51
|
She W, Baroux C, Grossniklaus U. Cell-Type Specific Chromatin Analysis in Whole-Mount Plant Tissues by Immunostaining. Methods Mol Biol 2018; 1675:443-454. [PMID: 29052206 DOI: 10.1007/978-1-4939-7318-7_25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chromatin organization in eukaryotes is highly dynamic, playing fundamental roles in regulating diverse nuclear processes including DNA replication, transcription, and repair. Thus, the analysis of chromatin organization is of great importance for the elucidation of chromatin-mediated biological processes. Immunostaining coupled with imaging is one of the most powerful tools for chromatin analysis at the cellular level. However, in plants, it is sometimes technically challenging to apply this method due to the inaccessibility of certain cell types and/or poor penetration of the reagents into plant tissues and cells. To circumvent these limitations, we developed a highly efficient protocol enabling the analysis of chromatin modifications and nuclear organization at the single-cell level with high resolution in whole-mount plant tissues. The main procedure consists of five steps: (1) tissue fixation; (2) dissection and embedding; (3) tissue processing; (4) antibody incubation; and (5) imaging. This protocol has been simplified for the processing of multiple samples without the need for laborious tissue sectioning. Additionally, it preserves cellular morphology and chromatin organization, allowing comparative analyses of chromatin organization between different cell types or developmental stages. This protocol was successfully used for various tissues of different plant species, including Arabidopsis thaliana, Oryza sativa (rice), and Zea mays (maize). Importantly, this method is very useful to analyze poorly accessible tissues, such as female meiocytes, gametophytes, and embryos.
Collapse
Affiliation(s)
- Wenjing She
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland.
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| |
Collapse
|
52
|
Martinez G, Köhler C. Role of small RNAs in epigenetic reprogramming during plant sexual reproduction. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:22-28. [PMID: 28088028 DOI: 10.1016/j.pbi.2016.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/29/2016] [Indexed: 05/07/2023]
Abstract
Sexual reproduction, the formation of a new individual from specialized reproductive cells after fertilization, involves the precise orchestration of different developmental and genomic processes. These processes are to a large extent governed by small RNAs (sRNAs) that either belong to the class of micro RNAs (miRNAs) or small-interfering RNAs (siRNAs). The latter are derived from transposable elements (TEs) and involved in genome defense and transgenerational inheritance of heterochromatin identity, ensuring genome stability. Remarkably, male and female gametophytes employ sRNAs to ensure reproductive success, but the underlying processes of their formation and action differ. Here, we review current advances in the field concerning the roles of sRNAs during flowering plant (angiosperm) reproduction and pinpoint where further research is required to solve open questions.
Collapse
Affiliation(s)
- German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
53
|
Wang G, Köhler C. Epigenetic processes in flowering plant reproduction. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:797-807. [PMID: 28062591 DOI: 10.1093/jxb/erw486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Seeds provide up to 70% of the energy intake of the human population, emphasizing the relevance of understanding the genetic and epigenetic mechanisms controlling seed formation. In flowering plants, seeds are the product of a double fertilization event, leading to the formation of the embryo and the endosperm surrounded by maternal tissues. Analogous to mammals, plants undergo extensive epigenetic reprogramming during both gamete formation and early seed development, a process that is supposed to be required to enforce silencing of transposable elements and thus to maintain genome stability. Global changes of DNA methylation, histone modifications, and small RNAs are closely associated with epigenome programming during plant reproduction. Here, we review current knowledge on chromatin changes occurring during sporogenesis and gametogenesis, as well as early seed development in major flowering plant models.
Collapse
Affiliation(s)
- Guifeng Wang
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
54
|
Satyaki PRV, Gehring M. DNA methylation and imprinting in plants: machinery and mechanisms. Crit Rev Biochem Mol Biol 2017; 52:163-175. [PMID: 28118754 DOI: 10.1080/10409238.2017.1279119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Imprinting is an epigenetic phenomenon in which genes are expressed selectively from either the maternal or paternal alleles. In plants, imprinted gene expression is found in a tissue called the endosperm. Imprinting is often set by a unique epigenomic configuration in which the maternal chromosomes are less DNA methylated than their paternal counterparts. In this review, we synthesize studies that paint a detailed molecular portrait of the distinctive endosperm methylome. We will also discuss the molecular machinery that shapes and modifies this methylome, and the role of DNA methylation in imprinting.
Collapse
Affiliation(s)
- P R V Satyaki
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA
| | - Mary Gehring
- a Whitehead Institute for Biomedical Research , Cambridge , MA , USA.,b Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
55
|
Ingouff M, Selles B, Michaud C, Vu TM, Berger F, Schorn AJ, Autran D, Van Durme M, Nowack MK, Martienssen RA, Grimanelli D. Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev 2017; 31:72-83. [PMID: 28115468 PMCID: PMC5287115 DOI: 10.1101/gad.289397.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/28/2016] [Indexed: 12/22/2022]
Abstract
Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabidopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Mathieu Ingouff
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Benjamin Selles
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Caroline Michaud
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Thiet M Vu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
| | - Andrea J Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Daphné Autran
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France
| | - Matthias Van Durme
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, Ghent University, B-9052 Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Robert A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Daniel Grimanelli
- Epigenetic Regulations and Seed Development, UMR232, Institut de Recherche pour le Développement (IRD), Université de Montpellier, 34394 Montpellier, France.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
56
|
Berenguer E, Bárány I, Solís MT, Pérez-Pérez Y, Risueño MC, Testillano PS. Inhibition of Histone H3K9 Methylation by BIX-01294 Promotes Stress-Induced Microspore Totipotency and Enhances Embryogenesis Initiation. FRONTIERS IN PLANT SCIENCE 2017; 8:1161. [PMID: 28706533 PMCID: PMC5489599 DOI: 10.3389/fpls.2017.01161] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/16/2017] [Indexed: 05/18/2023]
Abstract
Microspore embryogenesis is a process of cell reprogramming, totipotency acquisition and embryogenesis initiation, induced in vitro by stress treatments and widely used in plant breeding for rapid production of doubled-haploids, but its regulating mechanisms are still largely unknown. Increasing evidence has revealed epigenetic reprogramming during microspore embryogenesis, through DNA methylation, but less is known about the involvement of histone modifications. In this study, we have analyzed the dynamics and possible role of histone H3K9 methylation, a major repressive modification, as well as the effects on microspore embryogenesis initiation of BIX-01294, an inhibitor of histone methylation, tested for the first time in plants, in Brassica napus and Hordeum vulgare. Results revealed that microspore reprogramming and initiation of embryogenesis involved a low level of H3K9 methylation. With the progression of embryogenesis, methylation of H3K9 increased, correlating with gene expression profiles of BnHKMT SUVR4-like and BnLSD1-like (writer and eraser enzymes of H3K9me2). At early stages, BIX-01294 promoted cell reprogramming, totipotency and embryogenesis induction, while diminishing bulk H3K9 methylation. DNA methylation was also reduced by short-term BIX-01294 treatment. By contrast, long BIX-01294 treatments hindered embryogenesis progression, indicating that H3K9 methylation is required for embryo differentiation. These findings open up new possibilities to enhance microspore embryogenesis efficiency in recalcitrant species through pharmacological modulation of histone methylation by using BIX-01294.
Collapse
|
57
|
Gehring M, Satyaki PR. Endosperm and Imprinting, Inextricably Linked. PLANT PHYSIOLOGY 2017; 173:143-154. [PMID: 27895206 PMCID: PMC5210735 DOI: 10.1104/pp.16.01353] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 05/21/2023]
Abstract
Recent developments advance our understanding of imprinted gene expression in plants.
Collapse
Affiliation(s)
- Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 (M.G., P.R.S.); and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (M.G.)
| | - P R Satyaki
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 (M.G., P.R.S.); and
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (M.G.)
| |
Collapse
|
58
|
Morao AK, Bouyer D, Roudier F. Emerging concepts in chromatin-level regulation of plant cell differentiation: timing, counting, sensing and maintaining. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:27-34. [PMID: 27522467 DOI: 10.1016/j.pbi.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 05/04/2023]
Abstract
Plants are characterized by a remarkable phenotypic plasticity that meets the constraints of a sessile lifestyle and the need to adjust constantly to the environment. Recent studies have begun to reveal how chromatin dynamics participate in coordinating cell proliferation and differentiation in response to developmental cues as well as environmental fluctuations. In this review, we discuss the pivotal function of chromatin-based mechanisms in cell fate acquisition and maintenance, within as well as outside meristems. In particular, we highlight the emerging role of specific epigenomic factors and chromatin pathways in timing the activity of stem cells, counting cell divisions and positioning cell fate transitions by sensing phytohormone gradients.
Collapse
Affiliation(s)
- Ana Karina Morao
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | - Daniel Bouyer
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France.
| | - François Roudier
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France; Laboratoire de Reproduction et Développement des Plantes, Centre National de la Recherche Scientifique (CNRS) UMR5667, Institut National de la Recherche Agronomique (INRA) UMR879, Ecole Normale Supérieure de Lyon, Université Lyon 1 (UCBL), 46 Allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
59
|
Palovaara J, de Zeeuw T, Weijers D. Tissue and Organ Initiation in the Plant Embryo: A First Time for Everything. Annu Rev Cell Dev Biol 2016; 32:47-75. [PMID: 27576120 DOI: 10.1146/annurev-cellbio-111315-124929] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Land plants can grow to tremendous body sizes, yet even the most complex architectures are the result of iterations of the same developmental processes: organ initiation, growth, and pattern formation. A central question in plant biology is how these processes are regulated and coordinated to allow for the formation of ordered, 3D structures. All these elementary processes first occur in early embryogenesis, during which, from a fertilized egg cell, precursors for all major tissues and stem cells are initiated, followed by tissue growth and patterning. Here we discuss recent progress in our understanding of this phase of plant life. We consider the cellular basis for multicellular development in 3D and focus on the genetic regulatory mechanisms that direct specific steps during early embryogenesis.
Collapse
Affiliation(s)
- Joakim Palovaara
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Thijs de Zeeuw
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| |
Collapse
|
60
|
The CKI1 Histidine Kinase Specifies the Female Gametic Precursor of the Endosperm. Dev Cell 2016; 37:34-46. [PMID: 27046830 DOI: 10.1016/j.devcel.2016.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/20/2016] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Since the discovery of double fertilization, it has been recognized that flowering plants produce two highly dimorphic female gametes, the egg cell and central cell. These give rise, respectively, to the embryo and the endosperm, a nourishing tissue unique to flowering plants. Here we show that in Arabidopsis, endosperm formation requires the CYTOKININ INDEPENDENT 1 (CKI1) histidine kinase, an activator of the cytokinin signaling pathway, which specifies central cells and restricts egg cell fate. Dimorphism of the two adjacent gametes is mechanistically established in the syncytial embryo sac by spatially restricted CKI1 expression, followed by translocation of ER-localized CKI1 protein via nuclear migration. Cell specification by CKI1 likely involves activation of the cytokinin signaling pathway mediated by histidine phosphotransferases. Ectopic CKI1 expression generates non-propagating seeds with dual fertilized endosperms and no embryos. We conclude that CKI1-directed specification of the endosperm precursor central cell results in seeds containing an embryo and an endosperm.
Collapse
|
61
|
Derkacheva M, Liu S, Figueiredo DD, Gentry M, Mozgova I, Nanni P, Tang M, Mannervik M, Köhler C, Hennig L. H2A deubiquitinases UBP12/13 are part of the Arabidopsis polycomb group protein system. NATURE PLANTS 2016; 2:16126. [PMID: 27525512 DOI: 10.1038/nplants.2016.126] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/18/2016] [Indexed: 05/08/2023]
Abstract
Polycomb group (PcG) proteins form an epigenetic memory system in plants and animals, but interacting proteins are poorly known in plants. Here, we have identified Arabidopsis UBIQUITIN SPECIFIC PROTEASES (USP; UBP in plant and yeasts) 12 and 13 as partners of the plant-specific PcG protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1). UBP12 binds to chromatin of PcG target genes and is required for histone H3 lysine 27 trimethylation and repression of a subset of PcG target genes. Plants lacking UBP12 and UBP13 developed autonomous endosperm in the absence of fertilization. We have identified UBP12 and UBP13 as new proteins in the plant PcG regulatory network. UBP12 and UBP13 belong to an ancient gene family and represent plant homologues of metazoan USP7. We have found that Drosophila USP7 shares a function in heterochromatic gene repression with UBP12/13 and their homologue UBP26. In summary, we demonstrate that USP7-like proteins are essential for gene silencing in diverse genomic contexts.
Collapse
Affiliation(s)
- Maria Derkacheva
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, SE-75007 Uppsala, Sweden
- Department of Biology and Zurich-Basel Plant Science Centre, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Shujing Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, SE-75007 Uppsala, Sweden
| | - Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, SE-75007 Uppsala, Sweden
| | - Matthew Gentry
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, SE-75007 Uppsala, Sweden
| | - Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, SE-75007 Uppsala, Sweden
| | - Paolo Nanni
- Functional Genomics Centre Zurich, University of Zurich/ETH Zürich, CH-8057 Zurich, Switzerland
| | - Min Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, SE-75007 Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, SE-75007 Uppsala, Sweden
| |
Collapse
|
62
|
Del Toro-De León G, Lepe-Soltero D, Gillmor CS. Zygotic genome activation in isogenic and hybrid plant embryos. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:148-53. [PMID: 26802806 DOI: 10.1016/j.pbi.2015.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 05/24/2023]
Abstract
Zygotic genome activation (ZGA) is the onset of large-scale transcription that occurs after fertilization. In animal embryos, ZGA occurs after a period of transcriptional quiescence that varies between species. In plants, the timing of ZGA may also vary between species, and may or may not occur in a parent-of-origin dependent manner: some studies have shown a maternal bias in mRNA transcripts and gene activity in early embryogenesis, while other experiments have found the contribution of maternal and paternal genomes to be equal. In order to differentiate between maternal and paternal mRNAs, RNA sequencing studies of ZGA in plants have used embryos hybrid for polymorphic accessions. A recent genetic assay in Arabidopsis demonstrated significant variation in paternal allele activity between some hybrid combinations and isogenic embryos, as well as between different hybrid combinations, suggesting a possible source for conflicting results obtained by various experiments on paternal genome activation. We review recent literature on paternal genome activation studies in the zygote in both isogenic and hybrid embryos, and discuss possible explanations for the effects of hybridization on gene expression in early embryogenesis in plants.
Collapse
Affiliation(s)
- Gerardo Del Toro-De León
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Daniel Lepe-Soltero
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México.
| |
Collapse
|
63
|
Fultz D, Choudury SG, Slotkin RK. Silencing of active transposable elements in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:67-76. [PMID: 26164237 DOI: 10.1016/j.pbi.2015.05.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 05/04/2023]
Abstract
In plant genomes the vast majority of transposable elements (TEs) are found in a transcriptionally silenced state that is epigenetically propagated from generation to generation. Although the mechanism of this maintenance of silencing has been well studied, it is now clear that the pathways responsible for maintaining TEs in a silenced state differ from the pathways responsible for initially targeting the TE for silencing. Recently, attention in this field has focused on investigating the molecular mechanisms that initiate and establish TE silencing. Here we review the current models of how TEs are triggered for silencing, the data supporting each model, and the key future questions in this fast moving field.
Collapse
Affiliation(s)
- Dalen Fultz
- Department of Molecular Genetics, The Ohio State University, United States
| | - Sarah G Choudury
- Department of Molecular Genetics, The Ohio State University, United States
| | - R Keith Slotkin
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
64
|
García-Aguilar M, Gillmor CS. Zygotic genome activation and imprinting: parent-of-origin gene regulation in plant embryogenesis. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:29-35. [PMID: 26051360 DOI: 10.1016/j.pbi.2015.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 05/05/2023]
Abstract
Parent-of-origin dependent gene expression refers to differential activity of alleles inherited from the egg and sperm. In plants, zygotic genome activation (ZGA) and gene imprinting are two examples of this phenomenon, both of which occur during seed development. As its name implies, ZGA is a genome-wide process that occurs in embryos during the first few days after fertilization. Evidence exists that maternal alleles initially predominate during ZGA, although most genes also show some paternal activity. By contrast, imprinting can be defined as a bias in gene expression that lasts beyond the first few days of seed development. Hundreds of imprinted genes have been discovered in the endosperm, and a few have been described in the embryo. This review discusses recent advances in our understanding of the phenomena and mechanisms of ZGA and imprinting in seeds, with an emphasis on embryo development. Important unanswered questions and areas for future research are highlighted.
Collapse
Affiliation(s)
- Marcelina García-Aguilar
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato 36821, México
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato 36821, México.
| |
Collapse
|
65
|
Baroux C, Grossniklaus U. The Maternal-to-Zygotic Transition in Flowering Plants: Evidence, Mechanisms, and Plasticity. Curr Top Dev Biol 2015; 113:351-71. [PMID: 26358878 DOI: 10.1016/bs.ctdb.2015.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The maternal-to-zygotic transition (MZT) defines a developmental phase during which the embryo progressively emancipates itself from a developmental control relying largely on maternal information. The MZT is a functional readout of two processes: the clearance of maternally derived information and the de novo expression of the inherited, parental alleles enabled by zygotic genome activation (ZGA). In plants, for many years the debate about whether the MZT exists at all focused on the ZGA alone. However, several recent studies provide evidence for a progressive alleviation of the maternal control over embryogenesis that is correlated with a gradual ZGA, a process that is itself maternally controlled. Yet, several examples of zygotic genes that are expressed and/or functionally required early in embryogenesis demonstrate a certain flexibility in the dynamics and kinetics of the MZT among plant species and also intraspecific hybrids.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology & Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
66
|
Zhao P, Sun MX. The Maternal-to-Zygotic Transition in Higher Plants: Available Approaches, Critical Limitations, and Technical Requirements. Curr Top Dev Biol 2015; 113:373-98. [PMID: 26358879 DOI: 10.1016/bs.ctdb.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fertilization marks the turnover from the gametophyte to sporophyte generation in higher plants. After fertilization, sporophytic development undergoes genetic turnover from maternal to zygotic control: the maternal-to-zygotic transition (MZT). The MZT is thought to be critical for early embryogenesis; however, little is known about the time course or developmental impact of the MZT in higher plants. Here, we discuss what is known in the field and focus on techniques used in relevant studies and their limitations. Some significant questions and technical requirements for further investigations are also discussed.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- Department of Cell and Developmental Biology, College of Life Sciences, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China.
| |
Collapse
|
67
|
Pires ND. Seed evolution: parental conflicts in a multi-generational household. Biomol Concepts 2015; 5:71-86. [PMID: 25372743 DOI: 10.1515/bmc-2013-0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022] Open
Abstract
Seeds are multi-generational structures containing a small embryonic plant enclosed in layers of diverse parental origins. The evolution of seeds was a pinnacle in an evolutionary trend towards a progressive retention of embryos and gametes within parental tissue. This strategy, which dates back to the first land plants, allowed an increased protection and nourishing of the developing embryo. Flowering plants took parental control one step further with the evolution of a biparental endosperm that derives from a second parallel fertilization event. The endosperm directly nourishes the developing embryo and allows not only the maternal genes, but also paternal genes, to play an active role during seed development. The appearance of an endosperm set the conditions for the manifestation of conflicts of interest between maternal and paternal genomes over the allocation of resources to the developing embryos. As a consequence, a dynamic balance was established between maternal and paternal gene dosage in the endosperm, and maintaining a correct balance became essential to ensure a correct seed development. This balance was achieved in part by changes in the genetic constitution of the endosperm and through epigenetic mechanisms that allow a differential expression of alleles depending on their parental origin. This review discusses the evolutionary steps that resulted in the appearance of seeds and endosperm, and the epigenetic and genetic mechanisms that allow a harmonious coinhabitance of multiple generations within a single seed.
Collapse
|
68
|
Baroux C, Autran D. Chromatin dynamics during cellular differentiation in the female reproductive lineage of flowering plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:160-76. [PMID: 26031902 PMCID: PMC4502977 DOI: 10.1111/tpj.12890] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/12/2015] [Accepted: 05/22/2015] [Indexed: 05/05/2023]
Abstract
Sexual reproduction in flowering plants offers a number of remarkable aspects to developmental biologists. First, the spore mother cells - precursors of the plant reproductive lineage - are specified late in development, as opposed to precocious germline isolation during embryogenesis in most animals. Second, unlike in most animals where meiosis directly produces gametes, plant meiosis entails the differentiation of a multicellular, haploid gametophyte, within which gametic as well as non-gametic accessory cells are formed. These observations raise the question of the factors inducing and modus operandi of cell fate transitions that originate in floral tissues and gametophytes, respectively. Cell fate transitions in the reproductive lineage imply cellular reprogramming operating at the physiological, cytological and transcriptome level, but also at the chromatin level. A number of observations point to large-scale chromatin reorganization events associated with cellular differentiation of the female spore mother cells and of the female gametes. These include a reorganization of the heterochromatin compartment, the genome-wide alteration of the histone modification landscape, and the remodeling of nucleosome composition. The dynamic expression of DNA methyltransferases and actors of small RNA pathways also suggest additional, global epigenetic alterations that remain to be characterized. Are these events a cause or a consequence of cellular differentiation, and how do they contribute to cell fate transition? Does chromatin dynamics induce competence for immediate cellular functions (meiosis, fertilization), or does it also contribute long-term effects in cellular identity and developmental competence of the reproductive lineage? This review attempts to review these fascinating questions.
Collapse
Affiliation(s)
- Célia Baroux
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of ZürichZollikerstrasse 107, 8008, Zürich, Switzerland
- *For correspondence (e-mail )
| | - Daphné Autran
- Institut de Recherche pour le Développement (UMR DIADE 232), Centre National de la Recherche Scientifique (URL 5300), Université de Montpellier911 avenue Agropolis, 34000, Montpellier, France
| |
Collapse
|
69
|
Solís MT, El-Tantawy AA, Cano V, Risueño MC, Testillano PS. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley. FRONTIERS IN PLANT SCIENCE 2015; 6:472. [PMID: 26161085 PMCID: PMC4479788 DOI: 10.3389/fpls.2015.00472] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 05/18/2023]
Abstract
Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs.
Collapse
Affiliation(s)
- María-Teresa Solís
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| | - Ahmed-Abdalla El-Tantawy
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| | - Vanesa Cano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| | - María C Risueño
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| | - Pilar S Testillano
- Pollen Biotechnology of Crop Plants Group, Biological Research Center (CIB) - Spanish National Research Council (CSIC) Madrid, Spain
| |
Collapse
|
70
|
Sabir A. Xenia and metaxenia in grapes: differences in berry and seed characteristics of maternal grape cv. 'Narince' (Vitis vinifera L.) as influenced by different pollen sources. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:567-573. [PMID: 25251333 DOI: 10.1111/plb.12266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
Literature investigations indicate that the grapes have quite complex fertilisation biology. This complexity necessitates extensive investigations to obtain reliable knowledge for both well-organised hybridisation studies and maximising grape yield. Therefore, this study was conducted to investigate the influences of self-, free- and cross-pollination on berry and seed characteristics in grape. Five different pollination treatments were applied to 'Narince', the most widely known and popular white wine grape in Turkey. Pollen tests indicated that all the cultivars had satisfactory in vitro pollen viability percentages. Free-pollination produced a significantly higher percentage berry set. Among the pollinizers, the use of pollen of 'Thompson Seedless' and 'Cardinal' varieties resulted in higher berry set percentage in 'Narince'. The free-pollination was also superior in giving the highest weight, length and width of the berry, as well as number of seeds per berry. These findings revealed that there were strong xenial and metaxenial effects in the studied grape cultivars. Among the pollinizer cultivars, the most effective pollinator was 'Thompson Seedless'. Hence, for better berry set and quality, the use of 'Thompson Seedless' as a pollinizer may be an attractive option in both grape production and breeding studies.
Collapse
Affiliation(s)
- A Sabir
- Department of Horticulture, Faculty of Agriculture, University of Selcuk, Konya, Turkey
| |
Collapse
|
71
|
Schoft VK, Chumak N, Bindics J, Slusarz L, Twell D, Köhler C, Tamaru H. SYBR Green-activated sorting of Arabidopsis pollen nuclei based on different DNA/RNA content. PLANT REPRODUCTION 2015; 28:61-72. [PMID: 25676347 DOI: 10.1007/s00497-015-0258-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
Key message: Purification of pollen nuclei. Germ cell epigenetics is a critical topic in plants and animals. The male gametophyte (pollen) of flowering plants is an attractive model to study genetic and epigenetic reprogramming during sexual reproduction, being composed of only two sperm cells contained within, its companion, vegetative cell. Here, we describe a simple and efficient method to purify SYBR Green-stained sperm and vegetative cell nuclei of Arabidopsis thaliana pollen using fluorescence-activated cell sorting to analyze chromatin and RNA profiles. The method obviates generating transgenic lines expressing cell-type-specific fluorescence reporters and facilitates functional genomic analysis of various mutant lines and accessions. We evaluate the purity and quality of the sorted pollen nuclei and analyze the technique's molecular basis. Our results show that both DNA and RNA contents contribute to SYBR Green-activated nucleus sorting and RNA content differences impact on the separation of sperm and vegetative cell nuclei. We demonstrate the power of the approach by sorting wild-type and polyploid mutant sperm and vegetative cell nuclei from mitotic and meiotic mutants, which is not feasible using cell-type-specific transgenic reporters. Our approach should be applicable to pollen nuclei of crop plants and possibly to cell/nucleus types and cell cycle phases of different species containing substantially different amounts of DNA and/or RNA.
Collapse
Affiliation(s)
- Vera K Schoft
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030, Vienna, Austria,
| | | | | | | | | | | | | |
Collapse
|
72
|
Kim JY, Kwon YJ, Kim SI, Kim DY, Song JT, Seo HS. Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2. FRONTIERS IN PLANT SCIENCE 2015; 6:1161. [PMID: 26834755 PMCID: PMC4720742 DOI: 10.3389/fpls.2015.01161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/07/2015] [Indexed: 05/10/2023]
Abstract
Gene methylation is an important mechanism regulating gene expression and genome stability. Our previous work showed that methylation of the nitrate reductase (NR) gene NIA2 was dependent on chromomethylase 3 (CMT3). Here, we show that CMT3-mediated NIA2 methylation is regulated by ammonium in Arabidopsis thaliana. CHG sequences (where H can be A, T, or C) were methylated in NIA2 but not in NIA1, and ammonium [(NH4)2SO4] treatment completely blocked CHG methylation in NIA2. By contrast, ammonium had no effect on CMT3 methylation, indicating that ammonium negatively regulates CMT3-mediated NIA2 methylation without affecting CMT3 methylation. Ammonium upregulated NIA2 mRNA expression, which was consistent with the repression of NIA2 methylation by ammonium. Ammonium treatment also reduced the overall genome methylation level of wild-type Arabidopsis. Moreover, CMT3 bound to specific promoter and intragenic regions of NIA2. These combined results indicate that ammonium inhibits CMT3-mediated methylation of NIA2 and that of other target genes, and CMT3 selectively binds to target DNA sequences for methylation.
Collapse
Affiliation(s)
- Joo Yong Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Ye Jin Kwon
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Sung-Il Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Do Youn Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National UniversityDaegu, South Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
- Bio-MAX Institute, Seoul National UniversitySeoul, South Korea
- *Correspondence: Hak Soo Seo,
| |
Collapse
|
73
|
Huang J, Wang H, Liang W, Xie X, Guo G. Developmental expression of Arabidopsis methyltransferase genes MET1, DRM2, and CMT3. Mol Biol 2014. [DOI: 10.1134/s0026893314050057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
74
|
Yelagandula R, Stroud H, Holec S, Zhou K, Feng S, Zhong X, Muthurajan UM, Nie X, Kawashima T, Groth M, Luger K, Jacobsen SE, Berger F. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 2014; 158:98-109. [PMID: 24995981 DOI: 10.1016/j.cell.2014.06.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/14/2014] [Accepted: 05/14/2014] [Indexed: 11/18/2022]
Abstract
Histone variants play crucial roles in gene expression, genome integrity, and chromosome segregation. We report that the four H2A variants in Arabidopsis define different genomic features, contributing to overall genomic organization. The histone variant H2A.W marks heterochromatin specifically and acts in synergy with heterochromatic marks H3K9me2 and DNA methylation to maintain transposon silencing. In vitro, H2A.W enhances chromatin condensation by promoting fiber-to-fiber interactions via its conserved C-terminal motif. In vivo, H2A.W is required for heterochromatin condensation, demonstrating that H2A.W plays critical roles in heterochromatin organization. Similarities in conserved motifs between H2A.W and another H2A variant in metazoans suggest that plants and animals share common mechanisms for heterochromatin condensation.
Collapse
Affiliation(s)
- Ramesh Yelagandula
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore, Singapore
| | - Hume Stroud
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah Holec
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore
| | - Keda Zhou
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Suhua Feng
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xuehua Zhong
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Uma M Muthurajan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Xin Nie
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore, Singapore
| | - Tomokazu Kawashima
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore
| | - Martin Groth
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Howard Hughes Medical Institute, Colorado State University, Fort Collins, CO 80523, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Frédéric Berger
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, 117604 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore, Singapore.
| |
Collapse
|
75
|
Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 2014; 514:624-7. [PMID: 25209660 DOI: 10.1038/nature13620] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/27/2014] [Indexed: 11/08/2022]
Abstract
Zygotic genome activation in metazoans typically occurs several hours to a day after fertilization, and thus maternal RNAs and proteins drive early animal embryo development. In plants, despite several molecular studies of post-fertilization transcriptional activation, the timing of zygotic genome activation remains a matter of debate. For example, two recent reports that used different hybrid ecotype combinations for RNA sequence profiling of early Arabidopsis embryo transcriptomes came to divergent conclusions. One identified paternal contributions that varied by gene, but with overall maternal dominance, while the other found that the maternal and paternal genomes are transcriptionally equivalent. Here we assess paternal gene activation functionally in an isogenic background, by performing a large-scale genetic analysis of 49 EMBRYO DEFECTIVE genes and testing the ability of wild-type paternal alleles to complement phenotypes conditioned by mutant maternal alleles. Our results demonstrate that wild-type paternal alleles for nine of these genes are completely functional 2 days after pollination, with the remaining 40 genes showing partial activity beginning at 2, 3 or 5 days after pollination. Using our functional assay, we also demonstrate that different hybrid combinations exhibit significant variation in paternal allele activation, reconciling the apparently contradictory results of previous transcriptional studies. The variation in timing of gene function that we observe confirms that paternal genome activation does not occur in one early discrete step, provides large-scale functional evidence that maternal and paternal genomes make non-equivalent contributions to early plant embryogenesis, and uncovers an unexpectedly profound effect of hybrid genetic backgrounds on paternal gene activity.
Collapse
|
76
|
She W, Grimanelli D, Baroux C. An efficient method for quantitative, single-cell analysis of chromatin modification and nuclear architecture in whole-mount ovules in Arabidopsis. J Vis Exp 2014:e51530. [PMID: 24998753 PMCID: PMC4195603 DOI: 10.3791/51530] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In flowering plants, the somatic-to-reproductive cell fate transition is marked by the specification of spore mother cells (SMCs) in floral organs of the adult plant. The female SMC (megaspore mother cell, MMC) differentiates in the ovule primordium and undergoes meiosis. The selected haploid megaspore then undergoes mitosis to form the multicellular female gametophyte, which will give rise to the gametes, the egg cell and central cell, together with accessory cells. The limited accessibility of the MMC, meiocyte and female gametophyte inside the ovule is technically challenging for cytological and cytogenetic analyses at single cell level. Particularly, direct or indirect immunodetection of cellular or nuclear epitopes is impaired by poor penetration of the reagents inside the plant cell and single-cell imaging is demised by the lack of optical clarity in whole-mount tissues. Thus, we developed an efficient method to analyze the nuclear organization and chromatin modification at high resolution of single cell in whole-mount embedded Arabidopsis ovules. It is based on dissection and embedding of fixed ovules in a thin layer of acrylamide gel on a microscopic slide. The embedded ovules are subjected to chemical and enzymatic treatments aiming at improving tissue clarity and permeability to the immunostaining reagents. Those treatments preserve cellular and chromatin organization, DNA and protein epitopes. The samples can be used for different downstream cytological analyses, including chromatin immunostaining, fluorescence in situ hybridization (FISH), and DNA staining for heterochromatin analysis. Confocal laser scanning microscopy (CLSM) imaging, with high resolution, followed by 3D reconstruction allows for quantitative measurements at single-cell resolution.
Collapse
Affiliation(s)
- Wenjing She
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement (UMR 232), Centre National de la Recherche Scientifique (ERL 5300), Université de Montpellier II
| | - Célia Baroux
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich;
| |
Collapse
|
77
|
Luo A, Shi C, Zhang L, Sun MX. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. FRONTIERS IN PLANT SCIENCE 2014; 5:729. [PMID: 25566300 PMCID: PMC4267172 DOI: 10.3389/fpls.2014.00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/01/2014] [Indexed: 05/03/2023]
Abstract
Uniparental transcripts during embryogenesis may arise due to gamete delivery during fertilization or genomic imprinting. Such transcripts have been found in a number of plant species and appear critical for the early development of embryo or endosperm in seeds. Although the regulatory expression mechanism and function of these genes in embryogenesis require further elucidation, recent studies suggest stage-specific and highly dynamic features that might be essential for critical developmental events such as zygotic division and cell fate determination during embryogenesis. Here, we summarize the current work in this field and discuss future research directions.
Collapse
Affiliation(s)
- An Luo
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- College of Life Sciences, Yangtze UniversityJingzhou, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan UniversityWuhan, China
- *Correspondence: Meng-Xiang Sun, State Key Laboratory of Hybrid Rice, Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China e-mail:
| |
Collapse
|
78
|
She W, Baroux C. Chromatin dynamics during plant sexual reproduction. FRONTIERS IN PLANT SCIENCE 2014; 5:354. [PMID: 25104954 PMCID: PMC4109563 DOI: 10.3389/fpls.2014.00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 05/19/2023]
Abstract
Plants have the remarkable ability to establish new cell fates throughout their life cycle, in contrast to most animals that define all cell lineages during embryogenesis. This ability is exemplified during sexual reproduction in flowering plants where novel cell types are generated in floral tissues of the adult plant during sporogenesis, gametogenesis, and embryogenesis. While the molecular and genetic basis of cell specification during sexual reproduction is being studied for a long time, recent works disclosed an unsuspected role of global chromatin organization and its dynamics. In this review, we describe the events of chromatin dynamics during the different phases of sexual reproduction and discuss their possible significance particularly in cell fate establishment.
Collapse
Affiliation(s)
| | - Célia Baroux
- *Correspondence: Célia Baroux, Institute of Plant Biology – Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland e-mail:
| |
Collapse
|
79
|
Hou PQ, Lee YI, Hsu KT, Lin YT, Wu WZ, Lin JY, Nam TN, Fu SF. Functional characterization of Nicotiana benthamiana chromomethylase 3 in developmental programs by virus-induced gene silencing. PHYSIOLOGIA PLANTARUM 2014; 150:119-32. [PMID: 23683172 DOI: 10.1111/ppl.12071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 05/11/2023]
Abstract
DNA methylation is essential for normal developmental processes and genome stability. DNA methyltransferases are key enzymes catalyzing DNA methylation. Chromomethylase (CMT) genes are specific to the plant kingdom and encode chromodomain-containing methyltransferases. However, the function of CMT genes in plants remains elusive. In this study, we isolated and characterized a CMT gene from Nicotiana benthamiana, designated NbCMT3. Alignment of the NbCMT3 amino acid sequence with other plant CMT3s showed conservation of bromo-adjacent-homology and methyltransferase catalytic domains. We investigated the expression patterns of NbCMT3 and its function in developmental programs. NbCMT3 was expressed predominately in proliferating tissues such as apical shoots and young leaves. NbCMT3 protein showed a nuclear location, which could be related to its putative cellular functions. Knocking down NbCMT3 expression by virus-induced gene silencing revealed its vital role(s) in leaf morphogenesis. The formation of palisade cells was defective in NbCMT3-silenced plants as compared with controls. NbCMT3 has a role in developmental programs.
Collapse
Affiliation(s)
- Pin-Quan Hou
- Department of Biology, National Chunghua University of Education, No.1, Jin-De Road, 500, Changhua, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
80
|
She W, Grimanelli D, Rutowicz K, Whitehead MWJ, Puzio M, Kotlinski M, Jerzmanowski A, Baroux C. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 2013; 140:4008-19. [PMID: 24004947 DOI: 10.1242/dev.095034] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The life cycle of flowering plants is marked by several post-embryonic developmental transitions during which novel cell fates are established. Notably, the reproductive lineages are first formed during flower development. The differentiation of spore mother cells, which are destined for meiosis, marks the somatic-to-reproductive fate transition. Meiosis entails the formation of the haploid multicellular gametophytes, from which the gametes are derived, and during which epigenetic reprogramming takes place. Here we show that in the Arabidopsis female megaspore mother cell (MMC), cell fate transition is accompanied by large-scale chromatin reprogramming that is likely to establish an epigenetic and transcriptional status distinct from that of the surrounding somatic niche. Reprogramming is characterized by chromatin decondensation, reduction in heterochromatin, depletion of linker histones, changes in core histone variants and in histone modification landscapes. From the analysis of mutants in which the gametophyte fate is either expressed ectopically or compromised, we infer that chromatin reprogramming in the MMC is likely to contribute to establishing postmeiotic competence to the development of the pluripotent gametophyte. Thus, as in primordial germ cells of animals, the somatic-to-reproductive cell fate transition in plants entails large-scale epigenetic reprogramming.
Collapse
Affiliation(s)
- Wenjing She
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Leljak-Levanić D, Juranić M, Sprunck S. De novo zygotic transcription in wheat (Triticum aestivum L.) includes genes encoding small putative secreted peptides and a protein involved in proteasomal degradation. PLANT REPRODUCTION 2013; 26:267-85. [PMID: 23912470 DOI: 10.1007/s00497-013-0229-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/10/2013] [Indexed: 05/12/2023]
Abstract
Wheat is one of the world's most important crops, and increasing grain yield is a major challenge for the future. Still, our knowledge about the molecular machineries responsible for early post-fertilization events such as zygotic reprogramming, the initial cell-specification events during embryogenesis, and the intercellular communication between the early embryo and the developing endosperm is very limited. Here, we describe the identification of de novo transcribed genes in the wheat zygote. We used wheat ovaries of defined post-fertilization stages to isolate zygotes and early embryos, and identified genes that are specifically induced in these particular stages. Importantly, we observed that some of the zygotic-induced genes encode proteins with similarity to secreted signaling peptides such as TAPETUM DETERMINANT 1 and EGG APPARATUS 1, and to MATH-BTB proteins which are known substrate-binding adaptors for the Cullin3-based ubiquitin E3 ligase. This suggests that both cell-cell signaling and targeted proteasomal degradation may be important molecular events during zygote formation and the progression of early embryogenesis.
Collapse
Affiliation(s)
- Dunja Leljak-Levanić
- Department of Molecular Biology, Faculty of Science and Mathematics, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | | | | |
Collapse
|
82
|
Barcaccia G, Albertini E. Apomixis in plant reproduction: a novel perspective on an old dilemma. PLANT REPRODUCTION 2013; 26:159-79. [PMID: 23852378 PMCID: PMC3747320 DOI: 10.1007/s00497-013-0222-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/23/2013] [Indexed: 05/19/2023]
Abstract
Seed is one of the key factors of crop productivity. Therefore, a comprehension of the mechanisms underlying seed formation in cultivated plants is crucial for the quantitative and qualitative progress of agricultural production. In angiosperms, two pathways of reproduction through seed exist: sexual or amphimictic, and asexual or apomictic; the former is largely exploited by seed companies for breeding new varieties, whereas the latter is receiving continuously increasing attention from both scientific and industrial sectors in basic research projects. If apomixis is engineered into sexual crops in a controlled manner, its impact on agriculture will be broad and profound. In fact, apomixis will allow clonal seed production and thus enable efficient and consistent yields of high-quality seeds, fruits, and vegetables at lower costs. The development of apomixis technology is expected to have a revolutionary impact on agricultural and food production by reducing cost and breeding time, and avoiding the complications that are typical of sexual reproduction (e.g., incompatibility barriers) and vegetative propagation (e.g., viral transfer). However, the development of apomixis technology in agriculture requires a deeper knowledge of the mechanisms that regulate reproductive development in plants. This knowledge is a necessary prerequisite to understanding the genetic control of the apomictic process and its deviations from the sexual process. Our molecular understanding of apomixis will be greatly advanced when genes that are specifically or differentially expressed during embryo and embryo sac formation are discovered. In our review, we report the main findings on this subject by examining two approaches: i) analysis of the apomictic process in natural apomictic species to search for genes controlling apomixis and ii) analysis of gene mutations resembling apomixis or its components in species that normally reproduce sexually. In fact, our opinion is that a novel perspective on this old dilemma pertaining to the molecular control of apomixis can emerge from a cross-check among candidate genes in natural apomicts and a high-throughput analysis of sexual mutants.
Collapse
Affiliation(s)
- Gianni Barcaccia
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Emidio Albertini
- Department of Applied Biology, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
83
|
Abstract
Imprinted gene expression--the biased expression of alleles dependent on their parent of origin--is an important type of epigenetic gene regulation in flowering plants and mammals. In plants, genes are imprinted primarily in the endosperm, the triploid placenta-like tissue that surrounds and nourishes the embryo during its development. Differential allelic expression is correlated with active DNA demethylation by DNA glycosylases and repressive targeting by the Polycomb group proteins. Imprinted gene expression is one consequence of a large-scale remodeling to the epigenome, primarily directed at transposable elements, that occurs in gametes and seeds. This remodeling could be important for maintaining the epigenome in the embryo as well as for establishing gene imprinting.
Collapse
Affiliation(s)
- Mary Gehring
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142;
| |
Collapse
|
84
|
Lindner M, Simonini S, Kooiker M, Gagliardini V, Somssich M, Hohenstatt M, Simon R, Grossniklaus U, Kater MM. TAF13 interacts with PRC2 members and is essential for Arabidopsis seed development. Dev Biol 2013; 379:28-37. [PMID: 23506837 DOI: 10.1016/j.ydbio.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/24/2022]
Abstract
TBP-Associated Factors (TAFs) are components of complexes like TFIID, TFTC, SAGA/STAGA and SMAT that are important for the activation of transcription, either by establishing the basic transcription machinery or by facilitating histone acetylation. However, in Drosophila embryos several TAFs were shown to be associated with the Polycomb Repressive Complex 1 (PRC1), even though the role of this interaction remains unclear. Here we show that in Arabidopsis TAF13 interacts with MEDEA and SWINGER, both members of a plant variant of Polycomb Repressive Complex 2 (PRC2). PRC2 variants play important roles during the plant life cycle, including seed development. The taf13 mutation causes seed defects, showing embryo arrest at the 8-16 cell stage and over-proliferation of the endosperm in the chalazal region, which is typical for Arabidopsis PRC2 mutants. Our data suggest that TAF13 functions together with PRC2 in transcriptional regulation during seed development.
Collapse
Affiliation(s)
- Matias Lindner
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Zhou JJ, Liang Y, Niu QK, Chen LQ, Zhang XQ, Ye D. The Arabidopsis general transcription factor TFIIB1 (AtTFIIB1) is required for pollen tube growth and endosperm development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2205-18. [PMID: 23547107 PMCID: PMC3654413 DOI: 10.1093/jxb/ert078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pollen tube growth and endosperm development are important for fertilization and seed formation. The genetic mechanism of the processes remains poorly understood. This study reports the functional characterization of AtTFIIB1 in pollen tube growth and endosperm development. AtTFIIB1 shares 86% and 44% similarity with AtTFIIB2 and AtTFIIB3/AtpBRP2, respectively. It is expressed in many tissues including vegetative nuclei and generative cells of pollen grains and pollen tubes, endosperm, and embryos. It is thus different from AtTFIIB2, whose expression is not found in the endosperm and vegetative nucleus of mature pollen, and AtTFIIB3/AtpBRP2, which is expressed mostly in male gametophytes and weakly in seeds. Mutations in AtTFIIB1 caused a drastic retardation of pollen tube growth and endosperm development, as well as impaired pollen tube guidance and reception, leading to disruption of fertilization and seed development. Expression of AtTFIIB2 driven by the AtTFIIB1 promoter could restore the defective pollen tube growth, guidance, and reception completely, but only partially recovered the seed development in attfiib1, whilst expression of AtTFIIB3/AtpBRP2 driven by the AtTFIIB1 promoter could rescue only the defective attfiib1 seeds. All these results suggest that AtTFIIB1 plays important roles in pollen tube growth, guidance, and reception as well as endosperm development and is partially functionally different from AtTFIIB2 and AtTFIIB3/AtpBRP2.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yan Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qian-Kun Niu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
- National Center for Plant Gene Research (Beijing), Beijing 100101, PR China
- * To whom correspondence should be addressed.
| |
Collapse
|
86
|
Abiko M, Maeda H, Tamura K, Hara-Nishimura I, Okamoto T. Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or down-regulated genes in zygotes after fertilization. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1927-40. [PMID: 23570690 PMCID: PMC3638821 DOI: 10.1093/jxb/ert054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In angiosperms, fertilization and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries; therefore, these processes are poorly elucidated. In this study, microarray-based transcriptome analyses were conducted on rice sperm cells, egg cells, and zygotes isolated from flowers to identify candidate genes involved in gametic and/or early zygotic development. Cell type-specific transcriptomes were obtained, and up- or down-regulated genes in zygotes after fertilization were identified, in addition to genes enriched in male and female gametes. A total of 325 putatively up-regulated and 94 putatively down-regulated genes in zygotes were obtained. Interestingly, several genes encoding homeobox proteins or transcription factors were identified as highly up-regulated genes after fertilization, and the gene ontology for up-regulated genes was highly enriched in functions related to chromatin/DNA organization and assembly. Because a gene encoding methyltransferase 1 was identified as a highly up-regulated gene in zygotes after fertilization, the effect of an inhibitor of this enzyme on zygote development was monitored. The inhibitor appeared partially to affect polarity or division asymmetry in rice zygotes, but it did not block normal embryo generation.
Collapse
Affiliation(s)
- Mafumi Abiko
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| | - Hiroki Maeda
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| | - Kentaro Tamura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Ikuko Hara-Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192–0397, Japan
| |
Collapse
|
87
|
Schmidt A, Wöhrmann HJP, Raissig MT, Arand J, Gheyselinck J, Gagliardini V, Heichinger C, Walter J, Grossniklaus U. The Polycomb group protein MEDEA and the DNA methyltransferase MET1 interact to repress autonomous endosperm development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:776-87. [PMID: 23146178 DOI: 10.1111/tpj.12070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/04/2012] [Accepted: 11/07/2012] [Indexed: 05/14/2023]
Abstract
In flowering plants, double fertilization of the female gametes, the egg and the central cell, initiates seed development to give rise to a diploid embryo and the triploid endosperm. In the absence of fertilization, the FERTILIZATION-INDEPENDENT SEED Polycomb Repressive Complex 2 (FIS-PRC2) represses this developmental process by histone methylation of certain target genes. The FERTILIZATION-INDEPENDENT SEED (FIS) class genes MEDEA (MEA) and FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) encode two of the core components of this complex. In addition, DNA methylation establishes and maintains the repression of gene activity, for instance via DNA METHYLTRANSFERASE1 (MET1), which maintains methylation of symmetric CpG residues. Here, we demonstrate that Arabidopsis MET1 interacts with MEA in vitro and in a yeast two-hybrid assay, similar to the previously identified interaction of the mammalian homologues DNMT1 and EZH2. MET1 and MEA share overlapping expression patterns in reproductive tissues before and after fertilization, a prerequisite for an interaction in vivo. Importantly, a much higher percentage of central cells initiate endosperm development in the absence of fertilization in mea-1/MEA; met1-3/MET1 as compared to mea-1/MEA mutant plants. In addition, DNA methylation at the PHERES1 and MEA loci, imprinted target genes of the FIS-PRC2, was affected in the mea-1 mutant compared with wild-type embryos. In conclusion, our data suggest a mechanistic link between two major epigenetic pathways involved in histone and DNA methylation in plants by physical interaction of MET1 with the FIS-PRC2 core component MEA. This concerted action is relevant for the repression of seed development in the absence of fertilization.
Collapse
Affiliation(s)
- Anja Schmidt
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, CH-8008, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Benoit M, Layat E, Tourmente S, Probst AV. Heterochromatin dynamics during developmental transitions in Arabidopsis - a focus on ribosomal DNA loci. Gene 2013; 526:39-45. [PMID: 23410919 DOI: 10.1016/j.gene.2013.01.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/23/2013] [Indexed: 01/01/2023]
Abstract
The Arabidopsis chromosomes contain conspicuous heterochromatin domains comprising the repetitive 45S and 5S ribosomal DNA loci as well as centromeric and pericentromeric repeats that organize into chromocenters during interphase. During developmental phase transitions such as seed maturation, germination, seedling growth and flowering that require large-scale reprogramming of gene expression patterns, the organization of repetitive sequences into chromocenters dynamically changes. Here we illustrate recent studies that shed light on the heterochromatin dynamics in cotyledons, the first aerial tissues preformed in the embryo, and in true leaves. We will summarize available data for the 5S rDNA repeat loci, in particular their chromatin organization and expression dynamics during the first days of post-germination development, and discuss how the plant accommodates 5S rRNA transcription during large-scale chromatin reorganization events.
Collapse
Affiliation(s)
- Matthias Benoit
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 24 Avenue des Landais, BP 80026, 63171 Aubière Cedex, France.
| | | | | | | |
Collapse
|
89
|
Feng X, Zilberman D, Dickinson H. A Conversation across Generations: Soma-Germ Cell Crosstalk in Plants. Dev Cell 2013; 24:215-25. [DOI: 10.1016/j.devcel.2013.01.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 11/15/2022]
|
90
|
Grimanelli D, Roudier F. Epigenetics and development in plants: green light to convergent innovations. Curr Top Dev Biol 2013; 104:189-222. [PMID: 23587242 DOI: 10.1016/b978-0-12-416027-9.00006-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are sessile organisms that must constantly adjust to their environment. In contrast to animals, plant development mainly occurs postembryonically and is characterized by continuous growth and extensive phenotypic plasticity. Chromatin-level regulation of transcriptional patterns plays a central role in the ability of plants to adapt to internal and external cues. Here, we review selected examples of chromatin-based mechanisms involved in the regulation of key aspects of plant development. These illustrate that, in addition to mechanisms conserved between plants and animals, plant-specific innovations lead to particular chromatin dynamics related to their developmental and life strategies.
Collapse
Affiliation(s)
- Daniel Grimanelli
- Institut de Recherche pour le Développement, UMR 232, Université de Montpellier II, Montpellier, France.
| | | |
Collapse
|
91
|
Springer NM. Epigenetics and crop improvement. Trends Genet 2012; 29:241-7. [PMID: 23128009 DOI: 10.1016/j.tig.2012.10.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/08/2012] [Accepted: 10/08/2012] [Indexed: 11/28/2022]
Abstract
There is considerable excitement about the potential for epigenetic information to contribute to heritable variation in many species. Our understanding of the molecular mechanisms of epigenetic inheritance is rapidly growing, and it is now possible to profile the epigenome at high resolution. Epigenetic information plays a role in developmental gene regulation, response to the environment, and in natural variation of gene expression levels. Because of these central roles, there is the potential for epigenetics to play a role in crop improvement strategies including the selection for favorable epigenetic states, creation of novel epialleles, and regulation of transgene expression. In this review we consider the potential, and the limitations, of epigenetic variation in crop improvement.
Collapse
Affiliation(s)
- Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
92
|
Martínez G, Slotkin RK. Developmental relaxation of transposable element silencing in plants: functional or byproduct? CURRENT OPINION IN PLANT BIOLOGY 2012; 15:496-502. [PMID: 23022393 DOI: 10.1016/j.pbi.2012.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/12/2012] [Accepted: 09/05/2012] [Indexed: 05/14/2023]
Abstract
In plants, the developmental relaxation of transposable element silencing (DRTS) occurs at distinct spatial and temporal points in the normal development of a wild-type individual. Several examples of DRTS have now been described, including in maize shoot apical meristems, and in Arabidopsis meiocytes, endosperm and nurse cells of gametophytes. In this opinion article, we review the known DRTS events and speculate on the function, if any, of DRTS in plants.
Collapse
Affiliation(s)
- Germán Martínez
- The Department of Molecular Genetics and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
93
|
Wu JJ, Peng XB, Li WW, He R, Xin HP, Sun MX. Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling during the maturation of Arabidopsis female gametes. Dev Cell 2012; 23:1043-58. [PMID: 23085019 DOI: 10.1016/j.devcel.2012.09.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 06/11/2012] [Accepted: 09/17/2012] [Indexed: 12/27/2022]
Abstract
Cell-to-cell communication in embryo sacs is thought to regulate the development of female gametes in flowering plants, but the details remain poorly understood. Here, we report a mitochondrial protein, GAMETE CELL DEFECTIVE 1 (GCD1), enriched in gametophytes that is essential for final maturation of female gametes. Using Arabidopsis gcd1 mutants, we found that final maturation of the egg and central cells is not required for double fertilization but is necessary for embryogenesis initiation and endosperm development. Furthermore, nonautonomous effects, observed when GCD1 or AAC2 function is disrupted, suggest that mitochondrial function influences reciprocal signaling between central and egg cells to regulate maturation of the partner (egg or central) cell. Our findings confirm that cell-to-cell communication is important in functional maturation of female gametic cells and suggest that both egg and central cells sense and transmit their mitochondrial metabolic status as an important cue that regulates the coordination of gamete maturation.
Collapse
Affiliation(s)
- Jian-Jun Wu
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Plant Hybrid Rice, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
94
|
Ngo QA, Baroux C, Guthörl D, Mozerov P, Collinge MA, Sundaresan V, Grossniklaus U. The Armadillo repeat gene ZAK IXIK promotes Arabidopsis early embryo and endosperm development through a distinctive gametophytic maternal effect. THE PLANT CELL 2012; 24:4026-43. [PMID: 23064319 PMCID: PMC3517234 DOI: 10.1105/tpc.112.102384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The proper balance of parental genomic contributions to the fertilized embryo and endosperm is essential for their normal growth and development. The characterization of many gametophytic maternal effect (GME) mutants affecting seed development indicates that there are certain classes of genes with a predominant maternal contribution. We present a detailed analysis of the GME mutant zak ixik (zix), which displays delayed and arrested growth at the earliest stages of embryo and endosperm development. ZIX encodes an Armadillo repeat (Arm) protein highly conserved across eukaryotes. Expression studies revealed that ZIX manifests a GME through preferential maternal expression in the early embryo and endosperm. This parent-of-origin-dependent expression is regulated by neither the histone and DNA methylation nor the DNA demethylation pathways known to regulate some other GME mutants. The ZIX protein is localized in the cytoplasm and nucleus of cells in reproductive tissues and actively dividing root zones. The maternal ZIX allele is required for the maternal expression of miniseed3. Collectively, our results reveal a reproductive function of plant Arm proteins in promoting early seed growth, which is achieved through a distinct GME of ZIX that involves mechanisms for maternal allele-specific expression that are independent of the well-established pathways.
Collapse
Affiliation(s)
- Quy A. Ngo
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
- Section of Plant Biology, University of California, Davis, California 95616
- Address correspondence to
| | - Celia Baroux
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Daniela Guthörl
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Peter Mozerov
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Margaret A. Collinge
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Venkatesan Sundaresan
- Section of Plant Biology, University of California, Davis, California 95616
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Ueli Grossniklaus
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
95
|
Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 2012; 337:1360-1364. [PMID: 22984074 PMCID: PMC4034762 DOI: 10.1126/science.1224839] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Arabidopsis thaliana central cell, the companion cell of the egg, undergoes DNA demethylation before fertilization, but the targeting preferences, mechanism, and biological significance of this process remain unclear. Here, we show that active DNA demethylation mediated by the DEMETER DNA glycosylase accounts for all of the demethylation in the central cell and preferentially targets small, AT-rich, and nucleosome-depleted euchromatic transposable elements. The vegetative cell, the companion cell of sperm, also undergoes DEMETER-dependent demethylation of similar sequences, and lack of DEMETER in vegetative cells causes reduced small RNA-directed DNA methylation of transposons in sperm. Our results demonstrate that demethylation in companion cells reinforces transposon methylation in plant gametes and likely contributes to stable silencing of transposable elements across generations.
Collapse
Affiliation(s)
- Christian A. Ibarra
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Xiaoqi Feng
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Vera K. Schoft
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Rie Uzawa
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Jessica A. Rodrigues
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Assaf Zemach
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Nina Chumak
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Adriana Machlicova
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Toshiro Nishimura
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Denisse Rojas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Robert L. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Hisashi Tamaru
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Daniel Zilberman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
96
|
Xin HP, Zhao J, Sun MX. The maternal-to-zygotic transition in higher plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:610-5. [PMID: 22731521 DOI: 10.1111/j.1744-7909.2012.01138.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
During early embryogenesis in mammals and higher plants, the maternal-to-zygotic transition (MZT) marks the turnover of developmental control from maternal products to de novo zygotic genome transcripts. Intensive studies in animals indicate that early embryonic development is largely maternally controlled. In recent years, the MZT has drawn the attention of botanists, as it is important for understanding the mechanism of embryogenesis and hybrid vigor. In this study, we present a brief overview of some aspects of the MZT in flowering plants. Based on what we have learned from Nicotiana tabacum, we hypothesize that the MZT occurs before zygotic cell division and that the development of the fertilized egg cell in flowering plants can be divided into two phases: the zygote stage, which is mainly controlled maternally, and the one-celled proembryo stage, in which zygotic genome activation (ZGA) occurs and is required for zygote division.
Collapse
Affiliation(s)
- Hai-Ping Xin
- Department of Cell and Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
97
|
Niedojadło K, Pięciński S, Smoliński DJ, Bednarska-Kozakiewicz E. Ribosomal RNA of Hyacinthus orientalis L. female gametophyte cells before and after fertilization. PLANTA 2012; 236:171-84. [PMID: 22398640 PMCID: PMC3382635 DOI: 10.1007/s00425-012-1618-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/16/2012] [Indexed: 05/25/2023]
Abstract
The nucleolar activity of Hyacinthus orientalis L. embryo sac cells was investigated. The distributions of nascent pre-rRNA (ITS1), 26S rRNA and of the 5S rRNA and U3 snoRNA were determined using fluorescence in situ hybridization (FISH). Our results indicated the different rRNA metabolism of the H. orientalis female gametophyte cells before and after fertilization. In the target cells for the male gamete, i.e., the egg cell and the central cell whose activity is silenced in the mature embryo sac (Pięciński et al. in Sex Plant Reprod 21:247-257, 2008; Niedojadło et al. in Planta doi: 10.1007/s00425-012-1599-9 , 2011), rRNA metabolism is directed at the accumulation of rRNPs in the cytoplasm and immature transcripts in the nucleolus. In both cells, fertilization initiates the maturation of the maternal pre-rRNA and the expression of zygotic rDNA. The resumption of rRNA transcription observed in the hyacinth zygote indicates that in plants, there is a different mechanism for the regulation of RNA Pol I activity than in animals. In synergids and antipodal cells, which have somatic functions, the nucleolar activity is correlated with the metabolic activity of these cells and changes in successive stages of embryo sac development.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gagarina 9, 87-100, Toruń, Poland.
| | | | | | | |
Collapse
|
98
|
Niedojadło K, Pięciński S, Smoliński DJ, Bednarska-Kozakiewicz E. Transcriptional activity of Hyacinthus orientalis L. female gametophyte cells before and after fertilization. PLANTA 2012; 236:153-69. [PMID: 22293855 PMCID: PMC3382649 DOI: 10.1007/s00425-012-1599-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/05/2012] [Indexed: 05/19/2023]
Abstract
We characterized three phases of Hyacinthus orientalis L. embryo sac development, in which the transcriptional activity of the cells differed using immunolocalization of incorporated 5′-bromouracil, the total RNA polymerase II pool and the hypo- (initiation) and hyperphosphorylated (elongation) forms of RNA Pol II. The first stage, which lasts from the multinuclear stage to cellularization, is a period of high transcriptional activity, probably related to the maturation of female gametophyte cells. The second stage, encompassing the period of embryo sac maturity and the progamic phase, involves the transcriptional silencing of cells that will soon undergo fusion with male gametes. During this period in the hyacinth egg cell, there are almost no newly formed transcripts, and only a small pool of RNA Pol II is present in the nucleus. The transcriptional activity of the central cell is only slightly higher than that observed in the egg cell. The post-fertilization stage is related to the transcriptional activation of the zygote and the primary endosperm cell. The rapid increase in the pool of newly formed transcripts in these cells is accompanied by an increase in the pool of RNA Pol II, and the pattern of enzyme distribution in the zygote nucleus is similar to that observed in the somatic cells of the ovule. Our data, together with the earlier results of Pięciński et al. (2008), indicate post-fertilization synthesis and the maturation of numerous mRNA transcripts, suggesting that fertilization in H. orientalis induces the activation of the zygote and endosperm genomes.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cell Biology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland.
| | | | | | | |
Collapse
|
99
|
Gutierrez-Marcos JF, Dickinson HG. Epigenetic reprogramming in plant reproductive lineages. PLANT & CELL PHYSIOLOGY 2012; 53:817-23. [PMID: 22505692 DOI: 10.1093/pcp/pcs052] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Monoecious flowering plants produce both microgametophytes (pollen) and megagametophytes (embryo sacs) containing the male and female gametes, respectively, which participate in double fertilization. Much is known about cellular and developmental processes giving rise to these reproductive structures and the formation of gametes. However, little is known about the role played by changes in the epigenome in dynamically shaping these defining events during plant sexual reproduction. This has in part been hampered by the inaccessibility of these structures-especially the female gametes, which are embedded within the female reproductive tissues of the plant sporophyte. However, with the recent development of new cellular isolation technologies that can be coupled to next-generation sequencing, a new wave of epigenomic studies indicate that an intricate epigenetic regulation takes place during the formation of male and female reproductive lineages. In this mini review, we assess the fast growing body of evidence for the epigenetic regulation of the developmental fate and function of plant gametes. We describe how small interfereing RNAs and DNA methylation machinery play a part in setting up unique epigenetic landscapes in different gametes, which may be responsible for their different fates and functions during fertilization. Collectively these studies will shed light on the dynamic epigenomic landscape of plant gametes or 'epigametes' and help to answer important unresolved questions on the sexual reproduction of flowering plants, especially those underpinning the formation of two products of fertilization, the embryo and the endosperm.
Collapse
|
100
|
Migicovsky Z, Kovalchuk I. Epigenetic Modifications during Angiosperm Gametogenesis. FRONTIERS IN PLANT SCIENCE 2012; 3:20. [PMID: 22645573 PMCID: PMC3355800 DOI: 10.3389/fpls.2012.00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 01/19/2012] [Indexed: 06/01/2023]
Abstract
Angiosperms do not contain a distinct germline, but rather develop gametes from gametophyte initials that undergo cell division. These gametes contain cells that give rise to an endosperm and the embryo. DNA methylation is decreased in the vegetative nucleus (VN) and central cell nuclei (CCN) resulting in expression of transposable elements (TEs). It is thought that the siRNAs produced in response to TE expression are able to travel to the sperm cells and egg cells (EC) from VN and CCN, respectively, in order to enforce silencing there. Demethylation during gametogenesis helps ensure that even newly integrated TEs are expressed and therefore silenced by the resulting siRNA production. A final form of epigenetic control is modification of histones, which includes accumulation of the H3 variant HTR10 in mature sperm that is then completely replaced following fertilization. In females, the histone isoforms present in the EC and CCN differ, potentially helping to differentiate the two components during gametogenesis.
Collapse
Affiliation(s)
- Zoë Migicovsky
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of LethbridgeLethbridge, AB, Canada
| |
Collapse
|