed to a photosynthetic reaction or redox change within the chloroplast but to the activation of the blue light/UVA-specific photoreceptor cryptochrome. The singlet oxygen-mediated and cryptochrome-dependent cell death response differs in several ways from PCD triggered by hydrogen peroxide/superoxide.
Collapse
Affiliation(s)
- Antoine Danon
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
| | - Núria Sánchez Coll
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
| | - Klaus Apel
- Institute of Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology, CH-8092 Zürich, Switzerland
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
100
|
Johansson A, Staal J, Dixelius C. Early responses in the Arabidopsis-Verticillium longisporum pathosystem are dependent on NDR1, JA- and ET-associated signals via cytosolic NPR1 and RFO1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:958-69. [PMID: 16941900 DOI: 10.1094/mpmi-19-0958] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The responses of Arabidopsis accessions and characterized genotypes were used to explore components in the early defense responses to the soilborne fungus Verticillium longisporum. V. longisporum susceptibility was found to be a complex trait, in which different disease phenotypes, such as stunting, altered flowering time, weight loss, and chlorosis were perceived differently across genotypes. A Bay-0 x Shahdara recombinant inbred line population was used to identify two loci on chromosomes 2 and 3 of Bay-0 origin that caused enhanced chlorosis after V. longisporum challenge. Furthermore, the observation that a mutation in RFO1 in Col-0 resulted in susceptibility whereas the natural rfo1 allele in Ty-0 showed a high degree of resistance to the pathogen supports the hypothesis that several resistance quantitative trait loci reside among Arabidopsis accessions. Analysis of mutants impaired in known pathogen response pathways revealed an enhanced susceptibility in ein2-1, ein4-1, ein6-1, esa1-1, and pad1-1, but not in other jasmonic acid (JA)-, ethylene (ET)-, or camalexin-deficient mutants, suggesting that V. longisporum resistance is regulated via a hitherto unknown JA- and ET-associated pathway. Pretreatments with the ET precursor 1-aminocyclo-propane-1-carboxylic acid (ACC) or methyl jasmonate (MeJA) caused enhanced resistance to V. longisporum. Mutants in the salicylic acid (SA) pathway (eds1-1, NahG, npr1-3, pad4-1, and sid2-1) did not show enhanced susceptibility to V. longisporum. In contrast, the more severe npr1-1 allele displayed enhanced V. longisporum susceptibility and decreased responses to ACC or MeJA pretreatments. This shows that cytosolic NPR1, in addition to SA responses, is required for JA- and ET-mediated V. longisporum resistance. Expression of the SA-dependent PR-1 and PR-2 and the ET-dependent PR-4 were increased 7 days postinoculation with V. longisporum. This indicates increased levels of SA and ET in response to V. longisporum inoculation. The R-gene signaling mutant ndr1-1 was found to be susceptible to V. longisporum, which could be complemented by ACC or MeJA pretreatments, in contrast to the rfo1 T-DNA mutant, which remained susceptible, suggesting that RFO1 (Fusarium oxysporum resistance) and NDR1 (nonrace specific disease resistance 1) activate two distinct signaling pathways for V. longisporum resistance.
Collapse
Affiliation(s)
- Anna Johansson
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, 750 07 Uppsala, Sweden
| | | | | |
Collapse
|