51
|
Li Q, Zhang M, Shen D, Liu T, Chen Y, Zhou JM, Dou D. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner. Sci Rep 2016; 6:26951. [PMID: 27243217 PMCID: PMC4886637 DOI: 10.1038/srep26951] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
Oomycete pathogens produce a large number of effectors to promote infection. Their mode of action are largely unknown. Here we show that a Phytophthora sojae effector, PsCRN63, suppresses flg22-induced expression of FRK1 gene, a molecular marker in pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). However, PsCRN63 does not suppress upstream signaling events including flg22-induced MAPK activation and BIK1 phosphorylation, indicating that it acts downstream of MAPK cascades. The PsCRN63-transgenic Arabidopsis plants showed increased susceptibility to bacterial pathogen Pseudomonas syringae pathovar tomato (Pst) DC3000 and oomycete pathogen Phytophthora capsici. The callose deposition were suppressed in PsCRN63-transgenic plants compared with the wild-type control plants. Genes involved in PTI were also down-regulated in PsCRN63-transgenic plants. Interestingly, we found that PsCRN63 forms an dimer that is mediated by inter-molecular interactions between N-terminal and C-terminal domains in an inverted association manner. Furthermore, the N-terminal and C-terminal domains required for the dimerization are widely conserved among CRN effectors, suggesting that homo-/hetero-dimerization of Phytophthora CRN effectors is required to exert biological functions. Indeed, the dimerization was required for PTI suppression and cell death-induction activities of PsCRN63.
Collapse
Affiliation(s)
- Qi Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.,Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingli Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyu Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Min Zhou
- Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
52
|
Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 2016; 79:263-80. [PMID: 26041933 DOI: 10.1128/mmbr.00010-15] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap.
Collapse
|
53
|
Martinez T, Texier H, Nahoum V, Lafitte C, Cioci G, Heux L, Dumas B, O’Donohue M, Gaulin E, Dumon C. Probing the Functions of Carbohydrate Binding Modules in the CBEL Protein from the Oomycete Phytophthora parasitica. PLoS One 2015; 10:e0137481. [PMID: 26390127 PMCID: PMC4577117 DOI: 10.1371/journal.pone.0137481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1–1 and 1–2) that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL’s CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB), an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB.
Collapse
Affiliation(s)
- Thomas Martinez
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Hélène Texier
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- Cinabio ADISSEO France SAS, Hall Gilbert Durand 3, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Virginie Nahoum
- Université de Toulouse, UPS, IPBS, Toulouse, F-31077, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique (CNRS), Toulouse, F-31077, France
| | - Claude Lafitte
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Gianluca Cioci
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | | | - Bernard Dumas
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Michael O’Donohue
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Elodie Gaulin
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Claire Dumon
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- * E-mail:
| |
Collapse
|
54
|
Peng KC, Wang CW, Wu CH, Huang CT, Liou RF. Tomato SOBIR1/EVR Homologs Are Involved in Elicitin Perception and Plant Defense Against the Oomycete Pathogen Phytophthora parasitica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:913-26. [PMID: 25710821 DOI: 10.1094/mpmi-12-14-0405-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During host-pathogen interactions, pattern recognition receptors form complexes with proteins, such as receptor-like kinases, to elicit pathogen-associated molecular pattern-triggered immunity (PTI), an evolutionarily conserved plant defense program. However, little is known about the components of the receptor complex, as are the molecular events leading to PTI induced by the oomycete Phytophthora pathogen. Here, we demonstrate that tomato (Solanum lycopersicum) SlSOBIR1 and SlSOBIR1-like genes are involved in defense responses to Phytophthora parasitica. Silencing of SlSOBIR1 and SlSOBIR1-like enhanced susceptibility to P. parasitica in tomato. Callose deposition, reactive oxygen species production, and PTI marker gene expression were compromised in SlSOBIR1- and SlSOBIR1-like-silenced plants. Interestingly, P. parasitica infection and elicitin (ParA1) treatment induced the relocalization of SlSOBIR1 from the plasma membrane to endosomal compartments and silencing of NbSOBIR1 compromised ParA1-mediated cell death on Nicotiana benthamiana. Moreover, the SlSOBIR1 kinase domain is indispensable for ParA1 to trigger SlSOBIR1 internalization and plant cell death. Taken together, these results support the idea of participation of solanaceous SOBIR1/EVR homologs in the perception of elicitins and indicate their important roles in plant basal defense against oomycete pathogens.
Collapse
Affiliation(s)
- Ke-Chun Peng
- 1 Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chao-Wen Wang
- 2 Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Hang Wu
- 1 Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Chun-Tzu Huang
- 1 Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Ruey-Fen Liou
- 1 Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
55
|
Ma Z, Song T, Zhu L, Ye W, Wang Y, Shao Y, Dong S, Zhang Z, Dou D, Zheng X, Tyler BM, Wang Y. A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. THE PLANT CELL 2015; 27:2057-72. [PMID: 26163574 PMCID: PMC4531360 DOI: 10.1105/tpc.15.00390] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/08/2015] [Accepted: 06/21/2015] [Indexed: 05/18/2023]
Abstract
We identified a glycoside hydrolase family 12 (GH12) protein, XEG1, produced by the soybean pathogen Phytophthora sojae that exhibits xyloglucanase and β-glucanase activity. It acts as an important virulence factor during P. sojae infection but also acts as a pathogen-associated molecular pattern (PAMP) in soybean (Glycine max) and solanaceous species, where it can trigger defense responses including cell death. GH12 proteins occur widely across microbial taxa, and many of these GH12 proteins induce cell death in Nicotiana benthamiana. The PAMP activity of XEG1 is independent of its xyloglucanase activity. XEG1 can induce plant defense responses in a BAK1-dependent manner. The perception of XEG1 occurs independently of the perception of ethylene-inducing xylanase. XEG1 is strongly induced in P. sojae within 30 min of infection of soybean and then slowly declines. Both silencing and overexpression of XEG1 in P. sojae severely reduced virulence. Many P. sojae RXLR effectors could suppress defense responses induced by XEG1, including several that are expressed within 30 min of infection. Therefore, our data suggest that PsXEG1 contributes to P. sojae virulence, but soybean recognizes PsXEG1 to induce immune responses, which in turn can be suppressed by RXLR effectors. XEG1 thus represents an apoplastic effector that is recognized via the plant's PAMP recognition machinery.
Collapse
Affiliation(s)
- Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianqiao Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Shao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| |
Collapse
|
56
|
Chang YH, Yan HZ, Liou RF. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2015; 16:123-36. [PMID: 24965864 PMCID: PMC6638464 DOI: 10.1111/mpp.12166] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106, Taiwan
| | | | | |
Collapse
|
57
|
Ma Y, Han C, Chen J, Li H, He K, Liu A, Li D. Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity. MOLECULAR PLANT PATHOLOGY 2015; 16:14-26. [PMID: 24844544 PMCID: PMC6638370 DOI: 10.1111/mpp.12156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant-pathogenic fungi produce cellulases. However, little information is available on cellulase as an elicitor in plant-pathogen interactions. Here, an endocellulase (EG1) was isolated from Rhizoctonia solani. It contains a putative protein of 227 amino acids with a signal peptide and a family-45 glycosyl hydrolase domain. Its aspartic acid (Asp) residue at position 32 was changed to alanine (Ala), resulting in full loss of its catalytic activity. Wild-type and mutated forms of the endoglucanase were expressed in yeast and purified to homogeneity. The purified wild-type and mutant forms induced cell death in maize, tobacco and Arabidopsis leaves, and the transcription of three defence marker genes in maize and tobacco and 10 genes related to defence responses in maize. Moreover, they also induced the accumulation of reactive oxygen species (ROS), medium alkalinization, Ca(2+) accumulation and ethylene biosynthesis of suspension-cultured tobacco cells. Similarly, production of the EG1 wild-type and mutated forms in tobacco induced cell death using the Potato virus X (PVX) expression system. In vivo, expression of EG1 was also related to cell death during infection of maize by R. solani. These results provide direct evidence that the endoglucanase is an elicitor, but its enzymatic activity is not required for its elicitor activity.
Collapse
Affiliation(s)
- Yanan Ma
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong, 271018, China
| | | | | | | | | | | | | |
Collapse
|
58
|
Mesarich CH, Bowen JK, Hamiaux C, Templeton MD. Repeat-containing protein effectors of plant-associated organisms. FRONTIERS IN PLANT SCIENCE 2015; 6:872. [PMID: 26557126 PMCID: PMC4617103 DOI: 10.3389/fpls.2015.00872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/01/2015] [Indexed: 05/10/2023]
Abstract
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.
Collapse
Affiliation(s)
- Carl H. Mesarich
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
- *Correspondence: Carl H. Mesarich
| | - Joanna K. Bowen
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| | - Cyril Hamiaux
- Human Responses, The New Zealand Institute for Plant & Food Research LimitedAuckland, New Zealand
| | - Matthew D. Templeton
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| |
Collapse
|
59
|
Doehlemann G, Requena N, Schaefer P, Brunner F, O'Connell R, Parker JE. Reprogramming of plant cells by filamentous plant-colonizing microbes. THE NEW PHYTOLOGIST 2014; 204:803-14. [PMID: 25539003 DOI: 10.1111/nph.12938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Although phylogenetically unrelated, filamentous oomycetes and fungi establish similar structures to colonize plants and they represent economically the most important microbial threat to crop production. In mutualistic interactions established by root-colonizing fungi, clear differences to pathogens can be seen, but there is mounting evidence that their infection strategies and molecular interactions have certain common features. To infect the host, fungi and oomycetes employ similar strategies to circumvent plant innate immunity. This process involves the suppression of basal defence responses which are triggered by the perception of conserved molecular patterns. To establish biotrophy, effector proteins are secreted from mutualistic and pathogenic microbes to the host tissue, where they play central roles in the modulation of host immunity and metabolic reprogramming of colonized host tissues. This review article discusses key effector mechanisms of filamentous pathogens and mutualists, how they modulate their host targets and the fundamental differences or parallels between these different interactions. The orchestration of effector actions during plant infection and the importance of their localization within host tissues are also discussed.
Collapse
|
60
|
Wiesel L, Newton AC, Elliott I, Booty D, Gilroy EM, Birch PRJ, Hein I. Molecular effects of resistance elicitors from biological origin and their potential for crop protection. FRONTIERS IN PLANT SCIENCE 2014; 5:655. [PMID: 25484886 PMCID: PMC4240061 DOI: 10.3389/fpls.2014.00655] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/04/2014] [Indexed: 05/17/2023]
Abstract
Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonizing internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance toward non-adapted pathogens they can also be described as "defense elicitors." In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defense elicitors in the absence of pathogens can promote plant resistance by uncoupling defense activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete, or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context.
Collapse
Affiliation(s)
- Lea Wiesel
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Adrian C. Newton
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | | | | | - Paul R. J. Birch
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
- The Division of Plant Sciences, College of Life Science, University of Dundee at the James Hutton InstituteDundee, UK
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
61
|
Molecular profiling of the Phytophthora plurivora secretome: a step towards understanding the cross-talk between plant pathogenic oomycetes and their hosts. PLoS One 2014; 9:e112317. [PMID: 25372870 PMCID: PMC4221288 DOI: 10.1371/journal.pone.0112317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023] Open
Abstract
The understanding of molecular mechanisms underlying host–pathogen interactions in plant diseases is of crucial importance to gain insights on different virulence strategies of pathogens and unravel their role in plant immunity. Among plant pathogens, Phytophthora species are eliciting a growing interest for their considerable economical and environmental impact. Plant infection by Phytophthora phytopathogens is a complex process coordinated by a plethora of extracellular signals secreted by both host plants and pathogens. The characterization of the repertoire of effectors secreted by oomycetes has become an active area of research for deciphering molecular mechanisms responsible for host plants colonization and infection. Putative secreted proteins by Phytophthora species have been catalogued by applying high-throughput genome-based strategies and bioinformatic approaches. However, a comprehensive analysis of the effective secretome profile of Phytophthora is still lacking. Here, we report the first large-scale profiling of P. plurivora secretome using a shotgun LC-MS/MS strategy. To gain insight on the molecular signals underlying the cross-talk between plant pathogenic oomycetes and their host plants, we also investigate the quantitative changes of secreted protein following interaction of P. plurivora with the root exudate of Fagus sylvatica which is highly susceptible to the root pathogen. We show that besides known effectors, the expression and/or secretion levels of cell-wall-degrading enzymes were altered following the interaction with the host plant root exudate. In addition, a characterization of the F. sylvatica root exudate was performed by NMR and amino acid analysis, allowing the identification of the main released low-molecular weight components, including organic acids and free amino acids. This study provides important insights for deciphering the extracellular network involved in the highly susceptible P. plurivora-F. sylvatica interaction.
Collapse
|
62
|
Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:16955-60. [PMID: 25368167 DOI: 10.1073/pnas.1410031111] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by a wide range of plant-associated microorganisms. They are best known for their cytotoxicity in dicot plants that leads to the induction of rapid tissue necrosis and plant immune responses. The biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis encodes 10 different noncytotoxic NLPs (HaNLPs) that do not cause necrosis. We discovered that these noncytotoxic NLPs, however, act as potent activators of the plant immune system in Arabidopsis thaliana. Ectopic expression of HaNLP3 in Arabidopsis triggered resistance to H. arabidopsidis, activated the expression of a large set of defense-related genes, and caused a reduction of plant growth that is typically associated with strongly enhanced immunity. N- and C-terminal deletions of HaNLP3, as well as amino acid substitutions, pinpointed to a small central region of the protein that is required to trigger immunity, indicating the protein acts as a microbe-associated molecular pattern (MAMP). This was confirmed in experiments with a synthetic peptide of 24 aa, derived from the central part of HaNLP3 and corresponding to a conserved region in type 1 NLPs that induces ethylene production, a well-known MAMP response. Strikingly, corresponding 24-aa peptides of fungal and bacterial type 1 NLPs were also able to trigger immunity in Arabidopsis. The widespread phylogenetic distribution of type 1 NLPs makes this protein family (to our knowledge) the first proteinaceous MAMP identified in three different kingdoms of life.
Collapse
|
63
|
Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet Biol 2014; 72:168-181. [DOI: 10.1016/j.fgb.2014.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 12/30/2022]
|
64
|
|
65
|
Zipfel C. Plant pattern-recognition receptors. Trends Immunol 2014; 35:345-51. [DOI: 10.1016/j.it.2014.05.004] [Citation(s) in RCA: 645] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/17/2014] [Accepted: 05/21/2014] [Indexed: 12/18/2022]
|
66
|
Li A, Zhang M, Wang Y, Li D, Liu X, Tao K, Ye W, Wang Y. PsMPK1, an SLT2-type mitogen-activated protein kinase, is required for hyphal growth, zoosporogenesis, cell wall integrity, and pathogenicity in Phytophthora sojae. Fungal Genet Biol 2014; 65:14-24. [PMID: 24480463 DOI: 10.1016/j.fgb.2014.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/13/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play important roles in the regulation of vegetative and pathogenic growth in plant pathogens. Here, we identified an SLT2-type MAP kinase in Phytophthora sojae, PsMPK1, which was transcriptionally induced in sporulating hyphae and the early stages of infection. Silencing of PsMPK1 caused defects in growth and zoosporogenesis, and increased hyphal swellings after the induction of sporangia formation, along with increasing hypersensitivity to cell wall-degrading enzymes. Transmission electron microscopy showed that the cell wall of PsMPK1-silenced mutants was also deleteriously affected. A dark outermost layer in the cell walls disappeared in the mutants, and an additional layer of the mutant cell wall that was deposited abnormally inside an inner bright layer appeared nonhomogeneous and rough compared to the wild type. Pathogenicity assays showed that PsMPK1-silenced transformants lost their pathogenicity on susceptible soybean host plants and triggered stronger cell death. Overall, PsMPK1 is involved in growth, differentiation, cell wall integrity, and pathogenicity in P. sojae.
Collapse
Affiliation(s)
- Aining Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yonglin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Delong Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyun Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
67
|
King SR, McLellan H, Boevink PC, Armstrong MR, Bukharova T, Sukarta O, Win J, Kamoun S, Birch PR, Banfield MJ. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK ε to suppress plant immune signaling. THE PLANT CELL 2014; 26:1345-59. [PMID: 24632534 PMCID: PMC4001388 DOI: 10.1105/tpc.113.120055] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/24/2014] [Accepted: 02/19/2014] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinase cascades are key players in plant immune signaling pathways, transducing the perception of invading pathogens into effective defense responses. Plant pathogenic oomycetes, such as the Irish potato famine pathogen Phytophthora infestans, deliver RXLR effector proteins to plant cells to modulate host immune signaling and promote colonization. Our understanding of the molecular mechanisms by which these effectors act in plant cells is limited. Here, we report that the P. infestans RXLR effector PexRD2 interacts with the kinase domain of MAPKKKε, a positive regulator of cell death associated with plant immunity. Expression of PexRD2 or silencing MAPKKKε in Nicotiana benthamiana enhances susceptibility to P. infestans. We show that PexRD2 perturbs signaling pathways triggered by or dependent on MAPKKKε. By contrast, homologs of PexRD2 from P. infestans had reduced or no interaction with MAPKKKε and did not promote disease susceptibility. Structure-led mutagenesis identified PexRD2 variants that do not interact with MAPKKKε and fail to support enhanced pathogen growth or perturb MAPKKKε signaling pathways. Our findings provide evidence that P. infestans RXLR effector PexRD2 has evolved to interact with a specific host MAPKKK to perturb plant immunity-related signaling.
Collapse
Affiliation(s)
- Stuart R.F. King
- Department of Biological Chemistry, John Innes Centre,
Norwich NR4 7UH, United Kingdom
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Petra C. Boevink
- Cell and Molecular Sciences, James Hutton Institute,
Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Miles R. Armstrong
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Tatyana Bukharova
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Octavina Sukarta
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, Norwich NR4 7UH, United
Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich NR4 7UH, United
Kingdom
| | - Paul R.J. Birch
- Division of Plant Sciences, University of Dundee (at
James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute,
Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre,
Norwich NR4 7UH, United Kingdom
- Address correspondence to
| |
Collapse
|
68
|
Mott GA, Middleton MA, Desveaux D, Guttman DS. Peptides and small molecules of the plant-pathogen apoplastic arena. FRONTIERS IN PLANT SCIENCE 2014; 5:677. [PMID: 25506352 PMCID: PMC4246658 DOI: 10.3389/fpls.2014.00677] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/13/2014] [Indexed: 05/18/2023]
Abstract
Plants reside within an environment rich in potential pathogens. Survival in the presence of such threats requires both effective perception of, and appropriate responses to, pathogenic attack. While plants lack an adaptive immune system, they have a highly developed and responsive innate immune system able to detect and inhibit the growth of the vast majority of potential pathogens. Many of the critical interactions that characterize the relationship between plants and pathogens are played out in the intercellular apoplastic space. The initial perception of pathogen invasion is often achieved through specific plant receptor-like kinases that recognize conserved molecular patterns presented by the pathogen or respond to the molecular debris caused by cellular damage. The perception of either microbial or damage signals by these receptors initiates a response that includes the production of peptides and small molecules to enhance cellular integrity and inhibit pathogen growth. In this review, we discuss the roles of apoplastic peptides and small molecules in modulating plant-pathogen interactions.
Collapse
Affiliation(s)
- G. Adam Mott
- Department of Cell & Systems Biology, University of Toronto, Toronto, ONCanada
- *Correspondence: G. Adam Mott, Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada e-mail:
| | - Maggie A. Middleton
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ONCanada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, ONCanada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ONCanada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ONCanada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ONCanada
| |
Collapse
|
69
|
Abstract
Plants are invaded by an array of pathogens of which only a few succeed in causing disease. The attack by others is countered by a sophisticated immune system possessed by the plants. The plant immune system is broadly divided into two, viz. microbial-associated molecular-patterns-triggered immunity (MTI) and effector-triggered immunity (ETI). MTI confers basal resistance, while ETI confers durable resistance, often resulting in hypersensitive response. Plants also possess systemic acquired resistance (SAR), which provides long-term defense against a broad-spectrum of pathogens. Salicylic-acid-mediated systemic acquired immunity provokes the defense response throughout the plant system during pathogen infection at a particular site. Trans-generational immune priming allows the plant to heritably shield their progeny towards pathogens previously encountered. Plants circumvent the viral infection through RNA interference phenomena by utilizing small RNAs. This review summarizes the molecular mechanisms of plant immune system, and the latest breakthroughs reported in plant defense. We discuss the plant–pathogen interactions and integrated defense responses in the context of presenting an integral understanding in plant molecular immunity.
Collapse
|
70
|
Larroque M, Belmas E, Martinez T, Vergnes S, Ladouce N, Lafitte C, Gaulin E, Dumas B. Pathogen-associated molecular pattern-triggered immunity and resistance to the root pathogen Phytophthora parasitica in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3615-25. [PMID: 23851194 PMCID: PMC3745725 DOI: 10.1093/jxb/ert195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The cellulose binding elicitor lectin (CBEL) of the genus Phytophthora induces necrosis and immune responses in several plant species, including Arabidopsis thaliana. However, the role of CBEL-induced responses in the outcome of the interaction is still unclear. This study shows that some of CBEL-induced defence responses, but not necrosis, required the receptor-like kinase BAK1, a general regulator of basal immunity in Arabidopsis, and the production of a reactive oxygen burst mediated by respiratory burst oxidases homologues (RBOH). Screening of a core collection of 48 Arabidopsis ecotypes using CBEL uncovered a large variability in CBEL-induced necrotic responses. Analysis of non-responsive CBEL lines Ws-4, Oy-0, and Bla-1 revealed that Ws-4 and Oy-0 were also impaired in the production of the oxidative burst and expression of defence genes, whereas Bla-1 was partially affected in these responses. Infection tests using two Phytophthora parasitica strains, Pp310 and Ppn0, virulent and avirulent, respectively, on the Col-0 line showed that BAK1 and RBOH mutants were susceptible to Ppn0, suggesting that some immune responses controlled by these genes, but not CBEL-induced cell death, are required for Phytophthora parasitica resistance. However, Ws-4, Oy-0, and Bla-1 lines were not affected in Ppn0 resistance, showing that natural variability in CBEL responsiveness is not correlated to Phytophthora susceptibility. Overall, the results uncover a BAK1- and RBOH-dependent CBEL-triggered immunity essential for Phytophthora resistance and suggest that natural quantitative variation of basal immunity triggered by conserved general elicitors such as CBEL does not correlate to Phytophthora susceptibility.
Collapse
Affiliation(s)
- Mathieu Larroque
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Löbach L, Christie J, van den Ackerveken G, Bottin A, Bulone V, Díaz-Moreno SM, Dumas B, Fan L, Gaulin E, Govers F, Grenville-Briggs LJ, Horner NR, Levin JZ, Mammella M, Meijer HJG, Morris P, Nusbaum C, Oome S, Phillips AJ, van Rooyen D, Rzeszutek E, Saraiva M, Secombes CJ, Seidl MF, Snel B, Stassen JHM, Sykes S, Tripathy S, van den Berg H, Vega-Arreguin JC, Wawra S, Young SK, Zeng Q, Dieguez-Uribeondo J, Russ C, Tyler BM, van West P. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet 2013; 9:e1003272. [PMID: 23785293 PMCID: PMC3681718 DOI: 10.1371/journal.pgen.1003272] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/10/2012] [Indexed: 01/31/2023] Open
Abstract
Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica. Fish are an increasingly important source of animal protein globally, with aquaculture production rising dramatically over the past decade. Saprolegnia is a fungal-like oomycete and one of the most destructive fish pathogens, causing millions of dollars in losses to the aquaculture industry annually. Saprolegnia has also been linked to a worldwide decline in wild fish and amphibian populations. Here we describe the genome sequence of the first animal pathogenic oomycete and compare the genome content with the available plant pathogenic oomycetes. We found that Saprolegnia lacks the large effector families that are hallmarks of plant pathogenic oomycetes, showing evolutionary adaptation to the host. Moreover, Saprolegnia harbors pathogenesis-related genes that were derived by lateral gene transfer from the host and other animal pathogens. The retrotransposon LINE family also appears to be acquired from animal lineages. By transcriptome analysis we show a high rate of allelic variation, which reveals rapidly evolving genes and potentially adaptive evolutionary mechanisms coupled to selective pressures exerted by the animal host. The genome and transcriptome data, as well as subsequent biochemical analyses, provided us with insight in the disease process of Saprolegnia at a molecular and cellular level, providing us with targets for sustainable control of Saprolegnia.
Collapse
Affiliation(s)
- Rays H Y Jiang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Klose H, Günl M, Usadel B, Fischer R, Commandeur U. Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:53. [PMID: 23587418 PMCID: PMC3643885 DOI: 10.1186/1754-6834-6-53] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/12/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND Plant-produced biomass-degrading enzymes are promising tools for the processing of lignocellulose to fermentable sugars. A major limitation of in planta production is that high-level expression of such enzymes could potentially affect the structure and integrity of the plant cell wall and negatively influence plant growth and development. RESULTS Here, we evaluate the impact on tobacco plant development of constitutive versus alcohol-inducible expression of the endoglucanase TrCel5A from the mesophilic fungus Trichoderma reesei. Using this system, we are able to demonstrate that constitutive expression of the enzyme, controlled by the doubled Cauliflower Mosaic Virus promoter, leads to lower cellulose content of the plant combined with severe effects on plant growth. However, using an alcohol-inducible expression of the endoglucanase in the plant leaves, we achieved similar enzymatic expression levels with no changes in the crystalline cellulose content. CONCLUSION We were able to produce significant amounts of cellulase in the plant leaves without detrimental effects to plant development. These results demonstrate the potential feasibility of an inducible expression system for producing biomass degrading enzymes in plants.
Collapse
Affiliation(s)
- Holger Klose
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Markus Günl
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, Jülich, 52425, Germany
| | - Björn Usadel
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, Jülich, 52425, Germany
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Rainer Fischer
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstrasse 6, Aachen, 52074, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| |
Collapse
|
73
|
Chen S, Songkumarn P, Venu RC, Gowda M, Bellizzi M, Hu J, Liu W, Ebbole D, Meyers B, Mitchell T, Wang GL. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:191-202. [PMID: 23035914 DOI: 10.1094/mpmi-05-12-0117-r] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Interactions between rice and Magnaporthe oryzae involve the recognition of cellular components and the exchange of complex molecular signals from both partners. How these interactions occur in rice cells is still elusive. We employed robust-long serial analysis of gene expression, massively parallel signature sequencing, and sequencing by synthesis to examine transcriptome profiles of infected rice leaves. A total of 6,413 in planta-expressed fungal genes, including 851 genes encoding predicted effector proteins, were identified. We used a protoplast transient expression system to assess 42 of the predicted effector proteins for the ability to induce plant cell death. Ectopic expression assays identified five novel effectors that induced host cell death only when they contained the signal peptide for secretion to the extracellular space. Four of them induced cell death in Nicotiana benthamiana. Although the five effectors are highly diverse in their sequences, the physiological basis of cell death induced by each was similar. This study demonstrates that our integrative genomic approach is effective for the identification of in planta-expressed cell death-inducing effectors from M. oryzae that may play an important role facilitating colonization and fungal growth during infection.
Collapse
Affiliation(s)
- Songbiao Chen
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Newman MA, Sundelin T, Nielsen JT, Erbs G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. FRONTIERS IN PLANT SCIENCE 2013; 4:139. [PMID: 23720666 PMCID: PMC3655273 DOI: 10.3389/fpls.2013.00139] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
Plants are sessile organisms that are under constant attack from microbes. They rely on both preformed defenses, and their innate immune system to ward of the microbial pathogens. Preformed defences include for example the cell wall and cuticle, which act as physical barriers to microbial colonization. The plant immune system is composed of surveillance systems that perceive several general microbe elicitors, which allow plants to switch from growth and development into a defense mode, rejecting most potentially harmful microbes. The elicitors are essential structures for pathogen survival and are conserved among pathogens. The conserved microbe-specific molecules, referred to as microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs), are recognized by the plant innate immune systems pattern recognition receptors (PRRs). General elicitors like flagellin (Flg), elongation factor Tu (EF-Tu), peptidoglycan (PGN), lipopolysaccharides (LPS), Ax21 (Activator of XA21-mediated immunity in rice), fungal chitin, and β-glucans from oomycetes are recognized by plant surface localized PRRs. Several of the MAMPs and their corresponding PRRs have, in recent years, been identified. This review focuses on the current knowledge regarding important MAMPs from bacteria, fungi, and oomycetes, their structure, the plant PRRs that recognizes them, and how they induce MAMP-triggered immunity (MTI) in plants.
Collapse
Affiliation(s)
- Mari-Anne Newman
- *Correspondence: Mari-Anne Newman, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark. e-mail:
| | | | | | | |
Collapse
|
75
|
Larroque M, Barriot R, Bottin A, Barre A, Rougé P, Dumas B, Gaulin E. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses. BMC Genomics 2012; 13:605. [PMID: 23140525 PMCID: PMC3532174 DOI: 10.1186/1471-2164-13-605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/25/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oomycetes are fungal-like microorganisms evolutionary distinct from true fungi, belonging to the Stramenopile lineage and comprising major plant pathogens. Both oomycetes and fungi express proteins able to interact with cellulose, a major component of plant and oomycete cell walls, through the presence of carbohydrate-binding module belonging to the family 1 (CBM1). Fungal CBM1-containing proteins were implicated in cellulose degradation whereas in oomycetes, the Cellulose Binding Elicitor Lectin (CBEL), a well-characterized CBM1-protein from Phytophthora parasitica, was implicated in cell wall integrity, adhesion to cellulosic substrates and induction of plant immunity. RESULTS To extend our knowledge on CBM1-containing proteins in oomycetes, we have conducted a comprehensive analysis on 60 fungi and 7 oomycetes genomes leading to the identification of 518 CBM1-containing proteins. In plant-interacting microorganisms, the larger number of CBM1-protein coding genes is expressed by necrotroph and hemibiotrophic pathogens, whereas a strong reduction of these genes is observed in symbionts and biotrophs. In fungi, more than 70% of CBM1-containing proteins correspond to enzymatic proteins in which CBM1 is associated with a catalytic unit involved in cellulose degradation. In oomycetes more than 90% of proteins are similar to CBEL in which CBM1 is associated with a non-catalytic PAN/Apple domain, known to interact with specific carbohydrates or proteins. Distinct Stramenopile genomes like diatoms and brown algae are devoid of CBM1 coding genes. A CBM1-PAN/Apple association 3D structural modeling was built allowing the identification of amino acid residues interacting with cellulose and suggesting the putative interaction of the PAN/Apple domain with another type of glucan. By Surface Plasmon Resonance experiments, we showed that CBEL binds to glycoproteins through galactose or N-acetyl-galactosamine motifs. CONCLUSIONS This study provides insight into the evolution and biological roles of CBM1-containing proteins from oomycetes. We show that while CBM1s from fungi and oomycetes are similar, they team up with different protein domains, either in proteins implicated in the degradation of plant cell wall components in the case of fungi or in proteins involved in adhesion to polysaccharidic substrates in the case of oomycetes. This work highlighted the unique role and evolution of CBM1 proteins in oomycete among the Stramenopile lineage.
Collapse
Affiliation(s)
- Mathieu Larroque
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Roland Barriot
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaire, Toulouse F-31000, France
- Centre National de la Recherche Scientifique; LMGM, Toulouse F-31000, France
| | - Arnaud Bottin
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Annick Barre
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
- Present address: Université de Toulouse, UPS, Laboratoire PHARMA-DEV IRD UMR 152, 35 Chemin des Maraîchers, Toulouse 31400, France
| | - Pierre Rougé
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
- Present address: Université de Toulouse, UPS, Laboratoire PHARMA-DEV IRD UMR 152, 35 Chemin des Maraîchers, Toulouse 31400, France
| | - Bernard Dumas
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Elodie Gaulin
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| |
Collapse
|
76
|
Dong S, Kong G, Qutob D, Yu X, Tang J, Kang J, Dai T, Wang H, Gijzen M, Wang Y. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:896-909. [PMID: 22397404 DOI: 10.1094/mpmi-01-12-0023-r] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Necrosis- and ethylene-inducing-like proteins (NLP) are widely distributed in eukaryotic and prokaryotic plant pathogens and are considered to be important virulence factors. We identified, in total, 70 potential Phytophthora sojae NLP genes but 37 were designated as pseudogenes. Sequence alignment of the remaining 33 NLP delineated six groups. Three of these groups include proteins with an intact heptapeptide (Gly-His-Arg-His-Asp-Trp-Glu) motif, which is important for necrosis-inducing activity, whereas the motif is not conserved in the other groups. In total, 19 representative NLP genes were assessed for necrosis-inducing activity by heterologous expression in Nicotiana benthamiana. Surprisingly, only eight genes triggered cell death. The expression of the NLP genes in P. sojae was examined, distinguishing 20 expressed and 13 nonexpressed NLP genes. Real-time reverse-transcriptase polymerase chain reaction results indicate that most NLP are highly expressed during cyst germination and infection stages. Amino acid substitution ratios (Ka/Ks) of 33 NLP sequences from four different P. sojae strains resulted in identification of positive selection sites in a distinct NLP group. Overall, our study indicates that expansion and pseudogenization of the P. sojae NLP family results from an ongoing birth-and-death process, and that varying patterns of expression, necrosis-inducing activity, and positive selection suggest that NLP have diversified in function.
Collapse
Affiliation(s)
- Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
El Hadrami A, El-Bebany AF, Yao Z, Adam LR, El Hadrami I, Daayf F. Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era. Int J Mol Sci 2012; 13:7237-7259. [PMID: 22837691 PMCID: PMC3397523 DOI: 10.3390/ijms13067237] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/17/2022] Open
Abstract
Plant-fungi and plant-oomycete interactions have been studied at the proteomic level for many decades. However, it is only in the last few years, with the development of new approaches, combined with bioinformatics data mining tools, gel staining, and analytical instruments, such as 2D-PAGE/nanoflow-LC-MS/MS, that proteomic approaches thrived. They allow screening and analysis, at the sub-cellular level, of peptides and proteins resulting from plants, pathogens, and their interactions. They also highlight post-translational modifications to proteins, e.g., glycosylation, phosphorylation or cleavage. However, many challenges are encountered during in planta studies aimed at stressing details of host defenses and fungal and oomycete pathogenicity determinants during interactions. Dissecting the mechanisms of such host-pathogen systems, including pathogen counter-defenses, will ensure a step ahead towards understanding current outcomes of interactions from a co-evolutionary point of view, and eventually move a step forward in building more durable strategies for management of diseases caused by fungi and oomycetes. Unraveling intricacies of more complex proteomic interactions that involve additional microbes, i.e., PGPRs and symbiotic fungi, which strengthen plant defenses will generate valuable information on how pathosystems actually function in nature, and thereby provide clues to solving disease problems that engender major losses in crops every year.
Collapse
Affiliation(s)
- Abdelbasset El Hadrami
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
- OMEX Agriculture Inc., P.O. Box 301, 290 Agri Park Road, Oak Bluff, Manitoba, R0G 1N0, Canada
| | - Ahmed F. El-Bebany
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt
| | - Zhen Yao
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
| | - Lorne R. Adam
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
| | - Ismailx El Hadrami
- Laboratoire de Biotechnologies, Protection et Valorisation des Ressources Végétales (Biotec-VRV), Faculté des Sciences Semlalia, B.P. 2390, Marrakech, 40 000, Morocco; E-Mail:
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, 222, Agriculture Building, Winnipeg, Manitoba, R3T 2N2, Canada; E-Mails: (A.E.H.); (A.F.E.-B.); (Z.Y.); (L.R.A.)
| |
Collapse
|
78
|
Lahrmann U, Zuccaro A. Opprimo ergo sum--evasion and suppression in the root endophytic fungus Piriformospora indica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:727-37. [PMID: 22352718 DOI: 10.1094/mpmi-11-11-0291] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The genetically tractable endophytic fungus Piriformospora indica is able to colonize the root cortex of a great variety of different plant species with beneficial effects to its hosts, and it represents a suitable model system to study symbiotic interactions. Recent cytological studies in barley and Arabidopsis showed that, upon penetration of the root, P. indica establishes a biotrophic interaction during which fungal cells are encased by the host plasma membrane. Large-scale transcriptional analyses of fungal and plant responses have shown that perturbance of plant hormone homeostasis and secretion of fungal lectins and other small proteins (effectors) may be involved in the evasion and suppression of host defenses at these early colonization steps. At later stages, P. indica is found more often in moribund host cells where it secretes a large variety of hydrolytic enzymes that degrade proteins. This strategy of colonizing plants is reminiscent of that of hemibiotrophic fungi, although a defined shift to necrotrophy with massive host cell death is missing. Instead, the association with the plant root leads to beneficial effects for the host such as growth promotion, increased resistance to root as well as leaf pathogens, and increased tolerance to abiotic stresses. This review describes current advances in understanding the components of the P. indica endophytic lifestyle from molecular and genomic analyses.
Collapse
Affiliation(s)
- Urs Lahrmann
- Max Planck Institute for Terrestrial Microbiology - Organismic Interations, Marburg, Germany
| | | |
Collapse
|
79
|
Savory EA, Adhikari BN, Hamilton JP, Vaillancourt B, Buell CR, Day B. mRNA-Seq analysis of the Pseudoperonospora cubensis transcriptome during cucumber (Cucumis sativus L.) infection. PLoS One 2012; 7:e35796. [PMID: 22545137 PMCID: PMC3335787 DOI: 10.1371/journal.pone.0035796] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/22/2012] [Indexed: 11/18/2022] Open
Abstract
Pseudoperonospora cubensis, an oomycete, is the causal agent of cucurbit downy mildew, and is responsible for significant losses on cucurbit crops worldwide. While other oomycete plant pathogens have been extensively studied at the molecular level, Ps. cubensis and the molecular basis of its interaction with cucurbit hosts has not been well examined. Here, we present the first large-scale global gene expression analysis of Ps. cubensis infection of a susceptible Cucumis sativus cultivar, ‘Vlaspik’, and identification of genes with putative roles in infection, growth, and pathogenicity. Using high throughput whole transcriptome sequencing, we captured differential expression of 2383 Ps. cubensis genes in sporangia and at 1, 2, 3, 4, 6, and 8 days post-inoculation (dpi). Additionally, comparison of Ps. cubensis expression profiles with expression profiles from an infection time course of the oomycete pathogen Phytophthora infestans on Solanum tuberosum revealed similarities in expression patterns of 1,576–6,806 orthologous genes suggesting a substantial degree of overlap in molecular events in virulence between the biotrophic Ps. cubensis and the hemi-biotrophic P. infestans. Co-expression analyses identified distinct modules of Ps. cubensis genes that were representative of early, intermediate, and late infection stages. Collectively, these expression data have advanced our understanding of key molecular and genetic events in the virulence of Ps. cubensis and thus, provides a foundation for identifying mechanism(s) by which to engineer or effect resistance in the host.
Collapse
Affiliation(s)
- Elizabeth A Savory
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | | | | | | | | | | |
Collapse
|
80
|
|
81
|
Uma B, Rani TS, Podile AR. Warriors at the gate that never sleep: non-host resistance in plants. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2141-52. [PMID: 22001579 DOI: 10.1016/j.jplph.2011.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/25/2023]
Abstract
The native resistance of most plant species against a wide variety of pathogens is known as non-host resistance (NHR), which confers durable protection to plant species. Only a few pathogens or parasites can successfully cause diseases. NHR is polygenic and appears to be linked with basal plant resistance, a form of elicited protection. Sensing of pathogens by plants is brought about through the recognition of invariant pathogen-associated molecular patterns (PAMPs) that trigger downstream defense signaling pathways. Race-specific resistance, (R)-gene mediated resistance, has been extensively studied and reviewed, while our knowledge of NHR has advanced only recently due to the improved access to excellent model systems. The continuum of the cell wall (CW) and the CW-plasma membrane (PM)-cytoskeleton plays a crucial role in perceiving external cues and activating defense signaling cascades during NHR. Based on the type of hypersensitive reaction (HR) triggered, NHR was classified into two types, namely type-I and type-II. Genetic analysis of Arabidopsis mutants has revealed important roles for a number of specific molecules in NHR, including the role of SNARE-complex mediated exocytosis, lipid rafts and vesicle trafficking. As might be expected, R-gene mediated resistance is found to overlap with NHR, but the extent to which the genes/pathways are common between these two forms of disease resistance is unknown. The present review focuses on the various components involved in the known mechanisms of NHR in plants with special reference to the role of CW-PM components.
Collapse
Affiliation(s)
- Battepati Uma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
82
|
Expression and purification of a biologically active Phytophthora parasitica cellulose binding elicitor lectin in Pichia pastoris. Protein Expr Purif 2011; 80:217-23. [DOI: 10.1016/j.pep.2011.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 11/22/2022]
|
83
|
Fabro G, Steinbrenner J, Coates M, Ishaque N, Baxter L, Studholme DJ, Körner E, Allen RL, Piquerez SJM, Rougon-Cardoso A, Greenshields D, Lei R, Badel JL, Caillaud MC, Sohn KH, Van den Ackerveken G, Parker JE, Beynon J, Jones JDG. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS Pathog 2011; 7:e1002348. [PMID: 22072967 PMCID: PMC3207932 DOI: 10.1371/journal.ppat.1002348] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 09/17/2011] [Indexed: 12/19/2022] Open
Abstract
Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (∼70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation. Hyaloperonospora arabidopsidis (Hpa) is an obligate biotroph whose population coevolves with its host, Arabidopsis thaliana. The Hpa isolate Emoy2 genome has been sequenced, allowing the discovery of dozens of secreted candidate effectors. We set out to assign functions to these candidate effectors, investigating if they suppress host defenses. We analyzed a sub-set of Hpa candidate effectors (HaRxLs) that carry the RxLR motif, using a bacterial system for in planta delivery. To our surprise, we found that most of the HaRxLs enhanced plant susceptibility on at least some accessions, while few decreased it. These phenotypes were mostly confirmed on Arabidopsis transgenic lines stably expressing HaRxLs that became more susceptible to compatible Hpa isolates. Furthermore, effectors that conferred enhanced virulence generally suppressed callose deposition, a hallmark of plant defense. This indicates that the “effectorome” of Hpa comprises multiple distinct effectors that can attenuate Arabidopsis immunity. We found that many HaRxLs did not confer enhanced virulence on all host accessions, and also that only ∼50% of the effectors that conferred enhanced Pst growth on Arabidopsis, were able to do so on turnip, a non-host for Hpa. Our data reveal interesting HaRxLs for detailed mechanistic investigation in future experiments.
Collapse
Affiliation(s)
- Georgina Fabro
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | - Jens Steinbrenner
- School of Life Sciences, Warwick University, Wellesbourne, United Kingdom
| | - Mary Coates
- School of Life Sciences, Warwick University, Wellesbourne, United Kingdom
| | - Naveed Ishaque
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | - Laura Baxter
- School of Life Sciences, Warwick University, Wellesbourne, United Kingdom
- Warwick Systems Biology, Warwick University, Coventry, United Kingdom
| | - David J. Studholme
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Evelyn Körner
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
- John Innes Centre, Norwich, United Kingdom
| | - Rebecca L. Allen
- School of Life Sciences, Warwick University, Wellesbourne, United Kingdom
| | | | - Alejandra Rougon-Cardoso
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
- Laboratorio Nacional de Genomica para la Biodiversidad, CINVESTAV Irapuato, Mexico
| | - David Greenshields
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
- National Research Council Canada, Plant Biotechnology Institute, Saskatoon, Canada
| | - Rita Lei
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | - Jorge L. Badel
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | | | - Kee-Hoon Sohn
- The Sainsbury Laboratory, John Innes Centre, Norwich, United Kingdom
| | - Guido Van den Ackerveken
- Plant-Microbe interactions, Department of Biology, Utrecht University, Utrecht, and Center for Biosystems Genomics, Wageningen, The Netherlands
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jim Beynon
- School of Life Sciences, Warwick University, Wellesbourne, United Kingdom
| | | |
Collapse
|
84
|
Takenaka S, Yamaguchi K, Masunaka A, Hase S, Inoue T, Takahashi H. Implications of oligomeric forms of POD-1 and POD-2 proteins isolated from cell walls of the biocontrol agent Pythium oligandrum in relation to their ability to induce defense reactions in tomato. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1972-9. [PMID: 21680053 DOI: 10.1016/j.jplph.2011.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/22/2011] [Accepted: 05/22/2011] [Indexed: 05/24/2023]
Abstract
The cell wall protein fraction (CWP) isolated from the biocontrol agent Pythium oligandrum induces defense reactions in tomato. CWP contains two novel elicitin-like proteins, POD-1 and POD-2, both with seven cysteines. To determine the essential structure in the defense-eliciting components of CWP, five fractions (F1, F2, F3, F4 and F5) were fractionated from CWP using cation chromatography and their components and disulfide bond compositions were analyzed. The expression levels of three defense-related genes (PR-6, LeCAS and PR-2b) were determined in tomato roots treated with each of the five fractions. Of the five fractions, F4 containing a heterohexamer of POD-1 and POD-2, and F5 containing a homohexamer of POD-1, both with disulfide bonds formed between all cysteine residues, induced the expression of three genes. F4 treatment also induced the accumulation of ethylene in tomato. The predicted three-dimensional structures of POD-1 and POD-2, and the results of SEC and MALDI-TOF MS analyses suggest that F4 consists of three POD-1 and POD-2 disulfide-bonded heterodimers that interleave into a hexameric ring through noncovalent association. These results suggest that this structure, which F5 also appears to form, is essential for stimulating defense responses in tomato.
Collapse
Affiliation(s)
- Shigehito Takenaka
- Memuro Research Station, National Agricultural Research Center for Hokkaido Region, National Agriculture and Food Research Organization, Hokkaido 082-0081, Japan.
| | | | | | | | | | | |
Collapse
|
85
|
Links MG, Holub E, Jiang RHY, Sharpe AG, Hegedus D, Beynon E, Sillito D, Clarke WE, Uzuhashi S, Borhan MH. De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes. BMC Genomics 2011; 12:503. [PMID: 21995639 PMCID: PMC3206522 DOI: 10.1186/1471-2164-12-503] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022] Open
Abstract
Background Albugo candida is a biotrophic oomycete that parasitizes various species of Brassicaceae, causing a disease (white blister rust) with remarkable convergence in behaviour to unrelated rusts of basidiomycete fungi. Results A recent genome analysis of the oomycete Hyaloperonospora arabidopsidis suggests that a reduction in the number of genes encoding secreted pathogenicity proteins, enzymes for assimilation of inorganic nitrogen and sulphur represent a genomic signature for the evolution of obligate biotrophy. Here, we report a draft reference genome of a major crop pathogen Albugo candida (another obligate biotrophic oomycete) with an estimated genome of 45.3 Mb. This is very similar to the genome size of a necrotrophic oomycete Pythium ultimum (43 Mb) but less than half that of H. arabidopsidis (99 Mb). Sequencing of A. candida transcripts from infected host tissue and zoosporangia combined with genome-wide annotation revealed 15,824 predicted genes. Most of the predicted genes lack significant similarity with sequences from other oomycetes. Most intriguingly, A. candida appears to have a much smaller repertoire of pathogenicity-related proteins than H. arabidopsidis including genes that encode RXLR effector proteins, CRINKLER-like genes, and elicitins. Necrosis and Ethylene inducing Peptides were not detected in the genome of A. candida. Putative orthologs of tat-C, a component of the twin arginine translocase system, were identified from multiple oomycete genera along with proteins containing putative tat-secretion signal peptides. Conclusion Albugo candida has a comparatively small genome amongst oomycetes, retains motility of sporangial inoculum, and harbours a much smaller repertoire of candidate effectors than was recently reported for H. arabidopsidis. This minimal gene repertoire could indicate a lack of expansion, rather than a reduction, in the number of genes that signify the evolution of biotrophy in oomycetes.
Collapse
Affiliation(s)
- Matthew G Links
- Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2 Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, Murat C, Martin F, Kogel KH. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog 2011; 7:e1002290. [PMID: 22022265 PMCID: PMC3192844 DOI: 10.1371/journal.ppat.1002290] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/14/2011] [Indexed: 11/18/2022] Open
Abstract
Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota) and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP), including several lectin-like proteins and members of a P. indica-specific gene family (DELD) with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.
Collapse
Affiliation(s)
- Alga Zuccaro
- Department of Organismic Interactions, Max-Planck Institute (MPI) for Terrestrial Microbiology, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Cannesan MA, Gangneux C, Lanoue A, Giron D, Laval K, Hawes M, Driouich A, Vicré-Gibouin M. Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches. ANNALS OF BOTANY 2011; 108:459-69. [PMID: 21807690 PMCID: PMC3158693 DOI: 10.1093/aob/mcr177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/17/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The oomycete Aphanomyces euteiches causes up to 80 % crop loss in pea (Pisum sativum). Aphanomyces euteiches invades the root system leading to a complete arrest of root growth and ultimately to plant death. To date, disease control measures are limited to crop rotation and no resistant pea lines are available. The present study aims to get a deeper understanding of the early oomycete-plant interaction at the tissue and cellular levels. METHODS Here, the process of root infection by A. euteiches on pea is investigated using flow cytometry and microscopic techniques. Dynamic changes in secondary metabolism are analysed with high-performance liquid chromatography with diode-array detection. KEY RESULTS Root infection is initiated in the elongation zone but not in the root cap and border cells. Border-cell production is significantly enhanced in response to root inoculation with changes in their size and morphology. The stimulatory effect of A. euteiches on border-cell production is dependent on the number of oospores inoculated. Interestingly, border cells respond to pathogen challenge by increasing the synthesis of the phytoalexin pisatin. CONCLUSIONS Distinctive responses to A. euteiches inoculation occur at the root tissue level. The findings suggest that root border cells in pea are involved in local defence of the root tip against A. euteiches. Root border cells constitute a convenient quantitative model to measure the molecular and cellular basis of plant-microbe interactions.
Collapse
Affiliation(s)
- Marc Antoine Cannesan
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IFRMP 23, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de Rouen, 76821 Mont Saint Aignan, France
| | - Christophe Gangneux
- Laboratoire BioSol, Esitpa, 3, rue du Tronquet, BP40118, 76134 Mont-Saint-Aignan Cedex, France
| | - Arnaud Lanoue
- Université François Rabelais de Tours. EA 2106 Plant Biotechnology and Biomolecules, 31 Avenue Monge, 37200 Tours, France
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 6035, Université François Rabelais, 37200 Tours, France
| | - Karine Laval
- Laboratoire BioSol, Esitpa, 3, rue du Tronquet, BP40118, 76134 Mont-Saint-Aignan Cedex, France
| | - Martha Hawes
- Department of Soil, Water, and Environmental Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IFRMP 23, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de Rouen, 76821 Mont Saint Aignan, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, IFRMP 23, Plate-forme de Recherche en Imagerie Cellulaire de Haute Normandie, Université de Rouen, 76821 Mont Saint Aignan, France
| |
Collapse
|
88
|
Novel cellulose-binding-domain protein in Phytophthora is cell wall localized. PLoS One 2011; 6:e23555. [PMID: 21887271 PMCID: PMC3160888 DOI: 10.1371/journal.pone.0023555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/20/2011] [Indexed: 11/19/2022] Open
Abstract
Cellulose binding domains (CBD) in the carbohydrate binding module family 1 (CBM1) are structurally conserved regions generally linked to catalytic regions of cellulolytic enzymes. While widespread amongst saprophytic fungi that subsist on plant cell wall polysaccharides, they are absent amongst most plant pathogenic fungal cellulases. A genome wide survey for CBM1 was performed on the highly destructive plant pathogen Phytophthora infestans, a fungal-like Stramenopile, to determine if it harbored cellulolytic enzymes with CBM1. Only five genes were found to encode CBM1, and none were associated with catalytic domains. Surveys of other genomes indicated that the CBM1-containing proteins, lacking other domains, represent a unique group of proteins largely confined to the Stramenopiles. Immunolocalization of one of these proteins, CBD1, indicated that it is embedded in the hyphal cell wall. Proteins with CBM1 domains can have plant host elicitor activity, but tests with Agrobacterium-mediated in planta expression and synthetic peptide infiltration failed to identify plant hypersensitive elicitation with CBD1. A structural basis for differential elicitor activity is proposed.
Collapse
|
89
|
Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BPHJ, Chen Z, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 2011; 7:e1002137. [PMID: 21829347 PMCID: PMC3145793 DOI: 10.1371/journal.ppat.1002137] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.
Collapse
Affiliation(s)
| | | | - Seogchan Kang
- Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Paola Veronese
- North Carolina State University, Raleigh, North Carolina, United States of America
| | - Scott E. Gold
- USDA-ARS and University of Georgia, Athens, Georgia, United States of America
| | | | - Zehua Chen
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Jongsun Park
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | | | - Dez J. Barbara
- University of Warwick, Wellesbourne, Warwick, United Kingdom
| | - Amy Anchieta
- USDA-ARS, Salinas, California, United States of America
| | | | | | | | - Zahi Atallah
- University of California, Davis, California, United States of America
| | | | - Zahi Paz
- USDA-ARS and University of Georgia, Athens, Georgia, United States of America
| | | | - Ryan J. Hayes
- USDA-ARS, Salinas, California, United States of America
| | - David I. Heiman
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Sarah Young
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Qiandong Zeng
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - Reinhard Engels
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | - James Galagan
- The Broad Institute, Cambridge, Massachusetts, United States of America
| | | | - Katherine F. Dobinson
- University of Western Ontario, London, Ontario, Canada
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Li-Jun Ma
- The Broad Institute, Cambridge, Massachusetts, United States of America
- University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
90
|
Gilroy EM, Taylor RM, Hein I, Boevink P, Sadanandom A, Birch PRJ. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. THE NEW PHYTOLOGIST 2011; 190:653-66. [PMID: 21348873 DOI: 10.1111/j.1469-8137.2011.03643.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Little is known about how effectors from filamentous eukaryotic plant pathogens manipulate host defences. Recently, Phytophthora infestans RXLR effector AVR3a has been shown to target and stabilize host E3 ligase CMPG1, which is required for programmed cell death (PCD) triggered by INF1. We investigated the involvement of CMPG1 in PCD elicited by perception of diverse pathogen proteins, and assessed whether AVR3a could suppress each. • The role of CMPG1 in PCD events was investigated using virus-induced gene silencing, and the ability of AVR3a to suppress each was determined by transient expression of natural forms (AVR3a(KI) and AVR3a(EM)) and a mutated form, AVR3a(KI/Y147del) , which is unable to interact with or stabilize CMPG1. • PCD triggered at the host plasma membrane by Cf-9/Avr9, Cf-4/Avr4, Pto/AvrPto or the oomycete pathogen-associated molecular pattern (PAMP), cellulose-binding elicitor lectin (CBEL), required CMPG1 and was suppressed by AVR3a, but not by the AVR3a(KI/Y147del) mutant. Conversely, PCD triggered by nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins R3a, R2 and Rx was independent of CMPG1 and unaffected by AVR3a. • CMPG1-dependent PCD follows perception of diverse pathogen elicitors externally or in association with the inner surface of the host plasma membrane. We argue that AVR3a targets CMPG1 to block initial signal transduction/regulatory processes following pathogen perception at the plasma membrane.
Collapse
Affiliation(s)
- Eleanor M Gilroy
- Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
91
|
Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson H, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon-Cardoso A, Ryden P, Torto-Alalibo T, Studholme D, Wang Y, Win J, Wood J, Clifton SW, Rogers J, Van den Ackerveken G, Jones JDG, McDowell JM, Beynon J, Tyler BM. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 2010; 330:1549-1551. [PMID: 21148394 PMCID: PMC3971456 DOI: 10.1126/science.1195203] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.
Collapse
Affiliation(s)
- Laura Baxter
- School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK
| | - Sucheta Tripathy
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Naveed Ishaque
- Sainsbury Laboratory, University of East Anglia, John Innes Centre, Norwich NR4 7UH, UK
| | - Nico Boot
- Centre for Biosystems Genomics, P.O. Box 98,6700 AB Wageningen, The Netherlands
| | - Adriana Cabral
- Centre for Biosystems Genomics, P.O. Box 98,6700 AB Wageningen, The Netherlands
| | - Eric Kemen
- Sainsbury Laboratory, University of East Anglia, John Innes Centre, Norwich NR4 7UH, UK
| | - Marco Thines
- Sainsbury Laboratory, University of East Anglia, John Innes Centre, Norwich NR4 7UH, UK
- Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt (Main), Germany
- Johann Wolfgang Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Siesmayerstr. 70, D-60323 Frankfurt (Main), Germany
| | - Audrey Ah-Fong
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Ryan Anderson
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Wole Badejoko
- School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK
| | | | - Jeffrey L Boore
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Marcus C Chibucos
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mary Coates
- School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK
| | - Paramvir Dehal
- Lawrence Berkeley National Laboratories, Berkeley, CA, 94720, USA
| | - Kim Delehaunty
- Genome Sequencing Centre, Washington University School of Medicine, St Louis, MO63110, USA
| | - Suomeng Dong
- Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
- Department of Plant Pathology, Nanjing Agricultural University, China
| | - Polly Downton
- School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK
| | - Bernard Dumas
- Université de Toulouse, UPS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Georgina Fabro
- Sainsbury Laboratory, University of East Anglia, John Innes Centre, Norwich NR4 7UH, UK
| | - Catrina Fronick
- Genome Sequencing Centre, Washington University School of Medicine, St Louis, MO63110, USA
| | | | - Lucinda Fulton
- Genome Sequencing Centre, Washington University School of Medicine, St Louis, MO63110, USA
| | - Elodie Gaulin
- Université de Toulouse, UPS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Surfaces Cellulaires et Signalisation chez les Végétaux, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, and Centre for BioSystems Genomics, NL-1-6708 PB Wageningen, The Netherlands
| | - Linda Hughes
- School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK
| | - Sean Humphray
- Sanger, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Rays H Y Jiang
- Laboratory of Phytopathology, Wageningen University, and Centre for BioSystems Genomics, NL-1-6708 PB Wageningen, The Netherlands
- The Broad Institute of MIT and Harvard, Cambridge, MA 02141-2023, USA
| | - Howard Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Sophien Kamoun
- Sainsbury Laboratory, University of East Anglia, John Innes Centre, Norwich NR4 7UH, UK
| | - Kim Kyung
- Genome Sequencing Centre, Washington University School of Medicine, St Louis, MO63110, USA
| | - Harold Meijer
- Laboratory of Phytopathology, Wageningen University, and Centre for BioSystems Genomics, NL-1-6708 PB Wageningen, The Netherlands
| | - Patrick Minx
- Genome Sequencing Centre, Washington University School of Medicine, St Louis, MO63110, USA
| | - Paul Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403-0212, USA
| | - Joanne Nelson
- Genome Sequencing Centre, Washington University School of Medicine, St Louis, MO63110, USA
| | - Vipa Phuntumart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403-0212, USA
| | - Dinah Qutob
- Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Anne Rehmany
- School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK
| | | | - Peter Ryden
- School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK
| | - Trudy Torto-Alalibo
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - David Studholme
- Sainsbury Laboratory, University of East Anglia, John Innes Centre, Norwich NR4 7UH, UK
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, China
| | - Joe Win
- Sainsbury Laboratory, University of East Anglia, John Innes Centre, Norwich NR4 7UH, UK
| | - Jo Wood
- Sanger, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sandra W Clifton
- Genome Sequencing Centre, Washington University School of Medicine, St Louis, MO63110, USA
| | - Jane Rogers
- Sanger, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Guido Van den Ackerveken
- Johann Wolfgang Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Siesmayerstr. 70, D-60323 Frankfurt (Main), Germany
| | - Jonathan D G Jones
- Sainsbury Laboratory, University of East Anglia, John Innes Centre, Norwich NR4 7UH, UK
| | - John M McDowell
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jim Beynon
- School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK
| | - Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
92
|
Raffaele S, Win J, Cano LM, Kamoun S. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics 2010; 11:637. [PMID: 21080964 PMCID: PMC3091767 DOI: 10.1186/1471-2164-11-637] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytophthora infestans is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The P. infestans genome experienced a repeat-driven expansion relative to the genomes of Phytophthora sojae and Phytophthora ramorum and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation. RESULTS We used in silico approaches to predict and describe the repertoire of P. infestans secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the P. sojae and P. ramorum genomes and (iii) is encoded by genes residing in gene sparse regions of P. infestans genome. Although including only ~3% of P. infestans genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced in planta. We highlight 19 plastic secretome genes induced in planta but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors. CONCLUSIONS This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.
Collapse
Affiliation(s)
- Sylvain Raffaele
- The Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
93
|
Arbelet D, Malfatti P, Simond-Côte E, Fontaine T, Desquilbet L, Expert D, Kunz C, Soulié MC. Disruption of the Bcchs3a chitin synthase gene in Botrytis cinerea is responsible for altered adhesion and overstimulation of host plant immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1324-1334. [PMID: 20672878 DOI: 10.1094/mpmi-02-10-0046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The fungal cell wall is a dynamic structure that protects the cell from different environmental stresses suggesting that wall synthesizing enzymes are of great importance for fungal virulence. Previously, we reported the isolation and characterization of a mutant in class III chitin synthase, Bcchs3a, in the phytopathogenic fungus Botrytis cinerea. We demonstrated that virulence of this mutant is severely impaired. Here, we describe the virulence phenotype of the cell-wall mutant Bcchs3a on the model plant Arabidopsis thaliana and analyze its virulence properties, using a variety of A. thaliana mutants. We found that mutant Bcchs3a is virulent on pad2 and pad3 mutant leaves defective in camalexin. Mutant Bcchs3a was not more susceptible towards camalexin than the wild-type strain but induced phytoalexin accumulation at the infection site on Col-0 plants. Moreover, this increase in camalexin was correlated with overexpression of the PAD3 gene observed as early as 18 h postinoculation. The infection process of the mutant mycelium was always delayed by 48 h, even on pad3 plants, probably because of lack of mycelium adhesion. No loss in virulence was found when Bcchs3a conidia were used as the inoculum source. Collectively, these data led us to assign a critical role to the BcCHS3a chitin synthase isoform, both in fungal virulence and plant defense response.
Collapse
|
94
|
Laluk K, Mengiste T. Necrotroph attacks on plants: wanton destruction or covert extortion? THE ARABIDOPSIS BOOK 2010; 8:e0136. [PMID: 22303261 PMCID: PMC3244965 DOI: 10.1199/tab.0136] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Necrotrophic pathogens cause major pre- and post-harvest diseases in numerous agronomic and horticultural crops inflicting significant economic losses. In contrast to biotrophs, obligate plant parasites that infect and feed on living cells, necrotrophs promote the destruction of host cells to feed on their contents. This difference underpins the divergent pathogenesis strategies and plant immune responses to biotrophic and necrotrophic infections. This chapter focuses on Arabidopsis immunity to necrotrophic pathogens. The strategies of infection, virulence and suppression of host defenses recruited by necrotrophs and the variation in host resistance mechanisms are highlighted. The multiplicity of intraspecific virulence factors and species diversity in necrotrophic organisms corresponds to variations in host resistance strategies. Resistance to host-specific necrotophs is monogenic whereas defense against broad host necrotrophs is complex, requiring the involvement of many genes and pathways for full resistance. Mechanisms and components of immunity such as the role of plant hormones, secondary metabolites, and pathogenesis proteins are presented. We will discuss the current state of knowledge of Arabidopsis immune responses to necrotrophic pathogens, the interactions of these responses with other defense pathways, and contemplate on the directions of future research.
Collapse
Affiliation(s)
- Kristin Laluk
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| | - Tesfaye Mengiste
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907
- Address correspondence to
and
| |
Collapse
|
95
|
Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP, Thines M, Win J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S, Fuerstenberg SI, Gachon CMM, Gaulin E, Govers F, Grenville-Briggs L, Horner N, Hostetler J, Jiang RHY, Johnson J, Krajaejun T, Lin H, Meijer HJG, Moore B, Morris P, Phuntmart V, Puiu D, Shetty J, Stajich JE, Tripathy S, Wawra S, van West P, Whitty BR, Coutinho PM, Henrissat B, Martin F, Thomas PD, Tyler BM, De Vries RP, Kamoun S, Yandell M, Tisserat N, Buell CR. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 2010; 11:R73. [PMID: 20626842 PMCID: PMC2926784 DOI: 10.1186/gb-2010-11-7-r73] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/02/2010] [Accepted: 07/13/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Pythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species. RESULTS The P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans. CONCLUSIONS Access to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae.
Collapse
Affiliation(s)
- C André Lévesque
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Henk Brouwer
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | | | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Carson Holt
- Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Room 2100, Salt Lake City, UT 84112-5330, USA
| | | | | | - Gregg P Robideau
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Marco Thines
- Biodiversity and Climate Research Centre, Georg-Voigt-Str 14-16, D-60325, Frankfurt, Germany
- Department of Biological Sciences, Insitute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University, Siesmayerstr. 70, D-60323 Frankfurt, Germany
| | - Joe Win
- The Sainsbury Laboratory, Norwich, NR4 7UH, UK
| | - Marcelo M Zerillo
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - Gordon W Beakes
- School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jeffrey L Boore
- Genome Project Solutions, 1024 Promenade Street, Hercules, CA 94547, USA
| | - Dana Busam
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Bernard Dumas
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR5546 CNRS-Université de Toulouse, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
| | - Steve Ferriera
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | | | | | - Elodie Gaulin
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR5546 CNRS-Université de Toulouse, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, NL-1-6708 PB, Wageningen, The Netherlands
- Centre for BioSystems Genomics (CBSG), PO Box 98, 6700 AB Wageningen, The Netherlands
| | - Laura Grenville-Briggs
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Neil Horner
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jessica Hostetler
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Rays HY Jiang
- The Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Justin Johnson
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine-Ramathibodi Hospital, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Haining Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Harold JG Meijer
- Laboratory of Phytopathology, Wageningen University, NL-1-6708 PB, Wageningen, The Netherlands
| | - Barry Moore
- Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Room 2100, Salt Lake City, UT 84112-5330, USA
| | - Paul Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Vipaporn Phuntmart
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Daniela Puiu
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Jyoti Shetty
- J Craig Venter Institute, 9704 Medical Center Dr., Rockville, MD 20850, USA
| | - Jason E Stajich
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
| | - Sucheta Tripathy
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, Blacksburg, VA 24061-0477, USA
| | - Stephan Wawra
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Pieter van West
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Brett R Whitty
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolecules Biologiques, UMR6098, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolecules Biologiques, UMR6098, CNRS, Univ. Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France
| | - Frank Martin
- USDA-ARS, 1636 East Alisal St, Salinias, CA, 93905, USA
| | - Paul D Thomas
- Evolutionary Systems Biology, SRI International, Room AE207, 333 Ravenswood Ave, Menlo Park, CA 94025, USA
| | - Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, Blacksburg, VA 24061-0477, USA
| | - Ronald P De Vries
- CBS-KNAW, Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | | | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, 15 North 2030 East, Room 2100, Salt Lake City, UT 84112-5330, USA
| | - Ned Tisserat
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
96
|
Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, Shibuya N, Newman MA, Molinaro A. Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 2009; 20:406-19. [DOI: 10.1093/glycob/cwp201] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
97
|
Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 2009; 85:1241-9. [DOI: 10.1007/s00253-009-2331-y] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 10/23/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
|
98
|
Hein I, Gilroy EM, Armstrong MR, Birch PRJ. The zig-zag-zig in oomycete-plant interactions. MOLECULAR PLANT PATHOLOGY 2009; 10:547-62. [PMID: 19523107 PMCID: PMC6640229 DOI: 10.1111/j.1364-3703.2009.00547.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In addition to a range of preformed barriers, plants defend themselves against microbial invasion by detecting conserved, secreted molecules, called pathogen-associated molecular patterns (PAMPs). PAMP-triggered immunity (PTI) is the first inducible layer of plant defence that microbial pathogens must navigate by the delivery of effector proteins that act to suppress or otherwise manipulate key components of resistance. Effectors may themselves be targeted by a further layer of defence, effector-triggered immunity (ETI), as their presence inside or outside host cells may be detected by resistance proteins. This 'zig-zag-zig' of tightly co-evolving molecular interactions determines the outcome of attempted infection. In this article, we consider the complex molecular interplay between plants and plant pathogenic oomycetes, drawing on recent literature to illustrate what is known about oomycete PAMPs and elicitors of defence responses, the effectors they utilize to suppress PTI, and the phenomenal molecular 'battle' between effector and resistance (R) genes that dictates the establishment or evasion of ETI.
Collapse
Affiliation(s)
- Ingo Hein
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | | | | |
Collapse
|
99
|
Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol 2009; 20:1025-31. [PMID: 19540353 DOI: 10.1016/j.semcdb.2009.06.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 11/20/2022]
Abstract
Research of the last decade has revealed that plant immunity consists of different layers of defense that have evolved by the co-evolutional battle of plants with its pathogens. Particular light has been shed on PAMP- (pathogen-associated molecular pattern) triggered immunity (PTI) mediated by pattern recognition receptors. Striking similarities exist between the plant and animal innate immune system that point for a common optimized mechanism that has evolved independently in both kingdoms. Pattern recognition receptors (PRRs) from both kingdoms consist of leucine-rich repeat receptor complexes that allow recognition of invading pathogens at the cell surface. In plants, PRRs like FLS2 and EFR are controlled by a co-receptor SERK3/BAK1, also a leucine-rich repeat receptor that dimerizes with the PRRs to support their function. Pathogens can inject effector proteins into the plant cells to suppress the immune responses initiated after perception of PAMPs by PRRs via inhibition or degradation of the receptors. Plants have acquired the ability to recognize the presence of some of these effector proteins which leads to a quick and hypersensitive response to arrest and terminate pathogen growth.
Collapse
|
100
|
Ferri M, Tassoni A, Franceschetti M, Righetti L, Naldrett MJ, Bagni N. Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 2009; 9:610-24. [PMID: 19132683 DOI: 10.1002/pmic.200800386] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polyphenols, including stilbenes and flavonoids, are an essential part of human diet and constitute one of the most abundant and ubiquitous groups of plant secondary metabolites, and their level is inducible by stress, fungal attack or biotic and abiotic elicitors. Proteomic analysis of Vitis vinifera (L.) cultivar (cv.) Barbera grape cell suspensions, showed that the amount of 73 proteins consistently changed in 50 microg/mL chitosan-treated samples compared with controls, or between the two controls, of which 56 were identified by MS analyses. In particular, de-novo synthesis and/or accumulation of stilbene synthase proteins were promoted by chitosan which also stimulated trans-resveratrol endogenous accumulation and decreased its release into the culture medium. No influence was shown on cis-resveratrol. There was no effect on the accumulation of total resveratrol mono-glucosides (trans- and cis-piceid and trans- and cis-resveratroloside). Throughout the observation period the upregulation of phenylalanine ammonia lyase, chalcone synthase, chalcone-flavanone isomerase (CHI) transcript expression levels well correlated with CHI protein amount and with the accumulation of anthocyanins. Chitosan treatment strongly increased the expression of eleven proteins of the pathogenesis related protein-10 family, as well as their mRNA levels.
Collapse
Affiliation(s)
- Maura Ferri
- Department of Experimental Evolutionary Biology and Interdepartmental Centre for Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|