51
|
Araújo S, Pagano A, Dondi D, Lazzaroni S, Pinela E, Macovei A, Balestrazzi A. Metabolic signatures of germination triggered by kinetin in Medicago truncatula. Sci Rep 2019; 9:10466. [PMID: 31320688 PMCID: PMC6639397 DOI: 10.1038/s41598-019-46866-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
In the present work, non-targeted metabolomics was used to investigate the seed response to kinetin, a phytohormone with potential roles in seed germination, still poorly explored. The aim of this study was to elucidate the metabolic signatures of germination triggered by kinetin and explore changes in metabolome to identify novel vigor/stress hallmarks in Medicago truncatula. Exposure to 0.5 mM kinetin accelerated seed germination but impaired seedling growth. Metabolite composition was investigated in seeds imbibed with water or with 0.5 mM kinetin collected at 2 h and 8 h of imbibition, and at the radicle protrusion stage. According to Principal Component Analysis, inositol pentakisphosphate, agmatine, digalactosylglycerol, inositol hexakisphosphate, and oleoylcholine were the metabolites that mostly contributed to the separation between 2 h, 8 h and radicle protrusion stage, irrespective of the treatment applied. Overall, only 27 metabolites showed significant changes in mean relative contents triggered by kinetin, exclusively at the radicle protrusion stage. The observed metabolite depletion might associate with faster germination or regarded as a stress signature. Results from alkaline comet assay, highlighting the occurrence of DNA damage at this stage of germination, are consistent with the hypothesis that prolonged exposure to kinetin induces stress conditions leading to genotoxic injury.
Collapse
Affiliation(s)
- Susana Araújo
- Instituto de Tecnologia Química e Biológica António Xavier - Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', via Ferrata 9, 27100, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, Viale Taramelli 12, 27100, Pavia, Italy
| | - Simone Lazzaroni
- Department of Chemistry, Viale Taramelli 12, 27100, Pavia, Italy
| | - Eduardo Pinela
- Instituto de Tecnologia Química e Biológica António Xavier - Universidade Nova de Lisboa (ITQB-NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', via Ferrata 9, 27100, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
52
|
Yobi A, Batushansky A, Oliver MJ, Angelovici R. Adaptive responses of amino acid metabolism to the combination of desiccation and low nitrogen availability in Sporobolus stapfianus. PLANTA 2019; 249:1535-1549. [PMID: 30725176 DOI: 10.1007/s00425-019-03105-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Depending on nitrogen availability, S. stapfianus uses different amino acid metabolism strategies to cope with desiccation stress. The different metabolic strategies support essential processes for the desiccation tolerance phenotype. To provide a comprehensive assessment of the role played by amino acids in the adaptation of Sporobolus stapfianus to a combination of desiccation and nitrogen limitation, we used an absolute quantification of free and protein-bound amino acids (FAAs and PBAAs) as well as their gamma-glutamyl (gg-AA) derivatives in four different tissues grown under high- and low-nitrogen regimes. We demonstrate that although specific FAAs and gg-AAs increased in desiccating immature leaves under both nitrogen regimes, the absolute change in the total amount of either is small or negligible, negating their proposed role in nitrogen storage. FAAs and PBAAs decrease in underground tissues during desiccation, when nitrogen is abundant. In contrast, PBAAs are drastically reduced from the mature leaves, when nitrogen is limiting. Nevertheless, the substantial reduction in PBAA and FAA fractions in both treatments is not manifested in the immature leaves, which strongly suggests that these amino acids are further metabolized to fuel central metabolism or other metabolic adjustments that are essential for the acquisition of desiccation tolerance (DT).
Collapse
Affiliation(s)
- Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65311, USA
| | - Albert Batushansky
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65311, USA
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Melvin J Oliver
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri, Columbia, MO, 65211, USA
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65311, USA.
| |
Collapse
|
53
|
Bobille H, Fustec J, Robins RJ, Cukier C, Limami AM. Effect of water availability on changes in root amino acids and associated rhizosphere on root exudation of amino acids in Pisum sativum L. PHYTOCHEMISTRY 2019; 161:75-85. [PMID: 30822623 DOI: 10.1016/j.phytochem.2019.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 05/22/2023]
Abstract
Root exudation is considered to regulate the abundance of the microbial community. It may vary both qualitatively and quantitatively in response to the environment in which the plant is growing. A part of exuded N derives from amino acids (AAs). This, in turn, may help plants to cope with abiotic stresses by favouring positive interactions with the rhizosphere environment, thus playing a potential role in maintaining healthy plants. In this respect, an under-investigated area is the effect of stress due to water deficit (WD). It is proposed that the AA profile in the rhizosphere may be altered by WD, reflecting a modulation of root AA exudation linked to a physiological response of the plant to water stress. To investigate this, Pisum sativum L. plants, grown in unsterilised Rhizobium leguminosarum-enriched soil, were stem-labelled with 15N-urea for 96 h, and then subjected/not subjected to 72 h of WD. The concentrations and abundance of 15N-labelling in individual AAs were determined in both roots and the associated rhizosphere at 24, 48 and 72 h after stress application. It was found that both AAs metabolism in the pea root and AAs exudation were strongly modified in WD conditions. After 24 h of WD, the concentrations of all measured AAs increased in the roots, accompanied by a dramatic stress-related increase in the 15N-labelling of some AAs. Furthermore, after 48-72 h of WD, the concentrations of Pro, Ala and Glu increased significantly within the rhizosphere, notably with a concomitant increase in 15N-enrichment in Pro, Ser, Asn, Asp, Thr and Ile. These results support the concept that, in response to WD, substantial amounts of recently assimilated N are rapidly translocated from the shoots to the roots, a portion of which is exuded as AAs. This leads to the rhizosphere being relatively augmented by specific AAs (notably HSer, Pro and Ala) in WD conditions, with a potential impact on soil water retention.
Collapse
Affiliation(s)
- Hélène Bobille
- USC 1432 LEVA, Ecole Supérieure d'Agricultures (ESA), INRA, SFR 4207 QUASAV, 55 rue Rabelais, F-49007, Angers, France; Université d'Angers, IRHS, INRA, SFR 4207 QUASAV, 49045, F-Angers, France
| | - Joëlle Fustec
- USC 1432 LEVA, Ecole Supérieure d'Agricultures (ESA), INRA, SFR 4207 QUASAV, 55 rue Rabelais, F-49007, Angers, France.
| | - Richard J Robins
- EBSI Group, CEISAM, Université de Nantes-CNRS UMR6230, F-44322, Nantes, France
| | - Caroline Cukier
- Université d'Angers, IRHS, INRA, SFR 4207 QUASAV, 49045, F-Angers, France
| | - Anis M Limami
- Université d'Angers, IRHS, INRA, SFR 4207 QUASAV, 49045, F-Angers, France
| |
Collapse
|
54
|
Genome-level responses to the environment: plant desiccation tolerance. Emerg Top Life Sci 2019; 3:153-163. [DOI: 10.1042/etls20180139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Plants being sessile organisms are well equipped genomically to respond to environmental stressors peculiar to their habitat. Evolution of plants onto land was enabled by the ability to tolerate extreme water loss (desiccation), a feature that has been retained within genomes but not universally expressed in most land plants today. In the majority of higher plants, desiccation tolerance (DT) is expressed only in reproductive tissues (seeds and pollen), but some 135 angiosperms display vegetative DT. Here, we review genome-level responses associated with DT, pointing out common and yet sometimes discrepant features, the latter relating to evolutionary adaptations to particular niches. Understanding DT can lead to the ultimate production of crops with greater tolerance of drought than is currently realized.
Collapse
|
55
|
Tchokponhoué DA, N’Danikou S, Achigan-Dako EG. A combination of approaches evidenced seed storage behaviour in the miracle berry Synsepalum dulcificum (Schumach. et Thonn.) Daniell. BMC PLANT BIOLOGY 2019; 19:117. [PMID: 30922235 PMCID: PMC6440127 DOI: 10.1186/s12870-019-1714-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/12/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Knowledge on seed storage behaviour is crucial for planning conservation strategies of plant genetic resources particularly in economically promising but endangered species like Synsepalum dulcificum, viewed as recalcitrant-seeded species albeit sound evidence was lacking. In this study, we combined an experimental approach based on critical moisture content and storage environment analysis, and the seed-coat ratio-seed dry mass (SCR-SM) model to clarify the seed storage behaviour in the species. Seed moisture content at shedding was determined and effects of dehydration and cold storage on seed viability, germination and subsequent seedling vigour were analysed. The probability for dessication-senstivity [P(D-S)] was also determined. RESULTS Our findings indicated that S. dulcificum seed moisture content at shedding was 36.60% with nearly 100% viability. Seed dehydration below 20% moisture content induced a total loss of viability whereas low temperature storage (at 10 °C or 4 °C reduced shelf life to a maximum of 7 days. More importantly, S. dulcificum seed storage at 0 °C was highly detrimental and resulted in a total loss of viability whatever the storage duration. Only a storage at 25 °C helped expand the shelf life to 28 days. However, at 28 days storage the viability was extremely low with almost no germination. The probability for dessication-senstivity P(D-S) in the species is largely greater than 0.5. Seed dehydration and storage environment highly affected subsequent germination rate and seedling vigour. While dehydration improved seedling performance storage at low temperature rather inhibited seedling growth. CONCLUSION Taken together, these findings are the first to set evidence of recalcitrance in S. dulcificum and serve hands-on information for practical handling of the seeds and designing sustainable conservation practices for adequate future breeding programme in the species.
Collapse
Affiliation(s)
- Dèdéou Apocalypse Tchokponhoué
- Laboratory of Genetics, Horticulture and Seed Science (GBioS), School of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - Sognigbé N’Danikou
- Laboratory of Genetics, Horticulture and Seed Science (GBioS), School of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| | - Enoch Gbènato Achigan-Dako
- Laboratory of Genetics, Horticulture and Seed Science (GBioS), School of Plant Sciences, Faculty of Agronomic Sciences, University of Abomey-Calavi, Abomey-Calavi, Republic of Benin
| |
Collapse
|
56
|
Coutinho FS, dos Santos DS, Lima LL, Vital CE, Santos LA, Pimenta MR, da Silva JC, Ramos JRLS, Mehta A, Fontes EPB, de Oliveira Ramos HJ. Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:457-472. [PMID: 30956428 PMCID: PMC6419710 DOI: 10.1007/s12298-019-00643-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 05/27/2023]
Abstract
Drought is one of major constraints that limits agricultural productivity. Some factors, including climate changes and acreage expansion, indicates towards the need for developing drought tolerant genotypes. In addition to its protective role against endoplasmic reticulum (ER) stress, we have previously shown that the molecular chaperone binding protein (BiP) is involved in the response to osmotic stress and promotes drought tolerance. Here, we analyzed the proteomic and metabolic profiles of BiP-overexpressing transgenic soybean plants and the corresponding untransformed line under drought conditions by 2DE-MS and GC/MS. The transgenic plant showed lower levels of the abscisic acid and jasmonic acid as compared to untransformed plants both in irrigated and non-irrigated conditions. In contrast, the level of salicylic acid was higher in transgenic lines than in untransformed line, which was consistent with the antagonistic responses mediated by these phytohormones. The transgenic plants displayed a higher abundance of photosynthesis-related proteins, which gave credence to the hypothesis that these transgenic plants could survive under drought conditions due to their genetic modification and altered physiology. The proteins involved in pathways related to respiration, glycolysis and oxidative stress were not signifcantly changed in transgenic plants as compared to untransformed genotype, which indicate a lower metabolic perturbation under drought of the engineered genotype. The transgenic plants may have adopted a mechanism of drought tolerance by accumulating osmotically active solutes in the cell. As evidenced by the metabolic profiles, the accumulation of nine primary amino acids by protein degradation maintained the cellular turgor in the transgenic genotype under drought conditions. Thus, this mechanism of protection may cause the physiological activities including photosynthesis to be active under drought conditions.
Collapse
Affiliation(s)
- Flaviane Silva Coutinho
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Danilo Silva dos Santos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Lucas Leal Lima
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Camilo Elber Vital
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Lázaro Aleixo Santos
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Maiana Reis Pimenta
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - João Carlos da Silva
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Juliana Rocha Lopes Soares Ramos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
| | - Elizabeth Pacheco Batista Fontes
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
| | - Humberto Josué de Oliveira Ramos
- Laboratory of Plant Molecular Biology, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, BIOAGRO/INCT-IPP, Viçosa, MG Brazil
- Center of Analyses of Biomolecules, NuBioMol, Universidade Federal de Viçosa, Viçosa, MG Brazil
| |
Collapse
|
57
|
Casartelli A, Melino VJ, Baumann U, Riboni M, Suchecki R, Jayasinghe NS, Mendis H, Watanabe M, Erban A, Zuther E, Hoefgen R, Roessner U, Okamoto M, Heuer S. Opposite fates of the purine metabolite allantoin under water and nitrogen limitations in bread wheat. PLANT MOLECULAR BIOLOGY 2019; 99:477-497. [PMID: 30721380 DOI: 10.1007/s11103-019-00831-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/24/2019] [Indexed: 05/06/2023]
Abstract
Degradation of nitrogen-rich purines is tightly and oppositely regulated under drought and low nitrogen supply in bread wheat. Allantoin is a key target metabolite for improving nitrogen homeostasis under stress. The metabolite allantoin is an intermediate of the catabolism of purines (components of nucleotides) and is known for its housekeeping role in nitrogen (N) recycling and also for its function in N transport and storage in nodulated legumes. Allantoin was also shown to differentially accumulate upon abiotic stress in a range of plant species but little is known about its role in cereals. To address this, purine catabolic pathway genes were identified in hexaploid bread wheat and their chromosomal location was experimentally validated. A comparative study of two Australian bread wheat genotypes revealed a highly significant increase of allantoin (up to 29-fold) under drought. In contrast, allantoin significantly decreased (up to 22-fold) in response to N deficiency. The observed changes were accompanied by transcriptional adjustment of key purine catabolic genes, suggesting that the recycling of purine-derived N is tightly regulated under stress. We propose opposite fates of allantoin in plants under stress: the accumulation of allantoin under drought circumvents its degradation to ammonium (NH4+) thereby preventing N losses. On the other hand, under N deficiency, increasing the NH4+ liberated via allantoin catabolism contributes towards the maintenance of N homeostasis.
Collapse
Affiliation(s)
- Alberto Casartelli
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
- Strube Research GmbH & Co. KG, 38387, Söllingen, Germany
| | - Vanessa J Melino
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ute Baumann
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Matteo Riboni
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Radoslaw Suchecki
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Nirupama S Jayasinghe
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Himasha Mendis
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mutsumi Watanabe
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Alexander Erban
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
| | - Ellen Zuther
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
| | - Rainer Hoefgen
- Max Plank Institute of Molecular Plant Physiology, 14476, Potsdam, Golm, Germany
| | - Ute Roessner
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Mamoru Okamoto
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Sigrid Heuer
- School of Agriculture Food and Wine, The University of Adelaide, Urrbrae, SA, 5064, Australia.
- Rothamsted Research, Plant Science Department, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
58
|
Thermopriming reprograms metabolic homeostasis to confer heat tolerance. Sci Rep 2019; 9:181. [PMID: 30655560 PMCID: PMC6336788 DOI: 10.1038/s41598-018-36484-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
Heat stress threatens agriculture worldwide. Plants acquire heat stress tolerance through priming, which establishes stress memory during mild or severe transient heat stress. Such induced thermotolerance restructures metabolic networks and helps maintain metabolic homeostasis under heat stress. Here, we used an electrospray ionization mass spectrometry-based platform to explore the composition and dynamics of the metabolome of Arabidopsis thaliana under heat stress and identify metabolites involved in thermopriming. Primed plants performed better than non-primed plants under severe heat stress due to altered energy pathways and increased production of branched-chain amino acids, raffinose family oligosaccharides (RFOs), lipolysis products, and tocopherols. These metabolites serve as osmolytes, antioxidants and growth precursors to help plants recover from heat stress, while lipid metabolites help protect membranes against heat stress. The carbohydrate (e.g., sucrose and RFOs) and lipid superpathway metabolites showed the most significant increases. Under heat stress, there appears to be crosstalk between carbohydrate metabolism (i.e., the thermomemory metabolites stachyose, galactinol, and raffinose) and tyrosine metabolism towards the production of the thermomemory metabolite salidroside, a phenylethanoid glycoside. Crosstalk occurs between two glycerophospholipid pathways (the biosynthetic pathways of the thermomemory metabolite S-adenosyl-L-homocysteine and the terpenoid backbone) and the δ-tocopherol (chloroplast lipid) pathway, which favors the production of glycine betaine and other essential tocopherols, respectively, compounds which are essential for abiotic stress tolerance in plants. Therefore, metabolomic analysis can provide comprehensive insights into the metabolites involved in stress responses, which could facilitate plant breeding to maximize crop yields under adverse conditions.
Collapse
|
59
|
Pagano A, de Sousa Araújo S, Macovei A, Dondi D, Lazzaroni S, Balestrazzi A. Metabolic and gene expression hallmarks of seed germination uncovered by sodium butyrate in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2019; 42:259-269. [PMID: 29756644 DOI: 10.1111/pce.13342] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 05/20/2023]
Abstract
Because high-quality seeds are essential for successful crop production in challenging environments, understanding the molecular bases of seed vigour will lead to advances in seed technology. Histone deacetylase inhibitors, promoting histone hyperacetylation, are used as tools to explore aspects still uncovered of the abiotic stress response in plants. The aim of this work was to investigate novel signatures of seed germination in Medicago truncatula, using the histone deacetylase inhibitor sodium butyrate (NaB) as stress agent. NaB-treated and untreated seeds collected at 2 and 8 hr of imbibition and at the radicle protrusion stage underwent molecular phenotyping and nontargeted metabolome profiling. Quantitative enrichment analysis revealed the influence of NaB on seed nucleotide, amino acid, lipid, and carbohydrate metabolism. Up-regulation of antioxidant and polyamine biosynthesis genes occurred in response to NaB. DNA damage evidenced in NaB-treated seeds correlated with up-regulation of base-excision repair genes. Changes in N1 -methyladenosine and N1 -methylguanine were associated with up-regulation of MtALKBH1 (alkylation repair homolog) gene. N2 ,N2 -dimethylguanosine and 5-methylcytidine, tRNA modifications involved in the post-transcriptional regulation of DNA damage response, were also accumulated in NaB-treated seeds at the radicle protrusion stage. The observed changes in seed metabolism can provide novel potential metabolic hallmarks of germination.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Avenida da República, Estação Agronómica Nacional, Oeiras, 2780-157, Portugal
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Simone Lazzaroni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, via Ferrata 9, Pavia, 27100, Italy
| |
Collapse
|
60
|
Macovei A, Pagano A, Cappuccio M, Gallotti L, Dondi D, De Sousa Araujo S, Fevereiro P, Balestrazzi A. A Snapshot of the Trehalose Pathway During Seed Imbibition in Medicago truncatula Reveals Temporal- and Stress-Dependent Shifts in Gene Expression Patterns Associated With Metabolite Changes. FRONTIERS IN PLANT SCIENCE 2019; 10:1590. [PMID: 31921241 PMCID: PMC6930686 DOI: 10.3389/fpls.2019.01590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Trehalose, a non-reducing disaccharide with multiple functions, among which source of energy and carbon, stress protectant, and signaling molecule, has been mainly studied in relation to plant development and response to stress. The trehalose pathway is conserved among different organisms and is composed of three enzymes: trehalose-6-phosphate synthase (TPS), which converts uridine diphosphate (UDP)-glucose and glucose-6-phosphate to trehalose-6-phosphate (T6P), trehalose-6-phosphatase (TPP), which dephosphorylates T6P to produce trehalose, and trehalase (TRE), responsible for trehalose catabolism. In plants, the trehalose pathway has been mostly studied in resurrection plants and the model plant Arabidopsis thaliana, where 11 AtTPS, 10 AtTPP, and 1 AtTRE genes are present. Here, we aim to investigate the involvement of the trehalose pathway in the early stages of seed germination (specifically, seed imbibition) using the model legume Medicago truncatula as a working system. Since not all the genes belonging to the trehalose pathway had been identified in M. truncatula, we first conducted an in silico analysis using the orthologous gene sequences from A. thaliana. Nine MtTPSs, eight MtTPPs, and a single MtTRE gene were hereby identified. Subsequently, the expression profiles of all the genes (together with the sucrose master-regulator SnRK1) were investigated during seed imbibition with water or stress agents (polyethylene glycol and sodium chloride). The reported data show a temporal distribution and preferential expression of specific TPS and TPP isoforms during seed imbibition with water. Moreover, it was possible to distinguish a small set of genes (e.g., MtTPS1, MtTPS7, MtTPS10, MtTPPA, MtTPPI, MtTRE) having a potential impact as precocious hallmarks of the seed response to stress. When the trehalose levels were measured by high-performance liquid chromatography, a significant decrease was observed during seed imbibition, suggesting that trehalose may act as an energy source rather than osmoprotectant. This is the first report investigating the expression profiles of genes belonging to the trehalose pathway during seed imbibition, thus ascertaining their involvement in the pre-germinative metabolism and their potential as tools to improve seed germination efficiency.
Collapse
Affiliation(s)
- Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
| | - Michela Cappuccio
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Green-it Research Unit, Oeiras, Portugal
| | - Lucia Gallotti
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Daniele Dondi
- Department of Chemistry, University of Pavia, Pavia, Italy
| | - Susana De Sousa Araujo
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Green-it Research Unit, Oeiras, Portugal
| | - Pedro Fevereiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Green-it Research Unit, Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia, Pavia, Italy
- *Correspondence: Alma Balestrazzi,
| |
Collapse
|
61
|
Akram W, Aslam H, Ahmad SR, Anjum T, Yasin NA, Khan WU, Ahmad A, Guo J, Wu T, Luo W, Li G. Bacillus megaterium strain A12 ameliorates salinity stress in tomato plants through multiple mechanisms. JOURNAL OF PLANT INTERACTIONS 2019; 14:506-518. [DOI: 10.1080/17429145.2019.1662497] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/21/2019] [Indexed: 06/16/2023]
Affiliation(s)
- Waheed Akram
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Hina Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Tehmina Anjum
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Nasim Ahmad Yasin
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Aqeel Ahmad
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Juxian Guo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Tingquan Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Wenlong Luo
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| |
Collapse
|
62
|
Liu J, Moyankova D, Lin CT, Mladenov P, Sun RZ, Djilianov D, Deng X. Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis. BMC PLANT BIOLOGY 2018; 18:351. [PMID: 30541446 PMCID: PMC6291977 DOI: 10.1186/s12870-018-1566-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/22/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Water shortage is a major factor that harms agriculture and ecosystems worldwide. Plants display various levels of tolerance to water deficit, but only resurrection plants can survive full desiccation of their vegetative tissues. Haberlea rhodopensis, an endemic plant of the Balkans, is one of the few resurrection plants found in Europe. We performed transcriptomic analyses of this species under slight, severe and full dehydration and recovery to investigate the dynamics of gene expression and associate them with existing physiological and metabolomics data. RESULTS De novo assembly yielded a total of 142,479 unigenes with an average sequence length of 1034 nt. Among them, 18,110 unigenes were differentially expressed. Hierarchical clustering of all differentially expressed genes resulted in seven clusters of dynamic expression patterns. The most significant expression changes, involving more than 15,000 genes, started at severe dehydration (~ 20% relative water content) and were partially maintained at full desiccation (< 10% relative water content). More than a hundred pathways were enriched and functionally organized in a GO/pathway network at the severe dehydration stage. Transcriptomic changes in key pathways were analyzed and discussed in relation to metabolic processes, signal transduction, quality control of protein and DNA repair in this plant during dehydration and rehydration. CONCLUSION Reprograming of the transcriptome occurs during severe dehydration, resulting in a profound alteration of metabolism toward alternative energy supply, hormone signal transduction, and prevention of DNA/protein damage under very low cellular water content, underlying the observed physiological and metabolic responses and the resurrection behavior of H. rhodopensis.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- Facility Horticulture Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, 262700 China
| | - Daniela Moyankova
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria
| | - Chih-Ta Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Petko Mladenov
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria
| | - Run-Ze Sun
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Dimitar Djilianov
- Abiotic Stress Group, Agrobioinstitute, Agricultural Academy, 1164 Sofia, Bulgaria
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
63
|
VanBuren R, Man Wai C, Pardo J, Giarola V, Ambrosini S, Song X, Bartels D. Desiccation Tolerance Evolved through Gene Duplication and Network Rewiring in Lindernia. THE PLANT CELL 2018; 30:2943-2958. [PMID: 30361236 PMCID: PMC6354263 DOI: 10.1105/tpc.18.00517] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/02/2018] [Accepted: 10/23/2018] [Indexed: 05/21/2023]
Abstract
Although several resurrection plant genomes have been sequenced, the lack of suitable dehydration-sensitive outgroups has limited genomic insights into the origin of desiccation tolerance. Here, we utilized a comparative system of closely related desiccation-tolerant (Lindernia brevidens) and -sensitive (Lindernia subracemosa) species to identify gene- and pathway-level changes associated with the evolution of desiccation tolerance. The two high-quality Lindernia genomes we assembled are largely collinear, and over 90% of genes are conserved. L. brevidens and L. subracemosa have evidence of an ancient, shared whole-genome duplication event, and retained genes have neofunctionalized, with desiccation-specific expression in L. brevidens Tandem gene duplicates also are enriched in desiccation-associated functions, including a dramatic expansion of early light-induced proteins from 4 to 26 copies in L. brevidens A comparative differential gene coexpression analysis between L. brevidens and L. subracemosa supports extensive network rewiring across early dehydration, desiccation, and rehydration time courses. Many LATE EMBRYOGENESIS ABUNDANT genes show significantly higher expression in L. brevidens compared with their orthologs in L. subracemosa Coexpression modules uniquely upregulated during desiccation in L. brevidens are enriched with seed-specific and abscisic acid-associated cis-regulatory elements. These modules contain a wide array of seed-associated genes that have no expression in the desiccation-sensitive L. subracemosa Together, these findings suggest that desiccation tolerance evolved through a combination of gene duplications and network-level rewiring of existing seed desiccation pathways.
Collapse
Affiliation(s)
- Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Jeremy Pardo
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | | | | | | | | |
Collapse
|
64
|
Jing Y, Lang S, Wang D, Xue H, Wang XF. Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:109-121. [PMID: 30368031 DOI: 10.1016/j.jplph.2018.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 05/27/2023]
Abstract
Raffinose family oligosaccharides (RFOs) accumulate during seed development, and have been thought to be associated with the acquisition of desiccation tolerance (DT) by seeds. Here, comprehensive approaches were adopted to evaluate the changes of DT in developing Arabidopsis seeds of wild type, overexpression (OX-AtGS1/GS2/RS5), and mutant lines by manipulating the expression levels of the GALACTINOL SYNTHASE (GS) and RAFFINOSE SYNTHASE (RS) genes. Our results indicate that seeds of the double mutant (gs1, gs2) and rs5 delayed the timing of DT acquisition as compared to wild type. Subsequent detection confirmed that seeds from OX-AtGS1/GS2 plants with high levels of galactinol, raffinose, and stachyose, and OX-AtRS5 plants possess more raffinose and stachyose but less galactinol compared to wild type. These lines all showed greater germination percentage and shorter time to 50% germination after desiccation treatment at 11 and 15 days after flower (DAF). Further analysis revealed that the role of RFOs is time limited and mainly affects the middle stage (9-16 DAF) of seed development by enhancing seed viability and the ratio of GSH to GSSH in cells, but there is no significant difference in DT of mature seeds. In addition, RFOs could reduce damage to seeds caused by oxidative stress. We conclude that GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE play important roles in DT acquisition during Arabidopsis seed development, and that galactinol and RFOs are crucial protective compounds in the response of seeds to desiccation stress.
Collapse
Affiliation(s)
- Yin Jing
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Sirui Lang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Dongmei Wang
- Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, School of Soil and Water Conservation, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hua Xue
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China.
| | - Xiao-Feng Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China.
| |
Collapse
|
65
|
Njaci I, Williams B, Castillo-González C, Dickman MB, Zhang X, Mundree S. Genome-Wide Investigation of the Role of MicroRNAs in Desiccation Tolerance in the Resurrection Grass Tripogon loliiformis. PLANTS (BASEL, SWITZERLAND) 2018; 7:E68. [PMID: 30200279 PMCID: PMC6161015 DOI: 10.3390/plants7030068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022]
Abstract
Drought causes approximately two-thirds of crop and yield loss worldwide. To sustain future generations, there is a need to develop robust crops with enhanced water use efficiency. Resurrection plants are naturally resilient and tolerate up to 95% water loss with the ability to revive upon watering. Stress is genetically encoded and resilient species may garner tolerance by tightly regulating the expression of stress-related genes. MicroRNAs (miRNAs) post-transcriptionally regulate development and other stress response processes in eukaryotes. However, their role in resurrection plant desiccation tolerance is poorly understood. In this study, small RNA sequencing and miRNA expression profiling was conducted using Tripogon loliiformis plants subjected to extreme water deficit conditions. Differentially expressed miRNA profiles, target mRNAs, and their regulatory processes were elucidated. Gene ontology enrichment analysis revealed that development, stress response, and regulation of programmed cell death biological processes; Oxidoreductase and hydrolyase molecular activities; and SPL, MYB, and WRKY transcription factors were targeted by miRNAs during dehydration stress, indicating the indispensable regulatory role of miRNAs in desiccation tolerance. This study provides insights into the molecular mechanisms of desiccation tolerance in the resurrection plant T. loliiformis. This information will be useful in devising strategies for crop improvement on enhanced drought tolerance and water use efficiency.
Collapse
Affiliation(s)
- Isaac Njaci
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Claudia Castillo-González
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Martin B Dickman
- Department of Plant Pathology and Microbiology, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
66
|
Plant Desiccation Tolerance and its Regulation in the Foliage of Resurrection “Flowering-Plant” Species. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The majority of flowering-plant species can survive complete air-dryness in their seed and/or pollen. Relatively few species (‘resurrection plants’) express this desiccation tolerance in their foliage. Knowledge of the regulation of desiccation tolerance in resurrection plant foliage is reviewed. Elucidation of the regulatory mechanism in resurrection grasses may lead to identification of genes that can improve stress tolerance and yield of major crop species. Well-hydrated leaves of resurrection plants are desiccation-sensitive and the leaves become desiccation tolerant as they are drying. Such drought-induction of desiccation tolerance involves changes in gene-expression causing extensive changes in the complement of proteins and the transition to a highly-stable quiescent state lasting months to years. These changes in gene-expression are regulated by several interacting phytohormones, of which drought-induced abscisic acid (ABA) is particularly important in some species. Treatment with only ABA induces desiccation tolerance in vegetative tissue of Borya constricta Churchill. and Craterostigma plantagineum Hochstetter. but not in the resurrection grass Sporobolus stapfianus Gandoger. Suppression of drought-induced senescence is also important for survival of drying. Further research is needed on the triggering of the induction of desiccation tolerance, on the transition between phases of protein synthesis and on the role of the phytohormone, strigolactone and other potential xylem-messengers during drying and rehydration.
Collapse
|
67
|
Challabathula D, Zhang Q, Bartels D. Protection of photosynthesis in desiccation-tolerant resurrection plants. JOURNAL OF PLANT PHYSIOLOGY 2018; 227:84-92. [PMID: 29778495 DOI: 10.1016/j.jplph.2018.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 05/14/2023]
Abstract
Inhibition of photosynthesis is a central, primary response that is observed in both desiccation-tolerant and desiccation-sensitive plants affected by drought stress. Decreased photosynthesis during drought stress can either be due to the limitation of carbon dioxide entry through the stomata and the mesophyll cells, due to increased oxidative stress or due to decreased activity of photosynthetic enzymes. Although the photosynthetic rates decrease in both desiccation-tolerant and sensitive plants during drought, the remarkable difference lies in the complete recovery of photosynthesis after rehydration in desiccation-tolerant plants. Desiccation of sensitive plants leads to irreparable damages of the photosynthetic membranes, in contrast the photosynthetic apparatus is deactivated during desiccation in desiccation-tolerant plants. Desiccation-tolerant plants employ different strategies to protect and/or maintain the structural integrity of the photosynthetic apparatus to reactivate photosynthesis upon water availability. Two major mechanisms are distinguished. Homoiochlorophyllous desiccation-tolerant plants preserve chlorophyll and thylakoid membranes and require active protection mechanisms, while poikilochlorophyllous plants degrade chlorophyll in a regulated manner but then require de novo synthesis during rehydration. Desiccation-tolerant plants, particularly homoiochlorophyllous plants, employ conserved and novel antioxidant enzymes/metabolites to minimize the oxidative damage and to protect the photosynthetic machinery. De novo synthesized, stress-induced proteins in combination with antioxidants are localized in chloroplasts and are important components of the protective network. Genome sequence informations provide some clues on selection of genes involved in protecting photosynthetic structures; e.g. ELIP genes (early light inducible proteins) are enriched in the genomes and more abundantly expressed in homoiochlorophyllous desiccation-tolerant plants. This review focuses on the mechanisms that operate in the desiccation-tolerant plants to protect the photosynthetic apparatus during desiccation.
Collapse
Affiliation(s)
- Dinakar Challabathula
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany; Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
68
|
Neeragunda Shivaraj Y, Barbara P, Gugi B, Vicré-Gibouin M, Driouich A, Ramasandra Govind S, Devaraja A, Kambalagere Y. Perspectives on Structural, Physiological, Cellular, and Molecular Responses to Desiccation in Resurrection Plants. SCIENTIFICA 2018; 2018:9464592. [PMID: 30046509 PMCID: PMC6036803 DOI: 10.1155/2018/9464592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/07/2018] [Accepted: 04/26/2018] [Indexed: 05/21/2023]
Abstract
Resurrection plants possess a unique ability to counteract desiccation stress. Desiccation tolerance (DT) is a very complex multigenic and multifactorial process comprising a combination of physiological, morphological, cellular, genomic, transcriptomic, proteomic, and metabolic processes. Modification in the sugar composition of the hemicellulosic fraction of the cell wall is detected during dehydration. An important change is a decrease of glucose in the hemicellulosic fraction during dehydration that can reflect a modification of the xyloglucan structure. The expansins might also be involved in cell wall flexibility during drying and disrupt hydrogen bonds between polymers during rehydration of the cell wall. Cleavages by xyloglucan-modifying enzymes release the tightly bound xyloglucan-cellulose network, thus increasing cell wall flexibility required for cell wall folding upon desiccation. Changes in hydroxyproline-rich glycoproteins (HRGPs) such as arabinogalactan proteins (AGPs) are also observed during desiccation and rehydration processes. It has also been observed that significant alterations in the process of photosynthesis and photosystem (PS) II activity along with changes in the antioxidant enzyme system also increased the cell wall and membrane fluidity resulting in DT. Similarly, recent data show a major role of ABA, LEA proteins, and small regulatory RNA in regulating DT responses. Current progress in "-omic" technologies has enabled quantitative monitoring of the plethora of biological molecules in a high throughput routine, making it possible to compare their levels between desiccation-sensitive and DT species. In this review, we present a comprehensive overview of structural, physiological, cellular, molecular, and global responses involved in desiccation tolerance.
Collapse
Affiliation(s)
- Yathisha Neeragunda Shivaraj
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Plancot Barbara
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Bruno Gugi
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Maïté Vicré-Gibouin
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, Normandie Univ, UniRouen, 76000 Rouen, France
- Fédération de Recherche “Normandie-Végétal”-FED 4277, 76000 Rouen, France
| | - Sharatchandra Ramasandra Govind
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Akash Devaraja
- Centre for Bioinformation, Department of Studies and Research in Environmental Science, Tumkur University, Tumakuru 57210, India
| | - Yogendra Kambalagere
- Department of Studies and Research in Environmental Science, Kuvempu University, Shankaraghatta, Shimoga 577451, India
| |
Collapse
|
69
|
Zhang Q, Bartels D. Molecular responses to dehydration and desiccation in desiccation-tolerant angiosperm plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3211-3222. [PMID: 29385548 DOI: 10.1093/jxb/erx489] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/20/2017] [Indexed: 05/21/2023]
Abstract
Due to the ability to tolerate extreme dehydration, desiccation-tolerant plants have been widely investigated to find potential approaches for improving water use efficiency or developing new crop varieties. The studies of desiccation-tolerant plants have identified sugar accumulation, specific protein synthesis, cell structure changes, and increased anti-oxidative reactions as part of the mechanisms of desiccation tolerance. However, plants respond differently according to the severity of water loss, and the process of water loss affects desiccation tolerance. A detailed analysis within the dehydration process is important for understanding the process of desiccation tolerance. This review defines dehydration and desiccation, finds the boundary for the relative water content between dehydration and desiccation, compares the molecular responses to dehydration and desiccation, compares signaling differences between dehydration and desiccation, and finally summarizes the strategies launched in desiccation-tolerant plants for dehydration and desiccation, respectively. The roles of abscisic acid (ABA) and reactive oxygen species (ROS) in sensing and signaling during dehydration are discussed. We outline how this knowledge can be exploited to generate drought-tolerant crop plants.
Collapse
Affiliation(s)
- Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Germany
| |
Collapse
|
70
|
Bechtold U. Plant Life in Extreme Environments: How Do You Improve Drought Tolerance? FRONTIERS IN PLANT SCIENCE 2018; 9:543. [PMID: 29868044 PMCID: PMC5962824 DOI: 10.3389/fpls.2018.00543] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/09/2018] [Indexed: 05/11/2023]
Abstract
Systems studies of drought stress in resurrection plants and other xerophytes are rapidly identifying a large number of genes, proteins and metabolites that respond to severe drought stress or desiccation. This has provided insight into drought resistance mechanisms, which allow xerophytes to persist under such extreme environmental conditions. Some of the mechanisms that ensure cellular protection during severe dehydration appear to be unique to desert species, while many other stress signaling pathways are in common with well-studied model and crop species. However, despite the identification of many desiccation inducible genes, there are few "gene-to-field" examples that have led to improved drought tolerance and yield stability derived from resurrection plants, and only few examples have emerged from model species. This has led to many critical reviews on the merit of the experimental approaches and the type of plants used to study drought resistance mechanisms. This article discusses the long-standing arguments between the ecophysiology and molecular biology communities, on how to "drought-proof" future crop varieties. It concludes that a more positive and inclusive dialogue between the different disciplines is needed, to allow us to move forward in a much more constructive way.
Collapse
Affiliation(s)
- Ulrike Bechtold
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
71
|
Zhang Q, Song X, Bartels D. Sugar metabolism in the desiccation tolerant grass Oropetium thomaeum in response to environmental stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:30-36. [PMID: 29576083 DOI: 10.1016/j.plantsci.2018.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/15/2017] [Accepted: 02/06/2018] [Indexed: 05/28/2023]
Abstract
Oropetium thomaeum is a desiccation tolerant grass and acquisition of desiccation tolerance is correlated with changes in carbohydrate metabolism. Here we address the question whether the changes in carbohydrate metabolism are specific to the dehydration process or whether other environmental factors such as high temperature, low temperature, hypoxia, salinity or exogenous ABA application trigger the same or different changes in the sugar metabolism. Fifteen different sugar metabolites were identified by GC/MS, including erythritol, arabinose, fructose, galactose, glucose, myo-inositol, sedoheptulose, sucrose, trehalose, galactinol, maltose, raffinose, manninotriose and stachyose. Together with starch, these sugars were placed into the pathways of sucrose metabolism and raffinose family oligosaccharides (RFOs) metabolism, as well as into the group of rare sugars. By comparing the changes of sugars under various stresses, we concluded that the changes in the sugar metabolism are both convergent and divergent in response to different stresses. Except for the general response to stress, such as starch degradation, the changes of specific sugar metabolites reflect a stress-specific response of O. thomaeum. Erythritol seems to be specific for dehydration, myo-inositol for salt stress and trehalose for hypoxia stress. Similar as dehydration, low temperature, salt stress and ABA application resulted in the accumulation of sucrose and RFOs in O. thomaeum, which indicates that these stresses share high similarity with dehydration. Thus it is proposed that sucrose and RFOs have a general protective role under these stresses. In contrast sucrose and RFOs did not accumulate in response to high temperature or hypoxia whose effects tend to be consumptive and destructive. The accumulation of galactose, melibiose and manninotriose demonstrate that RFOs are degraded under stress. The accumulation of these sugar metabolites might result from the reaction of RFOs and stress-produced hydroxyl radicals, which supports a possible role of RFOs in stress defense. In addition, ABA application led to substantial synthesis of stachyose which occurs only in response to dehydration, indicating that stachyose synthesis is possibly closely related to ABA in O. thomaeum.
Collapse
Affiliation(s)
- Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Xiaomin Song
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
72
|
Guo R, Shi L, Jiao Y, Li M, Zhong X, Gu F, Liu Q, Xia X, Li H. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AOB PLANTS 2018; 10:ply016. [PMID: 29623182 PMCID: PMC5881611 DOI: 10.1093/aobpla/ply016] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An in-depth understanding of the effects of drought stress on plant metabolism is necessary to improve the drought tolerance of wheat and to utilize genetic resources for the development of drought stress-tolerant wheat varieties. In this study, the profiles of 58 key metabolites produced by wheat seedlings in response to drought stress were investigated to determine various physiological processes related to drought tolerance between drought-tolerant and drought-sensitive wheat genotypes. Results showed that the wheat metabolome was dominated by sugars, organic acids and amino acids; the wheat metabolome played important roles to enhance the drought tolerance of shoots. Under drought stress, JD17 exhibited higher growth indices and higher photosynthesis ability than JD8. A high level of compatible solutes and energy in shoots were essential for wheat to develop drought tolerance. Drought also caused system alterations in widespread metabolic networks involving transamination, tricarboxylic acid cycle, glycolysis, glutamate-mediated proline biosynthesis, shikimate-mediated secondary metabolisms and γ-aminobutyric acid metabolisms. Long-term drought stress resulted in the drought-tolerant wheat genotype JD17, which induced metabolic shifts in the tricarboxylic acid cycle and glycolysis with the depletion of the γ-aminobutyric acid shut process. In JD17, the prolonged drought stress induced a progressive accumulation of osmolytes, including proline, sucrose, fructose, mannose and malic acid. This research extended our understanding of the mechanisms involved in wheat seedling drought tolerance; this study also demonstrated that gas chromatography-mass spectrometry metabolomics could be an effective approach to understand the drought effects on plant biochemistry.
Collapse
Affiliation(s)
- Rui Guo
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
- Corresponding author’s e-mail address: ;
| | - LianXuan Shi
- School of Life Sciences, Northeast Normal University, Changchun, China
- Corresponding author’s e-mail address: ;
| | - Yang Jiao
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - MingXia Li
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - XiuLi Zhong
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| | - FengXue Gu
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| | - Xu Xia
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| | - HaoRu Li
- Institute of Environment and Sustainable Development in Agriculture (IEDA), Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, P.R. China
| |
Collapse
|
73
|
Dussert S, Serret J, Bastos-Siqueira A, Morcillo F, Déchamp E, Rofidal V, Lashermes P, Etienne H, JOët T. Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1583-1597. [PMID: 29361125 PMCID: PMC5888931 DOI: 10.1093/jxb/erx492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/20/2017] [Indexed: 05/24/2023]
Abstract
The 'intermediate seed' category was defined in the early 1990s using coffee (Coffea arabica) as a model. In contrast to orthodox seeds, intermediate seeds cannot survive complete drying, which is a major constraint for seed storage and has implications for both biodiversity conservation and agricultural purposes. However, intermediate seeds are considerably more tolerant to drying than recalcitrant seeds, which are highly sensitive to desiccation. To gain insight into the mechanisms governing such differences, changes in desiccation tolerance (DT), hormone contents, and the transcriptome were analysed in developing coffee seeds. Acquisition of DT coincided with a dramatic transcriptional switch characterised by the repression of primary metabolism, photosynthesis, and respiration, and the up-regulation of genes coding for late-embryogenesis abundant (LEA) proteins, heat-shock proteins (HSPs), and antioxidant enzymes. Analysis of the heat-stable proteome in mature coffee seeds confirmed the accumulation of LEA proteins identified at the transcript level. Transcriptome analysis also suggested a major role for ABA and for the transcription factors CaHSFA9, CaDREB2G, CaANAC029, CaPLATZ, and CaDOG-like in DT acquisition. The ability of CaHSFA9 and CaDREB2G to trigger HSP gene transcription was validated by Agrobacterium-mediated transformation of coffee somatic embryos.
Collapse
Affiliation(s)
| | | | | | | | | | - Valérie Rofidal
- Biochimie et physiologie moléculaire des plantes, CNRS, INRA, Montpellier Supagro, Université Montpellier, France
| | | | | | | |
Collapse
|
74
|
Kim YJ, Joo SC, Shi J, Hu C, Quan S, Hu J, Sukweenadhi J, Mohanan P, Yang DC, Zhang D. Metabolic dynamics and physiological adaptation of Panax ginseng during development. PLANT CELL REPORTS 2018; 37:393-410. [PMID: 29150823 DOI: 10.1007/s00299-017-2236-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
The dynamics of metabolites from leaves to roots of Panax ginseng during development has revealed the tissue-specific and year-specific metabolic networks. Being an essential Oriental medicinal plant, ginseng (Panax ginseng Meyer) is a slow-growing perennial herb-accumulating pharmaceutically active metabolites such as ginsenosides in roots during growth. However, little is known about how ginseng plants survive in the harsh environments such as winter cold and summer heat for a longer period and accumulates those active metabolites as the plant grows. To understand the metabolic kinetics in both source and sink organs such as leaves and roots of ginseng plant, respectively, and to assess the changes in ginsenosides biosynthesis during ginseng growth, we investigated the metabolic profiles from leaves and roots of 1-, 4-, and 6-year-old field-grown ginseng plants. Using an integrated non-targeted metabolomic approach, we identified in total 348 primary and secondary metabolites, which provided us for the first time a global metabolomic assessment of ginseng during growth, and morphogenesis. Strikingly, the osmoprotectants and oxidized chemicals were highly accumulated in 4- and 6-year-old ginseng leaves suggested that ginseng develop a wide range of metabolic strategies to adapt unfavorable conditions as they mature. In 6-year-old plants, ginsenosides were decreased in leaves but increased in roots up to 1.2- to sixfold, supporting the view that there is a long-distance transport of ginsenosides from leaves to roots as ginseng plants mature. Our findings provide insights into the metabolic kinetics during the development of ginseng plant and this could complement the pharmacological importance of ginseng and its compounds according to their age.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China.
| | - Sung Chul Joo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Chaoyang Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Sheng Quan
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| | - Johan Sukweenadhi
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, People's Republic of China.
- Crop Biotech Institute and Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
75
|
Yang L, Fountain JC, Ji P, Ni X, Chen S, Lee RD, Kemerait RC, Guo B. Deciphering drought-induced metabolic responses and regulation in developing maize kernels. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1616-1628. [PMID: 29431900 PMCID: PMC6097124 DOI: 10.1111/pbi.12899] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 05/07/2023]
Abstract
Drought stress conditions decrease maize growth and yield, and aggravate preharvest aflatoxin contamination. While several studies have been performed on mature kernels responding to drought stress, the metabolic profiles of developing kernels are not as well characterized, particularly in germplasm with contrasting resistance to both drought and mycotoxin contamination. Here, following screening for drought tolerance, a drought-sensitive line, B73, and a drought-tolerant line, Lo964, were selected and stressed beginning at 14 days after pollination. Developing kernels were sampled 7 and 14 days after drought induction (DAI) from both stressed and irrigated plants. Comparative biochemical and metabolomic analyses profiled 409 differentially accumulated metabolites. Multivariate statistics and pathway analyses showed that drought stress induced an accumulation of simple sugars and polyunsaturated fatty acids and a decrease in amines, polyamines and dipeptides in B73. Conversely, sphingolipid, sterol, phenylpropanoid and dipeptide metabolites accumulated in Lo964 under drought stress. Drought stress also resulted in the greater accumulation of reactive oxygen species (ROS) and aflatoxin in kernels of B73 in comparison with Lo964 implying a correlation in their production. Overall, field drought treatments disordered a cascade of normal metabolic programming during development of maize kernels and subsequently caused oxidative stress. The glutathione and urea cycles along with the metabolism of carbohydrates and lipids for osmoprotection, membrane maintenance and antioxidant protection were central among the drought stress responses observed in developing kernels. These results also provide novel targets to enhance host drought tolerance and disease resistance through the use of biotechnologies such as transgenics and genome editing.
Collapse
Affiliation(s)
- Liming Yang
- USDA‐ARS, Crop Protection and Management Research UnitTiftonGAUSA
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingJiangsuChina
| | - Jake C. Fountain
- USDA‐ARS, Crop Protection and Management Research UnitTiftonGAUSA
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
| | - Pingsheng Ji
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
| | - Xinzhi Ni
- USDA‐ARS, Crop Genetics and Breeding Research UnitTiftonGAUSA
| | - Sixue Chen
- Department of Biology, Genetics Institute, and Plant Molecular & Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| | - Robert D. Lee
- Department of Crop and Soil SciencesUniversity of GeorgiaTiftonGAUSA
| | | | - Baozhu Guo
- USDA‐ARS, Crop Protection and Management Research UnitTiftonGAUSA
| |
Collapse
|
76
|
Casartelli A, Riewe D, Hubberten HM, Altmann T, Hoefgen R, Heuer S. Exploring traditional aus-type rice for metabolites conferring drought tolerance. RICE (NEW YORK, N.Y.) 2018; 11:9. [PMID: 29372429 PMCID: PMC5785456 DOI: 10.1186/s12284-017-0189-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/22/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. RESULTS The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. CONCLUSIONS The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.
Collapse
Affiliation(s)
- Alberto Casartelli
- School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Adelaide, SA Australia
| | - David Riewe
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | | | - Thomas Altmann
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sigrid Heuer
- School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Adelaide, SA Australia
- Rothamsted Research, Harpenden, UK
| |
Collapse
|
77
|
Le Signor C, Vernoud V, Noguero M, Gallardo K, Thompson RD. Functional Genomics and Seed Development in Medicago truncatula: An Overview. Methods Mol Biol 2018; 1822:175-195. [PMID: 30043305 DOI: 10.1007/978-1-4939-8633-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The study of seed development in the model species Medicago truncatula has made a significant contribution to our understanding of this process in crop legumes. Thanks to the availability of comprehensive proteomics and transcriptomics databases, coupled with exhaustive mutant collections, the roles of several regulatory genes in development and maturation are beginning to be deciphered and functionally validated. Advances in next-generation sequencing and the availability of a genomic sequence have made feasible high-density SNP genotyping, allowing the identification of markers tightly linked to traits of agronomic interest. A further major advance is to be expected from the integration of omics resources in functional network construction, which has been used recently to identify "hub" genes central to important traits.
Collapse
Affiliation(s)
- Christine Le Signor
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Vanessa Vernoud
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Mélanie Noguero
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Richard D Thompson
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
78
|
Santos CMD, Endres L, Ferreira VM, Silva JV, Rolim EV, Wanderley HCL. Photosynthetic capacity and water use efficiency in Ricinus communis (L.) under drought stress in semi-humid and semi-arid areas. AN ACAD BRAS CIENC 2017; 89:3015-3029. [PMID: 29236872 DOI: 10.1590/0001-3765201720160729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 07/28/2017] [Indexed: 01/17/2023] Open
Abstract
Castor bean is one of the crops with potential to provide raw material for production of oils for biodiesel. This species possess adaptive mechanisms for maintaining the water status when subjected to drought stress. A better understanding these mechanisms under field conditions can unravel the survival strategies used by this species. This study aimed to compare the physiological adaptations of Ricinus communis (L.) in two regions with different climates, the semi-arid and semi-humid subject to water stress. The plants showed greater vapor pressure deficit during the driest hours of the day, which contributed to higher values of the leaf temperature and leaf transpiration, however, the VPD(leaf-air) had the greatest effect on plants in the semi-arid region. In both regions, between 12:00 p.m. and 2:00 p.m., the plants presented reduction in the rates of photosynthesis and intracellular CO2 concentration in response to stomatal closure. During the dry season in the semi-arid region, photoinhibition occurred in the leaves of castor bean between 12:00 p.m. and 2:00 p.m. These results suggest that castor bean plants possess compensatory mechanisms for drought tolerance, such as: higher stomatal control and maintenance of photosynthetic capacity, allowing the plant to survive well in soil with low water availability.
Collapse
Affiliation(s)
- Claudiana M Dos Santos
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| | - Laurício Endres
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| | - Vilma M Ferreira
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| | - José V Silva
- Laboratório de Fisiologia Vegetal, Universidade Federal de Alagoas, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57309-005 Arapiraca, AL, Brazil
| | - Eduardo V Rolim
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| | - Humberto C L Wanderley
- Laboratório de Fisiologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de Alagoas, Campus Delza Gitaí, BR 104 Norte, Km 85, 57072-900 Rio Largo, AL, Brazil
| |
Collapse
|
79
|
Das A, Kim DW, Khadka P, Rakwal R, Rohila JS. Unraveling Key Metabolomic Alterations in Wheat Embryos Derived from Freshly Harvested and Water-Imbibed Seeds of Two Wheat Cultivars with Contrasting Dormancy Status. FRONTIERS IN PLANT SCIENCE 2017; 8:1203. [PMID: 28747920 PMCID: PMC5506182 DOI: 10.3389/fpls.2017.01203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/26/2017] [Indexed: 05/20/2023]
Abstract
Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS), which deteriorates the yield and quality of wheat crop. Metabolic homeostasis of the embryo plays a role in seed dormancy, determining the status of the maturing grains either as dormant (PHS-tolerant) or non-dormant (PHS-susceptible). Very little is known for direct measurements of global metabolites in embryonic tissues of dormant and non-dormant wheat seeds. In this study, physiologically matured and freshly harvested wheat seeds of PHS-tolerant (cv. Sukang, dormant) and PHS-susceptible (cv. Baegjoong, non-dormant) cultivars were water-imbibed, and the isolated embryos were subjected to high-throughput, global non-targeted metabolomic profiling. A careful comparison of identified metabolites between Sukang and Baegjoong embryos at 0 and 48 h after imbibition revealed that several key metabolic pathways [such as: lipids, fatty acids, oxalate, hormones, the raffinose family of oligosaccharides (RFOs), and amino acids] and phytochemicals were differentially regulated between dormant and non-dormant varieties. Most of the membrane lipids were highly reduced in Baegjoong compared to Sukang, which indicates that the cell membrane instability in response to imbibition could also be a key factor in non-dormant wheat varieties for their untimely germination. This study revealed that several key marker metabolites (e.g., RFOs: glucose, fructose, maltose, and verbascose), were highly expressed in Baegjoong after imbibition. Furthermore, the data showed that the key secondary metabolites and phytochemicals (vitexin, chrysoeriol, ferulate, salidroside and gentisic acid), with known antioxidant properties, were comparatively low at basal levels in PHS-susceptible, non-dormant cultivar, Baegjoong. In conclusion, the results of this investigation revealed that after imbibition the metabolic homeostasis of dormant wheat is significantly less affected compared to non-dormant wheat. The inferences from this study combined with proteomic and transcriptomic studies will advance the molecular understanding of the pathways and enzyme regulations during PHS.
Collapse
Affiliation(s)
- Aayudh Das
- Department of Plant Biology, University of Vermont, BurlingtonVT, United States
- Department of Biology and Microbiology, South Dakota State University, BrookingsSD, United States
| | - Dea-Wook Kim
- National Institute of Crop Science, Rural Development AdministrationWanju-gun, South Korea
| | - Pramod Khadka
- Department of Biology and Microbiology, South Dakota State University, BrookingsSD, United States
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of TsukubaTsukuba, Japan
| | - Jai S. Rohila
- Department of Biology and Microbiology, South Dakota State University, BrookingsSD, United States
| |
Collapse
|
80
|
Wang Y, Liu K, Bi D, Zhou S, Shao J. Characterization of the transcriptome and EST-SSR development in Boea clarkeana, a desiccation-tolerant plant endemic to China. PeerJ 2017; 5:e3422. [PMID: 28630801 PMCID: PMC5474092 DOI: 10.7717/peerj.3422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Desiccation-tolerant (DT) plants can recover full metabolic competence upon rehydration after losing most of their cellular water (>95%) for extended periods of time. Functional genomic approaches such as transcriptome sequencing can help us understand how DT plants survive and respond to dehydration, which has great significance for plant biology and improving the drought tolerance of crops. Boea clarkeana Hemsl. (Gesneriaceae) is a DT dicotyledonous herb. Its genomic sequences characteristics remain unknown. Based on transcriptomic analyses, polymorphic EST-SSR (simple sequence repeats in expressed sequence tags) molecular primers can be designed, which will greatly facilitate further investigations of the population genetics and demographic histories of DT plants. METHODS In the present study, we used the platform Illumina HiSeq™2000 and de novo assembly technology to obtain leaf transcriptomes of B. clarkeana and conducted a BLASTX alignment of the sequencing data and protein databases for sequence classification and annotation. Then, based on the sequence information, the EST-SSR markers were developed, and the functional annotation of ESTs containing polymorphic SSRs were obtained through BLASTX. RESULTS A total of 91,449 unigenes were generated from the leaf cDNA library of B. clarkeana. Based on a sequence similarity search with a known protein database, 72,087 unigenes were annotated. Among the annotated unigenes, a total of 71,170 unigenes showed significant similarity to the known proteins of 463 popular model species in the Nr database, and 59,962 unigenes and 32,336 unigenes were assigned to Gene Ontology (GO) classifications and Cluster of Orthologous Groups (COG), respectively. In addition, 44,924 unigenes were mapped in 128 KEGG pathways. Furthermore, a total of 7,610 unigenes with 8,563 microsatellites were found. Seventy-four primer pairs were selected from 436 primer pairs designed for polymorphism validation. SSRs with higher polymorphism rates were concentrated on dinucleotides, pentanucleotides and hexanucleotides. Finally, 17 pairs with stable, highly polymorphic loci were selected for polymorphism screening. There was a total of 65 alleles, with 2-6 alleles at each locus. Primarily due to the unique biological characteristics of plants, the HE (0-0.196), HO (0.082-0.14) and PIC (0-0.155) per locus were very low. The functional annotation distribution centered on ESTs containing di- and tri-nucleotide SSRs, and the ESTs containing primers BC2, BC4 and BC12 were annotated to vegetative dehydration/desiccation pathways. DISCUSSION This work is the first genetic study of B. clarkeana as a new plant resource of DT genes. A substantial number of transcriptome sequences were generated in this study. These sequences are valuable resources for gene annotation and discovery as well as molecular marker development. These sequences could also provide a valuable basis for future molecular studies of B. clarkeana.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui, China
| | - Kun Liu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui, China
| | - De Bi
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shoubiao Zhou
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, China
| | - Jianwen Shao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
81
|
Vieira EA, Silva MDG, Moro CF, Laura VA. Physiological and biochemical changes attenuate the effects of drought on the Cerrado species Vatairea macrocarpa (Benth.) Ducke. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:472-483. [PMID: 28494394 DOI: 10.1016/j.plaphy.2017.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Drought is considered the main abiotic stress because it influences the distribution of plant species and limits the productivity of ecosystems. The aim of this study was to evaluate the effects of drought on physiological and biochemical parameters during the initial development of Vatairea macrocarpa, a native cerrado species. Plants were subjected to daily watering (control); suppression of watering during 90 days with field capacity (fc) 50% and 25% and then followed by rewatering. Relative leaf water content (RWC), gas exchange, photosynthetic pigments content, carbohydrate and amino acids content, antioxidant activities and growth were recorded. The RWC decreased according to the soil water restriction, causing reduction in stomatal conductance and decrease of 76.4% in net photosynthesis in plants submitted to 25% fc. Water restriction decreased the chlorophyll content, however increased carotenoid content and also improved the antioxidant activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT). In addition, high levels of sugars (sucrose, raffinose) and amino acids (proline, tryptophan, valine, glutamine and GABA) were detected in drought stressed plants, contributing to osmoregulation and as sources of carbon and nitrogen after rehydration. Decreases in carbon assimilation promoted a reduction of the leaf area, however an increase in the root surface area was observed. After rewatering, the analized parameters became similar to the control plants indicating that the severe water stress did not impair the survival of young plants. Instead, adjustments were made to protect them against drought such as the maintenance of the assimilatory metabolism at minimal levels.
Collapse
Affiliation(s)
- Evandro Alves Vieira
- Programa de Pós-Graduação em Biodiversidade Vegetal e Meio Ambiente, Instituto de Botânica, São Paulo, SP, Brazil; Laboratório de Biologia, Universidade Estadual de Mato Grosso do Sul, Coxim, MS, Brazil.
| | | | - Camila Fernandes Moro
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Valdemir Antônio Laura
- Empresa Brasileira de Pesquisa Agropecuária-EMBRAPA, Campo Grande, MS, Brazil; Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
82
|
Das A, Rushton PJ, Rohila JS. Metabolomic Profiling of Soybeans (Glycine max L.) Reveals the Importance of Sugar and Nitrogen Metabolism under Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2017; 6:E21. [PMID: 28587097 PMCID: PMC5489793 DOI: 10.3390/plants6020021] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 02/01/2023]
Abstract
Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At present an incomplete understanding of abiotic stress-associated metabolism and identification of associated metabolites remains a major gap in soybean stress research. A study with a goal to profile leaf metabolites under control conditions (28/24 °C), drought [28/24 °C, 10% volumetric water content (VWC)], and heat stress (43/35 °C) was conducted in a controlled environment. Analyses of non-targeted metabolomic data showed that in response to drought and heat stress, key metabolites (carbohydrates, amino acids, lipids, cofactors, nucleotides, peptides and secondary metabolites) were differentially accumulated in soybean leaves. The metabolites for various cellular processes, such as glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, and starch biosynthesis, that regulate carbohydrate metabolism, amino acid metabolism, peptide metabolism, and purine and pyrimidine biosynthesis, were found to be affected by drought as well as heat stress. Computationally based regulatory networks predicted additional compounds that address the possibility of other metabolites and metabolic pathways that could also be important for soybean under drought and heat stress conditions. Metabolomic profiling demonstrated that in soybeans, keeping up with sugar and nitrogen metabolism is of prime significance, along with phytochemical metabolism under drought and heat stress conditions.
Collapse
Affiliation(s)
- Aayudh Das
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, USA.
| | - Paul J Rushton
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- 22nd Century Group Inc., Clarence, NY 14031, USA.
| | - Jai S Rohila
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
- Dale Bumpers National Rice Research Center, USDA-ARS, Stuttgart, AR 72160, USA.
| |
Collapse
|
83
|
Kabbage M, Kessens R, Bartholomay LC, Williams B. The Life and Death of a Plant Cell. ANNUAL REVIEW OF PLANT BIOLOGY 2017; 68:375-404. [PMID: 28125285 DOI: 10.1146/annurev-arplant-043015-111655] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like all eukaryotic organisms, plants possess an innate program for controlled cellular demise termed programmed cell death (PCD). Despite the functional conservation of PCD across broad evolutionary distances, an understanding of the molecular machinery underpinning this fundamental program in plants remains largely elusive. As in mammalian PCD, the regulation of plant PCD is critical to development, homeostasis, and proper responses to stress. Evidence is emerging that autophagy is key to the regulation of PCD in plants and that it can dictate the outcomes of PCD execution under various scenarios. Here, we provide a broad and comparative overview of PCD processes in plants, with an emphasis on stress-induced PCD. We also discuss the implications of the paradox that is functional conservation of apoptotic hallmarks in plants in the absence of core mammalian apoptosis regulators, what that means, and whether an equivalent form of death occurs in plants.
Collapse
Affiliation(s)
- Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Ryan Kessens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Queensland 4001, Australia;
| |
Collapse
|
84
|
Lang S, Liu X, Xue H, Li X, Wang X. Functional characterization of BnHSFA4a as a heat shock transcription factor in controlling the re-establishment of desiccation tolerance in seeds. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2361-2375. [PMID: 28369570 DOI: 10.1093/jxb/erx097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Desiccation tolerance (DT) is the crucial ability of seeds to resist desiccation. However, the regulatory mechanisms of seed DT are not fully understood. In this study, two heat shock cis-elements (HSEs) were identified in the Brassica napus galactinol synthase (BnGolS1) promoter and shown to bind the heat shock transcription factor A4a (BnHSFA4a). Transcriptional expression of BnHSFA4a was induced at the early stage of DT acquisition, prior to increased BnGolS1 activity and galactinol production. Ectopic overexpression of BnHSFA4a (oxBnHSFA4a) in Arabidopsis enhanced DT, particularly during DT re-establishment. OxBnHSFA4a up-regulated the expression of GolS1, GolS2, and raffinose synthase 2 (BnRS2) in Arabidopsis and increased the enzymatic activity of GolS and RS and the concentration of raffinose family oligosaccharides (RFOs). Additionally, the overexpression lines exhibited increased antioxidant abilities. In contrast, the Arabidopsis mutant athsfa4a was more sensitive to dehydration, showing decreases in the efficiency of DT re-establishment, RFO contents, and oxidation resistance. Complementation analysis indicated that DT was rescued in athsfa4a/BnHSFA4a seeds to similar levels compared with those of Col-0. Taken together, these results indicated that BnHSFA4a probably functions in the regulation of GolS expression and activity, and activation of the antioxidative system and other stress response factors to improve DT.
Collapse
Affiliation(s)
- Sirui Lang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, PR China
| | - Xiaoxia Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, PR China
| | - Hua Xue
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, PR China
| | - Xu Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, PR China
| | - Xiaofeng Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing 100083, PR China
| |
Collapse
|
85
|
Yobi A, Schlauch KA, Tillett RL, Yim WC, Espinoza C, Wone BWM, Cushman JC, Oliver MJ. Sporobolus stapfianus: Insights into desiccation tolerance in the resurrection grasses from linking transcriptomics to metabolomics. BMC PLANT BIOLOGY 2017; 17:67. [PMID: 28351347 PMCID: PMC5371216 DOI: 10.1186/s12870-017-1013-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Understanding the response of resurrection angiosperms to dehydration and rehydration is critical for deciphering the mechanisms of how plants cope with the rigors of water loss from their vegetative tissues. We have focused our studies on the C4 resurrection grass, Sporobolus stapfianus Gandoger, as a member of a group of important forage grasses. METHODS We have combined non-targeted metabolomics with transcriptomics, via a NimbleGen array platform, to develop an understanding of how gene expression and metabolite profiles can be linked to generate a more detailed mechanistic appreciation of the cellular response to both desiccation and rehydration. RESULTS The rehydration transcriptome and metabolome are primarily geared towards the rapid return of photosynthesis, energy metabolism, protein turnover, and protein synthesis during the rehydration phase. However, there are some metabolites associated with ROS protection that remain elevated during rehydration, most notably the tocopherols. The analysis of the dehydration transcriptome reveals a strong concordance between transcript abundance and the associated metabolite abundance reported earlier, but only in responses that are directly related to cellular protection during dehydration: carbohydrate metabolism and redox homeostasis. The transcriptome response also provides strong support for the involvement of cellular protection processes as exemplified by the increases in the abundance of transcripts encoding late embryogenesis abundant (LEA) proteins, anti-oxidant enzymes, early light-induced proteins (ELIP) proteins, and cell-wall modification enzymes. There is little concordance between transcript and metabolite abundance for processes such as amino acid metabolism that do not appear to contribute directly to cellular protection, but are nonetheless important for the desiccation tolerant phenotype of S. stapfianus. CONCLUSIONS The transcriptomes of both dehydration and rehydration offer insight into the complexity of the regulation of responses to these processes that involve complex signaling pathways and associated transcription factors. ABA appears to be important in the control of gene expression in both the latter stages of the dehydration and the early stages of rehydration. These findings add to the growing body of information detailing how plants tolerate and survive the severe cellular perturbations of dehydration, desiccation, and rehydration.
Collapse
Affiliation(s)
- Abou Yobi
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri Columbia, Missouri, 65211 USA
| | - Karen A. Schlauch
- Nevada INBRE Bioinformatics Core, University of Nevada Reno, Nevada, 89557 USA
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Nevada, 89557 USA
| | - Richard L. Tillett
- Nevada INBRE Bioinformatics Core, University of Nevada Reno, Nevada, 89557 USA
| | - Won C. Yim
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Nevada, 89557 USA
| | - Catherine Espinoza
- Division of Plant Sciences, University of Missouri Columbia, Missouri, 65211 USA
| | - Bernard W. M. Wone
- Department of Biology, University of South Dakota, Vermillion, 57069 USA
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Nevada, 89557 USA
| | - Melvin J. Oliver
- U.S. Department of Agriculture-Agricultural Research Service, Plant Genetic Research Unit, University of Missouri Columbia, Missouri, 65211 USA
| |
Collapse
|
86
|
Costa MCD, Artur MAS, Maia J, Jonkheer E, Derks MFL, Nijveen H, Williams B, Mundree SG, Jiménez-Gómez JM, Hesselink T, Schijlen EGWM, Ligterink W, Oliver MJ, Farrant JM, Hilhorst HWM. A footprint of desiccation tolerance in the genome of Xerophyta viscosa. NATURE PLANTS 2017; 3:17038. [PMID: 28346448 DOI: 10.1038/nplants.2017.38] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/20/2017] [Indexed: 05/18/2023]
Abstract
Desiccation tolerance is common in seeds and various other organisms, but only a few angiosperm species possess vegetative desiccation tolerance. These 'resurrection species' may serve as ideal models for the ultimate design of crops with enhanced drought tolerance. To understand the molecular and genetic mechanisms enabling vegetative desiccation tolerance, we produced a high-quality whole-genome sequence for the resurrection plant Xerophyta viscosa and assessed transcriptome changes during its dehydration. Data revealed induction of transcripts typically associated with desiccation tolerance in seeds and involvement of orthologues of ABI3 and ABI5, both key regulators of seed maturation. Dehydration resulted in both increased, but predominantly reduced, transcript abundance of genomic 'clusters of desiccation-associated genes' (CoDAGs), reflecting the cessation of growth that allows for the expression of desiccation tolerance. Vegetative desiccation tolerance in X. viscosa was found to be uncoupled from drought-induced senescence. We provide strong support for the hypothesis that vegetative desiccation tolerance arose by redirection of genetic information from desiccation-tolerant seeds.
Collapse
Affiliation(s)
- Maria-Cecília D Costa
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, 7701 Cape Town, South Africa
| | - Mariana A S Artur
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Julio Maia
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Eef Jonkheer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Martijn F L Derks
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Harm Nijveen
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Queensland 4001, Brisbane, Australia
| | - Sagadevan G Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, PO Box 2434, Queensland 4001, Brisbane, Australia
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Thamara Hesselink
- Bioscience, Wageningen Plant Research International, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Elio G W M Schijlen
- Bioscience, Wageningen Plant Research International, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Melvin J Oliver
- USDA-ARS-MWA-PGRU, 205 Curtis Hall, University of Missouri, Columbia, Missouri 65211, USA
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, 7701 Cape Town, South Africa
| | - Henk W M Hilhorst
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
87
|
Rabara RC, Tripathi P, Rushton PJ. Comparative Metabolome Profile between Tobacco and Soybean Grown under Water-Stressed Conditions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3065251. [PMID: 28127554 PMCID: PMC5239840 DOI: 10.1155/2017/3065251] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/25/2016] [Accepted: 11/03/2016] [Indexed: 11/23/2022]
Abstract
Understanding how plants respond to water deficit is important in order to develop crops tolerant to drought. In this study, we compare two large metabolomics datasets where we employed a nontargeted metabolomics approach to elucidate metabolic pathways perturbed by progressive dehydration in tobacco and soybean plants. The two datasets were created using the same strategy to create water deficit conditions and an identical metabolomics pipeline. Comparisons between the two datasets therefore reveal common responses between the two species, responses specific to one of the species, responses that occur in both root and leaf tissues, and responses that are specific to one tissue. Stomatal closure is the immediate response of the plant and this did not coincide with accumulation of abscisic acid. A total of 116 and 140 metabolites were observed in tobacco leaves and roots, respectively, while 241 and 207 were observed in soybean leaves and roots, respectively. Accumulation of metabolites is significantly correlated with the extent of dehydration in both species. Among the metabolites that show increases that are restricted to just one plant, 4-hydroxy-2-oxoglutaric acid (KHG) in tobacco roots and coumestrol in soybean roots show the highest tissue-specific accumulation. The comparisons of these two large nontargeted metabolomics datasets provide novel information and suggest that KHG will be a useful marker for drought stress for some members of Solanaceae and coumestrol for some legume species.
Collapse
Affiliation(s)
- Roel C. Rabara
- Texas A&M AgriLife Research and Extension Center, Dallas, TX 75252, USA
| | | | - Paul J. Rushton
- Texas A&M AgriLife Research and Extension Center, Dallas, TX 75252, USA
| |
Collapse
|
88
|
Wang B, Du H, Zhang Z, Xu W, Deng X. BhbZIP60 from Resurrection Plant Boea hygrometrica Is an mRNA Splicing-Activated Endoplasmic Reticulum Stress Regulator Involved in Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:245. [PMID: 28286511 PMCID: PMC5323427 DOI: 10.3389/fpls.2017.00245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/09/2017] [Indexed: 05/18/2023]
Abstract
Adverse environmental conditions cause endoplasmic reticulum (ER) stress in plants. To mitigate ER stress damage, ER associated transcription factors and inositol-requiring enzyme-1 (IRE1)-mediated bZIP60 mRNA splicing are activated in plants. A drought-induced gene, encoding the ortholog of AtbZIP60, was identified in the resurrection plant Boea hygrometrica, termed BhbZIP60. In response to ER stress and dehydration, BhbZIP60 mRNA can be spliced to create a frame shift in the C terminus by the excision of 23b segment in a manner of its ortholog in other plants, thus translocating to the nucleus instead of the cytoplasm. The splicing-activated BhbZIP60 (BhbZIP60S) could function in the same way as its Arabidopsis ortholog by restoring the molecular phenotype of the mutant atbzip60. When overexpressed in Arabidopsis, BhbZIP60S provided transgenic plants with enhanced tolerance to drought, tunicamycin and mannitol stresses with upregulation of the expressions of ER quality control (QC) genes (BiP2, BiP3, CNX1, and sPDI) and abscisic acid (ABA) responsive genes (RD29A, RAB18, and RD17). Furthermore, in the yeast one-hybrid system, BhbZIP60S was capable of interacting with ER stress responsive elements (ERSE and ERSE-II) that exist in the promoters of known ER-QC genes, but not binding to ABA responsive cis-elements (ABREs). Our results demonstrated that drought-induced BhbZIP60 may have a function in drought tolerance via the splicing-activated BhbZIP60S to mediate ER-QC by direct binding to the promoters of ER-QC genes. This study evidently demonstrates the involvement of ER-QC in the drought tolerance of Arabidopsis and the desiccation tolerance of the resurrection plant B. hygrometrica.
Collapse
Affiliation(s)
- Bo Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- College of Agriculture, Xinjiang Agricultural UniversityUrumqi, China
| | - Hong Du
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Zhennan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Xin Deng, Wenzhong Xu,
| | - Xin Deng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Xin Deng, Wenzhong Xu,
| |
Collapse
|
89
|
Zhang Q, Song X, Bartels D. Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants. Proteomes 2016; 4:E40. [PMID: 28248249 PMCID: PMC5260972 DOI: 10.3390/proteomes4040040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 01/31/2023] Open
Abstract
Resurrection plants can tolerate extreme water loss. Substantial sugar accumulation is a phenomenon in resurrection plants during dehydration. Sugars have been identified as one important factor contributing to desiccation tolerance. Phylogenetic diversity of resurrection plants reflects the diversity of sugar metabolism in response to dehydration. Sugars, which accumulate during dehydration, have been shown to protect macromolecules and membranes and to scavenge reactive oxygen species. This review focuses on the performance of enzymes participating in sugar metabolism during dehydration stress. The relation between sugar metabolism and other biochemical activities is discussed and open questions as well as potential experimental approaches are proposed.
Collapse
Affiliation(s)
- Qingwei Zhang
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Xiaomin Song
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany.
| |
Collapse
|
90
|
Metabolomics, a Powerful Tool for Agricultural Research. Int J Mol Sci 2016; 17:ijms17111871. [PMID: 27869667 PMCID: PMC5133871 DOI: 10.3390/ijms17111871] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, which is based mainly on nuclear magnetic resonance (NMR), gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass spectrometry (MS) analytical technologies to systematically acquire the qualitative and quantitative information of low-molecular-mass endogenous metabolites, provides a direct snapshot of the physiological condition in biological samples. As complements to transcriptomics and proteomics, it has played pivotal roles in agricultural and food science research. In this review, we discuss the capacities of NMR, GC/LC-MS in the acquisition of plant metabolome, and address the potential promise and diverse applications of metabolomics, particularly lipidomics, to investigate the responses of Arabidopsis thaliana, a primary plant model for agricultural research, to environmental stressors including heat, freezing, drought, and salinity.
Collapse
|
91
|
Sprenger H, Kurowsky C, Horn R, Erban A, Seddig S, Rudack K, Fischer A, Walther D, Zuther E, Köhl K, Hincha DK, Kopka J. The drought response of potato reference cultivars with contrasting tolerance. PLANT, CELL & ENVIRONMENT 2016; 39:2370-2389. [PMID: 27341794 DOI: 10.1111/pce.12780] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 05/21/2023]
Abstract
Systems responses to drought stress of four potato reference cultivars with differential drought tolerance (Solanum tuberosum L.) were investigated by metabolome profiling and RNA sequencing. Systems analysis was based on independent field and greenhouse trials. Robust differential drought responses across all cultivars under both conditions comprised changes of proline, raffinose, galactinol, arabitol, arabinonic acid, chlorogenic acid and 102 transcript levels. The encoded genes contained a high proportion of heat shock proteins and proteins with signalling or regulatory functions, for example, a homolog of abscisic acid receptor PYL4. Constitutive differences of the tolerant compared with the sensitive cultivars included arbutin, octopamine, ribitol and 248 transcripts. The gene products of many of these transcripts were pathogen response related, such as receptor kinases, or regulatory proteins, for example, a homolog of the Arabidopsis FOUR LIPS MYB-regulator of stomatal cell proliferation. Functional enrichment analyses imply heat stress as a major acclimation component of potato leaves to long-term drought stress. Enhanced heat stress during drought can be caused by loss of transpiration cooling. This effect and CO2 limitation are the main consequences of drought-induced or abscisic acid-induced stomatal closure. Constitutive differences in metabolite and transcript levels between tolerant and sensitive cultivars indicate interactions of drought tolerance and pathogen resistance in potato.
Collapse
Affiliation(s)
- Heike Sprenger
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Christina Kurowsky
- Institut für Biowissenschaften und Pflanzengenetik, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Renate Horn
- Institut für Biowissenschaften und Pflanzengenetik, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Sylvia Seddig
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institut, Federal Research Centre for Cultivated Plants, Rudolf-Schick-Platz 3, D-18190, Sanitz, Germany
| | - Katharina Rudack
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institut, Federal Research Centre for Cultivated Plants, Rudolf-Schick-Platz 3, D-18190, Sanitz, Germany
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany.
| |
Collapse
|
92
|
Zhang J, Luo W, Zhao Y, Xu Y, Song S, Chong K. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. THE NEW PHYTOLOGIST 2016; 211:1295-310. [PMID: 27198693 DOI: 10.1111/nph.14011] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/30/2016] [Indexed: 05/22/2023]
Abstract
Cold, a major environmental stress for plants, has been studied intensively for decades. Its response system has been revealed, especially at the transcriptional level. The mechanisms underlying recovery growth and environmental adaptation, however, remain unknown. Taking advantage of a naturally existing system, two subspecies of Asian cultivated rice (Oryza sativa) with significant divergence in chilling tolerance, we analyzed representative japonica and indica varieties, Nipponbare and 93-11, using comparative metabolomic analysis at six time points covering chilling treatment and recovery. In total, 223 known metabolites were detected. During chilling treatment, significant biochemical changes were centered on antioxidation. During recovery, a wide-ranging chilling response was observed. Large-scale amino acid accumulation occurred, consistent with the appearance of chilling injury. At the mid-treatment stage, the accumulation of antioxidation-related compounds appeared earlier in Nipponbare than in 93-11, consistent with the higher reactive oxygen species (ROS) levels in japonica vs indica varieties. A significant contribution of ROS-mediated gene regulation, rather than the C-repeat binding factor/dehydration-responsive-element binding factor (CBF/DREB) regulon, to the more vigorous transcriptional stress response in Nipponbare was revealed by RNA-seq. Accordingly, during recovery, the induction of stress-tolerant-related metabolites was more active in the chilling-tolerant variety Nipponbare. Senescence-related compounds accumulated only in the chilling-sensitive variety 93-11. Our study uncovers the dynamic metabolic models underlying chilling response and recovery, and reveals a ROS-dominated rice adaptation mechanism to low-temperature environments.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wei Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuan Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuhui Song
- Big Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
93
|
Yan H, Qiao Z, Shen B, Xiang P, Shen M. Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis. Forensic Sci Int 2016; 267:129-135. [PMID: 27598867 DOI: 10.1016/j.forsciint.2016.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
Brodifacoum is one of the most widely used rodenticides for rodent control and eradication; however, human and animal poisoning due to primary and secondary exposure has been reported since its development. Although numerous studies have described brodifacoum induced toxicity, the precise mechanism still needs to be explored. Gas chromatography mass spectrometry (GC-MS) coupled with an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to characterize the metabolic profile of brodifacoum induced toxicity and discover potential biomarkers in rat plasma. The toxicity of brodifacoum was dose-dependent, and the high-dose group obviously manifested toxicity with subcutaneous hemorrhage. The blood brodifacoum concentration showed a positive relation to the ingestion dose in toxicological analysis. Significant changes of twenty-four metabolites were identified and considered as potential toxicity biomarkers, primarily involving glucose metabolism, lipid metabolism and amino acid metabolism associated with anticoagulant activity, nephrotoxicity and hepatic damage. MS-based metabonomics analysis in plasma samples is helpful to search for potential poisoning biomarkers and to understand the underlying mechanisms of brodifacoum induced toxicity.
Collapse
Affiliation(s)
- Hui Yan
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China; Department of Forensic Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zheng Qiao
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China
| | - Baohua Shen
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China
| | - Ping Xiang
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China
| | - Min Shen
- Department of Forensic Toxicology, Institute of Forensic Sciences, Ministry of Justice, Shanghai Key Laboratory of Forensic Medicine, Shanghai 200063, China.
| |
Collapse
|
94
|
Irani S, Todd CD. Ureide metabolism under abiotic stress in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:87-95. [PMID: 27302009 DOI: 10.1016/j.jplph.2016.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 05/21/2023]
Abstract
Ureides are nitrogenous compounds derived from purine catabolism which contribute to nitrogen recycling in plants. Accumulation of ureide compounds has been reported in a number of plant species under stress conditions, suggesting their involvement in plants' response to stress. In this research a biochemical and molecular approach was applied to address the ureide accumulation under abiotic stress conditions in Arabidopsis thaliana. Ureide concentration and changes in expression of ureide metabolic genes were examined in response to drought, NaCl and mannitol treatments. Additionally, an Arabidopsis allantoinase (ALN) mutant with constitutive accumulation of a ureide compound, allantoin, was used to investigate the impact of high levels of this compound on drought and NaCl stress responses. In the leaf tissue of adult plants allantoin accumulated in response to soil drying. Transcription of urate oxidase (UO), involved in allantoin production, was highly up-regulated under the same conditions. Allantoin and allantoate also accumulated in seedlings following treatment with NaCl or mannitol. aln mutants with enhanced levels of allantoin exhibited higher tolerance to drought and NaCl. Hydrogen peroxide and superoxide did not accumulate in the aln mutant leaves to the same degree in response to drought when compared to the wild-type. Our results suggest that ureide metabolism and accumulation contribute to the abiotic stress response which is regulated, at least in part, at the transcriptional level. Higher concentrations of allantoin in the mutant elevates abiotic stress tolerance, possibly by reducing oxidative damage.
Collapse
Affiliation(s)
- Solmaz Irani
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Christopher D Todd
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
95
|
Hartmann H, Trumbore S. Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. THE NEW PHYTOLOGIST 2016; 211:386-403. [PMID: 27061438 DOI: 10.1111/nph.13955] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/01/2016] [Indexed: 05/17/2023]
Abstract
Contents 386 I. 386 II. 388 III. 392 IV. 392 V. 396 VI. 399 399 References 399 SUMMARY: Carbohydrates provide the building blocks for plant structures as well as versatile resources for metabolic processes. The nonstructural carbohydrates (NSC), mainly sugars and starch, fulfil distinct functional roles, including transport, energy metabolism and osmoregulation, and provide substrates for the synthesis of defence compounds or exchange with symbionts involved in nutrient acquisition or defence. At the whole-plant level, NSC storage buffers the asynchrony of supply and demand on diel, seasonal or decadal temporal scales and across plant organs. Despite its central role in plant function and in stand-level carbon cycling, our understanding of storage dynamics, its controls and response to environmental stresses is very limited, even after a century of research. This reflects the fact that often storage is defined by what we can measure, that is, NSC concentrations, and the interpretation of these as a proxy for a single function, storage, rather than the outcome of a range of NSC source and sink functions. New isotopic tools allow direct quantification of timescales involved in NSC dynamics, and show that NSC-C fixed years to decades previously is used to support tree functions. Here we review recent advances, with emphasis on the context of the interactions between NSC, drought and tree mortality.
Collapse
Affiliation(s)
- Henrik Hartmann
- Max-Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
| | - Susan Trumbore
- Max-Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
| |
Collapse
|
96
|
Pires MV, Pereira Júnior AA, Medeiros DB, Daloso DM, Pham PA, Barros KA, Engqvist MKM, Florian A, Krahnert I, Maurino VG, Araújo WL, Fernie AR. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:1304-19. [PMID: 26616144 DOI: 10.1111/pce.12682] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 05/23/2023]
Abstract
During dark-induced senescence isovaleryl-CoA dehydrogenase (IVDH) and D-2-hydroxyglutarate dehydrogenase (D-2HGDH) act as alternate electron donors to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) pathway. However, the role of this pathway in response to other stresses still remains unclear. Here, we demonstrated that this alternative pathway is associated with tolerance to drought in Arabidopsis. In comparison with wild type (WT) and lines overexpressing D-2GHDH, loss-of-function etfqo-1, d2hgdh-2 and ivdh-1 mutants displayed compromised respiration rates and were more sensitive to drought. Our results demonstrated that an operational ETF/ETFQO pathway is associated with plants' ability to withstand drought and to recover growth once water becomes replete. Drought-induced metabolic reprogramming resulted in an increase in tricarboxylic acid (TCA) cycle intermediates and total amino acid levels, as well as decreases in protein, starch and nitrate contents. The enhanced levels of the branched-chain amino acids in loss-of-function mutants appear to be related to their increased utilization as substrates for the TCA cycle under water stress. Our results thus show that mitochondrial metabolism is highly active during drought stress responses and provide support for a role of alternative respiratory pathways within this response.
Collapse
Affiliation(s)
- Marcel V Pires
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adilson A Pereira Júnior
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - David B Medeiros
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Phuong Anh Pham
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Kallyne A Barros
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Martin K M Engqvist
- Plant Molecular Physiology and Biotechnology, Institute of Plant Developmental and Molecular Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstr 1, D-40225, Düsseldorf, Germany
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göterborg, Sweden
| | - Alexandra Florian
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology, Institute of Plant Developmental and Molecular Biology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstr 1, D-40225, Düsseldorf, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
97
|
Deeba F, Pandey AK, Pandey V. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration. FRONTIERS IN PLANT SCIENCE 2016; 7:425. [PMID: 27092152 PMCID: PMC4824794 DOI: 10.3389/fpls.2016.00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.
Collapse
Affiliation(s)
| | | | - Vivek Pandey
- Plant Ecology and Environmental Science, CSIR-National Botanical Research InstituteLucknow, India
| |
Collapse
|
98
|
Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2519-2532. [PMID: 26931169 PMCID: PMC4809300 DOI: 10.1093/jxb/erw071] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Allantoin is a metabolic intermediate of purine catabolism that often accumulates in stressed plants. Recently, we used Arabidopsis knockout mutants (aln) of ALLANTOINASE to show that this purine metabolite activates abscisic acid (ABA) production, thereby stimulating stress-related gene expression and enhancing seedling tolerance to abiotic stress. A detailed re-examination of the microarray data of an aln mutant (aln-1) confirmed the increased expression of ABA-related genes and also revealed altered expression of genes involved in jasmonic acid (JA) responses, probably under the control of MYC2, a master switch in the JA signaling pathway. Consistent with the transcriptome profiles, the aln-1 mutant displayed increased JA levels and enhanced responses to mechanical wounding and exogenous JA. Moreover, aln mutants demonstrated modestly increased susceptibility to Pseudomonas syringae and Pectobacterium carotovorum, probably reflecting the antagonistic action of MYC2 on the defense against these bacterial phytopathogens. Exogenously administered allantoin elicited the expression of JA-responsive genes, including MYC2, in wild-type plants, supporting the idea that allantoin might be responsible for the observed JA-related phenotypes of aln mutants. However, mutants deficient in bioactive JA (jar1-1), insensitive to JA (myc2-3), or deficient in ABA (aba2-1 and bglu18) suppressed the effect of exogenous allantoin. The suppression was further confirmed in aln-1 jar1-1 and aln-1 bglu18 double mutants. These results indicate that allantoin can activate the MYC2-regulated JA signaling pathway through ABA production. Overall, this study suggests a possible connection of purine catabolism with stress hormone homeostasis and signaling, and highlights the potential importance of allantoin in these interactions.
Collapse
Affiliation(s)
- Hiroshi Takagi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Shunsuke Watanabe
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Nobuhiro Akiyoshi
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | | | - Hiroshi Shimada
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Atsushi Sakamoto
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
99
|
Kim YJ, Silva J, Zhang D, Shi J, Joo SC, Jang MG, Kwon WS, Yang DC. Development of interspecies hybrids to increase ginseng biomass and ginsenoside yield. PLANT CELL REPORTS 2016; 35:779-90. [PMID: 26800977 DOI: 10.1007/s00299-015-1920-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/27/2015] [Accepted: 12/09/2015] [Indexed: 05/27/2023]
Abstract
Interspecific hybrids between Panax ginseng and P. quinquefolius results in hybrid vigor and higher ginsenoside contents. Ginseng is one of the most important herbs with valued pharmaceutical effects contributing mainly by the presence of bioactive ginsenosides in the roots. However, ginseng industry is impeded largely by its biological properties, because ginseng plants are slow-growing perennial herbs with lower yield. To increase the ginseng yield and amounts of ginsenosides, we developed an effective ginseng production system using the F(1) progenies obtained from the interspecific reciprocal cross between two Panax species: P. ginseng and P. quinquefolius. Although hybrid plants show reduced male fertility, F(1) hybrids with the maternal origin either from P. ginseng or P. quinquefolius displayed heterosis; they had larger roots and higher contents of ginsenosides as compared with non-hybrid parental lines. Remarkably, the F(1) hybrids with the maternal origin of P. quinquefolius had much higher ginsenoside contents, especially ginsenoside Re and Rb1, than those with the maternal origin of P. ginseng. Additionally, non-targeted metabolomic profiling revealed a clear increase of a large number of primary and secondary metabolites including fatty acids, amino acids and ginsenosides in hybrid plants. To effectively identify the F(1) hybrids for the large-scale cultivation, we successfully developed a molecular marker detection system for discriminating F(1) reciprocal hybrids. In summary, this work provided a practical system for reciprocal hybrid ginseng production, which would facilitate the ginseng production in the future.
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea.
| | - Jeniffer Silva
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Dabing Zhang
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Jianxin Shi
- Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Sung Chul Joo
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Moon-Gi Jang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Woo-Saeng Kwon
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea.
- Graduate School of Biotechnology and Ginseng Bank, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea.
| |
Collapse
|
100
|
Mostafa I, Zhu N, Yoo MJ, Balmant KM, Misra BB, Dufresne C, Abou-Hashem M, Chen S, El-Domiaty M. New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants. J Proteomics 2016; 138:1-19. [PMID: 26915584 DOI: 10.1016/j.jprot.2016.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/07/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Glucosinolates present in Brassicales are important for human health and plant defense against insects and pathogens. Here we investigate the proteomes and metabolomes of Arabidopsis myb28/29 and cyp79B2/B3 mutants deficient in aliphatic glucosinolates and indolic glucosinolates, respectively. Quantitative proteomics of the myb28/29 and cyp79B2/B3 mutants led to the identification of 2785 proteins, of which 142 proteins showed significant changes in the two mutants compared to wild type (WT). By mapping the differential proteins using STRING, we detected 59 new edges in the glucosinolate metabolic network. These connections can be classified as primary with direct roles in glucosinolate metabolism, secondary related to plant stress responses, and tertiary involved in other biological processes. Gene Ontology analysis of the differential proteins showed high level of enrichment in the nodes belonging to metabolic process including glucosinolate biosynthesis and response to stimulus. Using metabolomics, we quantified 292 metabolites covering a broad spectrum of metabolic pathways, and 89 exhibited differential accumulation patterns between the mutants and WT. The changing metabolites (e.g., γ-glutamyl amino acids, auxins and glucosinolate hydrolysis products) complement our proteomics findings. This study contributes toward engineering and breeding of glucosinolate profiles in plants in efforts to improve human health, crop quality and productivity. BIOLOGICAL SIGNIFICANCE Glucosinolates in Brassicales constitute an important group of natural metabolites important for plant defense and human health. Its biosynthetic pathways and transcriptional regulation have been well-studied. Using Arabidopsis mutants of important genes in glucosinolate biosynthesis, quantitative proteomics and metabolomics led to identification of many proteins and metabolites that are potentially related to glucosinolate metabolism. This study provides a comprehensive insight into the molecular networks of glucosinolate metabolism, and will facilitate efforts toward engineering and breeding of glucosinolate profiles for enhanced crop defense, and nutritional value.
Collapse
Affiliation(s)
- Islam Mostafa
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ning Zhu
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kelly M Balmant
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Biswapriya B Misra
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Craig Dufresne
- Thermo Fisher Scientific, West Palm Beach, FL 33407, USA
| | - Maged Abou-Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL 32610, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| | - Maher El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|