51
|
Gao Y, Xiang X, Zhang Y, Cao Y, Wang B, Zhang Y, Wang C, Jiang M, Duan W, Chen D, Zhan X, Cheng S, Liu Q, Cao L. Disruption of OsPHD1, Encoding a UDP-Glucose Epimerase, Causes JA Accumulation and Enhanced Bacterial Blight Resistance in Rice. Int J Mol Sci 2022; 23:ijms23020751. [PMID: 35054937 PMCID: PMC8775874 DOI: 10.3390/ijms23020751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Lesion mimic mutants (LMMs) have been widely used in experiments in recent years for studying plant physiological mechanisms underlying programmed cell death (PCD) and defense responses. Here, we identified a lesion mimic mutant, lm212-1, which cloned the causal gene by a map-based cloning strategy, and verified this by complementation. The causal gene, OsPHD1, encodes a UDP-glucose epimerase (UGE), and the OsPHD1 was located in the chloroplast. OsPHD1 was constitutively expressed in all organs, with higher expression in leaves and other green tissues. lm212-1 exhibited decreased chlorophyll content, and the chloroplast structure was destroyed. Histochemistry results indicated that H2O2 is highly accumulated and cell death is occurred around the lesions in lm212-1. Compared to the wild type, expression levels of defense-related genes were up-regulated, and resistance to bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) was enhanced, indicating that the defense response was activated in lm212-1, ROS production was induced by flg22, and chitin treatment also showed the same result. Jasmonic acid (JA) and methyl jasmonate (MeJA) increased, and the JA signaling pathways appeared to be disordered in lm212-1. Additionally, the overexpression lines showed the same phenotype as the wild type. Overall, our findings demonstrate that OsPHD1 is involved in the regulation of PCD and defense response in rice.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Xiaojiao Xiang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Yongrun Cao
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Beifang Wang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Yue Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Chen Wang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Min Jiang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Wenjing Duan
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Daibo Chen
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
| | - Qunen Liu
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
- Correspondence: (Q.L.); (L.C.); Tel.: +86-0571-6337-0218 (Q.L.); +86-0571-6337-0329 (L.C.)
| | - Liyong Cao
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311401, China; (Y.G.); (X.X.); (Y.Z.); (Y.C.); (B.W.); (Y.Z.); (C.W.); (M.J.); (W.D.); (D.C.); (X.Z.); (S.C.)
- Northern Center of China National Rice Research Institute, China National Rice Research Institute, Shuangyashan 155100, China
- Correspondence: (Q.L.); (L.C.); Tel.: +86-0571-6337-0218 (Q.L.); +86-0571-6337-0329 (L.C.)
| |
Collapse
|
52
|
Lo KL, Chen YN, Chiang MY, Chen MC, Panibe JP, Chiu CC, Liu LW, Chen LJ, Chen CW, Li WH, Wang CS. Two genomic regions of a sodium azide induced rice mutant confer broad-spectrum and durable resistance to blast disease. RICE (NEW YORK, N.Y.) 2022; 15:2. [PMID: 35006368 PMCID: PMC8748607 DOI: 10.1186/s12284-021-00547-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Rice blast, one of the most destructive epidemic diseases, annually causes severe losses in grain yield worldwide. To manage blast disease, breeding resistant varieties is considered a more economic and environment-friendly strategy than chemical control. For breeding new resistant varieties, natural germplasms with broad-spectrum resistance are valuable resistant donors, but the number is limited. Therefore, artificially induced mutants are an important resource for identifying new broad-spectrum resistant (R) genes/loci. To pursue this approach, we focused on a broad-spectrum blast resistant rice mutant line SA0169, which was previously selected from a sodium azide induced mutation pool of TNG67, an elite japonica variety. We found that SA0169 was completely resistant against the 187 recently collected blast isolates and displayed durable resistance for almost 20 years. Linkage mapping and QTL-seq analysis indicated that a 1.16-Mb region on chromosome 6 (Pi169-6(t)) and a 2.37-Mb region on chromosome 11 (Pi169-11(t)) conferred the blast resistance in SA0169. Sequence analysis and genomic editing study revealed 2 and 7 candidate R genes in Pi169-6(t) and Pi169-11(t), respectively. With the assistance of mapping results, six blast and bacterial blight double resistant lines, which carried Pi169-6(t) and/or Pi169-11(t), were established. The complementation of Pi169-6(t) and Pi169-11(t), like SA0169, showed complete resistance to all tested isolates, suggesting that the combined effects of these two genomic regions largely confer the broad-spectrum resistance of SA0169. The sodium azide induced mutant SA0169 showed broad-spectrum and durable blast resistance. The broad resistance spectrum of SA0169 is contributed by the combined effects of two R regions, Pi169-6(t) and Pi169-11(t). Our study increases the understanding of the genetic basis of the broad-spectrum blast resistance induced by sodium azide mutagenesis, and lays a foundation for breeding new rice varieties with durable resistance against the blast pathogen.
Collapse
Affiliation(s)
- Kuan-Lin Lo
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Nian Chen
- Division of Plant Pathology, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Min-Yu Chiang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chun Chen
- Division of Plant Pathology, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Jerome P Panibe
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Chung-Chun Chiu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Lu-Wei Liu
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Wei Chen
- Division of Plant Pathology, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, Taiwan.
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
53
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
54
|
Zheng Y, Zhu Y, Mao X, Jiang M, Wei Y, Lian L, Xu H, Chen L, Xie H, Lu G, Zhang J. SDR7-6, a short-chain alcohol dehydrogenase/reductase family protein, regulates light-dependent cell death and defence responses in rice. MOLECULAR PLANT PATHOLOGY 2022; 23:78-91. [PMID: 34633131 PMCID: PMC8659612 DOI: 10.1111/mpp.13144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 05/15/2023]
Abstract
Lesion mimic mutants resembling the hypersensitive response without pathogen attack are an ideal material to understand programmed cell death, the defence response, and the cross-talk between defence response and development in plants. In this study, mic, a lesion mimic mutant from cultivar Yunyin treated with ethyl methanesulphonate (EMS), was screened. By map-based cloning, a short-chain alcohol dehydrogenase/reductase with an atypical active site HxxxK was isolated and designated as SDR7-6. It functions as a homomultimer in rice and is localized at the endoplasmic reticulum. The lesion mimic phenotype of the mutant is light-dependent. The mutant displayed an increased resistance response to bacterial blight, but reduced resistance to rice blast disease. The mutant and knockout lines showed increased reactive oxygen species, jasmonic acid content, antioxidant enzyme activity, and expression of pathogenicity-related genes, while chlorophyll content was significantly reduced. The knockout lines showed significant reduction in grain size, seed setting rate, 1000-grain weight, grain weight per plant, panicle length, and plant height. SDR7-6 is a new lesion mimic gene that encodes a short-chain alcohol dehydrogenase with atypical catalytic site. Disruption of SDR7-6 led to cell death and had adverse effects on multiple agricultural characters. SDR7-6 may act at the interface of the two defence pathways of bacterial blight and rice blast disease in rice.
Collapse
Affiliation(s)
- Yanmei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Yongsheng Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Xiaohui Mao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Minrong Jiang
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Yidong Wei
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Ling Lian
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Huibin Xu
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Liping Chen
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Huaan Xie
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianfu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Rice Research InstituteFujian Academy of Agricultural SciencesFuzhouChina
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular BreedingFuzhouChina
| |
Collapse
|
55
|
Kim JH, Kim MS, Kim DY, Amoah JN, Seo YW. Molecular Characterization of U-box E3 Ubiquitin Ligases (TaPUB2 and TaPUB3) Involved in the Positive Regulation of Drought Stress Response in Arabidopsis. Int J Mol Sci 2021; 22:13658. [PMID: 34948454 PMCID: PMC8704797 DOI: 10.3390/ijms222413658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/25/2022] Open
Abstract
Plant U-box E3 ubiquitin ligase (PUB) is involved in various environmental stress conditions. However, the molecular mechanism of U-box proteins in response to abiotic stress in wheat remains unknown. In this study, two U-box E3 ligase genes (TaPUB2 and TaPUB3), which are highly expressed in response to adverse abiotic stresses, were isolated from common wheat, and their cellular functions were characterized under drought stress. Transient expression assay revealed that TaPUB2 was localized in the cytoplasm and Golgi apparatus, whereas TaPUB3 was expressed only in the Golgi apparatus in wheat protoplasts. Additionally, TaPUB2 and TaPUB3 underwent self-ubiquitination. Moreover, TaPUB2/TaPUB3 heterodimer was identified in yeast and the cytoplasm of wheat protoplasts using a pull-down assay and bimolecular fluorescence complementation analysis. Heterogeneous overexpression of TaPUB2 and TaPUB3 conferred tolerance to drought stress. Taken together, these results implied that the heterodimeric form of U-box E3 ubiquitin ligases (TaPUB2/TaPUB3) responded to abiotic stress and roles as a positive regulator of drought stress tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul 02841, Korea; (J.H.K.); (M.S.K.); (D.Y.K.); (J.N.A.)
| |
Collapse
|
56
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
57
|
Ma A, Zhang D, Wang G, Wang K, Li Z, Gao Y, Li H, Bian C, Cheng J, Han Y, Yang S, Gong Z, Qi J. Verticillium dahliae effector VDAL protects MYB6 from degradation by interacting with PUB25 and PUB26 E3 ligases to enhance Verticillium wilt resistance. THE PLANT CELL 2021; 33:3675-3699. [PMID: 34469582 PMCID: PMC8643689 DOI: 10.1093/plcell/koab221] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 05/30/2023]
Abstract
Verticillium wilt is a severe plant disease that causes massive losses in multiple crops. Increasing the plant resistance to Verticillium wilt is a critical challenge worldwide. Here, we report that the hemibiotrophic Verticillium dahliae-secreted Asp f2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton without affecting the plant growth and development. VDAL protein interacts with Arabidopsis E3 ligases plant U-box 25 (PUB25) and PUB26 and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUB25 or PUB26 in planta. Besides, the pub25 pub26 double mutant shows higher resistance to V. dahliae than the wild-type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing Verticillium wilt resistance depends on MYB6. Taken together, these results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response (HR); alternatively, hemibiotrophic pathogens may use some effectors to keep plant cells alive during its infection in order to take nutrients from host cells. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins without inducing HR, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.
Collapse
Affiliation(s)
- Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dingpeng Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32608, USA
| | - Guangxing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanhui Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hengchang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chao Bian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616, USA
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinan Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Science, Hebei University, Baoding 071002, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
58
|
Cai L, Yan M, Yun H, Tan J, Du D, Sun H, Guo Y, Sang X, Zhang C. Identification and fine mapping of lesion mimic mutant spl36 in rice ( Oryza sativa L.). BREEDING SCIENCE 2021; 71:510-519. [PMID: 35087315 PMCID: PMC8784353 DOI: 10.1270/jsbbs.20160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/09/2021] [Indexed: 06/14/2023]
Abstract
In the absence of pathogen attack, lesion mimic mutants (LMMs) in plants undergo spontaneous cell death and develop necrosis or apoptosis-like lesions on the leaves or sheath, resembling symptoms of hypersensitive response. In-depth research has been conducted on LMMs, especially regarding the molecular mechanisms underlying programmed cell death and disease resistance. In this study, the spotted leaf 36 (spl36) mutant was identified as a typical LMM, showing lesions on both the leaf blade and leaf sheath. The formation of lesions was found to be caused by cell death accompanied by accumulation of hydrogen peroxide and degradation of chloroplasts. Compared with wild-type, the main agronomic traits such as plant height, effective panicle number, panicle length, grain per panicle, seed setting rate, and 1000-grain weight of spl36 were significantly reduced. The defence and pathogenesis-related genes PR1a, PR1b, PR10, and NPR1, were transcriptionally activated in mutant spl36 without pathogen attack. Genetic analysis showed that the mutant phenotype was controlled by the gene SPL36, which was mapped to an interval of 260 kb at the end of the long arm on chromosome 11. Pathogen inoculation analysis showed that spl36 has enhanced resistance to sheath blight, rice blast, and bacterial blight.
Collapse
Affiliation(s)
- LinJun Cai
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Meng Yan
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Han Yun
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Jia Tan
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Dan Du
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - Hang Sun
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - YunXia Guo
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - XianChun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| | - ChangWei Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing 400716, P. R. China
| |
Collapse
|
59
|
Liu X, Song L, Zhang H, Lin Y, Shen X, Guo J, Su M, Shi G, Wang Z, Lu G. Rice ubiquitin-conjugating enzyme OsUBC26 is essential for immunity to the blast fungus Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:1613-1623. [PMID: 34459564 PMCID: PMC8578843 DOI: 10.1111/mpp.13132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The functions of ubiquitin-conjugating enzymes (E2) in plant immunity are not well understood. In this study, OsUBC26, a rice ubiquitin-conjugating enzyme, was characterized in the defence against Magnaporthe oryzae. The expression of OsUBC26 was induced by M. oryzae inoculation and methyl jasmonate treatment. Both RNA interference lines and CRISPR/Cas9 null mutants of OsUBC26 reduced rice resistance to M. oryzae. WRKY45 was down-regulated in OsUBC26 null mutants. In vitro E2 activity assay indicated that OsUBC26 is an active ubiquitin-conjugating enzyme. Yeast two-hybrid assays using OsUBC26 as bait identified the RING-type E3 ligase UCIP2 as an interacting protein. Coimmunoprecipitation assays confirmed the interaction between OsUBC26 and UCIP2. The CRISPR/Cas9 mutants of UCIP2 also showed compromised resistance to M. oryzae. Yeast two-hybrid screening using UCIP2 as bait revealed that APIP6 is a binding partner of UCIP2. Moreover, OsUBC26 working with APIP6 ubiquitinateds AvrPiz-t, an avirulence effector of M. oryzae, and OsUBC26 null mutation impaired the proteasome degradation of AvrPiz-t in rice cells. In summary, OsUBC26 plays important roles in rice disease resistance by regulating WRKY45 expression and working with E3 ligases such as APIP6 to counteract the effector protein AvrPiz-t from M. oryzae.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Linlin Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Heng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yijuan Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaolei Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Meiling Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gaosheng Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| | - Guo‐Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsKey Laboratory of Biopesticide and Chemistry BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
60
|
Kim MS, Kang KK, Cho YG. Molecular and Functional Analysis of U-box E3 Ubiquitin Ligase Gene Family in Rice ( Oryzasativa). Int J Mol Sci 2021; 22:ijms222112088. [PMID: 34769518 PMCID: PMC8584879 DOI: 10.3390/ijms222112088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023] Open
Abstract
Proteins encoded by U-box type ubiquitin ligase (PUB) genes in rice are known to play an important role in plant responses to abiotic and biotic stresses. Functional analysis has revealed a detailed molecular mechanism involving PUB proteins in relation to abiotic and biotic stresses. In this study, characteristics of 77 OsPUB genes in rice were identified. Systematic and comprehensive analyses of the OsPUB gene family were then performed, including analysis of conserved domains, phylogenetic relationships, gene structure, chromosome location, cis-acting elements, and expression patterns. Through transcriptome analysis, we confirmed that 16 OsPUB genes show similar expression patterns in drought stress and blast infection response pathways. Numerous cis-acting elements were found in promoter sequences of 16 OsPUB genes, indicating that the OsPUB genes might be involved in complex regulatory networks to control hormones, stress responses, and cellular development. We performed qRT-PCR on 16 OsPUB genes under drought stress and blast infection to further identify the reliability of transcriptome and cis-element analysis data. It was confirmed that the expression pattern was similar to RNA-sequencing analysis results. The transcription of OsPUB under various stress conditions indicates that the PUB gene might have various functions in the responses of rice to abiotic and biotic stresses. Taken together, these results indicate that the genome-wide analysis of OsPUB genes can provide a solid basis for the functional analysis of U-box E3 ubiquitin ligase genes. The molecular information of the U-box E3 ubiquitin ligase gene family in rice, including gene expression patterns and cis-acting regulatory elements, could be useful for future crop breeding programs by genome editing.
Collapse
Affiliation(s)
- Me-Sun Kim
- Department of Crop Science, College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Kwon-Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea;
| | - Yong-Gu Cho
- Department of Crop Science, College of Agriculture and Life & Environment Sciences, Chungbuk National University, Cheongju 28644, Korea;
- Correspondence:
| |
Collapse
|
61
|
Qiu T, Zhao X, Feng H, Qi L, Yang J, Peng Y, Zhao W. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2277-2290. [PMID: 34197672 PMCID: PMC8541779 DOI: 10.1111/pbi.13659] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 05/06/2023]
Abstract
Lesion mimic mutants are used to elucidate mechanisms controlling plant responses to pathogen attacks and environmental stresses. Although dozens of genes had been functionally demonstrated to be involved in lesion mimic phenotype in several plant species, the molecular mechanisms underlying the hypersensitive response are largely unknown. Here, a rice (Oryza sativa) lesion mimic mutant natural blight leaf 3 (nbl3) was identified from T-DNA insertion lines. The causative gene, OsNBL3, encodes a mitochondrion-localized pentatricopeptide repeat (PPR) protein. The nbl3 mutant exhibited spontaneous cell death response and H2 O2 accumulation, and displayed enhanced resistance to the fungal and bacterial pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. This resistance was consistent with the up-regulation of several defence-related genes; thus, defence responses were induced in nbl3. RNA interference lines of OsNBL3 exhibited enhanced disease resistance similar to that of nbl3, while the disease resistance in overexpression lines did not differ from that of the wild type. In addition, nbl3 displayed improved tolerance to salt, accompanied by up-regulation of several salt-associated marker genes. OsNBL3 was found to mainly participate in the splicing of mitochondrial gene nad5 intron 4. Disruption of OsNBL3 leads to the reduction in complex I activity, the elevation of alternative respiratory pathways and the destruction of mitochondrial morphology. Overall, the results demonstrated that the PPR protein-coding gene OsNBL3 is essential for mitochondrial development and functions, and its disruption causes the lesion mimic phenotype and enhances disease resistance and tolerance to salt in rice.
Collapse
Affiliation(s)
- Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Linlu Qi
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - You‐Liang Peng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
62
|
Li S, Hanlon R, Wise H, Pal N, Brar H, Liao C, Gao H, Perez E, Zhou L, Tyler BM, Bhattacharyya MK. Interaction of Phytophthora sojae Effector Avr1b With E3 Ubiquitin Ligase GmPUB1 Is Required for Recognition by Soybeans Carrying Phytophthora Resistance Rps1-b and Rps1-k Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:725571. [PMID: 34691104 PMCID: PMC8526854 DOI: 10.3389/fpls.2021.725571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 05/27/2023]
Abstract
Phytophthora sojae is an oomycete that causes stem and root rot disease in soybean. P. sojae delivers many RxLR effector proteins, including Avr1b, into host cells to promote infection. We show here that Avr1b interacts with the soybean U-box protein, GmPUB1-1, in yeast two-hybrid, pull down, and bimolecular fluorescence complementation (BIFC) assays. GmPUB1-1, and a homeologous copy GmPUB1-2, are induced by infection and encode 403 amino acid proteins with U-Box domains at their N-termini. Non-synonymous mutations in the Avr1b C-terminus that abolish suppression of cell death also abolished the interaction of Avr1b with GmPUB1-1, while deletion of the GmPUB1-1 C-terminus, but not the U box, abolished the interaction. BIFC experiments suggested that the GmPUB1-1-Avr1b complex is targeted to the nucleus. In vitro ubiquitination assays demonstrated that GmPUB1-1 possesses E3 ligase activity. Silencing of the GmPUB1 genes in soybean cotyledons resulted in loss of recognition of Avr1b by gene products encoded by Rps1-b and Rps1-k. The recognition of Avr1k (which did not interact with GmPUB1-1) by Rps1-k plants was not, however, affected following GmPUB1-1 silencing. Furthermore, over-expression of GmPUB1-1 in particle bombardment experiments triggered cell death suggesting that GmPUB1 may be a positive regulator of effector-triggered immunity. In a yeast two-hybrid system, GmPUB1-1 also interacted with a number of other RxLR effectors including Avr1d, while Avr1b and Avr1d interacted with a number of other infection-induced GmPUB proteins, suggesting that the pathogen uses a multiplex of interactions of RxLR effectors with GmPUB proteins to modulate host immunity.
Collapse
Affiliation(s)
- Shan Li
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Regina Hanlon
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Hua Wise
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Narinder Pal
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Hargeet Brar
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Chunyu Liao
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Hongyu Gao
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Eli Perez
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Lecong Zhou
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Brett M. Tyler
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
- Center for Quantitative Life Sciences and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | | |
Collapse
|
63
|
Wang P, Li J, Zhang Z, Zhang Q, Li X, Xiao J, Ma H, Wang S. OsVQ1 links rice immunity and flowering via interaction with a mitogen-activated protein kinase OsMPK6. PLANT CELL REPORTS 2021; 40:1989-1999. [PMID: 34368900 DOI: 10.1007/s00299-021-02766-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Knocking out OsVQ1 in rice released OsMPK6 for activation and in turn promoted H2O2 accumulation, which repressed the expression of flowering-promoting genes, thus delaying rice flowering but enhancing disease resistance. The valine-glutamine (VQ) protein family, which contains the conserved motif FxxxVQxLTG ("x" represents any amino acid), plays a crucial role in plant growth and immunity along with mitogen-activated protein kinase (MAPK) cascades. However, only a few rice VQ proteins have been functionally characterized, and the roles of the MAPK-VQ module in rice biological processes are not fully understood. Here, we investigated the role of OsVQ1 in rice disease resistance and the control of flowering time. The OsVQ1-knock out (KO) mutants exhibited increased resistance to Xanthomonas oryzae pathovars, accumulated high levels of hydrogen peroxide (H2O2), and showed a late flowering phenotype under natural long-day conditions, while the OsVQ1-overexpressing plants showed phenotypes similar to that of the wild type. Further studies revealed that OsVQ1 physically interacted with and inhibited OsMPK6 activity. In addition, OsVQ1 expression was downregulated by the pathogen-induced OsMPKK10.2-OsMPK6-OsWRKY45 cascade, suggesting a feedback loop between OsVQ1 and OsMPK6. Moreover, the OsVQ1-KO/osmpk6 double-mutant exhibited increased susceptibility to X. oryzae infection and showed an early flowering phenotype, which may partially be attributed to the reduced accumulation of H2O2 and the consequent up-expression of flowering-promoting genes. These results suggested that the OsVQ1-OsMPK6 module was involved in rice immunity and flowering.
Collapse
Affiliation(s)
- Peilun Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenzhen Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Haigang Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
64
|
Zhang H, Xu X, Wang M, Wang H, Deng P, Zhang Y, Wang Y, Wang C, Wang Y, Ji W. A dominant spotted leaf gene TaSpl1 activates endocytosis and defense-related genes causing cell death in the absence of dominant inhibitors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110982. [PMID: 34315598 DOI: 10.1016/j.plantsci.2021.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The spotted leaf lesion mimic trait simulates cell death in a plant responding to pathogen infection. Some spotted leaf genes are recessive, while others are dominant. A small number of plants with a lesion mimic phenotype appeared in a segregating population obtained by crossing two normal green wheat strains, XN509 and N07216. Here, we clarified the genetic model and its breeding value. Phenotyping of the consecutive progeny populations over six cropping seasons showed that the spotted leaf lesion mimic phenotype was controlled by a dominant gene designated TaSpl1, which was inhibited by two other dominant genes, designated TaSpl1-I1 and TaSpl1-I2. Using bulked segregant analysis RNA-seq (BSR-Seq) and newly developed KASP-PCR markers, the TaSpl1 and TaSpl1-I1 loci in N07216 were mapped to the end of chromosomes 3DS and 3BS, respectively. Plants with the spotted phenotype showed lower levels of stripe rust and powdery mildew than those with the normal green phenotype. Compared with normal leaves, the differentially expressed genes in spotted leaves were significantly enriched in plant-pathogen interaction and endocytosis pathways. There were no differences in the yield parameters of the F5 and F6 sister lines, N13039S with TaSpl1 and N13039 N without TaSpl1. These results provide a greater understanding of spotted leaf phenotyping and the breeding value of the lesion mimic allele in developing disease-resistance varieties.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; China-Australia Joint Research Center for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xiaomin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Mengmeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Hui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yaoyuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
65
|
Enhanced SA and Ca 2+ signaling results in PCD-mediated spontaneous leaf necrosis in wheat mutant wsl. Mol Genet Genomics 2021; 296:1249-1262. [PMID: 34426888 DOI: 10.1007/s00438-021-01811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
Leaf is the major photosynthesis organ and the key source of wheat (Triticum aestivum L.) grain. Spotted leaf (spl) mutant is a kind of leaf lesion mimic mutants (LMMs) in plants, which is an ideal material for studying the mechanisms of leaf development. In this study, we report the leaf abnormal development molecular mechanism of a spl mutant named white stripe leaf (wsl) derived from wheat cultivar Guomai 301 (WT). Histochemical observation indicated that the leaf mesophyll cells of the wsl were destroyed in the necrosis regions. To explore the molecular regulatory network of the leaf development in mutant wsl, we employed transcriptome analysis, histochemistry, quantitative real-time PCR (qRT-PCR), and observations of the key metabolites and photosynthesis parameters. Compared to WT, the expressions of the chlorophyll synthesis and photosynthesis-related homeotic genes were repressed; many genes in the WRKY transcription factor (TF) families were highly expressed; the salicylic acid (SA) and Ca2+ signal transductions were enhanced in wsl. Both the chlorophyll contents and the photosynthesis rate were lower in wsl. The contents of SA and reactive oxygen species (ROS) were significantly higher, and the leaf rust resistance was enhanced in wsl. Based on the experimental data, a primary molecular regulatory model for leaf development in wsl was established. The results indicated that the SA accumulation and enhanced Ca2+ signaling led to programmed cell death (PCD), and ultimately resulted in spontaneous leaf necrosis of wsl. These results laid a solid foundation for further research on the molecular mechanism of leaf development in wheat.
Collapse
|
66
|
Rice Lesion Mimic Mutants (LMM): The Current Understanding of Genetic Mutations in the Failure of ROS Scavenging during Lesion Formation. PLANTS 2021; 10:plants10081598. [PMID: 34451643 PMCID: PMC8400881 DOI: 10.3390/plants10081598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023]
Abstract
Rice lesion mimic mutants (LMMs) form spontaneous lesions on the leaves during vegetative growth without pathogenic infections. The rice LMM group includes various mutants, including spotted leaf mutants, brown leaf mutants, white-stripe leaf mutants, and other lesion-phenotypic mutants. These LMM mutants exhibit a common phenotype of lesions on the leaves linked to chloroplast destruction caused by the eruption of reactive oxygen species (ROS) in the photosynthesis process. This process instigates the hypersensitive response (HR) and programmed cell death (PCD), resulting in lesion formation. The reasons for lesion formation have been studied extensively in terms of genetics and molecular biology to understand the pathogen and stress responses. In rice, the lesion phenotypes of most rice LMMs are inherited according to the Mendelian principles of inheritance, which remain in the subsequent generations. These rice LMM genetic traits have highly developed innate self-defense mechanisms. Thus, although rice LMM plants have undesirable agronomic traits, the genetic principles of LMM phenotypes can be used to obtain high grain yields by deciphering the efficiency of photosynthesis, disease resistance, and environmental stress responses. From these ailing rice LMM plants, rice geneticists have discovered novel proteins and physiological causes of ROS in photosynthesis and defense mechanisms. This review discusses recent studies on rice LMMs for the Mendelian inheritances, molecular genetic mapping, and the genetic definition of each mutant gene.
Collapse
|
67
|
Kim YJ, Kim MH, Hong WJ, Moon S, Kim ST, Park SK, Jung KH. OsMTD2-mediated reactive oxygen species (ROS) balance is essential for intact pollen-tube elongation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1131-1147. [PMID: 34143922 DOI: 10.1111/tpj.15373] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The highly specialized haploid male gametophyte-pollen consist of two sperm cells and a large vegetative cell. Successful fertilization requires proper growth timing and rupture of the pollen tube until it delivers sperm cells, which occur immediately after a pollen grain hydrates. Although a tight regulation on polar cell-wall expansion of the pollen tube is fundamentally important, the underlying molecular mechanism remains largely unknown, especially in crop plants. Here, we characterized the function of male-gene transfer defective 2 (OsMTD2) gene in rice (Oryza sativa), which belongs to the plant-specific receptor-like kinase, the CrRLK1L family. We demonstrated that OsMTD2 is an essential male factor participating in pollen-tube elongation based on genetic evidence and physiological observations. Because of unavailability of homozygous mutant via conventional methods, we used CRISPR-Cas9 system to obtain homozygous knockout mutant of OsMTD2. We were able to identify phenotypic changes including male sterility due to early pollen-tube rupture in the mutant. We observed that the production of reactive oxygen species (ROS) was dramatically reduced in mutants of OsMTD2 pollen grain and tubes with defective pectin distribution. Transcriptome analysis of osmtd2-2 versus wild-type anthers revealed that genes involved in defense responses, metabolic alteration, transcriptional and protein modification were highly upregulated in the osmtd2-2 mutant. Through yeast-two-hybrid screening, we found that OsMTD2 kinase interacts with E3 ligase SPL11. Taken together, we propose that OsMTD2 has crucial functions in promoting pollen-tube elongation through cell-wall modification, possibly by modulating ROS homeostasis during pollen-tube growth.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
68
|
Gough C, Sadanandom A. Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules 2021; 11:1122. [PMID: 34439788 PMCID: PMC8392720 DOI: 10.3390/biom11081122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK;
| |
Collapse
|
69
|
Heenan-Daly D, Coughlan S, Dillane E, Doyle Prestwich B. Volatile Compounds From Bacillus, Serratia, and Pseudomonas Promote Growth and Alter the Transcriptional Landscape of Solanum tuberosum in a Passively Ventilated Growth System. Front Microbiol 2021; 12:628437. [PMID: 34367077 PMCID: PMC8333284 DOI: 10.3389/fmicb.2021.628437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
The interaction of an array of volatile organic compounds (VOCs) termed bacterial volatile compounds (BVCs) with plants is now a major area of study under the umbrella of plant-microbe interactions. Many growth systems have been developed to determine the nature of these interactions in vitro. However, each of these systems have their benefits and drawbacks with respect to one another and can greatly influence the end-point interpretation of the BVC effect on plant physiology. To address the need for novel growth systems in BVC-plant interactions, our study investigated the use of a passively ventilated growth system, made possible via Microbox® growth chambers, to determine the effect of BVCs emitted by six bacterial isolates from the genera Bacillus, Serratia, and Pseudomonas. Solid-phase microextraction GC/MS was utilized to determine the BVC profile of each bacterial isolate when cultured in three different growth media each with varying carbon content. 66 BVCs were identified in total, with alcohols and alkanes being the most abundant. When cultured in tryptic soy broth, all six isolates were capable of producing 2,5-dimethylpyrazine, however BVC emission associated with this media were deemed to have negative effects on plant growth. The two remaining media types, namely Methyl Red-Voges Proskeur (MR-VP) and Murashige and Skoog (M + S), were selected for bacterial growth in co-cultivation experiments with Solanum tuberosum L. cv. ‘Golden Wonder.’ The BVC emissions of Bacillus and Serratia isolates cultured on MR-VP induced alterations in the transcriptional landscape of potato across all treatments with 956 significantly differentially expressed genes. This study has yielded interesting results which indicate that BVCs may not always broadly upregulate expression of defense genes and this may be due to choice of plant-bacteria co-cultivation apparatus, bacterial growth media and/or strain, or likely, a complex interaction between these factors. The multifactorial complexities of observed effects of BVCs on target organisms, while intensely studied in recent years, need to be further elucidated before the translation of lab to open-field applications can be fully realized.
Collapse
Affiliation(s)
- Darren Heenan-Daly
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Simone Coughlan
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Eileen Dillane
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Barbara Doyle Prestwich
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
70
|
Wang C, Song B, Dai Y, Zhang S, Huang X. Genome-wide identification and functional analysis of U-box E3 ubiquitin ligases gene family related to drought stress response in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2021; 21:235. [PMID: 34039263 PMCID: PMC8152096 DOI: 10.1186/s12870-021-03024-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The plant U-box (PUB) proteins are a family of ubiquitin ligases (E3) enzymes that involved in diverse biological processes, as well as in responses to plant stress response. However, the characteristics and functional divergence of the PUB gene family have not yet been previously studied in the Chinese white pear (Pyrus bretschneideri). RESULTS In the present study, we identified 62 PbrPUBs in Chinese white pear genome. Based on the phylogenetic relationship, 62 PUB genes were clustered into five groups. The results of conserved motif and gene structure analysis supported the classification phylogenetic tree. The PbrPUB genes were unevenly distribution on 17 pear chromosomes, chromosome 15 housed most member of PUB family, with eight PUB genes. Cis-acting element analysis indicated that PUB genes might participate in diverse biological processes, especially in the response to abiotic stresses. Based on RNA-data from 'Dangshansuli' at seven tissues, we found that PUB genes exhibited diverse of expression level in seven tissues, and qRT-PCR experiment further supported the reliable of RNA-Seq data. To identify candidate genes associated with resistance, we conducted qRT-PCR experiment the expression level of pear seed plant under four abiotic stresses, including: ABA, dehydration, salt and cold treatment. One candidate PUB gene associated with dehydration stress was selected to conduct further functional experiment. Subcellular localization revealed PbrPUB18 protein was located on cell nucleus. Furthermore, heterologous over-expression of PbrPUB18 in Arabidopsis indicated that the over-expression of PbrPUB18 could enhance resistance in drought treatment. In conclusions, we systematically identified the PUB genes in pear, and provided useful knowledge for functional identification of PUB genes in pear.
Collapse
Affiliation(s)
- Chunmeng Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuqin Dai
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaosan Huang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
71
|
Wang D, Wang H, Liu Q, Tu R, Zhou X, Zhang Y, Wu W, Yu P, Chen D, Zhan X, Cao L, Cheng S, Shen X. Reduction of OsMPK6 activity by a R89K mutation induces cell death and bacterial blight resistance in rice. PLANT CELL REPORTS 2021; 40:835-850. [PMID: 33730215 DOI: 10.1007/s00299-021-02679-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The R89 is essential for the kinase activity of OsMPK6 which negatively regulates cell death and defense response in rice. Mitogen-activated protein kinase cascade plays critical roles in various vital activities, including the plant immune response, but the mechanisms remain elusive. Here, we identified and characterized a rice lesion mimic mutant osmpk6 which displayed hypersensitive response-like lesions in company with cell death and hydrogen peroxide hyperaccumulation. Map-based cloning and complementation demonstrated that a G702A single-base substitution in the second exon of OsMPK6 led to the lesion mimic phenotype of the osmpk6 mutant. OsMPK6 encodes a cytoplasm and nucleus-targeted mitogen-activated protein kinase and is expressed in the various organs. Compared with wild type, the osmpk6 mutant exhibited high resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), likely due to the increased ROS production induced by flg22 and chitin and up-regulated expression of genes involved in pathogenesis, as well as activation of SA and JA signaling pathways after inoculation. By contrast, the OsMPK6-overexpression line (OE-1) was found to be susceptible to the bacterial pathogens, indicating that OsMPK6 negatively regulated Xoo resistance. Furthermore, the G702A single-base substitution caused a R89K mutation at both polypeptide substrate-binding site and active site of OsMPK6, and kinase activity assay revealed that the R89K mutation led to reduction of OsMPK6 activity, suggesting that the R89 is essential for the function of OsMPK6. Our findings provide insight into a vital role of the R89 of OsMPK6 in regulating cell death and defense response in rice.
Collapse
Affiliation(s)
- Dongfei Wang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Qunen Liu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Ranran Tu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xingpeng Zhou
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Ping Yu
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| | - Xihong Shen
- State Key Laboratory of Rice Biology and China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311401, China.
| |
Collapse
|
72
|
Yuchun RAO, Ran JIAO, Sheng WANG, Xianmei WU, Hanfei YE, Chenyang PAN, Sanfeng LI, Dedong X, Weiyong ZHOU, Gaoxing DAI, Juan HU, Deyong REN, Yuexing WANG. SPL36 Encodes a Receptor-like Protein Kinase that Regulates Programmed Cell Death and Defense Responses in Rice. RICE (NEW YORK, N.Y.) 2021; 14:34. [PMID: 33825994 PMCID: PMC8026784 DOI: 10.1186/s12284-021-00475-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/23/2021] [Indexed: 05/23/2023]
Abstract
Lesion mimic mutants spontaneously produce disease spots in the absence of biotic or abiotic stresses. Analyzing lesion mimic mutants' sheds light on the mechanisms underlying programmed cell death and defense-related responses in plants. Here, we isolated and characterized the rice (Oryza sativa) spotted leaf 36 (spl36) mutant, which was identified from an ethyl methanesulfonate-mutagenized japonica cultivar Yundao population. spl36 displayed spontaneous cell death and enhanced resistance to rice bacterial pathogens. Gene expression analysis suggested that spl36 functions in the disease response by upregulating the expression of defense-related genes. Physiological and biochemical experiments indicated that more cell death occurred in spl36 than the wild type and that plant growth and development were affected in this mutant. We isolated SPL36 by map-based cloning. A single base substitution was detected in spl36, which results in a cysteine-to-arginine substitution in SPL36. SPL36 is predicted to encode a receptor-like protein kinase containing leucine-rich domains that may be involved in stress responses in rice. spl36 was more sensitive to salt stress than the wild type, suggesting that SPL36 also negatively regulates the salt-stress response. These findings suggest that SPL36 regulates the disease resistance response in rice by affecting the expression of defense- and stress-related genes.
Collapse
Affiliation(s)
- R A O Yuchun
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China.
| | - J I A O Ran
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - W A N G Sheng
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - W U Xianmei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Y E Hanfei
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - P A N Chenyang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - L I Sanfeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xin Dedong
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - Z H O U Weiyong
- Guangxi Academy of Agricultural Sciences, Nanning, 530000, China
| | - D A I Gaoxing
- Guangxi Academy of Agricultural Sciences, Nanning, 530000, China
| | - H U Juan
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, 321004, China
| | - R E N Deyong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - W A N G Yuexing
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
73
|
Prior MJ, Selvanayagam J, Kim JG, Tomar M, Jonikas M, Mudgett MB, Smeekens S, Hanson J, Frommer WB. Arabidopsis bZIP11 Is a Susceptibility Factor During Pseudomonas syringae Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:439-447. [PMID: 33400562 DOI: 10.1094/mpmi-11-20-0310-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The induction of plant nutrient secretion systems is critical for successful pathogen infection. Some bacterial pathogens (e.g., Xanthomonas spp.) use transcription activator-like (TAL) effectors to induce transcription of SWEET sucrose efflux transporters. Pseudomonas syringae pv. tomato strain DC3000 lacks TAL effectors yet is able to induce multiple SWEETs in Arabidopsis thaliana by unknown mechanisms. Because bacteria require other nutrients in addition to sugars for efficient reproduction, we hypothesized that Pseudomonas spp. may depend on host transcription factors involved in secretory programs to increase access to essential nutrients. Bioinformatic analyses identified the Arabidopsis basic-leucine zipper transcription factor bZIP11 as a potential regulator of nutrient transporters, including SWEETs and UmamiT amino acid transporters. Inducible downregulation of bZIP11 expression in Arabidopsis resulted in reduced growth of P. syringae pv. tomato strain DC3000, whereas inducible overexpression of bZIP11 resulted in increased bacterial growth, supporting the hypothesis that bZIP11-regulated transcription programs are essential for maximal pathogen titer in leaves. Our data are consistent with a model in which a pathogen alters host transcription factor expression upstream of secretory transcription networks to promote nutrient efflux from host cells.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Matthew J Prior
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92507, U.S.A
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, U.S.A
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Jebasingh Selvanayagam
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, U.S.A
- Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Monika Tomar
- Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Martin Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, U.S.A
- Department of Molecular Biology, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, U.S.A
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Sjef Smeekens
- Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, The Netherlands
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, U.S.A
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
- Molecular Physiology, Heinrich Heine Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
74
|
Zheng Y, Xu J, Wang F, Tang Y, Wei Z, Ji Z, Wang C, Zhao K. Mutation Types of CYP71P1 Cause Different Phenotypes of Mosaic Spot Lesion and Premature Leaf Senescence in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:641300. [PMID: 33833770 PMCID: PMC8021961 DOI: 10.3389/fpls.2021.641300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 05/23/2023]
Abstract
Lesion mimic mutants (LMMs) are ideal materials for studying programmed cell death and defense response in plants. Here we report investigations on two LMMs (msl-1 and msl-2) from the indica rice cultivar JG30 treated by ethyl methyl sulfone. Both of the mutants showed similar mosaic spot lesions at seedling stage, but they displayed different phenotypes along with development of the plants. At tillering stage, larger orange spots appeared on leaves of msl-2, while only small reddish-brown spots exhibit on leaves of msl-1. At heading stage, the msl-2 plants were completely dead, while the msl-1 plants were still alive even if showed apparent premature senility. For both the mutants, the mosaic spot lesion formation was induced by light; DAB and trypan blue staining showed a large amount of hydrogen peroxide accumulated at the lesion sites, accompanied by a large number of cell death. Consequently, reactive oxygen species were enriched in leaves of the mutants; SOD and CAT activities in the scavenging enzyme system were decreased compared with the wild type. In addition, degraded chloroplasts, decreased photosynthetic pigment content, down-regulated expression of genes associated with chloroplast synthesis/photosynthesis and up-regulated expression of genes related to senescence were detected in the mutants, but the abnormality of msl-2 was more serious than that of msl-1 in general. Genetic analysis and map-based cloning revealed that the lesion mimic and premature senescence traits of both the mutants were controlled by recessive mutated alleles of the SL (Sekiguchi lesion) gene, which encodes the CYP71P1 protein belonging to cytochrome P450 monooxygenase family. The difference of mutation sites and mutation types (SNP-caused single amino acid change and SNP-caused early termination of translation) led to the different phenotypes in severity between msl-1 and msl-2. Taken together, this work revealed that the CYP71P1 is involved in regulation of both premature senescence and cell death in rice, and its different mutation sites and mutation types could cause different phenotypes in terms of severity.
Collapse
Affiliation(s)
- Yuhan Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangmin Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujun Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Rice Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yongchao Tang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Wei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
75
|
Genome Wide Analysis of U-Box E3 Ubiquitin Ligases in Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms22052699. [PMID: 33800063 PMCID: PMC7962133 DOI: 10.3390/ijms22052699] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
U-box E3 ligase genes play specific roles in protein degradation by post-translational modification in plant signaling pathways, developmental stages, and stress responses; however, little is known about U-box E3 genes in wheat. We identified 213 U-box E3 genes in wheat based on U-box and other functional domains in their genome sequences. The U-box E3 genes were distributed among 21 chromosomes and most showed high sequence homology with homoeologous U-box E3 genes. Synteny analysis of wheat U-box E3 genes was conducted with other plant species such as Brachypodium distachyon, barley, rice, Triricum uratu, and Aegilops tauschii. A total of 209 RNA-seq samples representing 22 tissue types, from grain, root, leaf, and spike samples across multiple time points, were analyzed for clustering of U-box E3 gene expression during developmental stages, and the genes responded differently in various tissues and developmental stages. In addition, expression analysis of U-box E3 genes under abiotic stress, including drought, heat, and both heat and drought, and cold conditions, was conducted to provide information on U-box E3 gene expression under specific stress conditions. This analysis of U-box E3 genes could provide valuable information to elucidate biological functions for a better understanding of U-box E3 genes in wheat.
Collapse
|
76
|
Zhao X, Qiu T, Feng H, Yin C, Zheng X, Yang J, Peng YL, Zhao W. A novel glycine-rich domain protein, GRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:608-622. [PMID: 32995857 DOI: 10.1093/jxb/eraa450] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Lesion mimic mutants constitute a valuable genetic resource for unraveling the signaling pathways and molecular mechanisms governing the programmed cell death and defense responses of plants. Here, we identified a lesion mimic mutant, spl-D, from T-DNA insertion rice lines. The mutant exhibited higher accumulation of H2O2, spontaneous cell death, decreased chlorophyll content, up-regulation of defense-related genes, and enhanced disease resistance. The causative gene, OsGRDP1, encodes a cytosol- and membrane-associated glycine-rich domain protein. OsGRDP1 was expressed constitutively in all of the organs of the wild-type plant, but was up-regulated throughout plant development in the spl-D mutant. Both the overexpression and knockdown (RNAi) of OsGRDP1 resulted in the lesion mimic phenotype. Moreover, the intact-protein level of OsGRDP1 was reduced in the spotted leaves from both overexpression and RNAi plants, suggesting that the disruption of intact OsGRDP1 is responsible for lesion formation. OsGRDP1 interacted with an aspartic proteinase, OsAP25. In the spl-D and overexpression plants, proteinase activity was elevated, and lesion formation was partially suppressed by an aspartic proteinase inhibitor. Taken together, our results reveal that OsGRDP1 is a critical feedback regulator, thus contributing to the elucidation of the mechanism underlying cell death and disease resistance.
Collapse
Affiliation(s)
- Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Changfa Yin
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Xunmei Zheng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology and College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
77
|
Liu X, Meng G, Wang M, Qian Z, Zhang Y, Yang W. Tomato SlPUB24 enhances resistance to Xanthomonas euvesicatoria pv. perforans race T3. HORTICULTURE RESEARCH 2021; 8:30. [PMID: 33518716 PMCID: PMC7848003 DOI: 10.1038/s41438-021-00468-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 05/04/2023]
Abstract
Solanum lycopersicum var. cerasiforme accession PI 114490 has broad-spectrum resistance to bacterial spot caused by several species of Xanthomonas. Resistance is quantitatively inherited, and a common quantitative trait locus QTL-11B on chromosome 11 has been identified previously. In this study, the SlPub24 gene was characterized in QTL-11B. SlPub24 in PI 114490 was upregulated by infection with X. euvesicatoria pv. perforans race T3, but its transcription was low in the susceptible line OH 88119 whether or not it was infected by the pathogen. The differential expression of SlPub24 between PI 114490 and OH 88119 was due to great sequence variation in the promoter region. The promoter of SlPub24 in OH 88119 had very low activity and did not respond to pathogen infection. Transgenic lines of OH 88119 overexpressing SlPub24 isolated from PI 114490 showed significantly enhanced resistance, while mutants of Slpub24 generated by CRISPR/Cas9 editing showed more susceptibility to race T3 and to other races. The mutants also showed spontaneous cell death in leaves. The expression of the salicylic acid (SA) pathway gene phenylalanine ammonia-lyase (PAL) and signaling-related genes pathogenesis-related (PR1) and nonexpresser of PR1 (NPR1) were influenced by SlPub24. The content of SA in tomato plants was consistent with the level of SlPub24 expression. Furthermore, SlPUB24 interacted with the cell wall protein SlCWP and could regulate the degradation of SlCWP. The expression levels of SlCWP and SlCWINV1, a cell wall invertase gene, showed opposite patterns during pathogen infection. The activity of SlCWINV1 was lower in mutants than in PI 114490. The results are discussed in terms of the roles of the abovementioned genes, and a potential model for SlPUB24-mediated resistance to bacterial spot is proposed.
Collapse
Affiliation(s)
- Xin Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Ge Meng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Mengrui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Zilin Qian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Yaxian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China
| | - Wencai Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, China Agricultural University, Beijing, 100193, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education of the People's Republic of China, Beijing, 100193, China.
| |
Collapse
|
78
|
Sharma SK, Sharma D, Meena RP, Yadav MK, Hosahatti R, Dubey AK, Sharma P, Kumar S, Pramesh D, Nabi SU, Bhuvaneshwari S, Anand YR, Dubey SK, Singh TS. Recent Insights in Rice Blast Disease Resistance. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
79
|
Yang Q, Islam MA, Cai K, Tian S, Liu Y, Kang Z, Guo J. TaClpS1, negatively regulates wheat resistance against Puccinia striiformis f. sp. tritici. BMC PLANT BIOLOGY 2020; 20:555. [PMID: 33302867 PMCID: PMC7730799 DOI: 10.1186/s12870-020-02762-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/01/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and E3 ubiquitin ligase function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 ubiquitin ligase in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. RESULTS Here, wheat (Triticum aestivum) ClpS1 (TaClpS1) was studied and resulted to encode 161 amino acids, containing a conserved ClpS domain and a chloroplast transit peptide (1-32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in wheat resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the number of haustoria, length of infection hypha and infection area of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. CONCLUSIONS These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Md Ashraful Islam
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Kunyan Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Shuxin Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| |
Collapse
|
80
|
Murphree C, Kim S, Karre S, Samira R, Balint‐Kurti P. Use of virus-induced gene silencing to characterize genes involved in modulating hypersensitive cell death in maize. MOLECULAR PLANT PATHOLOGY 2020; 21:1662-1676. [PMID: 33037769 PMCID: PMC7694674 DOI: 10.1111/mpp.12999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 09/04/2020] [Indexed: 05/22/2023]
Abstract
Plant disease resistance proteins (R-proteins) detect specific pathogen-derived molecules, triggering a defence response often including a rapid localized cell death at the point of pathogen penetration called the hypersensitive response (HR). The maize Rp1-D21 gene encodes a protein that triggers a spontaneous HR causing spots on leaves in the absence of any pathogen. Previously, we used fine mapping and functional analysis in a Nicotiana benthamiana transient expression system to identify and characterize a number of genes associated with variation in Rp1-D21-induced HR. Here we describe a system for characterizing genes mediating HR, using virus-induced gene silencing (VIGS) in a maize line carrying Rp1-D21. We assess the roles of 12 candidate genes. Three of these genes, SGT1, RAR1, and HSP90, are required for HR induced by a number of R-proteins across several plant-pathogen systems. We confirmed that maize HSP90 was required for full Rp1-D21-induced HR. However, suppression of SGT1 expression unexpectedly increased the severity of Rp1-D21-induced HR while suppression of RAR1 expression had no measurable effect. We confirmed the effects on HR of two genes we had previously validated in the N. benthamiana system, hydroxycinnamoyltransferase and caffeoyl CoA O-methyltransferase. We further showed the suppression the expression of two previously uncharacterized, candidate genes, IQ calmodulin binding protein (IQM3) and vacuolar protein sorting protein 37, suppressed Rp1-D21-induced HR. This approach is an efficient way to characterize the roles of genes modulating the hypersensitive defence response and other dominant lesion phenotypes in maize.
Collapse
Affiliation(s)
- Colin Murphree
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Rozalynne Samira
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Fiber and Biopolymer Research Institute (FBRI)Department of Plant and Soil ScienceTexas Tech UniversityTexasUSA
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research UnitUSDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
81
|
Wang N, Liu Y, Cai Y, Tang J, Li Y, Gai J. The soybean U-box gene GmPUB6 regulates drought tolerance in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:284-296. [PMID: 32795910 DOI: 10.1016/j.plaphy.2020.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The plant U-box (PUB) proteins function as E3 ligases to poly-ubiquitinate the target proteins for their degradation or post-translational modification. PUBs also play important roles in regulation of diverse biological processes, including plant response to environmental stresses. In this study, the functional characterization of a soybean PUB gene, GmPUB6, was performed. GmPUB6 was mainly localized to peroxisome, and showed E3 ubiquitin ligase activity. The transcript levels of GmPUB6 in soybean leaves and roots were induced by abscisic acid (ABA), high salinity and polyethylene glycol (PEG) treatment. Comparing with the wild-type (WT) plants, overexpression of GmPUB6 in Arabidopsis thaliana decreased plant survival rate after drought stress, reduced seed germination rate and root elongation under mannitol (osmotic) stress, and suppressed ABA- or mannitol-mediated stomatal closure. In addition, under dehydration stress, the relative expression levels of seven stress responsive genes, including ABI1, DREB2A, KIN2, RAB18, RD20, RD29A and RD29B, were lower in GmPUB6-overexpressed plants than WT. Taken together, these results suggest that GmPUB6 functions as a negative regulator in drought tolerance, and plays an important role in osmotic stress and ABA signaling pathways, which might be the possible mechanism of PUB6 participating in drought stress response.
Collapse
Affiliation(s)
- Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Yandang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Cai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiajun Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
82
|
Weiss M, Sniezko RA, Puiu D, Crepeau MW, Stevens K, Salzberg SL, Langley CH, Neale DB, De La Torre AR. Genomic basis of white pine blister rust quantitative disease resistance and its relationship with qualitative resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:365-376. [PMID: 32654344 PMCID: PMC10773528 DOI: 10.1111/tpj.14928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance loci are not well understood in plant species and have been barely studied in long-generation trees. Quantitative trait loci mapping and genome-wide association studies were combined to test a large single nucleotide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus linkage map was generated to obtain locations for associated SNPs. Newly discovered associations for white pine blister rust quantitative disease resistance included 453 SNPs involved in wide biological functions, including genes associated with disease resistance and others involved in morphological and developmental processes. In addition, NBS-LRR pathogen recognition genes were found to be involved in quantitative disease resistance, suggesting these newly reported genes are qualitative genes with partial resistance, they are the result of defeated qualitative resistance due to avirulent races, or they have epistatic effects on qualitative disease resistance genes. This study is a step forward in our understanding of the complex genomic architecture of quantitative disease resistance in long-generation trees, and constitutes the first step towards marker-assisted disease resistance breeding in white pine species.
Collapse
Affiliation(s)
- Matthew Weiss
- School of Forestry, Northern Arizona University, 200 E.
Pine Knoll, Flagstaff, AZ 86011
| | - Richard A. Sniezko
- Dorena Genetic Resource Center, USDA Forest Service,
Cottage-Grove, OR 97424
| | - Daniela Puiu
- Department of Biomedical Engineering, Computer Science and
Biostatistics and Center for Computational Biology, Johns Hopkins University, 3100
Wyman Park Dr., Wyman Park Building Room S220, Baltimore, MD 21211
| | - Marc W. Crepeau
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - Kristian Stevens
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - Steven L. Salzberg
- Department of Biomedical Engineering, Computer Science and
Biostatistics and Center for Computational Biology, Johns Hopkins University, 3100
Wyman Park Dr., Wyman Park Building Room S220, Baltimore, MD 21211
- Departments of Computer Science and Biostatistics, Johns
Hopkins University, Baltimore, MD 21218
| | - Charles H. Langley
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - David B. Neale
- Department of Plant Sciences, University of
California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Amanda R. De La Torre
- School of Forestry, Northern Arizona University, 200 E.
Pine Knoll, Flagstaff, AZ 86011
| |
Collapse
|
83
|
Yoo YH, Jiang X, Jung KH. An Abiotic Stress Responsive U-Box E3 Ubiquitin Ligase Is Involved in OsGI-Mediating Diurnal Rhythm Regulating Mechanism. PLANTS 2020; 9:plants9091071. [PMID: 32825403 PMCID: PMC7569774 DOI: 10.3390/plants9091071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
The plant U-box (PUB) protein is the E3 ligase that plays roles in the degradation or post-translational modification of target proteins. In rice, 77 U-box proteins were identified and divided into eight classes according to the domain configuration. We performed a phylogenomic analysis by integrating microarray expression data under abiotic stress to the phylogenetic tree context. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) expression analyses identified that eight, twelve, and eight PUB family genes are associated with responses to drought, salinity, and cold stress, respectively. In total, 16 genes showed increased expression in response to three abiotic stresses. Among them, the expression of OsPUB2 in class II and OsPUB33, OsPUB39, and OsPUB41 in class III increased in all three abiotic stresses, indicating their involvement in multiple abiotic stress regulation. In addition, we identified the circadian rhythmic expression for three out of 16 genes responding to abiotic stress through meta-microarray expression data analysis. Among them, OsPUB4 is predicted to be involved in the rice GIGANTEA (OsGI)-mediating diurnal rhythm regulating mechanism. In the last, we constructed predicted protein-protein interaction networks associated with OsPUB4 and OsGI. Our analysis provides essential information to improve environmental stress tolerance mediated by the PUB family members in rice.
Collapse
|
84
|
McLellan H, Chen K, He Q, Wu X, Boevink PC, Tian Z, Birch PR. The Ubiquitin E3 Ligase PUB17 Positively Regulates Immunity by Targeting a Negative Regulator, KH17, for Degradation. PLANT COMMUNICATIONS 2020; 1:100020. [PMID: 32715295 PMCID: PMC7371183 DOI: 10.1016/j.xplc.2020.100020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/08/2019] [Accepted: 01/02/2020] [Indexed: 05/12/2023]
Abstract
Ubiquitination is a post-translational modification that regulates many processes in plants. Several ubiquitin E3 ligases act as either positive or negative regulators of immunity by promoting the degradation of different substrates. StPUB17 is an E3 ligase that has previously been shown to positively regulate immunity to bacteria, fungi and oomycetes, including the late blight pathogen Phytophthora infestans. Silencing of StPUB17 promotes pathogen colonization and attenuates Cf4/avr4 cell death. Using yeast-2-hybrid and co-immunoprecipitation we identified the putative K-homology (KH) RNA-binding protein (RBP), StKH17, as a candidate substrate for degradation by StPUB17. StKH17 acts as a negative regulator of immunity that promotes P. infestans infection and suppresses specific immune pathways. A KH RBP domain mutant of StKH17 (StKH17GDDG) is no longer able to negatively regulate immunity, indicating that RNA binding is likely required for StKH17 function. As StPUB17 is a known target of the ubiquitin E3 ligase, StPOB1, we reveal an additional step in an E3 ligase regulatory cascade that controls plant defense.
Collapse
Affiliation(s)
- Hazel McLellan
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
| | - Kai Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qin He
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xintong Wu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Petra C. Boevink
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Paul R.J. Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
85
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
86
|
Zhang C, Wei Y, Xu L, Wu KC, Yang L, Shi CN, Yang GY, Chen D, Yu FF, Xie Q, Ding SW, Wu JG. A Bunyavirus-Inducible Ubiquitin Ligase Targets RNA Polymerase IV for Degradation during Viral Pathogenesis in Rice. MOLECULAR PLANT 2020; 13:836-850. [PMID: 32087369 DOI: 10.1016/j.molp.2020.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/18/2020] [Accepted: 02/14/2020] [Indexed: 05/19/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an important post-translational regulatory mechanism that controls many cellular functions in eukaryotes. Here, we show that stable expression of P3 protein encoded by Rice grassy stunt virus (RGSV), a negative-strand RNA virus in the Bunyavirales, causes developmental abnormities similar to the disease symptoms caused by RGSV, such as dwarfing and excess tillering, in transgenic rice plants. We found that both transgenic expression of P3 and RGSV infection induce ubiquitination and UPS-dependent degradation of rice NUCLEAR RNA POLYMERASE D1a (OsNRPD1a), one of two orthologs of the largest subunit of plant-specific RNA polymerase IV (Pol IV), which is required for RNA-directed DNA methylation (RdDM). Furthermore, we identified a P3-inducible U-box type E3 ubiquitin ligase, designated as P3-inducible protein 1 (P3IP1), which interacts with OsNRPD1a and mediates its ubiquitination and UPS-dependent degradation in vitro and in vivo. Notably, both knockdown of OsNRPD1 and overexpression of P3IP1 in rice plants induced developmental phenotypes similar to RGSV disease symptomss. Taken together, our findings reveal a novel virulence mechanism whereby plant pathogens target host RNA Pol IV for UPS-dependent degradation to induce disease symptoms. Our study also identified an E3 ubiquitin ligase, which targets the RdDM compotent NRPD1 for UPS-mediated degradation in rice.
Collapse
Affiliation(s)
- Chao Zhang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Wei
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Le Xu
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kang-Cheng Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Yang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao-Nan Shi
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guo-Yi Yang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong Chen
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei-Fei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jian-Guo Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
87
|
Gao Z, Liu Q, Zhang Y, Chen D, Zhan X, Deng C, Cheng S, Cao L. OsCUL3a-Associated Molecular Switches Have Functions in Cell Metabolism, Cell Death, and Disease Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5471-5482. [PMID: 32320244 DOI: 10.1021/acs.jafc.9b07426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study applies parallel reaction monitoring (PRM) proteomics and CRISPR-Cas9 mutagenesis to identify relationships between cell metabolism, cell death, and disease resistance. In oscul3a (oscullin3a) mutants, OsCUL3a-associated molecular switches are responsible for disrupted cell metabolism that leads to increased total lipid content in rice grain, a late accumulation of H2O2 in leaves, enhanced Xanthomonas oryzae pv. oryzae disease resistance, and suppressed panicle and first internode growth. In oscul3a mutants, PRM-confirmed upregulated molecular switch proteins include lipoxygenases (CM-LOX1 and CM-LOX2), suggesting a novel connection between ferroptosis and rice lesion mimic formation. Rice immunity-associated proteins OsNPR1 and OsNPR3 were shown to interact with each other and have opposing regulatory effects based on the cell death phenotype of osnpr1/oscul3a and osnpr3/oscul3a double mutants. Together, these results describe a network that regulates plant growth, disease resistance, and grain quality that includes the E3 ligase OsCUL3a, cell metabolism-associated molecular switches, and immunity switches OsNPR1 and OsNPR3.
Collapse
Affiliation(s)
- Zhiqiang Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Daibo Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Xiaodeng Zhan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Chenwei Deng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang 310006, People's Republic of China
| |
Collapse
|
88
|
Li W, Deng Y, Ning Y, He Z, Wang GL. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:575-603. [PMID: 32197052 DOI: 10.1146/annurev-arplant-010720-022215] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant diseases reduce crop yields and threaten global food security, making the selection of disease-resistant cultivars a major goal of crop breeding. Broad-spectrum resistance (BSR) is a desirable trait because it confers resistance against more than one pathogen species or against the majority of races or strains of the same pathogen. Many BSR genes have been cloned in plants and have been found to encode pattern recognition receptors, nucleotide-binding and leucine-rich repeat receptors, and defense-signaling and pathogenesis-related proteins. In addition, the BSR genes that underlie quantitative trait loci, loss of susceptibility and nonhost resistance have been characterized. Here, we comprehensively review the advances made in the identification and characterization of BSR genes in various species and examine their application in crop breeding. We also discuss the challenges and their solutions for the use of BSR genes in the breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
89
|
A RING-Type E3 Ubiquitin Ligase, OsGW2, Controls Chlorophyll Content and Dark-Induced Senescence in Rice. Int J Mol Sci 2020; 21:ijms21051704. [PMID: 32131496 PMCID: PMC7084548 DOI: 10.3390/ijms21051704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/03/2023] Open
Abstract
Leaf senescence is the final stage of plant development. Many internal and external factors affect the senescence process in rice (Oryza sativa L.). In this study, we identified qCC2, a major quantitative trait locus (QTL) for chlorophyll content using a population derived from an interspecific cross between O. sativa (cv. Hwaseong) and Oryza grandiglumis. The O. grandiglumis allele at qCC2 increased chlorophyll content and delayed senescence. GW2 encoding E3 ubiquitin ligase in the qCC2 region was selected as a candidate for qCC2. To determine if GW2 is allelic to qCC2, a gw2-knockout mutant (gw2-ko) was examined using a dark-induced senescence assay. gw2-ko showed delayed leaf senescence in the dark with down-regulated expression of senescence-associated genes (SAGs) and chlorophyll degradation genes (CDGs). The association of the GW2 genotype with the delayed senescence phenotype was confirmed in an F2 population. RNA-seq analysis was conducted to investigate 30-day-old leaf transcriptome dynamics in Hwaseong and a backcross inbred line-CR2002-under dark treatment. This resulted in the identification of genes involved in phytohormone signaling and associated with senescence. These results suggested that transcriptional regulation was associated with delayed senescence in CR2002, and RING-type E3 ubiquitin ligase GW2 was a positive regulator of leaf senescence in rice.
Collapse
|
90
|
Li YB, Xu R, Liu C, Shen N, Han LB, Tang D. Magnaporthe oryzae fimbrin organizes actin networks in the hyphal tip during polar growth and pathogenesis. PLoS Pathog 2020; 16:e1008437. [PMID: 32176741 PMCID: PMC7098657 DOI: 10.1371/journal.ppat.1008437] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/26/2020] [Accepted: 02/26/2020] [Indexed: 01/19/2023] Open
Abstract
Magnaporthe oryzae causes rice blast disease, but little is known about the dynamic restructuring of the actin cytoskeleton during its polarized tip growth and pathogenesis. Here, we used super-resolution live-cell imaging to investigate the dynamic organization of the actin cytoskeleton in M. oryzae during hyphal tip growth and pathogenesis. We observed a dense actin network at the apical region of the hyphae and actin filaments originating from the Spitzenkörper (Spk, the organizing center for hyphal growth and development) that formed branched actin bundles radiating to the cell membrane. The actin cross-linking protein Fimbrin (MoFim1) helps organize this actin distribution. MoFim1 localizes to the actin at the subapical collar, the actin bundles, and actin at the Spk. Knockout of MoFim1 resulted in impaired Spk maintenance and reduced actin bundle formation, preventing polar growth, vesicle transport, and the expansion of hyphae in plant cells. Finally, transgenic rice (Oryza sativa) expressing RNA hairpins targeting MoFim1 exhibited improved resistance to M. oryzae infection, indicating that MoFim1 represents an excellent candidate for M. oryzae control. These results reveal the dynamics of actin assembly in M. oryzae during hyphal tip development and pathogenesis, and they suggest a mechanism in which MoFim1 organizes such actin networks.
Collapse
Affiliation(s)
- Yuan-Bao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Rui Xu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li-Bo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
91
|
Qin Q, Wang Y, Huang L, Du F, Zhao X, Li Z, Wang W, Fu B. A U-box E3 ubiquitin ligase OsPUB67 is positively involved in drought tolerance in rice. PLANT MOLECULAR BIOLOGY 2020; 102:89-107. [PMID: 31768809 DOI: 10.1007/s11103-019-00933-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/19/2019] [Indexed: 05/29/2023]
Abstract
OsPUB67, a U-box E3 ubiquitin ligase, may interact with two drought tolerance negative regulators (OsRZFP34 and OsDIS1) and improve drought tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure. E3 ubiquitin ligases are major components of the ubiquitination cascade and contribute to the biotic and abiotic stress response in plants. In the present study, we show that a rice drought responsive gene, OsPUB67, encoding the U-box E3 ubiquitin ligase was significantly induced by drought, salt, cold, JA, and ABA, and was expressed in nuclei, cytoplasm, and membrane systems. This distribution of expression suggests a significant role for OsPUB67 in a wide range of biological processes and abiotic stress response. Over-expression of OsPUB67 improved drought stress tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure. Bimolecular fluorescence complementation assays revealed that a few E2s interacted with OsPUB67 with unique functional implications in different cell components. Further evidence showed that several E3 ubiquitin ligases interacted with OsPUB67, especially OsRZFP34 and OsDIS1, which are negative regulators of drought tolerance. This interaction on the stomata implied OsPUB67 might function as a heterodimeric ubiquitination complex in response to drought stress. Comprehensive transcriptome analysis revealed OsPUB67 participated in regulating genes involved in the abiotic stress response and transcriptional regulation in an ABA-dependent manner. Our findings revealed OsPUB67 mediated a multilayered complex drought stress tolerance mechanism.
Collapse
Affiliation(s)
- Qiao Qin
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agriculture, Yunnan University, Yunnan, China
| | - Fengping Du
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
92
|
Xu M, Chen J, Huang Y, Shen D, Sun P, Xu Y, Tao X. Dynamic Transcriptional Profiles of Arabidopsis thaliana Infected by Tomato spotted wilt virus. PHYTOPATHOLOGY 2020; 110:153-163. [PMID: 31544594 DOI: 10.1094/phyto-06-19-0199-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a negative-stranded RNA virus that infects hundreds of plant species, causing great economic loss. Infected Arabidopsis thaliana plants develop symptoms including chlorosis and wilt, which can lead to cell death. From 9 to 15 days after TSWV infection, symptoms progress through a three-stage process of appearance, severity, and death. In this study, deep sequencing technology was first used to explore gene expression in response to TSWV infection in model plant A. thaliana at different symptom development stages. We found that plant immune defense and protein degradation are induced by TSWV infection and that both inductions became stronger over time. The photosynthesis pathway was attenuated with TSWV infection. Cell wall metabolism had a large extent of downregulation while some genes were upregulated. These results illustrate the dynamic nature of TSWV infection in A. thaliana at the whole-transcriptome level. The link between biological processes and subpathway metabolism was further analyzed. Our study provides new insight into host regulatory networks and dynamic processes in response to TSWV infection.
Collapse
Affiliation(s)
- Min Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jing Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ying Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Peng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
93
|
Hoang TV, Vo KTX, Rahman MM, Choi SH, Jeon JS. Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110273. [PMID: 31623772 DOI: 10.1016/j.plantsci.2019.110273] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The rice spotted leaf gene, OsSPL7, induces lesion mimic (LM) spots under heat stress. Herein, we provide several lines of evidence elucidating the importance of OsSPL7 in maintaining reactive oxygen species (ROS) balance via the regulation of downstream gene expression. osspl7 knockout (spl7ko) mutants showed LM and growth retardation. Transgenic rice lines strongly overexpressing OsSPL7 (SPL7OX-S) exhibited LM accompanied by accumulated H2O2, whereas moderate expressers of OsSPL7 (SPL7OX-M) did not, and neither of them exhibited severe growth defects. Transient expression of OsSPL7-GFP in rice protoplasts indicated that OsSPL7 localizes predominantly in the nucleus. Transcriptional activity assay suggested its function as a transcriptional activator in rice. Disease evaluation showed that both SPL7OX and spl7ko enhanced resistance to Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, the causal agents of blast and blight diseases in rice, respectively. Additionally, SPL7OX enhanced tolerance to cold stress, whereas spl7ko showed a phenotype opposite to the overexpression lines. RNA sequencing analyses identified four major groups of differentially expressed genes associated with LM, pathogen resistance, LM-pathogen resistance, and potential direct targets of OsSPL7. Collectively, our results suggest that OsSPL7 plays a critical role in plant growth and balancing ROS during biotic and abiotic stress.
Collapse
Affiliation(s)
- Trung Viet Hoang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Kieu Thi Xuan Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Md Mizanor Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Seok-Hyun Choi
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
94
|
Kachewar NR, Gupta V, Ranjan A, Patel HK, Sonti RV. Overexpression of OsPUB41, a Rice E3 ubiquitin ligase induced by cell wall degrading enzymes, enhances immune responses in Rice and Arabidopsis. BMC PLANT BIOLOGY 2019; 19:530. [PMID: 31783788 PMCID: PMC6884774 DOI: 10.1186/s12870-019-2079-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/16/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cell wall degrading enzymes (CWDEs) induce plant immune responses and E3 ubiquitin ligases are known to play important roles in regulating plant defenses. Expression of the rice E3 ubiquitin ligase, OsPUB41, is enhanced upon treatment of leaves with Xanthomonas oryzae pv. oryzae (Xoo) secreted CWDEs such as Cellulase and Lipase/Esterase. However, it is not reported to have a role in elicitation of immune responses. RESULTS Expression of the rice E3 ubiquitin ligase, OsPUB41, is induced when rice leaves are treated with either CWDEs, pathogen associated molecular patterns (PAMPs), damage associated molecular patterns (DAMPs) or pathogens. Overexpression of OsPUB41 leads to induction of callose deposition, enhanced tolerance to Xoo and Rhizoctonia solani infection in rice and Arabidopsis respectively. In rice, transient overexpression of OsPUB41 leads to enhanced expression of PR genes and SA as well as JA biosynthetic and response genes. However, in Arabidopsis, ectopic expression of OsPUB41 results in upregulation of only JA biosynthetic and response genes. Transient overexpression of either of the two biochemically inactive mutants (OsPUB41C40A and OsPUB41V51R) of OsPUB41 in rice and stable transgenics in Arabidopsis ectopically expressing OsPUB41C40A failed to elicit immune responses. This indicates that the E3 ligase activity of OsPUB41 protein is essential for induction of plant defense responses. CONCLUSION The results presented here suggest that OsPUB41 is possibly involved in elicitation of CWDE triggered immune responses in rice.
Collapse
Affiliation(s)
| | - Vishal Gupta
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | - Ashish Ranjan
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Hitendra Kumar Patel
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
| | - Ramesh V. Sonti
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 India
- National Institute of Plant Genome Research, New Delhi, 110067 India
| |
Collapse
|
95
|
Gao Z, Liu Q, Zhang Y, Fang H, Zhang Y, Sinumporn S, Abbas A, Ning Y, Wang GL, Cheng S, Cao L. A proteomic approach identifies novel proteins and metabolites for lesion mimic formation and disease resistance enhancement in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110182. [PMID: 31481196 DOI: 10.1016/j.plantsci.2019.110182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Lesion mimic mutants are ideal genetic materials to study programmed cell death and defense signaling in plants. However, the molecular basis of lesion mimic formation remains largely unknown. Here, we first used a proteomic approach to identify differentially expressed proteins during dynamic lesion mimic formation in the rice oscul3a mutant, then electron microscope observation and physiological assays were used to analyze the mutant. The oscul3a mutant had disrupted cell metabolism balance, and the identified differentially expressed proteins were mainly located in the chloroplast and cytoplasm, which caused enhanced lipid metabolism, but suppressed carbon/nitrogen metabolism with reduced growth and grain quality. The oscul3a mutant had higher salicylic acid (SA) concentration in leaves, and H2O2 was shown to accumulate late in the formation of lesions. The secondary metabolite coumarin induced reactive oxygen species (ROS) and had rice blast resistance activity. Moreover, the cell death initiated lesion mimic formation of oscul3a mutant was light-sensitive, which might be associated with metabolite biosynthesis and accumulation. This study sheds light on the metabolic transition associated with cell death and defense response, which is under tight regulation by OsCUL3a and metabolism-related proteins, and the newly identified chemicals in the secondary metabolic pathway can potentially be used to control disease in crop plants.
Collapse
Affiliation(s)
- Zhiqiang Gao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Yue Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Sittipun Sinumporn
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Thung Kula Ronghai Roi Et Campus, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
| | - Adil Abbas
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA.
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China; Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
96
|
Rey-Burusco MF, Daleo GR, Feldman ML. Identification of potassium phosphite responsive miRNAs and their targets in potato. PLoS One 2019; 14:e0222346. [PMID: 31513656 PMCID: PMC6742386 DOI: 10.1371/journal.pone.0222346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Micro RNAs (miRNAs) are small single strand non-coding RNAs that regulate gene expression at the post-transcriptional level, either by translational inhibition or mRNA degradation based on the extent of complementarity between the miRNA and its target mRNAs. Potato (Solanum tuberosum L.) is the most important horticultural crop in Argentina. Achieving an integrated control of diseases is crucial for this crop, where frequent agrochemical applications, particularly fungicides, are carried out. A promising strategy is based on promoting induced resistance through the application of environmentally friendly compounds such as phosphites, inorganic salts of phosphorous acid. The use of phosphites in disease control management has proven to be effective. Although the mechanisms underlying their effect remain unclear, we postulated that miRNAs could be involved. Therefore we performed next generation sequencing (NGS) in potato leaves treated and non treated with potassium phosphite (KPhi). We identified 25 miRNAs that were expressed differentially, 14 already annotated in miRBase and 11 mapped to the potato genome as potential new miRNAs. A prediction of miRNA targets showed genes related to pathogen resistance, transcription factors, and oxidative stress. We also analyzed in silico stress and phytohormone responsive cis-acting elements on differentially expressed pre miRNAs. Despite the fact that some of the differentially expressed miRNAs have been already identified, this is to our knowledge the first report identifying miRNAs responsive to a biocompatible stress resistance inducer such as potassium phosphite, in plants. Further characterization of these miRNAs and their target genes might help to elucidate the molecular mechanisms underlying KPhi-induced resistance.
Collapse
Affiliation(s)
- María Florencia Rey-Burusco
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Gustavo Raúl Daleo
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Mariana Laura Feldman
- Instituto de Investigaciones Biológicas-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
97
|
Li W, Chern M, Yin J, Wang J, Chen X. Recent advances in broad-spectrum resistance to the rice blast disease. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:114-120. [PMID: 31163394 DOI: 10.1016/j.pbi.2019.03.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
Blast is arguably the most devastating fungal disease of rice. Systematic studies of this disease have made significant progress and identified many genes. Broad-spectrum resistance is highly preferred in agricultural practice. Here, we focus our discussion on resistance (R) and defense-regulator (DR) genes that confer broad-spectrum resistance to Magnaporthe oryzae, in particular those potentially causing no significant yield penalties. Recent advances show that broad-spectrum resistance can be achieved without significant yield penalties, or even with yield benefits. Cross talks of defense signaling mediated by these genes are present that may allow the host to integrate different anti-fungal factors against M. oryzae infection. We also summarize possible mechanisms underlying broad-spectrum resistance to rice blast.
Collapse
Affiliation(s)
- Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation), State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation), State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation), State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation), State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
98
|
Zhang Y, Liu Q, Zhang Y, Chen Y, Yu N, Cao Y, Zhan X, Cheng S, Cao L. LMM24 Encodes Receptor-Like Cytoplasmic Kinase 109, Which Regulates Cell Death and Defense Responses in Rice. Int J Mol Sci 2019; 20:ijms20133243. [PMID: 31269643 PMCID: PMC6651581 DOI: 10.3390/ijms20133243] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
Lesion mimic mutants are excellent models for research on molecular mechanisms of cell death and defense responses in rice. We identified a new rice lesion mimic mutant lmm24 from a mutant pool of indica rice cultivar “ZhongHui8015”. The LMM24 gene was identified by MutMap, and LMM24 was confirmed as a receptor-like cytoplasmic kinase 109 by amino acid sequence analysis. The lmm24 mutant displayed dark brown lesions in leaves and growth retardation that were not observed in wild-type ZH8015. The results of histochemical staining and TUNEL assays showed enhanced ROS accumulation and cell death in lmm24. Chloroplast degradation was observed in lmm24 leaves, with decreased expression of photosynthesis-related genes and increased expression of the senescence-induced STAYGREEN (SGR) gene and other senescence-associated genes. Furthermore, lmm24 exhibited enhanced resistance to rice blast fungus Magnaporthe oryzae (M. oryzae) and up-regulation of defense response genes. Our data demonstrate that LMM24 regulates cell death and defense responses in rice.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuyu Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ning Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
99
|
Ruan B, Hua Z, Zhao J, Zhang B, Ren D, Liu C, Yang S, Zhang A, Jiang H, Yu H, Hu J, Zhu L, Chen G, Shen L, Dong G, Zhang G, Zeng D, Guo L, Qian Q, Gao Z. OsACL-A2 negatively regulates cell death and disease resistance in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1344-1356. [PMID: 30582769 PMCID: PMC6576086 DOI: 10.1111/pbi.13058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 05/20/2023]
Abstract
ATP-citrate lyases (ACL) play critical roles in tumour cell propagation, foetal development and growth, and histone acetylation in human and animals. Here, we report a novel function of ACL in cell death-mediated pathogen defence responses in rice. Using ethyl methanesulphonate (EMS) mutagenesis and map-based cloning, we identified an Oryza sativa ACL-A2 mutant allele, termed spotted leaf 30-1 (spl30-1), in which an A-to-T transversion converts an Asn at position 343 to a Tyr (N343Y), causing a recessive mutation that led to a lesion mimic phenotype. Compared to wild-type plants, spl30-1 significantly reduces ACL enzymatic activity, accumulates high reactive oxygen species and increases degradation rate of nuclear deoxyribonucleic acids. CRISPR/Cas9-mediated insertion/deletion mutation analysis and complementation assay confirmed that the phenotype of spl30-1 resulted from the defective function of OsACL-A2 protein. We further biochemically identified that the N343Y mutation caused a significant degradation of SPL30N343Y in a ubiquitin-26S proteasome system (UPS)-dependent manner without alteration in transcripts of OsACL-A2 in spl30-1. Transcriptome analysis identified a number of up-regulated genes associated with pathogen defence responses in recessive mutants of OsACL-A2, implying its role in innate immunity. Suppressor mutant screen suggested that OsSL, which encodes a P450 monooxygenase protein, acted as a downstream key regulator in spl30-1-mediated pathogen defence responses. Taken together, our study discovered a novel role of OsACL-A2 in negatively regulating innate immune responses in rice.
Collapse
Affiliation(s)
- Banpu Ruan
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Zhihua Hua
- Department of Environmental and Plant BiologyInterdisciplinary Program in Molecular and Cellular BiologyOhio UniversityAthensOHUSA
| | - Juan Zhao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Bin Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Deyong Ren
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Chaolei Liu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Shenglong Yang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Anpeng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Hongzhen Jiang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Haiping Yu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Jiang Hu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Li Zhu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Guang Chen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Lan Shen
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Guojun Dong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Guangheng Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Dali Zeng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Longbiao Guo
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| | - Zhenyu Gao
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
| |
Collapse
|
100
|
Hou J, Cao C, Ruan Y, Deng Y, Liu Y, Zhang K, Tan L, Zhu Z, Cai H, Liu F, Sun H, Gu P, Sun C, Fu Y. ESA1 Is Involved in Embryo Sac Abortion in Interspecific Hybrid Progeny of Rice. PLANT PHYSIOLOGY 2019; 180:356-366. [PMID: 30770460 PMCID: PMC6501066 DOI: 10.1104/pp.18.01374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/02/2019] [Indexed: 05/13/2023]
Abstract
The emergence of sterile individuals in the hybrid backcross progeny of wild and cultivated rice limits the use of wild rice alleles for improving cultivated rice, but the molecular mechanisms underlying this sterility remain unclear. Here, we identified the semisterile introgression line YIL42, derived from a cross between the indica rice variety Teqing (Oryza sativa) and Oryza rufipogon accession YJCWR (Yuanjiang common wild rice), which exhibits semisterility. Using positional cloning, we isolated EMBRYO SAC ABORTION 1 (ESA1), which encodes a nuclear-membrane localized protein containing an armadillo repeat domain. A mutation in ESA1 at position 1819 (T1819C) converts a stop codon into an Arg (R) codon, causing delayed termination of protein translation. Analysis of transgenic lines indicated that the difference in ESA1 protein structure between O. rufipogon-derived ESA1 and Teqing-derived esa1 affects female gamete abortion during early mitosis. Fertility investigation and expression analysis indicated that the interaction between ESA1 T1819 and unknown gene(s) of Teqing affects spikelet fertility of the hybrid backcross progeny. The ESA1 T1819 allele is present in O. rufipogon but absent in O. sativa, suggesting that variation in ESA1 may be associated with interspecific hybrid incompatibility between wild and cultivated rice. Our findings provide insight into the molecular mechanism underlying female sterility, which is useful for improving the panicle seed setting rate of rice and for developing a strategy to overcome interspecific hybrid sterility between cultivated rice and wild rice.
Collapse
Affiliation(s)
- Jingjing Hou
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Caihong Cao
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yini Ruan
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yanyan Deng
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yaxin Liu
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Kun Zhang
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Lubin Tan
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Zuofeng Zhu
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Hongwei Cai
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Fengxia Liu
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Hongying Sun
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Ping Gu
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Chuanqing Sun
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Yongcai Fu
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|