51
|
Li Z, Chen Y, Ou X, Wang M, Wang N, Li W, Deng Y, Diao Y, Sun Z, Luo Q, Li X, Zhao L, Yan T, Peng W, Jiang Q, Fang Y, Ren Z, Tan F, Luo P, Ren T. Identification of a stable major-effect quantitative trait locus for pre-harvest sprouting in common wheat (Triticum aestivum L.) via high-density SNP-based genotyping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4183-4195. [PMID: 36068440 DOI: 10.1007/s00122-022-04211-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
A major and stable QTL cQSGR.sau.3D, which can explain 33.25% of the phenotypic variation in SGR, was mapped and validated, and cQSGR.sau.3D was found to be independent of GI. In this study, a recombinant inbred line (RIL) population containing 304 lines derived from the cross of Chuan-nong17 (CN17) and Chuan-nong11 (CN11) was genotyped using the Wheat55K single-nucleotide polymorphism array. A high-density genetic map consisting of 8329 markers spanning 4131.54 cM and distributed across 21 wheat chromosomes was constructed. QTLs for whole spike germination rate (SGR) were identified in multiple years. Six and fourteen QTLs were identified using the Inclusive Composite Interval Mapping-Biparental Populations and Multi-Environment Trial methods, respectively. A total of 106 digenic epistatic QTLs were also detected in this study. One of the additive QTLs, cQSGR.sau.3D, which was mapped in the region from 3.5 to 4.5 cM from linkage group 3D-2 on chromosome 3D, can explain 33.25% of the phenotypic variation in SGR and be considered a major and stable QTL for SGR. This QTL was independent of the seeds' germination traits, such as germination index. One Kompetitive Allele-Specific PCR (KASP) marker, KASP-AX-110772653, which is tightly linked to cQSGR.sau.3D, was developed. The genetic effect of cQSGR.sau.3D on SGR in the RIL and natural populations was successfully confirmed. Furthermore, within the interval in which cQSGR.sau.3D is located in Chinese Spring reference genomes, thirty-seven genes were found. cQSGR.sau.3D may provide new resources for pre-harvest sprouting resistance breeding of wheat in the future.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yongyan Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xia Ou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Mengning Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Nanxin Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yawen Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yixin Diao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Zixin Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qinyi Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xinli Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Liqi Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tong Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wanhua Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qing Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yi Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Zhenglong Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Feiquan Tan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Peigao Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tianheng Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
52
|
Xu F, Tang J, Wang S, Cheng X, Wang H, Ou S, Gao S, Li B, Qian Y, Gao C, Chu C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat Genet 2022; 54:1972-1982. [PMID: 36471073 DOI: 10.1038/s41588-022-01240-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Preharvest sprouting (PHS) due to lack of seed dormancy seriously threatens crop production worldwide. As a complex quantitative trait, breeding of crop cultivars with suitable seed dormancy is hindered by limited useful regulatory genes. Here by repeatable phenotypic characterization of fixed recombinant individuals, we report a quantitative genetic locus, Seed Dormancy 6 (SD6), from aus-type rice, encoding a basic helix-loop-helix (bHLH) transcription factor, which underlies the natural variation of seed dormancy. SD6 and another bHLH factor inducer of C-repeat binding factors expression 2 (ICE2) function antagonistically in controlling seed dormancy by directly regulating the ABA catabolism gene ABA8OX3, and indirectly regulating the ABA biosynthesis gene NCED2 via OsbHLH048, in a temperature-dependent manner. The weak-dormancy allele of SD6 is common in cultivated rice but undergoes negative selection in wild rice. Notably, by genome editing SD6 and its wheat homologs, we demonstrated that SD6 is a useful breeding target for alleviating PHS in cereals under field conditions.
Collapse
Affiliation(s)
- Fan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shengxing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xi Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Biotechnology and Crop Quality Improvement, Ministry of Agriculture/Biotechnology Research Center, Southwest University, Chongqing, China
| | - Hongru Wang
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | | | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
53
|
Spitzer-Rimon B, Shafran-Tomer H, Gottlieb GH, Doron-Faigenboim A, Zemach H, Kamenetsky-Goldstein R, Flaishman M. Non-photoperiodic transition of female cannabis seedlings from juvenile to adult reproductive stage. PLANT REPRODUCTION 2022; 35:265-277. [PMID: 36063227 DOI: 10.1007/s00497-022-00449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vegetative-to-reproductive phase transition in female cannabis seedlings occurs autonomously with the de novo development of single flowers. To ensure successful sexual reproduction, many plant species originating from seedlings undergo juvenile-to-adult transition. This phase transition precedes and enables the vegetative-to-reproductive shift in plants, upon perception of internal and/or external signals such as temperature, photoperiod, metabolite levels, and phytohormones. This study demonstrates that the juvenile seedlings of cannabis gradually shift to the adult vegetative stage, as confirmed by the formation of lobed leaves, and upregulation of the phase-transition genes. In the tested cultivar, the switch to the reproductive stage occurs with the development of a pair of single flowers in the 7th node. Histological analysis indicated that transition to the reproductive stage is accomplished by the de novo establishment of new flower meristems which are not present in a vegetative stage, or as dormant meristems at nodes 4 and 6. Moreover, there were dramatic changes in the transcriptomic profile of flowering-related genes among nodes 4, 6, and 7. Downregulation of flowering repressors and an intense increase in the transcription of phase transition-related genes occur in parallel with an increase in the transcription of flowering integrators and meristem identity genes. These results support and provide molecular evidence for previous findings that cannabis possesses an autonomous flowering mechanism and the transition to reproductive phase is controlled in this plant mainly by internal signals.
Collapse
Affiliation(s)
- Ben Spitzer-Rimon
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel.
| | - Hadas Shafran-Tomer
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Gilad H Gottlieb
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Moshe Flaishman
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| |
Collapse
|
54
|
Vetch JM, Tillett BJ, Bruckner P, Martin JM, Marlowe K, Hooker MA, See DR, Giroux MJ. TAMFT-3A and TAMFT-3B2 homeologs are associated with wheat preharvest sprouting. THE PLANT GENOME 2022; 15:e20250. [PMID: 35971881 DOI: 10.1002/tpg2.20250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The phenomenon of preharvest sprouting (PHS), caused by rain after physiological maturity and prior to harvest, negatively affects wheat (Triticum aestivum L.) production and end use. Investigating the genetics that control PHS resistance may result in increased control of seed dormancy. Multiple genes involved in the development of seed dormancy are associated with PHS. In this study, the TaMFT (3A, 3B1, 3B2, 3D), TaMKK3-4A, and TaVP1-3B genes were assessed for association with PHS in a double-haploid line (DHL) hard red winter wheat population derived from a BC1 cross between the cultivars Loma and Warhorse, where Loma was the recurrent and PHS susceptible parent. The 162 BC1 DHL lines were grown over two field seasons and PHS susceptibility was assessed by measuring PHS resistance in physiologically mature heads. The PHS variation was associated with the TaMFT-A and the B2 homeolog with Loma carrying mutant forms of each gene. No sequence variation between Loma and Warhorse was detected in the exons of the TaMFT-B1 and D homeologs. No association between PHS resistance and TaMKK3-4A or TaVp1-3B variation was observed, though Loma and Warhorse vary for TaMKK3-4A and TaVp1-3B mutations reported to be PHS associated. Previous research has shown TaMFT-3A as having a large impact on PHS resistance. In the current study, the TaMFT-3A and TaMFT-3B2 alleles each explained 14% of observed PHS variation. Markers for both TaMFT-3A and TaMFT-3B2 should be used in selecting for increased wheat dormancy and PHS resistance.
Collapse
Affiliation(s)
- Justin Michael Vetch
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
- Current address: Dep. of Research Centers, Montana State Univ., Conrad, MT, 59425, USA
| | - Brandon J Tillett
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
| | - Philip Bruckner
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
| | - John M Martin
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
| | - Karol Marlowe
- Current address: Dep. of Research Centers, Montana State Univ., Conrad, MT, 59425, USA
| | | | - Deven Robert See
- Crop and Soil Sciences, Washington State Univ. College of Agricultural Human and Natural Resource Sciences, 291B, Johnson Hall, Pullman, WA, 99164, USA
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, 99164, USA
| | - Michael J Giroux
- Dep. of Plant Sciences and Plant Pathology, Montana State Univ., 119 Plant Biosciences, Bozeman, MT, 59717-3150, USA
| |
Collapse
|
55
|
Lehnert H, Berner T, Lang D, Beier S, Stein N, Himmelbach A, Kilian B, Keilwagen J. Insights into breeding history, hotspot regions of selection, and untapped allelic diversity for bread wheat breeding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:897-918. [PMID: 36073999 DOI: 10.1111/tpj.15952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Breeding has increasingly altered the genetics of crop plants since the domestication of their wild progenitors. It is postulated that the genetic diversity of elite wheat breeding pools is too narrow to cope with future challenges. In contrast, plant genetic resources (PGRs) of wheat stored in genebanks are valuable sources of unexploited genetic diversity. Therefore, to ensure breeding progress in the future, it is of prime importance to identify the useful allelic diversity available in PGRs and to transfer it into elite breeding pools. Here, a diverse collection consisting of modern winter wheat cultivars and genebank accessions was investigated based on reduced-representation genomic sequencing and an iSelect single nucleotide polymorphism (SNP) chip array. Analyses of these datasets provided detailed insights into population structure, levels of genetic diversity, sources of new allelic diversity, and genomic regions affected by breeding activities. We identified 57 regions representing genomic signatures of selection and 827 regions representing private alleles associated exclusively with genebank accessions. The presence of known functional wheat genes, quantitative trait loci, and large chromosomal modifications, i.e., introgressions from wheat wild relatives, provided initial evidence for putative traits associated within these identified regions. These findings were supported by the results of ontology enrichment analyses. The results reported here will stimulate further research and promote breeding in the future by allowing for the targeted introduction of novel allelic diversity into elite wheat breeding pools.
Collapse
Affiliation(s)
- Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | - Thomas Berner
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| | - Daniel Lang
- PGSB, Helmholtz Center Munich, German Research Center for Environmental Health, Plant Genome and Systems Biology, Neuherberg, Germany
| | - Sebastian Beier
- Research Group Bioinformatics and Information Technology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nils Stein
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Center of integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Axel Himmelbach
- Research Group Genomics of Genetic Resources, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kuehn Institute, Quedlinburg, Germany
| |
Collapse
|
56
|
Park SY, Jung WJ, Bang G, Hwang H, Kim JY. Transcriptome and Proteome Co-Profiling Offers an Understanding of Pre-Harvest Sprouting (PHS) Molecular Mechanisms in Wheat ( Triticum aestivum). PLANTS (BASEL, SWITZERLAND) 2022; 11:2807. [PMID: 36365261 PMCID: PMC9657071 DOI: 10.3390/plants11212807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
While wheat (Triticum aestivum L.) is a widely grown and enjoyed crop, the diverse and complex global situation and climate are exacerbating the instability of its supply. In particular, pre-harvest sprouting (PHS) is one of the major abiotic stresses that frequently occurs due to irregular climate conditions, causing serious damage to wheat and its quality. In this study, transcriptomic analysis with RNA-seq and proteomic analysis with LC-MS/MS were performed in PHS-treated spikes from two wheat cultivars presenting PHS sensitivity and tolerance, respectively. A total of 13,154 differentially expressed genes (DEGs) and 706 differentially expressed proteins (DEPs) were identified in four comparison groups between the susceptible/tolerant cultivars. Gene function and correlation analysis were performed to determine the co-profiled genes and proteins affected by PHS treatment. In the functional annotation of each comparative group, similar functions were confirmed in each cultivar under PHS treatment; however, in Keumgang PHS+7 (K7) vs. Woori PHS+7 (W7), functional annotations presented clear differences in the "spliceosome" and "proteasome" pathways. In addition, our results indicate that alternative splicing and ubiquitin-proteasome support the regulation of germination and seed dormancy. This study provides an advanced understanding of the functions involved in transcription and translation related to PHS mechanisms, thus enabling specific proposals for the further analysis of germination and seed dormancy mechanisms and pathways in wheat.
Collapse
Affiliation(s)
- Sang Yong Park
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| | - Woo Joo Jung
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jae Yoon Kim
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
57
|
Zhong C, Li Z, Cheng Y, Zhang H, Liu Y, Wang X, Jiang C, Zhao X, Zhao S, Wang J, Zhang H, Liu X, Yu H. Comparative Genomic and Expression Analysis Insight into Evolutionary Characteristics of PEBP Genes in Cultivated Peanuts and Their Roles in Floral Induction. Int J Mol Sci 2022; 23:ijms232012429. [PMID: 36293287 PMCID: PMC9604132 DOI: 10.3390/ijms232012429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Phosphatidyl ethanolamine-binding proteins (PEBPs) are involved in regulating flowering time and various developmental processes. Functions and expression patterns in cultivated peanuts (Arachis hypogaea L.) remain unknown. In this study, 33 PEBP genes in cultivated peanuts were identified and divided into four subgroups: FT, TFL, MFT and FT-like. Gene structure analysis showed that orthologs from A and B genomes in cultivated peanuts had highly similar structures, but some orthologous genes have subgenomic dominance. Gene collinearity and phylogenetic analysis explain that some PEBP genes play key roles in evolution. Cis-element analysis revealed that PEBP genes are mainly regulated by hormones, light signals and stress-related pathways. Multiple PEPB genes had different expression patterns between early and late-flowering genotypes. Further detection of its response to temperature and photoperiod revealed that PEBPs ArahyM2THPA, ArahyEM6VH3, Arahy4GAQ4U, ArahyIZ8FG5, ArahyG6F3P2, ArahyLUT2QN, ArahyDYRS20 and ArahyBBG51B were the key genes controlling the flowering response to different flowering time genotypes, photoperiods and temperature. This study laid the foundation for the functional study of the PEBP gene in cultivated peanuts and the adaptation of peanuts to different environments.
Collapse
|
58
|
Moullet O, Díaz Bermúdez G, Fossati D, Brabant C, Mascher F, Schori A. Pyramiding wheat pre-harvest sprouting resistance genes in triticale breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:60. [PMID: 37309488 PMCID: PMC10248708 DOI: 10.1007/s11032-022-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/07/2022] [Indexed: 06/14/2023]
Abstract
Pre -harvest sprouting (PHS) is an important problem in cereal production reducing yield and grain quality. After decades of improvement, triticale remains particularly susceptible to PHS but no resistance genes or QTLs were identified so far in this species. As wheat shares the A and B genomes with triticale, wheat PHS resistance genes can be introgressed into triticale genome by recombination after interspecific crosses. In this project, three PHS resistance genes have been transferred from wheat to triticale by marker-assisted interspecific crosses, followed by four backcrosses. The gene TaPHS1 from the 3AS chromosome of cultivar Zenkoujikomugi (Zen) and the TaMKK3 and TaQsd1, respectively located on the 4AL and 5BL chromosomes derived both from cultivar Aus1408, were pyramided in the triticale cultivar Cosinus. Only the TaPHS1 gene increases consistently the PHS resistance in triticale. The lack of efficacy of the other two genes, especially TaQsd1, could be the result of an imperfect linkage between the marker and the gene of interest. The introduction of PHS resistance genes did not alter agronomic nor disease resistance performances of triticale. This approach leads to two new, agronomically performant and PHS-resistant triticale cultivars. Today, two breeding triticale lines are ready to enter the official registration process.
Collapse
Affiliation(s)
- Odile Moullet
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Gemma Díaz Bermúdez
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Dario Fossati
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Cécile Brabant
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Fabio Mascher
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | | |
Collapse
|
59
|
Genome-wide association study identifies a gene responsible for temperature-dependent rice germination. Nat Commun 2022; 13:5665. [PMID: 36175401 PMCID: PMC9523024 DOI: 10.1038/s41467-022-33318-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/13/2022] [Indexed: 11/08/2022] Open
Abstract
Environment is an important determinant of agricultural productivity; therefore, crops have been bred with traits adapted to their environment. It is assumed that the physiology of seed germination is optimised for various climatic conditions. Here, to understand the genetic basis underlying seed germination, we conduct a genome-wide association study considering genotype-by-environment interactions on the germination rate of Japanese rice cultivars under different temperature conditions. We find that a 4 bp InDel in one of the 14-3-3 family genes, GF14h, preferentially changes the germination rate of rice under optimum temperature conditions. The GF14h protein constitutes a transcriptional regulatory module with a bZIP-type transcription factor, OREB1, and a florigen-like protein, MOTHER OF FT AND TFL 2, to control the germination rate by regulating abscisic acid (ABA)-responsive genes. The GF14h loss-of-function allele enhances ABA signalling and reduces the germination rate. This allele is found in rice varieties grown in the northern area and in modern cultivars of Japan and China, suggesting that it contributes to the geographical adaptation of rice. This study demonstrates the complicated molecular system involved in the regulation of seed germination in response to temperature, which has allowed rice to be grown in various geographical locations.
Collapse
|
60
|
Kiełbowicz-Matuk A, Grądzka K, Biegańska M, Talar U, Czarnecka J, Rorat T. The StBBX24 protein affects the floral induction and mediates salt tolerance in Solanum tuberosum. FRONTIERS IN PLANT SCIENCE 2022; 13:965098. [PMID: 36160990 PMCID: PMC9490078 DOI: 10.3389/fpls.2022.965098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The transition from vegetative growth to reproductive development is a critical developmental switch in flowering plants to ensure a successful life cycle. However, while the genes controlling flowering are well-known in model plants, they are less well-understood in crops. In this work, we generated potato lines both silenced and overexpressed for the expression of StBBX24, a clock-controlled gene encoding a B-box protein located in the cytosol and nuclear chromatin fraction. We revealed that Solanum tuberosum lines silenced for StBBX24 expression displayed much earlier flowering than wild-type plants. Conversely, plants overexpressing StBBX24 mostly did not produce flower buds other than wild-type plants. In addition, RT-qPCR analyses of transgenic silenced lines revealed substantial modifications in the expression of genes functioning in flowering. Furthermore, S. tuberosum lines silenced for StBBX24 expression displayed susceptibility to high salinity with a lower capacity of the antioxidant system and strongly decreased expression of genes encoding Na+ transporters that mediate salt tolerance, contrary to the plants with StBBX24 overexpression. Altogether, these data reveal that StBBX24 participates in potato flowering repression and is involved in salt stress response.
Collapse
Affiliation(s)
- Agnieszka Kiełbowicz-Matuk
- Department of Regulation of Gene Expression, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
61
|
Gu H, Zhang K, Chen J, Gull S, Chen C, Hou Y, Li X, Miao J, Zhou Y, Liang G. OsFTL4, an FT-like Gene, Regulates Flowering Time and Drought Tolerance in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2022; 15:47. [PMID: 36068333 PMCID: PMC9448835 DOI: 10.1186/s12284-022-00593-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/01/2022] [Indexed: 05/27/2023]
Abstract
The initiation of flowering in cereals is a critical process influenced by environmental and endogenous signals. Flowering Locus T-like (FT-like) genes encode the main signals for flowering. Of the 13 FT-like genes in the rice genome, Hd3a/OsFTL2 and RFT1/OsFTL3 have been extensively studied and revealed to be critical for flowering. In this study, a rice FT-like gene, OsFTL4, was functionally characterized. Specifically, osftl4 mutants were generated using a CRISPR/Cas9 system. Compared with the wild-type control (Guangluai 4), the osftl4-1 and osftl4-2 mutants flowered 9.6 and 5.8 days earlier under natural long-day and short-day conditions, respectively. Additionally, OsFTL4 was mainly expressed in the vascular tissue, with the resulting OsFTL4 protein localized in both the nucleus and cytoplasm. Furthermore, OsFTL4 was observed to compete with Hd3a for the interaction with multiple 14-3-3 proteins. An analysis of the effects of simulated drought stress suggested that silencing OsFTL4 enhances drought tolerance by decreasing stomatal conductance and water loss. These results indicate that OsFTL4 helps integrate the flowering process and the drought response in rice.
Collapse
Affiliation(s)
- Houwen Gu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Kunming Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jie Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Sadia Gull
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Chuyan Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yafei Hou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiangbo Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
62
|
Jiang H, Fang Y, Yan D, Liu ST, Wei J, Guo FL, Wu XT, Cao H, Yin CB, Lu F, Gao LF, Liu YX. Genome-wide association study reveals a NAC transcription factor TaNAC074 linked to pre-harvest sprouting tolerance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3265-3276. [PMID: 35882642 DOI: 10.1007/s00122-022-04184-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Twelve QTL associated with pre-harvest sprouting tolerance were identified using association analysis in wheat. Two markers were validated and a candidate gene TaNAC074 for Qgpf.cas-3B.2 was verified using Agrobacterium-mediated transformation. Pre-harvest sprouting (PHS) is a considerable global threat to wheat yield and quality. Due to this threat, breeders must identify quantitative trait loci (QTL) and genes conferring PHS-tolerance (PHST) to reduce the negative effects of PHS caused by low seed dormancy. In this study, we evaluated a panel of 302 diverse wheat genotypes for PHST in four environments and genotyped the panel with a high-density wheat 660 K SNP array. By using a genome-wide association study (GWAS), we identified 12 stable loci significantly associated with PHST (P < 0.0001), explaining 3.34 - 9.88% of the phenotypic variances. Seven of these loci co-located with QTL and genes reported previously. Five loci (Qgpf.cas-3B.2, Qgpf.cas-3B.3, Qgpf.cas-3B.4, Qgpf.cas-7B.2, and Qgpf.cas-7B.3), located in genomic regions with no known PHST QTL or genes, are likely to be new QTL conferring PHST. Additionally, two molecular markers were developed for Qgpf.cas-3A and Qgpf.cas-7B.3, and validated using a different set of 233 wheat accessions. Finally, the PHST-related function of candidate gene TaNAC074 for Qgpf.cas-3B.2 was confirmed by CAPS (cleaved amplified polymorphic sequences) marker association analysis in 233 wheat accessions and by expression and phenotypic analysis of transgenic wheat. Overexpression of TaNAC074 significantly reduced seed dormancy in wheat. This study contributes to broaden the genetic basis and molecular marker-assisted breeding of PHST.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yu Fang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Yan
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Si-Tong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei-Long Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-Ting Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Cao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chang-Bin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Feng Gao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
63
|
Yan X, Wang LJ, Zhao YQ, Jia GX. Expression Patterns of Key Genes in the Photoperiod and Vernalization Flowering Pathways in Lilium longiflorum with Different Bulb Sizes. Int J Mol Sci 2022; 23:ijms23158341. [PMID: 35955483 PMCID: PMC9368551 DOI: 10.3390/ijms23158341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lilium longiflorum is a wild Lilium, and its flowering transition requires a long period of cold exposure to meet the demand of vernalization. The responses of different sized bulbs to cold exposure and photoperiod are different, and the floral transition pathways of small and large bulbs are different. In this study, small and large bulbs were placed in cold storage for different weeks and then cultured at a constant ambient temperature of 25 °C under long day (LD) and short day (SD) conditions. Then, the flowering characteristics and expression patterns of key genes related to the vernalization and photoperiod pathways in different groups were calculated and analyzed. The results showed that the floral transition of Lilium longiflorum was influenced by both vernalization and photoperiod, that vernalization and LD conditions can significantly improve the flowering rate of Lilium longiflorum, and that the time from planting to visible flowering buds’ appearance was decreased. The flowering time and rate of large bulbs were greatly influenced by cold exposure, and the vernalization pathway acted more actively at the floral transition stage. The floral transition of small bulbs was affected more by the photoperiod pathway. Moreover, it was speculated that cold exposure may promote greater sensitivity of the small bulbs to LD conditions. In addition, the expression of LlVRN1, LlFKF1, LlGI, LlCO5, LlCO7, LlCO16, LlFT1, LlFT3 and LlSOC1 was high during the process of floral transition, and LlCO13, LlCO14 and LlCO15 were highly expressed in the vegetative stage. The expression of LlCO13 and LlCO14 was different under different lighting conditions, and the flowering induction function of LlCO9 and LlFT3 was related to vernalization. Moreover, LlFKF1, LlGI, LlCO5, LlCO16, LlSOC1 and LlFT2 were involved in the entire growth process of plants, while LlCO6, LlCO16 and LlFT1 are involved in the differentiation and formation of small bulblets of plants after the inflorescence stage, and this process is also closely related to LD conditions. This study has great significance for understanding the molecular mechanisms of the vernalization and photoperiod flowering pathways of Lilium longiflorum.
Collapse
|
64
|
Yiwen H, Xuran D, Hongwei L, Shuo Y, Chunyan M, Liqiang Y, Guangjun Y, Li Y, Yang Z, Hongjie L, Hongjun Z. Identification of effective alleles and haplotypes conferring pre-harvest sprouting resistance in winter wheat cultivars. BMC PLANT BIOLOGY 2022; 22:326. [PMID: 35790923 PMCID: PMC9258197 DOI: 10.1186/s12870-022-03710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pre-harvest sprouting (PHS) is a serious limiting factor for wheat (Triticum aestivum L.) grain yield and end-use quality. Identification of reliable molecular markers and PHS-resistant germplasms is vital to improve PHS resistance by molecular marker-assisted selection (MAS), but the effects of allelic variation and haplotypes in genes conferring PHS resistance in winter wheat cultivars are less understood. RESULTS Resistance to PHS was tested in 326 commercial winter wheat cultivars for three consecutive growing seasons from 2018-2020. The effects of alleles and haplotypes of 10 genes associated with PHS resistance were determined for all cultivars and were validated by introgressing the PHS-resistance allele and haplotype into a susceptible wheat cultivar. High level of phenotypic variation in PHS resistance was observed in this set of cultivars and 8 of them were highly resistant to PHS with stable germination index (GI) of less than 25% in each individual year. Allelic effects of nine genes and TaMFT haplotype analysis demonstrated that the haplotype Hap1 with low-GI alleles at five positions had the best PHS resistance. This haplotype has the priority to use in improving PHS resistance because of its high effectiveness and rare present in the current commercial cultivars. Among 14 main allelic combinations (ACs) identified, the AC1 carrying the haplotype Hap1 and the TaSdr-B1a allele had better PHS resistance than the other classes. The introgression of Hap1 and TaSdr-B1a is able to significantly improve the PHS resistance in the susceptible cultivar Lunxuan 13. CONCLUSIONS The effectiveness of alleles conferring PHS resistance in winter wheat cultivars was determined and the useful alleles and haplotypes were identified, providing valuable information for parental selection and MAS aiming at improving PHS-resistance in winter wheat. The identification of the PHS-resistant cultivars without known resistance alleles offers an opportunity to explore new PHS-resistant genes.
Collapse
Affiliation(s)
- Huang Yiwen
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dai Xuran
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Liu Hongwei
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yu Shuo
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mai Chunyan
- Xinxiang Innovation Center for Breeding Technology of Dwarf-Male-Sterile Wheat, Xinxiang, 453731, China
| | - Yu Liqiang
- Zhaoxian Experiment Station, Shijiazhuang Academy of Agricultural and Forestry Sciences, Zhaoxian, 051530, China
| | - Yu Guangjun
- Zhaoxian Experiment Station, Shijiazhuang Academy of Agricultural and Forestry Sciences, Zhaoxian, 051530, China
| | - Yang Li
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhou Yang
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Li Hongjie
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zhang Hongjun
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
65
|
Iwasaki M, Penfield S, Lopez-Molina L. Parental and Environmental Control of Seed Dormancy in Arabidopsis thaliana. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:355-378. [PMID: 35138879 DOI: 10.1146/annurev-arplant-102820-090750] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.
Collapse
Affiliation(s)
- Mayumi Iwasaki
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Luis Lopez-Molina
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland;
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
66
|
Identification of the Wheat (Triticum aestivum) IQD Gene Family and an Expression Analysis of Candidate Genes Associated with Seed Dormancy and Germination. Int J Mol Sci 2022; 23:ijms23084093. [PMID: 35456910 PMCID: PMC9025732 DOI: 10.3390/ijms23084093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The IQ67 Domain (IQD) gene family plays important roles in plant developmental processes and stress responses. Although IQDs have been characterized in model plants, little is known about their functions in wheat (Triticum aestivum), especially their roles in the regulation of seed dormancy and germination. Here, we identified 73 members of the IQD gene family from the wheat genome and phylogenetically separated them into six major groups. Gene structure and conserved domain analyses suggested that most members of each group had similar structures. A chromosome positional analysis showed that TaIQDs were unevenly located on 18 wheat chromosomes. A synteny analysis indicated that segmental duplications played significant roles in TaIQD expansion, and that the IQD gene family underwent strong purifying selection during evolution. Furthermore, a large number of hormone, light, and abiotic stress response elements were discovered in the promoters of TaIQDs, implying their functional diversity. Microarray data for 50 TaIQDs showed different expression levels in 13 wheat tissues. Transcriptome data and a quantitative real-time PCR analysis of wheat varieties with contrasting seed dormancy and germination phenotypes further revealed that seven genes (TaIQD4/-28/-32/-58/-64/-69/-71) likely participated in seed dormancy and germination through the abscisic acid-signaling pathway. The study results provide valuable information for cloning and a functional investigation of candidate genes controlling wheat seed dormancy and germination; consequently, they increase our understanding of the complex regulatory networks affecting these two traits.
Collapse
|
67
|
Genome sequencing-based coverage analyses facilitate high-resolution detection of deletions linked to phenotypes of gamma-irradiated wheat mutants. BMC Genomics 2022; 23:111. [PMID: 35139819 PMCID: PMC8827196 DOI: 10.1186/s12864-022-08344-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-irradiated mutants of Triticum aestivum L., hexaploid wheat, provide novel and agriculturally important traits and are used as breeding materials. However, the identification of causative genomic regions of mutant phenotypes is challenging because of the large and complicated genome of hexaploid wheat. Recently, the combined use of high-quality reference genome sequences of common wheat and cost-effective resequencing technologies has made it possible to evaluate genome-wide polymorphisms, even in complex genomes. RESULTS To investigate whether the genome sequencing approach can effectively detect structural variations, such as deletions, frequently caused by gamma irradiation, we selected a grain-hardness mutant from the gamma-irradiated population of Japanese elite wheat cultivar "Kitahonami." The Hardness (Ha) locus, including the puroindoline protein-encoding genes Pina-D1 and Pinb-D1 on the short arm of chromosome 5D, primarily regulates the grain hardness variation in common wheat. We performed short-read genome sequencing of wild-type and grain-hardness mutant plants, and subsequently aligned their short reads to the reference genome of the wheat cultivar "Chinese Spring." Genome-wide comparisons of depth-of-coverage between wild-type and mutant strains detected ~ 130 Mbp deletion on the short arm of chromosome 5D in the mutant genome. Molecular markers for this deletion were applied to the progeny populations generated by a cross between the wild-type and the mutant. A large deletion in the region including the Ha locus was associated with the mutant phenotype, indicating that the genome sequencing is a powerful and efficient approach for detecting a deletion marker of a gamma-irradiated mutant phenotype. In addition, we investigated a pre-harvest sprouting tolerance mutant and identified a 67.8 Mbp deletion on chromosome 3B where Viviparous-B1 and GRAS family transcription factors are located. Co-dominant markers designed to detect the deletion-polymorphism confirmed the association with low germination rate, leading to pre-harvest sprouting tolerance. CONCLUSIONS Short read-based genome sequencing of gamma-irradiated mutants facilitates the identification of large deletions linked to mutant phenotypes when combined with segregation analyses in progeny populations. This method allows effective application of mutants with agriculturally important traits in breeding using marker-assisted selection.
Collapse
|
68
|
Shorinola O, Simmonds J, Wingen LU, Uauy C. Trend, population structure, and trait mapping from 15 years of national varietal trials of UK winter wheat. G3 GENES|GENOMES|GENETICS 2022; 12:6460332. [PMID: 34897454 PMCID: PMC9210278 DOI: 10.1093/g3journal/jkab415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022]
Abstract
There are now a rich variety of genomic and genotypic resources available to wheat researchers and breeders. However, the generation of high-quality and field-relevant phenotyping data which is required to capture the complexities of gene × environment interactions remains a major bottleneck. Historical datasets from national variety performance trials (NVPT) provide sufficient dimensions, in terms of numbers of years and locations, to examine phenotypic trends and study gene × environment interactions. Using NVPT for winter wheat varieties grown in the United Kingdom between 2002 and 2017, we examined temporal trends for eight traits related to yield, adaptation, and grain quality performance. We show a non-stationary linear trend for yield, grain protein content, Hagberg Falling Number (HFN), and days to ripening. Our data also show high environmental stability for yield, grain protein content, and specific weight in UK winter wheat varieties and high environmental sensitivity for HFN. We also show that UK varieties released within this period cluster into four main population groups. Using the historical NVPT data in a genome-wide association analysis, we uncovered a significant marker-trait association peak on wheat chromosome 6A spanning the NAM-A1 gene that have been previously associated with early senescence. Together, our results show the value of utilizing the data routinely collected during national variety evaluation process for examining breeding progress and the genetic architecture of important traits.
Collapse
Affiliation(s)
- Oluwaseyi Shorinola
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Bioscience Eastern and Central Africa—International Livestock Research Institute (BecA-ILRI), Nairobi 00100, Kenya
| | - James Simmonds
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Luzie U Wingen
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cristobal Uauy
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
69
|
Wang Z, Zhao G, Yang Q, Gao L, Liu C, Ru Z, Wang D, Jia J, Cui D. Helitron and CACTA DNA transposons actively reshape the common bread wheat - AK58 genome. Genomics 2022; 114:110288. [DOI: 10.1016/j.ygeno.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/04/2022]
|
70
|
Sweeney DW, Kunze KH, Sorrells ME. QTL x environment modeling of malting barley preharvest sprouting. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:217-232. [PMID: 34633474 DOI: 10.1007/s00122-021-03961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
HvMKK3 alleles are temperature sensitive and are major contributors to environmental stability of preharvest sprouting in barley. Preharvest sprouting (PHS) can severely damage barley (Hordeum vulgare L.) malting quality, but PHS resistance is often negatively correlated with malting quality. Seed dormancy is closely related to PHS. Increased temperature during grain fill can decrease seed dormancy in barley, but genetic components of seed dormancy temperature sensitivity are poorly understood. Six years of PHS data were used to fit quantitative trait locus (QTL) x environment mixed models incorporating marker data from seed dormancy genes HvAlaAT1, HvGA20ox1, and HvMKK3 and weather covariates in spring and winter two-row malting barley. Variation in winter barley PHS was best modeled by average temperature range during grain fill and spring barley PHS by total precipitation during grain fill. Average high temperature during grain fill also accurately modeled PHS for both datasets. A highly non-dormant HvMKK3 allele determined baseline PHS susceptibility and HvAlaAT1 interactions with multiple HvMKK3 alleles conferred environmental sensitivity. Polygenic variation for PHS within haplotype was detected. Residual genotype and QTL by environment interaction variance indicated additional environmental and genetic factors involved in PHS. These models provide insight into genotype and environmental regulation of barley seed dormancy, a method for PHS forecasting, and a tool for breeders to improve PHS resistance.
Collapse
Affiliation(s)
- Daniel W Sweeney
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Karl H Kunze
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
71
|
Francki MG, Stainer GS, Walker E, Rebetzke GJ, Stefanova KT, French RJ. Phenotypic Evaluation and Genetic Analysis of Seedling Emergence in a Global Collection of Wheat Genotypes ( Triticum aestivum L.) Under Limited Water Availability. FRONTIERS IN PLANT SCIENCE 2021; 12:796176. [PMID: 35003185 PMCID: PMC8739788 DOI: 10.3389/fpls.2021.796176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The challenge in establishing an early-sown wheat crop in southern Australia is the need for consistently high seedling emergence when sowing deep in subsoil moisture (>10 cm) or into dry top-soil (4 cm). However, the latter is strongly reliant on a minimum soil water availability to ensure successful seedling emergence. This study aimed to: (1) evaluate 233 Australian and selected international wheat genotypes for consistently high seedling emergence under limited soil water availability when sown in 4 cm of top-soil in field and glasshouse (GH) studies; (2) ascertain genetic loci associated with phenotypic variation using a genome-wide association study (GWAS); and (3) compare across loci for traits controlling coleoptile characteristics, germination, dormancy, and pre-harvest sprouting. Despite significant (P < 0.001) environment and genotype-by-environment interactions within and between field and GH experiments, eight genotypes that included five cultivars, two landraces, and one inbred line had consistently high seedling emergence (mean value > 85%) across nine environments. Moreover, 21 environment-specific quantitative trait loci (QTL) were detected in GWAS analysis on chromosomes 1B, 1D, 2B, 3A, 3B, 4A, 4B, 5B, 5D, and 7D, indicating complex genetic inheritance controlling seedling emergence. We aligned QTL for known traits and individual genes onto the reference genome of wheat and identified 16 QTL for seedling emergence in linkage disequilibrium with coleoptile length, width, and cross-sectional area, pre-harvest sprouting and dormancy, germination, seed longevity, and anthocyanin development. Therefore, it appears that seedling emergence is controlled by multifaceted networks of interrelated genes and traits regulated by different environmental cues.
Collapse
Affiliation(s)
- Michael G. Francki
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Grantley S. Stainer
- Department of Primary Industries and Regional Development, Merredin, WA, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Gregory J. Rebetzke
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT, Australia
| | - Katia T. Stefanova
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Robert J. French
- Department of Primary Industries and Regional Development, Merredin, WA, Australia
| |
Collapse
|
72
|
Dhariwal R, Hiebert CW, Sorrells ME, Spaner D, Graf RJ, Singh J, Randhawa HS. Mapping pre-harvest sprouting resistance loci in AAC Innova × AAC Tenacious spring wheat population. BMC Genomics 2021; 22:900. [PMID: 34911435 PMCID: PMC8675488 DOI: 10.1186/s12864-021-08209-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pre-harvest sprouting (PHS) is a major problem for wheat production due to its direct detrimental effects on wheat yield, end-use quality and seed viability. Annually, PHS is estimated to cause > 1.0 billion USD in losses worldwide. Therefore, identifying PHS resistance quantitative trait loci (QTLs) is crucial to aid molecular breeding efforts to minimize losses. Thus, a doubled haploid mapping population derived from a cross between white-grained PHS susceptible cv AAC Innova and red-grained resistant cv AAC Tenacious was screened for PHS resistance in four environments and utilized for QTL mapping. Results Twenty-one PHS resistance QTLs, including seven major loci (on chromosomes 1A, 2B, 3A, 3B, 3D, and 7D), each explaining ≥10% phenotypic variation for PHS resistance, were identified. In every environment, at least one major QTL was identified. PHS resistance at most of these loci was contributed by AAC Tenacious except at two loci on chromosomes 3D and 7D where it was contributed by AAC Innova. Thirteen of the total twenty-one identified loci were located to chromosome positions where at least one QTL have been previously identified in other wheat genotype(s). The remaining eight QTLs are new which have been identified for the first time in this study. Pedigree analysis traced several known donors of PHS resistance in AAC Tenacious genealogy. Comparative analyses of the genetic intervals of identified QTLs with that of already identified and cloned PHS resistance gene intervals using IWGSC RefSeq v2.0 identified MFT-A1b (in QTL interval QPhs.lrdc-3A.1) and AGO802A (in QTL interval QPhs.lrdc-3A.2) on chromosome 3A, MFT-3B-1 (in QTL interval QPhs.lrdc-3B.1) on chromosome 3B, and AGO802D, HUB1, TaVp1-D1 (in QTL interval QPhs.lrdc-3D.1) and TaMyb10-D1 (in QTL interval QPhs.lrdc-3D.2) on chromosome 3D. These candidate genes are involved in embryo- and seed coat-imposed dormancy as well as in epigenetic control of dormancy. Conclusions Our results revealed the complex PHS resistance genetics of AAC Tenacious and AAC Innova. AAC Tenacious possesses a great reservoir of important PHS resistance QTLs/genes supposed to be derived from different resources. The tracing of pedigrees of AAC Tenacious and other sources complements the validation of QTL analysis results. Finally, comparing our results with previous PHS studies in wheat, we have confirmed the position of several major PHS resistance QTLs and candidate genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08209-6.
Collapse
Affiliation(s)
- Raman Dhariwal
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Colin W Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Mark E Sorrells
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell University, 240 Emerson Hall, Ithaca, NY, 14853, USA
| | - Dean Spaner
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Robert J Graf
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Harpinder S Randhawa
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403 1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
73
|
Cheng X, Tian B, Gao C, Gao W, Yan S, Yao H, Wang X, Jiang Y, Hu L, Pan X, Cao J, Lu J, Ma C, Chang C, Zhang H. Identification and expression analysis of candidate genes related to seed dormancy and germination in the wheat GATA family. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:343-359. [PMID: 34837867 DOI: 10.1016/j.plaphy.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
GATA transcription factors have been reported to function in plant growth and development and during various biotic/abiotic stresses in Arabidopsis and rice. However, the functions of wheat GATAs, particularly in the regulation of seed dormancy and germination, remain unclear. Here, we identified 78 TaGATAs in wheat and divided them into five subfamilies. Sixty-four paralogous pairs and 52 orthologous pairs were obtained, and Ka/Ks ratios showed that the TaGATAs had undergone strong purifying election during the evolutionary process. Triplet analysis indicated that a high homologue retention rate could explain the large number of TaGATAs in wheat. Gene structure analysis revealed that most members of the same subfamily had similar structures, and subcellular localization prediction indicated that most TaGATAs were located in the nucleus. Gene ontology annotation results showed that most TaGATAs had molecular functions in DNA and zinc binding, and promoter analysis suggested that they may play important roles in growth, development, and biotic/abiotic stress response. We combined three microarray datasets with qRT-PCR expression data from wheat varieties of contrasting dormancy and pre-harvest sprouting resistance levels during imbibition in order to identify ten candidate genes (TaGATA17/-25/-34/-37/-40/-46/-48/-51/-72/-73) that may be involved in the regulation of seed dormancy and germination in wheat. These findings provide valuable information for further dissection of TaGATA functions in the regulation of seed dormancy and germination, thereby enabling the improvement of wheat pre-harvest sprouting resistance by gene pyramiding.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingbing Tian
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chang Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Hui Yao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xuyang Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Yating Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Leixue Hu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xu Pan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| |
Collapse
|
74
|
Chen X, Yoong FY, O'Neill CM, Penfield S. Temperature during seed maturation controls seed vigour through ABA breakdown in the endosperm and causes a passive effect on DOG1 mRNA levels during entry into quiescence. THE NEW PHYTOLOGIST 2021; 232:1311-1322. [PMID: 34314512 DOI: 10.1111/nph.17646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 05/08/2023]
Abstract
Temperature variation during seed set is an important modulator of seed dormancy and impacts the performance of crop seeds through effects on establishment rate. It remains unclear how changing temperature during maturation leads to dormancy and growth vigour differences in nondormant seedlings. Here we take advantage of the large seed size in Brassica oleracea to analyse effects of temperature on individual seed tissues. We show that warm temperature during seed maturation promotes seed germination, while removal of the endosperm from imbibed seeds abolishes temperature-driven effects on germination. We demonstrate that cool temperatures during early seed maturation lead to abscisic acid (ABA) retention specifically in the endosperm at desiccation. During this time temperature affects ABA dynamics in individual seed tissues and regulates ABA catabolism. We also show that warm-matured seeds preinduce a subset of germination-related programmes in the endosperm, whereas cold-matured seeds continue to store maturation-associated transcripts including DOG1 because of effects on mRNA degradation before quiescence, rather than because of the effect of temperature on transcription. We propose that effects of temperature on seed vigour are explained by endospermic ABA breakdown and the divergent relationships between temperature and mRNA breakdown and between temperature, seed moisture and the glass transition.
Collapse
Affiliation(s)
- Xiaochao Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fei-Yian Yoong
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Carmel M O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
75
|
Seed Dormancy and Pre-Harvest Sprouting in Rice-An Updated Overview. Int J Mol Sci 2021; 22:ijms222111804. [PMID: 34769234 PMCID: PMC8583970 DOI: 10.3390/ijms222111804] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-harvest sprouting is a critical phenomenon involving the germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. As it results in reduced grain yield and quality, it is a common problem for the farmers who have cultivated the rice and wheat across the globe. Crop yields need to be steadily increased to improve the people’s ability to adapt to risks as the world’s population grows and natural disasters become more frequent. To improve the quality of grain and to avoid pre-harvest sprouting, a clear understanding of the crops should be known with the use of molecular omics approaches. Meanwhile, pre-harvest sprouting is a complicated phenomenon, especially in rice, and physiological, hormonal, and genetic changes should be monitored, which can be modified by high-throughput metabolic engineering techniques. The integration of these data allows the creation of tailored breeding lines suitable for various demands and regions, and it is crucial for increasing the crop yields and economic benefits. In this review, we have provided an overview of seed dormancy and its regulation, the major causes of pre-harvest sprouting, and also unraveled the novel avenues to battle pre-harvest sprouting in cereals with special reference to rice using genomics and transcriptomic approaches.
Collapse
|
76
|
Asymmetric expansions of FT and TFL1 lineages characterize differential evolution of the EuPEBP family in the major angiosperm lineages. BMC Biol 2021; 19:181. [PMID: 34465318 PMCID: PMC8408984 DOI: 10.1186/s12915-021-01128-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background In flowering plants, precise timing of the floral transition is crucial to maximize chances of reproductive success, and as such, this process has been intensively studied. FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) have been identified as closely related eukaryotic phosphatidylethanolamine-binding proteins (‘EuPEBPs’) that integrate multiple environmental stimuli, and act antagonistically to determine the optimal timing of the floral transition. Extensive research has demonstrated that FT acts similar to hormonal signals, being transported in the phloem from its primary site of expression in leaves to its primary site of action in the shoot meristem; TFL1 also appears to act as a mobile signal. Recent work implicates FT, TFL1, and the other members of the EuPEBP family, in the control of other important processes, suggesting that the EuPEBP family may be key general regulators of developmental transitions in flowering plants. In eudicots, there are a small number of EuPEBP proteins, but in monocots, and particularly grasses, there has been a large, but uncharacterized expansion of EuPEBP copy number, with unknown consequences for the EuPEBP function. Results To systematically characterize the evolution of EuPEBP proteins in flowering plants, and in land plants more generally, we performed a high-resolution phylogenetic analysis of 701 PEBP sequences from 208 species. We refine previous models of EuPEBP evolution in early land plants, demonstrating the algal origin of the family, and pin-pointing the origin of the FT/TFL1 clade at the base of monilophytes. We demonstrate how a core set of genes (MFT1, MFT2, FT, and TCB) at the base of flowering plants has undergone differential evolution in the major angiosperm lineages. This includes the radical expansion of the FT family in monocots into 5 core lineages, further re-duplicated in the grass family to 12 conserved clades. Conclusions We show that many grass FT proteins are strongly divergent from other FTs and are likely neo-functional regulators of development. Our analysis shows that monocots and eudicots have strongly divergent patterns of EuPEBP evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01128-8.
Collapse
|
77
|
Lee JS, Chebotarov D, McNally KL, Pede V, Setiyono TD, Raquid R, Hyun WJ, Jeung JU, Kohli A, Mo Y. Novel Sources of Pre-Harvest Sprouting Resistance for Japonica Rice Improvement. PLANTS (BASEL, SWITZERLAND) 2021; 10:1709. [PMID: 34451754 PMCID: PMC8401653 DOI: 10.3390/plants10081709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/04/2022]
Abstract
Pre-harvest sprouting (PHS), induced by unexpected weather events, such as typhoons, at the late seed maturity stage, is becoming a serious threat to rice production, especially in the state of California, USA, Japan, and the Republic of Korea, where japonica varieties (mostly susceptible to PHS) are mainly cultivated. A projected economic loss by severe PHS in these three countries could range between 8-10 billion USD per year during the next 10 years. Here, we present promising rice germplasm with strong resistance to PHS that were selected from a diverse rice panel of accessions held in the International Rice Genebank (IRG) at the International Rice Research Institute (IRRI). To induce PHS, three panicle samples per accession were harvested at 20 and 30 days after flowering (DAF), respectively, and incubated at 100% relative humidity (RH), 30 °C in a growth chamber for 15 days. A genome-wide association (GWA) analysis using a 4.8 million single nucleotide polymorphisms (SNP) marker set was performed to identify loci and candidate genes conferring PHS resistance. Interestingly, two tropical japonica and four temperate japonica accessions showed outstanding PHS resistance as compared to tolerant indica accessions. Two major loci on chromosomes 1 and 4 were associated with PHS resistance. A priori candidate genes interactions with rice gene networks, which are based on the gene ontology (GO), co-expression, and other evidence, suggested that a key resistance mechanism is related to abscisic acid (ABA), gibberellic acid (GA), and auxin mediated signaling pathways.
Collapse
Affiliation(s)
- Jae-Sung Lee
- International Rice Research Institute, Los Baños 4031, Philippines; (J.-S.L.); (D.C.); (K.L.M.); (V.P.); (T.D.S.); (R.R.)
| | - Dmytro Chebotarov
- International Rice Research Institute, Los Baños 4031, Philippines; (J.-S.L.); (D.C.); (K.L.M.); (V.P.); (T.D.S.); (R.R.)
| | - Kenneth L. McNally
- International Rice Research Institute, Los Baños 4031, Philippines; (J.-S.L.); (D.C.); (K.L.M.); (V.P.); (T.D.S.); (R.R.)
| | - Valerien Pede
- International Rice Research Institute, Los Baños 4031, Philippines; (J.-S.L.); (D.C.); (K.L.M.); (V.P.); (T.D.S.); (R.R.)
| | - Tri Deri Setiyono
- International Rice Research Institute, Los Baños 4031, Philippines; (J.-S.L.); (D.C.); (K.L.M.); (V.P.); (T.D.S.); (R.R.)
| | - Rency Raquid
- International Rice Research Institute, Los Baños 4031, Philippines; (J.-S.L.); (D.C.); (K.L.M.); (V.P.); (T.D.S.); (R.R.)
| | - Woong-Jo Hyun
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (W.-J.H.); (J.-U.J.)
| | - Ji-Ung Jeung
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (W.-J.H.); (J.-U.J.)
| | - Ajay Kohli
- International Rice Research Institute, Los Baños 4031, Philippines; (J.-S.L.); (D.C.); (K.L.M.); (V.P.); (T.D.S.); (R.R.)
| | - Youngjun Mo
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Korea; (W.-J.H.); (J.-U.J.)
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
78
|
Hassani‐Pak K, Singh A, Brandizi M, Hearnshaw J, Parsons JD, Amberkar S, Phillips AL, Doonan JH, Rawlings C. KnetMiner: a comprehensive approach for supporting evidence-based gene discovery and complex trait analysis across species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1670-1678. [PMID: 33750020 PMCID: PMC8384599 DOI: 10.1111/pbi.13583] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/17/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
The generation of new ideas and scientific hypotheses is often the result of extensive literature and database searches, but, with the growing wealth of public and private knowledge, the process of searching diverse and interconnected data to generate new insights into genes, gene networks, traits and diseases is becoming both more complex and more time-consuming. To guide this technically challenging data integration task and to make gene discovery and hypotheses generation easier for researchers, we have developed a comprehensive software package called KnetMiner which is open-source and containerized for easy use. KnetMiner is an integrated, intelligent, interactive gene and gene network discovery platform that supports scientists explore and understand the biological stories of complex traits and diseases across species. It features fast algorithms for generating rich interactive gene networks and prioritizing candidate genes based on knowledge mining approaches. KnetMiner is used in many plant science institutions and has been adopted by several plant breeding organizations to accelerate gene discovery. The software is generic and customizable and can therefore be readily applied to new species and data types; for example, it has been applied to pest insects and fungal pathogens; and most recently repurposed to support COVID-19 research. Here, we give an overview of the main approaches behind KnetMiner and we report plant-centric case studies for identifying genes, gene networks and trait relationships in Triticum aestivum (bread wheat), as well as, an evidence-based approach to rank candidate genes under a large Arabidopsis thaliana QTL. KnetMiner is available at: https://knetminer.org.
Collapse
|
79
|
Tuan PA, Nguyen TN, Jordan MC, Ayele BT. A shift in abscisic acid/gibberellin balance underlies retention of dormancy induced by seed development temperature. PLANT, CELL & ENVIRONMENT 2021; 44:2230-2244. [PMID: 33249604 DOI: 10.1111/pce.13963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 05/06/2023]
Abstract
Through a combination of physiological, pharmacological, molecular and targeted metabolomics approaches, we showed that retention of wheat (Triticum aestivum L.) seed dormancy levels induced by low and high seed development temperatures during post-desiccation phases is associated with modulation of gibberellin (GA) level and seed responsiveness to abscisic acid (ABA) and GA via expression of TaABI5 and TaGAMYB, respectively. Dormancy retention during imbibition, however, is associated with modulations of both ABA level and responsiveness via expression of specific ABA metabolism (TaNCED2 and TaCYP707A1) and signalling (TaPYL2, TaSnRK2, TaABI3, TaABI4 and TaABI5) genes, and alterations of GA levels and responsiveness through expression of specific GA biosynthesis (TaGA20ox1, TaGA20ox2 and TaGA3ox2) and signalling (TaGID1 and TaGID2) genes, respectively. Expression patterns of GA signalling genes, TaRHT1 and TaGAMYB, lacked positive correlation with that of GA regulated genes and dormancy level observed in seeds developed at the two temperatures, implying their regulation at post-transcriptional level. Our results overall implicate that a shift in ABA/GA balance underlies retention of dormancy levels induced by seed development temperature during post-desiccation and imbibition phases. Consistently, genes regulated by ABA and GA during imbibition overlapped with those differentially expressed between imbibed seeds developed at the two temperatures and mediate different biological functions.
Collapse
Affiliation(s)
- Pham A Tuan
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tran-Nguyen Nguyen
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark C Jordan
- Morden Research and Development Center, Agriculture and Agri-Food Canada, Morden, Manitoba, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
80
|
Liang Y, Liu HJ, Yan J, Tian F. Natural Variation in Crops: Realized Understanding, Continuing Promise. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:357-385. [PMID: 33481630 DOI: 10.1146/annurev-arplant-080720-090632] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Crops feed the world's population and shape human civilization. The improvement of crop productivity has been ongoing for almost 10,000 years and has evolved from an experience-based to a knowledge-driven practice over the past three decades. Natural alleles and their reshuffling are long-standing genetic changes that affect how crops respond to various environmental conditions and agricultural practices. Decoding the genetic basis of natural variation is central to understanding crop evolution and, in turn, improving crop breeding. Here, we review current advances in the approaches used to map the causal alleles of natural variation, provide refined insights into the genetics and evolution of natural variation, and outline how this knowledge promises to drive the development of sustainable agriculture under the dome of emerging technologies.
Collapse
Affiliation(s)
- Yameng Liang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; ,
| | - Hai-Jun Liu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria;
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China;
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; ,
| |
Collapse
|
81
|
Yan X, Cao QZ, He HB, Wang LJ, Jia GX. Functional analysis and expression patterns of members of the FLOWERING LOCUS T (FT) gene family in Lilium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:250-260. [PMID: 33866146 DOI: 10.1016/j.plaphy.2021.03.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 05/22/2023]
Abstract
Lilium is an important commercial flowering species, and there are many varieties and more than 100 species of wild Lilium. Lilium × formolongi is usually propagated from seedlings, and the flowering of these plants is driven mainly by the photoperiodic pathway. Most of the other lily plants are propagated via bulblets and need to be vernalized; these plants can be simply divided into pretransplantation types and posttransplantation types according to the time at which the floral transition occurs. We identified three Lilium FLOWERING LOCUS T (LFT) family members in 7 Lilium varieties, and for each gene, the coding sequence of the different varieties was identical. Among these genes, the LFT1 gene of Lilium was most homologous to the AtFT gene, which promotes flowering in Arabidopsis. We analyzed the expression patterns of LFT genes in Lilium × formolongi seedlings and in different Lilium varieties, and the results showed that LFT1 and LFT3 may promote floral induction. Compared with LFT3, LFT1 may have a greater effect on floral induction in Lilium, which is photoperiod sensitive, while LFT3 may play a more important role in the floral transition of lily plants, which have a high requirement for vernalization. LFT2 may be involved in the differentiation of bulblets, which was verified by tissue culture experiments, and LFT1 may have other functions involved in promoting bulblet growth. The functions of LFT genes were verified by the use of transgenic Arabidopsis thaliana plants, which showed that both the LFT1 and LFT3 genes can promote early flowering in Arabidopsis. Compared with LFT3, LFT1 promoted flowering more obviously, and thus, this gene could be an important promoter of floral induction in Lilium.
Collapse
Affiliation(s)
- Xiao Yan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qin-Zheng Cao
- School of Agroforestry & Medicine, The Open University of China, Beijing, 100083, China
| | - Heng-Bin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lian-Juan Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Gui-Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
82
|
Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun J, Chen KM. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2857-2876. [PMID: 33471899 DOI: 10.1093/jxb/erab024] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 05/22/2023]
Abstract
With the growth of the global population and the increasing frequency of natural disasters, crop yields must be steadily increased to enhance human adaptability to risks. Pre-harvest sprouting (PHS), a term mainly used to describe the phenomenon in which grains germinate on the mother plant directly before harvest, is a serious global problem for agricultural production. After domestication, the dormancy level of cultivated crops was generally lower than that of their wild ancestors. Although the shortened dormancy period likely improved the industrial performance of cereals such as wheat, barley, rice, and maize, the excessive germination rate has caused frequent PHS in areas with higher rainfall, resulting in great economic losses. Here, we systematically review the causes of PHS and its consequences, the major indicators and methods for PHS assessment, and emphasize the biological significance of PHS in crop production. Wheat quantitative trait loci functioning in the control of PHS are also comprehensively summarized in a meta-analysis. Finally, we use Arabidopsis as a model plant to develop more complete PHS regulatory networks for wheat. The integration of this information is conducive to the development of custom-made cultivated lines suitable for different demands and regions, and is of great significance for improving crop yields and economic benefits.
Collapse
Affiliation(s)
- Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hong-Jin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiao-Jing Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei-Hang Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lan Ju
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
83
|
Rikiishi K, Sugimoto M, Maekawa M. Transcriptomic analysis of developing seeds in a wheat ( Triticum aestivum L.) mutant RSD32 with reduced seed dormancy. BREEDING SCIENCE 2021; 71:155-166. [PMID: 34377063 PMCID: PMC8329890 DOI: 10.1270/jsbbs.20016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/11/2020] [Indexed: 06/13/2023]
Abstract
Seed dormancy, a major factor regulating pre-harvest sprouting, can severely hinder wheat cultivation. Reduced Seed Dormancy 32 (RSD32), a wheat (Triticum aestivum L.) mutant with reduced seed dormancy, is derived from the pre-harvest sprouting tolerant cultivar, 'Norin61'. RSD32 is regulated by a single recessive gene and mutant phenotype expressed in a seed-specific manner. Gene expressions in embryos of 'Norin61' and RSD32 were compared using RNA sequencing (RNA-seq) analysis at different developmental stages of 20, 30, and 40 days after pollination (DAP). Numbers of up-regulated genes in RSD32 are equivalent in all developmental stages. However, down-regulated genes in RSD32 are more numerous on DAP20 and DAP30 than on DAP40. In central components affecting the circadian clock, homologues to the morning-expressed genes are expressed at lower levels in RSD32. However, higher expressions of homologues acting as evening-expressed genes are observed in RSD32. Homologues of Ca2+ signaling pathway related genes are specifically expressed on DAP20 in 'Norin61'. Lower expression is shown in RSD32. These results suggest that RSD32 mutation expresses on DAP20 and earlier seed developmental stages and suggest that circadian clock regulation and Ca2+ signaling pathway are involved in the regulation of wheat seed dormancy.
Collapse
Affiliation(s)
- Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Manabu Sugimoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
84
|
Holloway T, Steinbrecher T, Pérez M, Seville A, Stock D, Nakabayashi K, Leubner-Metzger G. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. THE NEW PHYTOLOGIST 2021; 229:2179-2191. [PMID: 32970853 DOI: 10.1111/nph.16948] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 05/07/2023]
Abstract
How the biophysical properties of overlaying tissues control growth, such as the embryonic root (radicle) during seed germination, is a fundamental question. In eudicot seeds the endosperm surrounding the radicle confers coat dormancy and controls germination responses through modulation of its cell wall mechanical properties. Far less is known for grass caryopses that differ in tissue morphology. Here we report that the coleorhiza, a sheath-like organ that surrounds the radicle in grass embryos, performs the same role in the grass weed Avena fatua (common wild oat). We combined innovative biomechanical techniques, tissue ablation, microscopy, tissue-specific gene and enzyme activity expression with the analysis of hormones and oligosaccharides. The combined experimental work demonstrates that in grass caryopses the coleorhiza indeed controls germination for which we provide direct biomechanical evidence. We show that the coleorhiza becomes reinforced during dormancy maintenance and weakened during germination. Xyloglucan endotransglycosylases/hydrolases may have a role in coleorhiza reinforcement through cell wall remodelling to confer coat dormancy. The control of germination by coleorhiza-enforced dormancy in grasses is an example of the convergent evolution of mechanical restraint by overlaying tissues.
Collapse
Affiliation(s)
- Thomas Holloway
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Syngenta, Jealott's Hill International Research Centre, Warfield, Bracknell,, RG42 6EY, UK
| | - Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Marta Pérez
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Anne Seville
- Syngenta, Jealott's Hill International Research Centre, Warfield, Bracknell,, RG42 6EY, UK
| | - David Stock
- Syngenta, Jealott's Hill International Research Centre, Warfield, Bracknell,, RG42 6EY, UK
| | - Kazumi Nakabayashi
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, CZ-78371, Czech Republic
| |
Collapse
|
85
|
Klupczyńska EA, Pawłowski TA. Regulation of Seed Dormancy and Germination Mechanisms in a Changing Environment. Int J Mol Sci 2021; 22:1357. [PMID: 33572974 PMCID: PMC7866424 DOI: 10.3390/ijms22031357] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Environmental conditions are the basis of plant reproduction and are the critical factors controlling seed dormancy and germination. Global climate change is currently affecting environmental conditions and changing the reproduction of plants from seeds. Disturbances in germination will cause disturbances in the diversity of plant communities. Models developed for climate change scenarios show that some species will face a significant decrease in suitable habitat area. Dormancy is an adaptive mechanism that affects the probability of survival of a species. The ability of seeds of many plant species to survive until dormancy recedes and meet the requirements for germination is an adaptive strategy that can act as a buffer against the negative effects of environmental heterogeneity. The influence of temperature and humidity on seed dormancy status underlines the need to understand how changing environmental conditions will affect seed germination patterns. Knowledge of these processes is important for understanding plant evolution and adaptation to changes in the habitat. The network of genes controlling seed dormancy under the influence of environmental conditions is not fully characterized. Integrating research techniques from different disciplines of biology could aid understanding of the mechanisms of the processes controlling seed germination. Transcriptomics, proteomics, epigenetics, and other fields provide researchers with new opportunities to understand the many processes of plant life. This paper focuses on presenting the adaptation mechanism of seed dormancy and germination to the various environments, with emphasis on their prospective roles in adaptation to the changing climate.
Collapse
Affiliation(s)
| | - Tomasz A. Pawłowski
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
| |
Collapse
|
86
|
Takeshima R, Ogiso-Tanaka E, Yasui Y, Matsui K. Targeted amplicon sequencing + next-generation sequencing-based bulked segregant analysis identified genetic loci associated with preharvest sprouting tolerance in common buckwheat (Fagopyrum esculentum). BMC PLANT BIOLOGY 2021; 21:18. [PMID: 33407135 PMCID: PMC7789488 DOI: 10.1186/s12870-020-02790-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Common buckwheat (2n = 2x = 16) is an outcrossing pseudocereal whose seeds contain abundant nutrients and potential antioxidants. As these beneficial compounds are damaged by preharvest sprouting (PHS) and PHS is likely to increase with global warming, it is important to find efficient ways to develop new PHS-tolerant lines. However, genetic loci and selection markers associated with PHS in buckwheat have not been reported. RESULTS By next-generation sequencing (NGS) of whole-genome of parental lines, we developed a genome-wide set of 300 markers. By NGS- based bulked segregant analysis (NGS-BSA), we developed 100 markers linked to PHS tolerance. To confirm the effectiveness of marker development from NGS-BSA data, we developed 100 markers linked to the self-compatibility (SC) trait from previous NGS-BSA data. Using these markers, we developed genetic maps with AmpliSeq technology, which can quickly detect polymorphisms by amplicon-based multiplex targeted NGS, and performed quantitative trait locus (QTL) analysis for PHS tolerance in combination with NGS-BSA. QTL analysis detected two major and two minor QTLs for PHS tolerance in a segregating population developed from a cross between the PHS-tolerant 'Kyukei 29' and the self-compatible susceptible 'Kyukei SC7'. We found different major and minor QTLs in other segregating populations developed from the PHS-tolerant lines 'Kyukei 28' and 'NARO-FE-1'. Candidate markers linked to PHS developed by NGS-BSA were located near these QTL regions. We also investigated the effectiveness of markers linked to these QTLs for selection of PHS-tolerant lines among other segregating populations. CONCLUSIONS We efficiently developed genetic maps using a method combined with AmpliSeq technology and NGS-BSA, and detected QTLs associated with preharvest sprouting tolerance in common buckwheat. This is the first report to identify QTLs for PHS tolerance in buckwheat. Our marker development system will accelerate genetic research and breeding in common buckwheat.
Collapse
Affiliation(s)
- Ryoma Takeshima
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan
| | - Eri Ogiso-Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitasirakawa Oiwake-Cho, Sakyou-ku, Kyoto, 606-8501, Japan
| | - Katsuhiro Matsui
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan.
- Graduate School of Life and Environmental Science, University of Tsukuba, Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
87
|
Mares DJ, Mrva K, Cheong J, Fox R, Mather DE. Dormancy and dormancy release in white-grained wheat (Triticum aestivum L.). PLANTA 2021; 253:5. [PMID: 33387045 DOI: 10.1007/s00425-020-03518-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Dormancy in white-grained wheat is conditioned by the cumulative effects of several QTL that delay the onset of the capacity to germinate during ripening and after-ripening. Grain dormancy at harvest-ripeness is a major component of resistance to preharvest sprouting in wheat (Triticum aestivum L.) and an important trait in regions where rain is common during the harvest period. Breeding lines developed in Australia maintained their dormancy phenotype over multiple seasons and during grain ripening, the time between anthesis and the acquisition of the capacity to germinate, dormancy release, increased in line with the strength of dormancy. Genetic dissection of two dormant lines indicated that dormancy was due to the cumulative action of between one and three major genetic loci and several minor loci. This presents a significant challenge for breeders targeting environments with a high risk of sprouting where strong dormancy is desirable. Only around half of the difference in dormancy between the dormant lines and a non-dormant variety could be attributed to the major genetic loci on chromosomes 4A and 3A. A QTL that was mapped on chromosome 5A may be an orthologue of a minor QTL for dormancy in barley. At each locus, the dormancy allele increased the time to dormancy release during ripening. In combination, these alleles had cumulative effects. Embryo sensitivity to abscisic acid was related to the dormancy phenotype of the whole caryopsis, however, changes in concentrations of abscisic acid and gibberellins in embryo sections and de-embryonated grains during ripening and after-ripening could not be linked to the timing of dormancy release.
Collapse
Affiliation(s)
- Daryl J Mares
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia.
| | - Kolumbina Mrva
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia
| | - Judy Cheong
- SARDI, Waite Precinct, Urrbrae, SA, Australia
| | - Rebecca Fox
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia
| | - Diane E Mather
- School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
88
|
Liu S, Wang D, Lin M, Sehgal SK, Dong L, Wu Y, Bai G. Artificial selection in breeding extensively enriched a functional allelic variation in TaPHS1 for pre-harvest sprouting resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:339-350. [PMID: 33068119 DOI: 10.1007/s00122-020-03700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Pre-harvest sprouting (PHS) causes significant losses in wheat yield and quality worldwide. Previously, we cloned a PHS resistance gene, TaPHS1, and identified two causal mutations for reduced seed dormancy (SD) and increased PHS susceptibility. Here we identified a novel allelic variation of C to T transition in 3'-UTR of TaPHS1, which associated with reduced SD and PHS resistance. The T allele occurred in wild wheat progenitors and was likely the earliest functional mutation in TaPHS1 for PHS susceptibility. Allele frequency analysis revealed low frequency of the T allele in wild diploid and tetraploid wheat progenitors, but very high frequency in modern wheat cultivars and breeding lines, indicating that artificial selection quickly enriched the T allele during modern breeding. The T allele was significantly associated with short SD in both T. aestivum and T. durum, the two most cultivated species of wheat. This variation together with previously reported functional sequence variations co-regulated TaPHS1 expression levels and PHS resistance in different germplasms. Haplotype analysis of the four functional variations identified the best PHS resistance haplotype of TaPHS1. The resistance haplotype can be used in marker-assisted selection to transfer TaPHS1 to new wheat cultivars.
Collapse
Affiliation(s)
- Shubing Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Danfeng Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Lei Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuye Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- USDA-ARS, Hard Winter Wheat Genetic Research Unit, Manhattan, KS, 66506, USA.
| |
Collapse
|
89
|
Liton MMUA, McCartney CA, Hiebert CW, Kumar S, Jordan MC, Ayele BT. Identification of loci for pre-harvest sprouting resistance in the highly dormant spring wheat RL4137. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:113-124. [PMID: 33001261 DOI: 10.1007/s00122-020-03685-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/11/2020] [Indexed: 05/06/2023]
Abstract
Combination of RL4137 alleles at three QTLs on chromosomes 4A, 6B and 6D, and 'Roblin' allele at a novel QTL on chromosome 1D increases pre-harvest sprouting resistance in 'Roblin'/RL4137 doubled haploid population. Pre-harvest sprouting (PHS) significantly reduces wheat grain yield and quality. Therefore, identifying quantitative trait loci (QTL) for PHS resistance is key to facilitate marker-assisted breeding. To this end, we studied PHS in a population of 330 doubled haploid (DH) lines derived from 'Roblin'/RL4137. The parental and DH lines were examined for their PHS phenotype based on speed of germination index in five environments and genotyped using the wheat Infinium 90 K SNP array. A total of five QTLs were detected on linkage groups 1D, 4A.2, 6B.1, 6D and 7A over the five environments. The QTL QPhs.umb-4A on linkage group 4A.2 was the most consistent across all environments and explained 40-50% of phenotypic variation. The QTL on 1D is a novel QTL and explained 1.99-2.33% of phenotypic variation. The QTLs on 6B.1 and 6D each explained 3.09-4.33% and 1.62-2.45% of phenotypic variation, respectively. A combination of four stable QTLs on linkage groups 1D, 4A.2, 6B.1 and 6D greatly increased PHS resistance. Allelic effects for the QTLs QPhs.umb-4A, QPhs.umb-6B and QPhs.umb-6D were contributed by RL4137, whereas 'Roblin' contributed the resistant allele for QPhs.umb-1D. QPhs.umb-4A was required for strong dormancy in the 'Roblin'/RL4137 DH population, and the presence of QTLs QPhs.umb-1D, QPhs.umb-6B and QPhs.umb-6D incrementally increased dormancy; DH lines carrying all four QTLs are considerably more dormant than those carrying only QPhs.umb-4A or none of the four QTLs. Thus, the QTLs identified in this study have the potential to improve PHS resistance in spring wheat.
Collapse
Affiliation(s)
- M M Uzzal A Liton
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada
| | - Curt A McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Colin W Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Santosh Kumar
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, R7A 5Y3, Canada
| | - Mark C Jordan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, R6M 1Y5, Canada
| | - Belay T Ayele
- Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
90
|
Evaluation of the impact of heat on wheat dormancy, late maturity α-amylase and grain size under controlled conditions in diverse germplasm. Sci Rep 2020; 10:17800. [PMID: 33082361 PMCID: PMC7576155 DOI: 10.1038/s41598-020-73707-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
In the Australian wheat belts, short episodes of high temperatures or hot spells during grain filling are becoming increasingly common and have an enormous impact on yield and quality, bringing multi-billion losses annually. This problem will become recurrent under the climate change scenario that forecast increasing extreme temperatures, but so far, no systematic analysis of the resistance to hot spells has yet been performed in a diverse genetic background. We developed a protocol to study the effects of heat on three important traits: grain size, grain dormancy and the presence of Late Maturity α-Amylase (LMA), and we validated it by analysing the phenotypes of 28 genetically diverse wheat landraces and exploring the potential variability existing in the responses to hot spells. Using controlled growth environments, the different genotypes were grown in our standard conditions until 20 days after anthesis, and then moved for 10 days into a heat chamber. Our study showed that our elevated temperature treatment during mid-late filling triggered multiple detrimental effects on yield and quality. We observed a reduction in grain size, a reduction in grain dormancy and increased LMA expression in most of the tested genotypes, but potential resistant lines were identified for each analyzed trait opening new perspectives for future genetic studies and breeding for heat-insensitive commercial lines.
Collapse
|
91
|
Kishchenko O, Zhou Y, Jatayev S, Shavrukov Y, Borisjuk N. Gene editing applications to modulate crop flowering time and seed dormancy. ABIOTECH 2020; 1:233-245. [PMID: 36304127 PMCID: PMC9590486 DOI: 10.1007/s42994-020-00032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Gene editing technologies such as CRISPR/Cas9 have been used to improve many agricultural traits, from disease resistance to grain quality. Now, emerging research has used CRISPR/Cas9 and other gene editing technologies to target plant reproduction, including major areas such as flowering time and seed dormancy. Traits related to these areas have important implications for agriculture, as manipulation of flowering time has multiple applications, including tailoring crops for regional adaptation and improving yield. Moreover, understanding seed dormancy will enable approaches to improve germination upon planting and prevent pre-harvest sprouting. Here, we summarize trends and recent advances in using gene editing to gain a better understanding of plant reproduction and apply the resulting information for crop improvement.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine, Kiev, Ukraine
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
92
|
Sansaloni C, Franco J, Santos B, Percival-Alwyn L, Singh S, Petroli C, Campos J, Dreher K, Payne T, Marshall D, Kilian B, Milne I, Raubach S, Shaw P, Stephen G, Carling J, Pierre CS, Burgueño J, Crosa J, Li H, Guzman C, Kehel Z, Amri A, Kilian A, Wenzl P, Uauy C, Banziger M, Caccamo M, Pixley K. Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat Commun 2020; 11:4572. [PMID: 32917907 PMCID: PMC7486412 DOI: 10.1038/s41467-020-18404-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/16/2020] [Indexed: 11/09/2022] Open
Abstract
Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs. Genebanks hold comprehensive collections of wild species, wild relatives, and landraces that are useful for genetic improvement. Here, the authors report the genotype of nearly 80,000 wheat accessions using DArTseq technology to show the less explored genetic diversity.
Collapse
Affiliation(s)
- Carolina Sansaloni
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico.
| | - Jorge Franco
- Departamento de Biometria y Estadística, Facultad de agronomía, Universidad de la República, Ruta 3, km 363, Paysandú, C.P., 60000, Uruguay
| | - Bruno Santos
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Sukhwinder Singh
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico.,Geneshifters, 222 Mary Jena Lane, Pullman, WA, 99163, USA
| | - Cesar Petroli
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Jaime Campos
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Kate Dreher
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Thomas Payne
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - David Marshall
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz Der Vereinten Nationen 7, Bonn, 53113, Germany
| | - Iain Milne
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Sebastian Raubach
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Paul Shaw
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Gordon Stephen
- Information and Computational Science, The James Hutton Institute, Invergowrie Dundee, DD2 5DA, Scotland
| | - Jason Carling
- Diversity Arrays Technology, Building 3, Level D, University of Canberra, Monana St., Bruce, ACT, 2617, Australia
| | - Carolina Saint Pierre
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Juan Burgueño
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - José Crosa
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - HuiHui Li
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Carlos Guzman
- Departamento de Genética Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Universidad de Córdoba, Córdoba, Spain
| | - Zakaria Kehel
- Genetic Resouces Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Rabat-Salé-Zemmour-Zaër, Morocco
| | - Ahmed Amri
- Genetic Resouces Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Rabat-Salé-Zemmour-Zaër, Morocco
| | - Andrzej Kilian
- Diversity Arrays Technology, Building 3, Level D, University of Canberra, Monana St., Bruce, ACT, 2617, Australia
| | - Peter Wenzl
- Genetic Resouces Program, International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira CP 763537 Apartado Aéreo 6713, Cali, Colombia
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Marianne Banziger
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| | - Mario Caccamo
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Kevin Pixley
- Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45 El Batán, Texcoco, C.P., 56237, Mexico
| |
Collapse
|
93
|
Wu Y, Li M, He Z, Dreisigacker S, Wen W, Jin H, Zhai S, Li F, Gao F, Liu J, Wang R, Zhang P, Wan Y, Cao S, Xia X. Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2431-2450. [PMID: 32451598 DOI: 10.1007/s00122-020-03609-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/13/2020] [Indexed: 05/12/2023]
Abstract
We developed and validated 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for 46 genes of important wheat quality, biotic and abiotic stress resistance, grain yield, and adaptation-related traits for marker-assisted selection in wheat breeding. Development of high-throughput, low-cost, gene-specific molecular markers is important for marker-assisted selection in wheat breeding. In this study, we developed 56 gene-specific semi-thermal asymmetric reverse PCR (STARP) markers for wheat quality, tolerance to biotic and abiotic stresses, grain yield, and adaptation-related traits. The STARP assays were validated by (1) comparison of the assays with corresponding diagnostic STS/CAPS markers on 40 diverse wheat cultivars and (2) characterization of allelic effects based on the phenotypic and genotypic data of three segregating populations and 305 diverse wheat accessions from China and 13 other countries. The STARP assays showed the advantages of high-throughput, accuracy, flexibility, simple assay design, low operational costs, and platform compatibility. The state-of-the-art assays of this study provide a robust and reliable molecular marker toolkit for wheat breeding programs.
Collapse
Affiliation(s)
- Yuying Wu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Ming Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Susanne Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, 201 Dalian Road, Zunyi, 563099, Guizhou, China
| | - Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Shengnan Zhai
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Faji Li
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Fengmei Gao
- Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Street, Harbin, 150086, Heilongjiang, China
| | - Jindong Liu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 7 Pengfei Road, Shenzhen, 518120, Guangdong, China
| | - Rongge Wang
- Farm of Seed Production of Gaoyi County, Gaoyi, 051330, Hebei, China
| | - Pingzhi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Yingxiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, 40 Nongke South Street, Hefei, 230001, Anhui, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
94
|
Wang H, Zhang Y, Xiao N, Zhang G, Wang F, Chen X, Fang R. Rice GERMIN-LIKE PROTEIN 2-1 Functions in Seed Dormancy under the Control of Abscisic Acid and Gibberellic Acid Signaling Pathways. PLANT PHYSIOLOGY 2020; 183:1157-1170. [PMID: 32321839 PMCID: PMC7333727 DOI: 10.1104/pp.20.00253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/26/2020] [Indexed: 05/05/2023]
Abstract
Seed dormancy is a natural phenomenon in plants. It ensures that seeds complete the grain-filling stage before germination and prevents germination in unsuitable ecological conditions. In this study, we determined the previously unknown function of the rice (Oryza sativa) gene GERMIN-LIKE PROTEIN 2-1 (OsGLP2-1) in seed dormancy. Using artificial microRNA and CRISPR/CAS9 approaches, suppression of OsGLP2-1 expression in rice resulted in the release of dormancy in immature seeds. Conversely, overexpression of OsGLP2-1 driven by the OsGLP2-1 native promoter led to greater seed dormancy. Seed scutellum-specific expression of OsGLP2-1 was increased by exogenous abscisic acid, but decreased with gibberellic acid treatment. We provide evidence that OsGLP2-1 is antagonistically controlled at the transcriptional level by ABA INSENSITIVE5 and GAMYB transcription factors. We conclude that OsGLP2-1 acts as a buffer, maintaining appropriate equilibrium for the regulation of primary dormancy during seed development in rice.
Collapse
Affiliation(s)
- Haiting Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
| | - Na Xiao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
| | - Ge Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Xiaoying Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research Center, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
95
|
Song S, Wang G, Wu H, Fan X, Liang L, Zhao H, Li S, Hu Y, Liu H, Ayaad M, Xing Y. OsMFT2 is involved in the regulation of ABA signaling-mediated seed germination through interacting with OsbZIP23/66/72 in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:532-546. [PMID: 32170894 DOI: 10.1111/tpj.14748] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/28/2020] [Indexed: 05/18/2023]
Abstract
Seed germination is a complex process involving various physical and biochemical cues, determined by exogenous and endogenous factors. Here, we identified a gene, OsMFT2, that negatively regulates seed germination in rice. OsMFT2 knock-out lines exhibited pre-harvest sprouting, whereas OsMFT2 overexpression lines showed delayed germination. RNA expression profiling showed that OsMFT2 was specifically expressed in seeds. Subcellular localization indicated that OsMFT2 was a nuclear protein. Exogenous abscisic acid (ABA) treatment of imbibed seeds and seedlings indicated that OsMFT2 altered ABA sensitivity during seed germination and post-germination growth. In vivo and in vitro assays showed that three bZIP transcription factors, OsbZIP23, OsbZIP66 and OsbZIP72, interacted with OsMFT2. OsbZIP23/66/72 bound to the promoter of Rab16A, a typical gene containing the ABA-responsive element, and OsMFT2 enhanced the binding to the Rab16A promoter. Moreover, several ABA-responsive genes were differentially expressed in the imbibed seeds of OsMFT2 transgenic lines and the wild type. The performance of the transgenic plants demonstrated that overexpressing OsbZIP23 rescued the pre-harvest sprouting phenotype and the decrease in ABA-signaling genes expression caused by OsMFT2 knock-out. All of these results demonstrate that OsMFT2 positively regulates ABA-responsive genes through interacting with OsbZIP23/66/72 and functions in seed germination.
Collapse
Affiliation(s)
- Song Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Guanfeng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liwen Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangle Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Mohammed Ayaad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
96
|
Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Semin Cell Dev Biol 2020; 109:20-30. [PMID: 32507412 DOI: 10.1016/j.semcdb.2020.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
Abstract
Plant growth and development, particularly the induction of flowering, are tightly controlled by key regulators in response to endogenous and environmental cues. The FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family of phosphatidylethanolamine-binding protein (PEBP) genes is central to plant development, especially the regulation of flowering time and plant architecture. FT, the long-sought florigen, promotes flowering and TFL1 represses flowering. The balance between FT and TFL1 modulates plant architecture by switching the meristem from indeterminate to determinate growth, or vice versa. Recent studies in a broad range of plant species demonstrated that, in addition to their roles in flowering time and plant architecture, FT/TFL1 family genes participate in diverse aspects of plant development, such as bamboo seed germination and potato tuber formation. In this review, we briefly summarize the evolution of the FT/TFL1 family and highlight recent findings on their conserved and divergent functions in different species.
Collapse
|
97
|
Wu Q, Bai X, Wu X, Xiang D, Wan Y, Luo Y, Shi X, Li Q, Zhao J, Qin P, Yang X, Zhao G. Transcriptome profiling identifies transcription factors and key homologs involved in seed dormancy and germination regulation of Chenopodium quinoa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:443-456. [PMID: 32289638 DOI: 10.1016/j.plaphy.2020.03.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 05/15/2023]
Abstract
Chenopodium quinoa, a halophytic crop belonging to the Amaranthaceae, has remarkable resistance to harsh growth conditions and produces seed with excellent nutritional value. This makes it a suitable crop for marginal soils. However, to date most of the commercial cultivars are susceptible to preharvest sprouting (PHS). Meanwhile, understanding of the PHS regulatory mechanisms is still limited. Abscisic acid (ABA) has been demonstrated to be tightly associated with seed dormancy and germination regulation in many crops. Whether ABA metabolism pathway could be manipulated to prevent PHS in quinoa is worth investigating. In the present study, we tested the inhibitory effects of exogenous ABA on quinoa seed germination. By RNA-seq analysis we investigated the global gene expression changes during seed germination, and obtained 1066 ABA-repressed and 392 ABA-induced genes. Cis-elements enrichment analysis indicated that the promoters of these genes were highly enriched in motifs "AAAAAAAA" and "ACGTGKC (K = G/T)", the specific binding motifs of ABI3/VP1 and ABI5. Transcription factor annotation showed that 13 genes in bHLH, MADS-box, G2-like and NF-YB, and five genes in B3, bZIP, GATA and LBD families were specifically ABA-repressed and -induced, respectively. Furthermore, expression levels of 53 key homologs involved in seed dormancy and germination regulation were markedly changed. Hence, we speculated that the 18 transcription factors and the homologs were potential candidates involved in ABA-mediated seed dormancy and germination regulation, which could be manipulated for molecular breeding of quinoa elites with PHS tolerance in future.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China; National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Xue Bai
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China; National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China; National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China; National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China; National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yiming Luo
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China; National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China; National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Junming Zhao
- Department of Grassland Science, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiushi Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China; National Research and Development Center for Coarse Cereal Processing, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
98
|
Wu X, Wang Y, Tang H. Quantitative Metabonomic Analysis Reveals the Germination-Associated Dynamic and Systemic Biochemical Changes for Mung-Bean ( Vigna radiata) Seeds. J Proteome Res 2020; 19:2457-2470. [PMID: 32393034 DOI: 10.1021/acs.jproteome.0c00181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Seed germination is essential for plant survival, germplasm resource preservation, and worldwide food supplies, although the germination-associated seed biochemical variations are not fully understood. With the NMR-based metabonomics, we quantitatively analyzed the comprehensive metabolite composition (metabonome) of mung-bean (Vigna radiata) seeds at eight time points of germination covering all three phases. We found that mung-bean seed metabonomes were dominated by 63 metabolites including lipids, amino acids, oligo-/monosaccharides, cyclitols, cholines, organic acids, nucleotides/-sides, nicotinates, and the shikimate pathway-mediated secondary metabolites. During germination, metabolic changes included mainly the degradation of proteins and raffinose family oligosaccharides, glycolysis, tricarboxylic acid (TCA) cycle, anaerobic respiration, biosynthesis of osmolytes and antioxidants together with the metabolisms of nucleotides/-sides, nicotinates, and amino acids. Oligosaccharide degradation was the primary energy source for germination, which coupled with the mobilization of starch and protein storages to produce sugars and amino acids for biomaterial and energy generations. Osmotic and redox regulations were prerequisites for seed germination together with mitochondrial reparations and generations to enable TCA cycle. During the postgermination growth stage (phase-3), the use of small molecules including amino acids and saccharides was switched to meet the growth demands of radicle cells. Small metabolites passed freely through seed testa leaking into the culture media during early germination but were reabsorbed by seed cells around the postgermination growth stage. Extra after-ripening accelerated these metabolic processes of seeds in phase-1, especially the biosynthesis of cyclitols, choline, and nicotinates, increasing the germination uniformity in terms of speed and percentage. Germination-resistant seeds were incapable of activating the germination-associated metabolic processes.
Collapse
Affiliation(s)
- Xiangyu Wu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, P. R. China
| | - Yunlong Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
99
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1569-1602. [PMID: 32253477 DOI: 10.1007/s00122-020-03583-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/13/2020] [Indexed: 05/18/2023]
Abstract
A review of the available literature on genetics of yield and its component traits, tolerance to abiotic stresses and biofortification should prove useful for future research in wheat in the genomics era. The work reviewed in this article mainly covers the available information on genetics of some important quantitative traits including yield and its components, tolerance to abiotic stresses (heat, drought, salinity and pre-harvest sprouting = PHS) and biofortification (Fe/Zn and phytate contents with HarvestPlus Program) in wheat. Major emphasis is laid on the recent literature on QTL interval mapping and genome-wide association studies, giving lists of known QTL and marker-trait associations. Candidate genes for different traits and the cloned and characterized genes for yield traits along with the molecular mechanism are also described. For each trait, an account of the present status of marker-assisted selection has also been included. The details of available results have largely been presented in the form of tables; some of these tables are included as supplementary files.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India.
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| |
Collapse
|
100
|
Rasheed A, Takumi S, Hassan MA, Imtiaz M, Ali M, Morgunov AI, Mahmood T, He Z. Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1503-1520. [PMID: 31897516 DOI: 10.1007/s00122-019-03523-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We discussed the most recent efforts in wheat functional genomics to discover new genes and their deployment in breeding with special emphasis on advances in Asian countries. Wheat research community is making significant progress to bridge genotype-to-phenotype gap and then applying this knowledge in genetic improvement. The advances in genomics and phenomics have intrigued wheat researchers in Asia to make best use of this knowledge in gene and trait discovery. These advancements include, but not limited to, map-based gene cloning, translational genomics, gene mapping, association genetics, gene editing and genomic selection. We reviewed more than 57 homeologous genes discovered underpinning important traits and multiple strategies used for their discovery. Further, the complementary advancements in wheat phenomics and analytical approaches to understand the genetics of wheat adaptability, resilience to climate extremes and resistance to pest and diseases were discussed. The challenge to build a gold standard reference genome sequence of bread wheat is now achieved and several de novo reference sequences from the cultivars representing different gene pools will be available soon. New pan-genome sequencing resources of wheat will strengthen the foundation required for accelerated gene discovery and provide more opportunities to practice the knowledge-based breeding.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Muhammad Adeel Hassan
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT) Pakistan office, c/o National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Mohsin Ali
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Alex I Morgunov
- International Maize and Wheat Improvement Center (CIMMYT), Yenimahalle, Ankara, 06170, Turkey
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|