51
|
Shu K, Yang W. E3 Ubiquitin Ligases: Ubiquitous Actors in Plant Development and Abiotic Stress Responses. PLANT & CELL PHYSIOLOGY 2017; 58:1461-1476. [PMID: 28541504 PMCID: PMC5914405 DOI: 10.1093/pcp/pcx071] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/05/2017] [Indexed: 05/05/2023]
Abstract
Understanding the precise regulatory mechanisms of plant development and stress responses at the post-translational level is currently a topic of intensive research. Protein ubiquitination, including the sequential performances of ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes, is a refined post-translational modification ubiquitous in all eukaryotes. Plants are an integral part of our ecosystem and, as sessile organisms, the ability to perceive internal and external signals and to adapt well to various environmental challenges is crucial for their survival. Over recent decades, extensive studies have demonstrated that protein ubiquitination plays key roles in multiple plant developmental stages (e.g. seed dormancy and germination, root growth, flowering time control, self-incompatibility and chloroplast development) and several abiotic stress responses (e.g. drought and high salinity), by regulating the abundance, activities or subcellular localizations of a variety of regulatory polypeptides and enzymes. Importantly, diverse E3 ligases are involved in these regulatory pathways by mediating phytohormone and light signaling or other pathways. In this updated review, we mainly summarize recent advances in our understanding of the regulatory roles of protein ubiquitination in plant development and plant-environment interactions, and primarily focus on different types of E3 ligases because they play critical roles in determining substrate specificity.
Collapse
Affiliation(s)
- Kai Shu
- Department of Plant Physiology and Biochemistry, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- Corresponding authors: Kai Shu, E-mail, ; Wenyu Yang, E-mail,
| | - Wenyu Yang
- Department of Plant Physiology and Biochemistry, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
- Corresponding authors: Kai Shu, E-mail, ; Wenyu Yang, E-mail,
| |
Collapse
|
52
|
Lee HJ, Park YJ, Ha JH, Baldwin IT, Park CM. Multiple Routes of Light Signaling during Root Photomorphogenesis. TRENDS IN PLANT SCIENCE 2017; 22:803-812. [PMID: 28705537 DOI: 10.1016/j.tplants.2017.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 05/06/2023]
Abstract
Plants dynamically adjust their architecture to optimize growth and performance under fluctuating light environments, a process termed photomorphogenesis. A variety of photomorphogenic responses have been studied extensively in the shoots, where diverse photoreceptors and signaling molecules have been functionally characterized. Notably, accumulating evidence demonstrates that the underground roots also undergo photomorphogenesis, raising the question of how roots perceive and respond to aboveground light. Recent findings indicate that root photomorphogenesis is mediated by multiple signaling routes, including shoot-to-root transmission of mobile signaling molecules, direct sensing of light by the roots, and light channeling through the plant body. In this review we discuss recent advances in how light signals are transmitted to the roots to trigger photomorphogenic responses.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; These authors contributed equally to this work
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
53
|
Zhang Y, Li C, Zhang J, Wang J, Yang J, Lv Y, Yang N, Liu J, Wang X, Palfalvi G, Wang G, Zheng L. Dissection of HY5/HYH expression in Arabidopsis reveals a root-autonomous HY5-mediated photomorphogenic pathway. PLoS One 2017; 12:e0180449. [PMID: 28683099 PMCID: PMC5500333 DOI: 10.1371/journal.pone.0180449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
ELONGATED HYPOCOTYL 5 (HY5), a member of the bZIP gene family, is a positive regulator of the light signaling pathway in Arabidopsis thaliana. Whereas the hy5 mutant exhibits an elongated hypocotyl when grown in the light, the hy5 homolog (hyh) mutant does not. Although the functions of HY5 and HYH in light-mediated seedling development have been revealed, the tissue-specific expression patterns of HY5 and HYH and their interconnected regulation are largely unknown. Here, we report that HY5 regulates HYH expression in roots and contributes to root growth under different light conditions. We generated HY5 and HYH transcriptional and translational fusion reporter lines to investigate their expression patterns. HY5 was constitutively expressed in all root tissues, while HYH was predominantly expressed in root xylem cells. Root growth after a dark-to-light transition was perturbed in the hy5 and hy5hyh mutant lines, but not in the hyh mutant line, indicating that HY5 plays a major role in light-regulated root growth. Light-induced HY5/HYH expression occurred autonomously in roots. HYH expression in roots was decreased in the hy5 mutant, suggesting that HY5 regulates HYH expression. Collectively, these results indicate that an organ-specific HY5-mediated pathway controls root photomorphogenic development independently of light signaling in the shoot.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Chen Li
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jingxuan Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Jiajing Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingwei Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanxia Lv
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Nian Yang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jianping Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Gergo Palfalvi
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- * E-mail: (GW); (LZ)
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- * E-mail: (GW); (LZ)
| |
Collapse
|
54
|
Phosphorylation and negative regulation of CONSTITUTIVELY PHOTOMORPHOGENIC 1 by PINOID in Arabidopsis. Proc Natl Acad Sci U S A 2017; 114:6617-6622. [PMID: 28584104 DOI: 10.1073/pnas.1702984114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays crucial roles in various cellular processes via its E3 ubiquitin ligase activity in organisms, ranging from fungi to humans. As a key component in regulating various biological events, COP1 itself is precisely controlled at multiple layers. Here, we report a negative regulator of COP1, PINOID (PID), which positively mediates photomorphogenic development. Specifically, PID genetically and physically interacts with COP1 and directly phosphorylates COP1 at Ser20. As a result, this posttranslational modification serves to repress COP1 activity and promote photomorphogenesis. Our findings signify a key regulatory mechanism for precisely maintaining COP1 activity, thereby ensuring appropriate development in plants.
Collapse
|
55
|
Wang P, Hawes C, Hussey PJ. Plant Endoplasmic Reticulum-Plasma Membrane Contact Sites. TRENDS IN PLANT SCIENCE 2017; 22:289-297. [PMID: 27955928 DOI: 10.1016/j.tplants.2016.11.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/05/2016] [Accepted: 11/10/2016] [Indexed: 05/08/2023]
Abstract
The endoplasmic reticulum (ER) acts as a superhighway with multiple sideroads that connects the different membrane compartments including the ER to the plasma membrane (PM). ER-PM contact sites (EPCSs) are a common feature in eukaryotic organisms, but have not been studied well in plants owing to the lack of molecular markers and to the difficulty in resolving the EPCS structure using conventional microscopy. Recently, however, plant protein complexes required for linking the ER and PM have been identified. This is a further step towards understanding the structure and function of plant EPCSs. We highlight some recent studies in this field and suggest several hypotheses that relate to the possible function of EPCSs in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
56
|
Takahashi M, Umetsu K, Oono Y, Higaki T, Blancaflor EB, Rahman A. Small acidic protein 1 and SCF TIR1 ubiquitin proteasome pathway act in concert to induce 2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:940-956. [PMID: 27885735 DOI: 10.1111/tpj.13433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole-3-acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4-D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4-D-specific mutants suggested that 2,4-D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4-D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4-D but not IAA altered the actin structure in long-term and short-term assays. Analysis of the 2,4-D-specific mutant aar1-1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4-D-induced depolymerization of actin. The ubiquitin proteasome mutants tir1-1 and axr1-12, which show enhanced resistance to 2,4-D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4-D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4-D on the organization of actin filaments. Roots of the double mutant aar1-1 tir1-1 also showed enhanced resistance to 2,4-D-induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4-D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCFTIR1 ubiquitin proteasome components.
Collapse
Affiliation(s)
- Maho Takahashi
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Kana Umetsu
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Yutaka Oono
- Department of Radiation-Applied Biology, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, 370-1292, Japan
| | - Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Abidur Rahman
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
57
|
Lee HJ, Ha JH, Park CM. Underground roots monitor aboveground environment by sensing stem-piped light. Commun Integr Biol 2016; 9:e1261769. [PMID: 28042383 PMCID: PMC5193042 DOI: 10.1080/19420889.2016.1261769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/19/2022] Open
Abstract
Light is a critical environmental cue for plant growth and development. Plants actively monitor surrounding environments by sensing changes in light wavelength and intensity. Therefore, plants have evolved a series of photoreceptors to perceive a broad wavelength range of light. Phytochrome photoreceptors sense red and far-red light, which serves as a major photomorphogenic signal in shoot growth and morphogenesis. Notably, plants also express phytochromes in the roots, obscuring whether and how they perceive light in the soil. We have recently demonstrated that plants directly channel light to the roots through plant body to activate root phytochrome B (phyB). Stem light facilitates the nuclear import of phyB in the roots, and the photoactivated phyB triggers the accumulation of the photomorphogenic regulator ELONGATED HYPOCOTYL 5 in modulating root growth and gravitropism. Optical experiments revealed that red to far-red light is efficiently transduced through plant body. Our findings provide physical and molecular evidence, supporting that photoreceptors expressed in the underground roots directly sense light. We propose that the roots are not a passive organ but a central organ that actively monitors changes in the aboveground environment by perceiving light information from the shoots.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Seoul National University , Seoul, Korea
| | - Jun-Ho Ha
- Department of Chemistry, Seoul National University , Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
58
|
Lee HJ, Ha JH, Kim SG, Choi HK, Kim ZH, Han YJ, Kim JI, Oh Y, Fragoso V, Shin K, Hyeon T, Choi HG, Oh KH, Baldwin IT, Park CM. Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 2016; 9:ra106. [DOI: 10.1126/scisignal.aaf6530] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
59
|
Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY. Information Integration and Communication in Plant Growth Regulation. Cell 2016; 164:1257-1268. [PMID: 26967291 DOI: 10.1016/j.cell.2016.01.044] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 12/20/2022]
Abstract
Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth.
Collapse
Affiliation(s)
- Juthamas Chaiwanon
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wenfei Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Eunkyoo Oh
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Basic Forestry and Proteomics Center, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China; Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| |
Collapse
|
60
|
Wang P, Richardson C, Hawes C, Hussey P. Arabidopsis NAP1 Regulates the Formation of Autophagosomes. Curr Biol 2016; 26:2060-2069. [DOI: 10.1016/j.cub.2016.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 01/10/2023]
|
61
|
Sparks JA, Kwon T, Renna L, Liao F, Brandizzi F, Blancaflor EB. HLB1 Is a Tetratricopeptide Repeat Domain-Containing Protein That Operates at the Intersection of the Exocytic and Endocytic Pathways at the TGN/EE in Arabidopsis. THE PLANT CELL 2016; 28:746-69. [PMID: 26941089 PMCID: PMC4826010 DOI: 10.1105/tpc.15.00794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 05/26/2023]
Abstract
The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. Here, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was found to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of ahlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants.
Collapse
Affiliation(s)
- J Alan Sparks
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Taegun Kwon
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Luciana Renna
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Fuqi Liao
- Computing Services Department, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Federica Brandizzi
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| |
Collapse
|
62
|
Montgomery BL. Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back. FRONTIERS IN PLANT SCIENCE 2016; 7:480. [PMID: 27148307 PMCID: PMC4826876 DOI: 10.3389/fpls.2016.00480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/24/2016] [Indexed: 05/21/2023]
Abstract
Light exposure results in distinct responses in specific seedling tissues during photomorphogenesis. Light promotes growth of cotyledons and leaves, as well as development and elongation of roots, whereas light inhibits elongation of hypocotyls. For distinct plant responses such as shade avoidance, far-red light or shifts in spectral light quality similarly have disparate impacts on distinct plant tissues, resulting in elongation of stems or petioles and a reduction in growth of leaf blades for many species. The physiological bases of such tissue- and organ-specific light responses were initially studied using localized irradiation of specific tissues and organs, or irradiation of dissected plant parts. These historical approaches were used to identify spatial-specific pools of photoreceptors responsible for regulating local, i.e., tissue- or organ-specific, or distal, i.e., interorgan, plant responses. The red/far-red responsive phytochromes have been the most widely studied among photoreceptors in this regard. Whereas, the spatial localization of photoreceptors regulating many tissue- or organ-specific light responses were identified, the underlying signaling networks responsible for mediating the observed responses have not been well defined. Recent approaches used to investigate the molecular bases of spatiotemporal light responses include selective irradiation of plants harboring mutations in specific photoreceptors, tissue-specific expression of photoreceptors, primarily in photoreceptor mutant backgrounds, or tissue-specific biochemical ablation of photoreceptor accumulation. Progressive integration of such approaches for regulating the availability of localized pools of phytochromes with the use of transcriptomic or proteomic analyses for assessing the genes or proteins which these spatially discrete pools of phytochrome regulate is yielding emergent insight into the molecular bases of spatiotemporal phytochrome signaling pathways responsible for regulating spatiotemporal light responses of which we have been aware of at the physiological level for decades. Here, I discuss historical and emerging approaches to elucidating spatiotemporal signaling mediated by phytochromes during photomorphogenesis.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Department of Energy — Plant Research Laboratory, Michigan State UniversityEast Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Beronda L. Montgomery,
| |
Collapse
|
63
|
Kim JY, Jang IC, Seo HS. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity. FRONTIERS IN PLANT SCIENCE 2016; 7:1182. [PMID: 27536318 PMCID: PMC4971112 DOI: 10.3389/fpls.2016.01182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/22/2016] [Indexed: 05/22/2023]
Abstract
Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity.
Collapse
Affiliation(s)
- Joo Y. Kim
- Department of Plant Science, College of Agricultural Life Science, Seoul National University, SeoulSouth Korea
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, SingaporeSingapore
| | - Hak S. Seo
- Department of Plant Science, College of Agricultural Life Science, Seoul National University, SeoulSouth Korea
- *Correspondence: Hak S. Seo,
| |
Collapse
|
64
|
Yokawa K, Baluška F. The TOR Complex: An Emergency Switch for Root Behavior. PLANT & CELL PHYSIOLOGY 2016; 57:14-8. [PMID: 26644459 DOI: 10.1093/pcp/pcv191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/20/2015] [Indexed: 05/10/2023]
Abstract
Target of rapamycin (TOR) kinase is known to be a controller of cell growth and aging, which determines the fine balance between growth rates and energy availabilities. It has been reported that many eukaryotes express TOR genes. In plants, TOR signaling modifies growth and development in response to a plant's energy status. An example of TOR action can be found in the root apices, which are active organs that explore the soil environment via vigorous growth and numerous tropisms. The exploratory nature of root apices requires a large energy supply for signaling, as well as for cell division and elongation. In the case of negative tropisms, roots must respond quickly to avoid patches of unfavorable soil conditions, again by consuming precious energy reserves. Here we review the current findings on TOR signaling in plants and animals, and propose possible roles for this important complex in driving plant root negative tropisms, particularly during light escape and salt avoidance behavior.
Collapse
Affiliation(s)
- Ken Yokawa
- IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | | |
Collapse
|
65
|
Cao L, Henty-Ridilla JL, Blanchoin L, Staiger CJ. Profilin-Dependent Nucleation and Assembly of Actin Filaments Controls Cell Elongation in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:220-33. [PMID: 26574597 PMCID: PMC4704583 DOI: 10.1104/pp.15.01321] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/16/2015] [Indexed: 05/19/2023]
Abstract
Actin filaments in plant cells are incredibly dynamic; they undergo incessant remodeling and assembly or disassembly within seconds. These dynamic events are choreographed by a plethora of actin-binding proteins, but the exact mechanisms are poorly understood. Here, we dissect the contribution of Arabidopsis (Arabidopsis thaliana) PROFILIN1 (PRF1), a conserved actin monomer-binding protein, to actin organization and single filament dynamics during axial cell expansion of living epidermal cells. We found that reduced PRF1 levels enhanced cell and organ growth. Surprisingly, we observed that the overall frequency of nucleation events in prf1 mutants was dramatically decreased and that a subpopulation of actin filaments that assemble at high rates was reduced. To test whether profilin cooperates with plant formin proteins to execute actin nucleation and rapid filament elongation in cells, we used a pharmacological approach. Here, we used Small Molecule Inhibitor of Formin FH2 (SMIFH2), after validating its mode of action on a plant formin in vitro, and observed a reduced nucleation frequency of actin filaments in live cells. Treatment of wild-type epidermal cells with SMIFH2 mimicked the phenotype of prf1 mutants, and the nucleation frequency in prf1-2 mutant was completely insensitive to these treatments. Our data provide compelling evidence that PRF1 coordinates the stochastic dynamic properties of actin filaments by modulating formin-mediated actin nucleation and assembly during plant cell expansion.
Collapse
Affiliation(s)
- Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (L.C., J.L.H.-R., C.J.S.); andInstitut de Recherches en Technologie et Sciences pour le Vivant, Commissariat á l'Engergie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, CEA Grenoble, F-38054 Grenoble cedex 9, France (L.B.)
| | - Jessica L Henty-Ridilla
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (L.C., J.L.H.-R., C.J.S.); andInstitut de Recherches en Technologie et Sciences pour le Vivant, Commissariat á l'Engergie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, CEA Grenoble, F-38054 Grenoble cedex 9, France (L.B.)
| | - Laurent Blanchoin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (L.C., J.L.H.-R., C.J.S.); andInstitut de Recherches en Technologie et Sciences pour le Vivant, Commissariat á l'Engergie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, CEA Grenoble, F-38054 Grenoble cedex 9, France (L.B.)
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064 (L.C., J.L.H.-R., C.J.S.); andInstitut de Recherches en Technologie et Sciences pour le Vivant, Commissariat á l'Engergie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, CEA Grenoble, F-38054 Grenoble cedex 9, France (L.B.)
| |
Collapse
|
66
|
Xu D, Lin F, Jiang Y, Ling J, Hettiarachchi C, Tellgren-Roth C, Holm M, Wei N, Deng XW. Arabidopsis COP1 SUPPRESSOR 2 Represses COP1 E3 Ubiquitin Ligase Activity through Their Coiled-Coil Domains Association. PLoS Genet 2015; 11:e1005747. [PMID: 26714275 PMCID: PMC4694719 DOI: 10.1371/journal.pgen.1005747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/27/2015] [Indexed: 01/08/2023] Open
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2’s repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition. CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is a key regulator of light mediated developmental processes and it works as an E3 ubiquitin ligase controlling the abundance of multiple transcription factors. In the work presented here, we identified a novel repressor of COP1, the COP1 SUPPRESSOR 2 (CSU2), via a forward genetic screen. Mutations in CSU2 completely suppress cop1-6 constitutive photomorphogenic phenotype in darkness. CSU2 interacts and co-localizes with COP1 in nuclear speckles via the coiled-coil domain association. CSU2 negatively regulates COP1 E3 ubiquitin ligase activity, and repress COP1 mediated HY5 degradation in cell-free extracts.
Collapse
Affiliation(s)
- Dongqing Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Fang Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yan Jiang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Junjie Ling
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | | | - Christian Tellgren-Roth
- Uppsala Genome Center, National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Uppsala, Sweden
| | - Magnus Holm
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Ning Wei
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (NW); (XWD)
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- * E-mail: (NW); (XWD)
| |
Collapse
|
67
|
Havelková L, Nanda G, Martinek J, Bellinvia E, Sikorová L, Šlajcherová K, Seifertová D, Fischer L, Fišerová J, Petrášek J, Schwarzerová K. Arp2/3 complex subunit ARPC2 binds to microtubules. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:96-108. [PMID: 26706062 DOI: 10.1016/j.plantsci.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 05/03/2023]
Abstract
Arp2/3 complex plays a fundamental role in the nucleation of actin filaments (AFs) in yeasts, plants, and animals. In plants, the aberrant shaping and elongation of several types of epidermal cells observed in Arp2/3 complex knockout plant mutants suggest the importance of Arp2/3-mediated actin nucleation for various morphogenetic processes. Here we show that ARPC2, a core Arp2/3 complex subunit, interacts with both actin filaments (AFs) and microtubules (MTs). Plant GFP-ARPC2 expressed in Nicotiana tabacum BY-2 cells, leaf epidermal cells of Nicotiana benthamiana and root epidermal cells of Arabidopsis thaliana decorated MTs. The interaction with MTs was demonstrated by pharmacological approach selectively interfering with either AFs or MTs dynamics as well as by the in vitro co-sedimentation assays. A putative MT-binding domain of tobacco NtARPC2 protein was identified using the co-sedimentation of several truncated NtARPC2 proteins with MTs. Newly identified MT-binding ability of ARPC2 subunit of Arp2/3 complex may represent a new molecular mechanism of AFs and MTs interaction.
Collapse
Affiliation(s)
- Lenka Havelková
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Gitanjali Nanda
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jan Martinek
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Erica Bellinvia
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Lenka Sikorová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Kateřina Šlajcherová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Daniela Seifertová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Lukáš Fischer
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jindřiška Fišerová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jan Petrášek
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Kateřina Schwarzerová
- Charles University in Prague, Faculty of Science, Department of Experimental Plant Biology, Viničná 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
68
|
Rao Y, Yang Y, Xu J, Li X, Leng Y, Dai L, Huang L, Shao G, Ren D, Hu J, Guo L, Pan J, Zeng D. EARLY SENESCENCE1 Encodes a SCAR-LIKE PROTEIN2 That Affects Water Loss in Rice. PLANT PHYSIOLOGY 2015; 169:1225-39. [PMID: 26243619 PMCID: PMC4587469 DOI: 10.1104/pp.15.00991] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/01/2015] [Indexed: 05/21/2023]
Abstract
The global problem of drought threatens agricultural production and constrains the development of sustainable agricultural practices. In plants, excessive water loss causes drought stress and induces early senescence. In this study, we isolated a rice (Oryza sativa) mutant, designated as early senescence1 (es1), which exhibits early leaf senescence. The es1-1 leaves undergo water loss at the seedling stage (as reflected by whitening of the leaf margin and wilting) and display early senescence at the three-leaf stage. We used map-based cloning to identify ES1, which encodes a SCAR-LIKE PROTEIN2, a component of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous complex involved in actin polymerization and function. The es1-1 mutants exhibited significantly higher stomatal density. This resulted in excessive water loss and accelerated water flow in es1-1, also enhancing the water absorption capacity of the roots and the water transport capacity of the stems as well as promoting the in vivo enrichment of metal ions cotransported with water. The expression of ES1 is higher in the leaves and leaf sheaths than in other tissues, consistent with its role in controlling water loss from leaves. GREEN FLUORESCENT PROTEIN-ES1 fusion proteins were ubiquitously distributed in the cytoplasm of plant cells. Collectively, our data suggest that ES1 is important for regulating water loss in rice.
Collapse
Affiliation(s)
- Yuchun Rao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Yaolong Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Jie Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Xiaojing Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Yujia Leng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Liping Dai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Lichao Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Guosheng Shao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Jianwei Pan
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| | - Dali Zeng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China (Y.R., Y.Y., J.X., Y.L., L.D., L.H., G.S., D.R., J.H., L.G., D.Z.);College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China (Y.R., X.L., J.P.); andKey Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China (Y.Y., J.X.)
| |
Collapse
|
69
|
Montgomery BL. Light-dependent governance of cell shape dimensions in cyanobacteria. Front Microbiol 2015; 6:514. [PMID: 26074902 PMCID: PMC4443024 DOI: 10.3389/fmicb.2015.00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
70
|
Novák J, Černý M, Pavlů J, Zemánková J, Skalák J, Plačková L, Brzobohatý B. Roles of proteome dynamics and cytokinin signaling in root to hypocotyl ratio changes induced by shading roots of Arabidopsis seedlings. PLANT & CELL PHYSIOLOGY 2015; 56:1006-18. [PMID: 25700275 DOI: 10.1093/pcp/pcv026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 05/20/2023]
Abstract
In nature, root systems of most terrestrial plants are protected from light exposure by growing in a dark soil environment. Hence, in vitro cultivation in transparent Petri dishes leads to physiological perturbations, but the mechanisms underlying root-mediated light perception and responses have not been fully elucidated. Thus, we compared Arabidopsis thaliana seedling development in transparent and darkened Petri dishes at low light intensity (20 µmol m(-2) s(-1)), allowing us to follow (inter alia) hypocotyl elongation, which is an excellent process for studying interactions of signals involved in the regulation of growth and developmental responses. To obtain insights into molecular events underlying differences in seedling growth under these two conditions, we employed liquid chromatography-mass spectrometry (LC-MS) shotgun proteomics (available via the PRIDE deposit PXD001612). In total, we quantified the relative abundances of peptides representing 1,209 proteins detected in all sample replicates of LC-MS analyses. Comparison of MS spectra after manual validation revealed 48 differentially expressed proteins. Functional classification, analysis of available gene expression data and literature searches revealed alterations associated with root illumination (inter alia) in autotrophic CO2 fixation, C compound and carbohydrate metabolism, and nitrogen metabolism. The results also indicate a previously unreported role for cytokinin plant hormones in the escape-tropism response to root illumination. We complemented these results with reverse transcription followed by quantitative PCR (RT-qPCR), chlorophyll fluorescence and detailed cytokinin signaling analyses, detecting in the latter a significant increase in the activity of the cytokinin two-component signaling cascade in roots and implicating the cytokinin receptor AHK3 as the major mediator of root to hypocotyl signaling in responses to root illumination.
Collapse
Affiliation(s)
- Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic These authors contributed equally to this work
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic These authors contributed equally to this work
| | - Jaroslav Pavlů
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Jana Zemánková
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Jan Skalák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science of Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
71
|
Yokawa K, Baluška F. Pectins, ROS homeostasis and UV-B responses in plant roots. PHYTOCHEMISTRY 2015; 112:80-3. [PMID: 25220496 DOI: 10.1016/j.phytochem.2014.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/18/2014] [Accepted: 08/15/2014] [Indexed: 05/04/2023]
Abstract
Light from the sun contains far-red, visible and ultra violet (UV) wavelength regions. Almost all plant species have been evolved under the light environment. Interestingly, several photoreceptors, expressing both in shoots and roots, process the light information during the plant life cycle. Surprisingly, Arabidopsis root apices express besides the UVR8 UV-B receptor, also root-specific UV-B sensing proteins RUS1 and RUS2 linked to the polar cell-cell transport of auxin. In this mini-review, we focus on reactive oxygen species (ROS) signaling and possible roles of pectins internalized via endocytic vesicle recycling system in the root-specific UV-B perception and ROS homeostasis.
Collapse
Affiliation(s)
- Ken Yokawa
- IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | |
Collapse
|
72
|
Meng LS. Transcription coactivator Arabidopsis ANGUSTIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of Constitutive Photomorphogenic1. PLANT, CELL & ENVIRONMENT 2015; 38:838-51. [PMID: 25256341 DOI: 10.1111/pce.12456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 05/08/2023]
Abstract
ANGUSTIFOLIA3 (AN3), a transcription coactivator, is implicated in modulating cell proliferation. In this study, I found that AN3 is a novel regulator of anthocyanin biosynthesis and light-induced root elongation. Seedlings and seeds lacking AN3 activity presented significantly reduced anthocyanin accumulation and light-induced root elongation, whereas those of transgenic plants harbouring the 35S:AN3 construct exhibited increased anthocyanin accumulation. AN3 is required for the proper expression of other genes that affect anthocyanin accumulation and light-induced root elongation, Constitutive Photomorphogenic1 (COP1), encoding a RING motif - containing E3 ubiquitin ligase. AN3 was associated with COP1 promoter in vivo. Thus, AN3 may act with other proteins that bind to COP1 promoter to promote anthocyanin accumulation and inhibit light-induced root elongation.
Collapse
Affiliation(s)
- Lai-Sheng Meng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
73
|
Facette MR, Park Y, Sutimantanapi D, Luo A, Cartwright HN, Yang B, Bennett EJ, Sylvester AW, Smith LG. The SCAR/WAVE complex polarizes PAN receptors and promotes division asymmetry in maize. NATURE PLANTS 2015; 1:14024. [PMID: 27246760 DOI: 10.1038/nplants.2014.24] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/12/2014] [Indexed: 05/03/2023]
Abstract
Pre-mitotic establishment of polarity is a key event in the preparation of mother cells for asymmetric cell divisions that produce daughters of distinct fates, and ensures correct cellular patterning of tissues and eventual organ function. Previous work has shown that two receptor-like kinases, PANGLOSS2 (PAN2) and PAN1, and the small GTPase RHO GTPASE OF PLANTS (ROP) promote mother cell polarity and subsequent division asymmetry in developing maize stomata. PAN proteins become polarized prior to asymmetric cell division, however, the mechanism of this polarization is unknown. Here we show that the SCAR/WAVE regulatory complex, which activates the actin-nucleating ARP2/3 complex, is the first known marker of polarity in this asymmetric division model and is required for PAN polarization. These findings implicate actin, and specifically branched actin networks, in PAN polarization and asymmetric cell division.
Collapse
Affiliation(s)
- Michelle R Facette
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Yeri Park
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Dena Sutimantanapi
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Anding Luo
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Heather N Cartwright
- Department of Plant Biology, Carnegie Institution of Science, 260 Panama Street, Stanford, California 94305, USA
| | - Bing Yang
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Anne W Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, USA
| | - Laurie G Smith
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0116, USA
| |
Collapse
|
74
|
Moni A, Lee AY, Briggs WR, Han IS. The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:34-40. [PMID: 24803136 DOI: 10.1111/plb.12187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/05/2014] [Indexed: 05/23/2023]
Abstract
We investigated the relationship between the blue light receptor phototropin 1 (phot1) and lateral root growth in Arabidopsis thaliana seedlings. Fluorescence and confocal microscopy images, as well as PHOT1 mRNA expression studies provide evidence that it is highly expressed in the elongation zone of lateral roots where auxin is accumulating. However, treatment with the auxin transport inhibitor N-1-naphthylphthalamic acid significantly reduced PHOT1 expression in this zone. In addition, PHOT1 expression was higher in darkness than in light. The total number of lateral roots was higher in the phot1 mutant than in wild-type Arabidopsis. Cells in the elongation zone of lateral roots of the phot1 mutant were longer than those of wild-type lateral roots. These findings suggest that PHOT1 plays a role(s) in elongation of lateral roots through the control of an auxin-related signalling pathway.
Collapse
Affiliation(s)
- A Moni
- School of Biological Sciences, University of Ulsan, Ulsan, Korea
| | | | | | | |
Collapse
|
75
|
Yokawa K, Kagenishi T, Baluška F. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices. FRONTIERS IN PLANT SCIENCE 2015; 6:1162. [PMID: 26793199 PMCID: PMC4710705 DOI: 10.3389/fpls.2015.01162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/07/2015] [Indexed: 05/10/2023]
Abstract
UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.
Collapse
Affiliation(s)
- Ken Yokawa
- Institute of Cellular and Molecular Botany, University of Bonn, BonnGermany
- Department of Biological Sciences, Tokyo Metropolitan UniversityTokyo, Japan
| | - Tomoko Kagenishi
- Institute of Cellular and Molecular Botany, University of Bonn, BonnGermany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, BonnGermany
- *Correspondence: František Baluška,
| |
Collapse
|
76
|
Jimenez-Lopez JC, Wang X, Kotchoni SO, Huang S, Szymanski DB, Staiger CJ. Heterodimeric capping protein from Arabidopsis is a membrane-associated, actin-binding protein. PLANT PHYSIOLOGY 2014; 166:1312-28. [PMID: 25201878 PMCID: PMC4226361 DOI: 10.1104/pp.114.242487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/05/2014] [Indexed: 05/03/2023]
Abstract
The actin cytoskeleton is a major regulator of cell morphogenesis and responses to biotic and abiotic stimuli. The organization and activities of the cytoskeleton are choreographed by hundreds of accessory proteins. Many actin-binding proteins are thought to be stimulus-response regulators that bind to signaling phospholipids and change their activity upon lipid binding. Whether these proteins associate with and/or are regulated by signaling lipids in plant cells remains poorly understood. Heterodimeric capping protein (CP) is a conserved and ubiquitous regulator of actin dynamics. It binds to the barbed end of filaments with high affinity and modulates filament assembly and disassembly reactions in vitro. Direct interaction of CP with phospholipids, including phosphatidic acid, results in uncapping of filament ends in vitro. Live-cell imaging and reverse-genetic analyses of cp mutants in Arabidopsis (Arabidopsis thaliana) recently provided compelling support for a model in which CP activity is negatively regulated by phosphatidic acid in vivo. Here, we used complementary biochemical, subcellular fractionation, and immunofluorescence microscopy approaches to elucidate CP-membrane association. We found that CP is moderately abundant in Arabidopsis tissues and present in a microsomal membrane fraction. Sucrose density gradient separation and immunoblotting with known compartment markers were used to demonstrate that CP is enriched on membrane-bound organelles such as the endoplasmic reticulum and Golgi. This association could facilitate cross talk between the actin cytoskeleton and a wide spectrum of essential cellular functions such as organelle motility and signal transduction.
Collapse
Affiliation(s)
- Jose C Jimenez-Lopez
- Departments of Biological Sciences (J.C.J.-L., X.W., S.H., C.J.S.) and Agronomy (S.O.K., D.B.S.), Bindley Bioscience Center (C.J.S.), Purdue University, West Lafayette, Indiana 47907
| | - Xia Wang
- Departments of Biological Sciences (J.C.J.-L., X.W., S.H., C.J.S.) and Agronomy (S.O.K., D.B.S.), Bindley Bioscience Center (C.J.S.), Purdue University, West Lafayette, Indiana 47907
| | - Simeon O Kotchoni
- Departments of Biological Sciences (J.C.J.-L., X.W., S.H., C.J.S.) and Agronomy (S.O.K., D.B.S.), Bindley Bioscience Center (C.J.S.), Purdue University, West Lafayette, Indiana 47907
| | - Shanjin Huang
- Departments of Biological Sciences (J.C.J.-L., X.W., S.H., C.J.S.) and Agronomy (S.O.K., D.B.S.), Bindley Bioscience Center (C.J.S.), Purdue University, West Lafayette, Indiana 47907
| | - Daniel B Szymanski
- Departments of Biological Sciences (J.C.J.-L., X.W., S.H., C.J.S.) and Agronomy (S.O.K., D.B.S.), Bindley Bioscience Center (C.J.S.), Purdue University, West Lafayette, Indiana 47907
| | - Christopher J Staiger
- Departments of Biological Sciences (J.C.J.-L., X.W., S.H., C.J.S.) and Agronomy (S.O.K., D.B.S.), Bindley Bioscience Center (C.J.S.), Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
77
|
Cai C, Henty-Ridilla JL, Szymanski DB, Staiger CJ. Arabidopsis myosin XI: a motor rules the tracks. PLANT PHYSIOLOGY 2014; 166:1359-70. [PMID: 25237128 PMCID: PMC4226357 DOI: 10.1104/pp.114.244335] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/17/2014] [Indexed: 05/18/2023]
Abstract
Plant cell expansion relies on intracellular trafficking of vesicles and macromolecules, which requires myosin motors and a dynamic actin network. Arabidopsis (Arabidopsis thaliana) myosin XI powers the motility of diverse cellular organelles, including endoplasmic reticulum, Golgi, endomembrane vesicles, peroxisomes, and mitochondria. Several recent studies show that there are changes in actin organization and dynamics in myosin xi mutants, indicating that motors influence the molecular tracks they use for transport. However, the mechanism by which actin organization and dynamics are regulated by myosin XI awaits further detailed investigation. Here, using high spatiotemporal imaging of living cells, we quantitatively assessed the architecture and dynamic behavior of cortical actin arrays in a mutant with three Myosin XI (XI-1, XI-2, and XI-K) genes knocked out (xi3KO). In addition to apparent reduction of organ and cell size, the mutant showed less dense and more bundled actin filament arrays in epidermal cells. Furthermore, the overall actin dynamicity was significantly inhibited in the xi3KO mutant. Because cytoskeletal remodeling is contributed mainly by filament assembly/disassembly and translocation/buckling, we also examined the dynamic behavior of individual actin filaments. We found that the xi3KO mutant had significantly decreased actin turnover, with a 2-fold reduction in filament severing frequency. Moreover, quantitative analysis of filament shape change over time revealed that myosin XI generates the force for buckling and straightening of both single actin filaments and actin bundles. Thus, our data provide genetic evidence that three Arabidopsis class XI myosins contribute to actin remodeling by stimulating turnover and generating the force for filament shape change.
Collapse
Affiliation(s)
- Chao Cai
- Department of Biological Sciences (C.C., J.L.H.-R., C.J.S.), Center for the Direct Catalytic Conversion of Biomass to Biofuels (C.C., J.L.H.-R., D.B.S., C.J.S.), and Department of Agronomy (D.B.S.), Purdue University, West Lafayette, Indiana 47907
| | - Jessica L Henty-Ridilla
- Department of Biological Sciences (C.C., J.L.H.-R., C.J.S.), Center for the Direct Catalytic Conversion of Biomass to Biofuels (C.C., J.L.H.-R., D.B.S., C.J.S.), and Department of Agronomy (D.B.S.), Purdue University, West Lafayette, Indiana 47907
| | - Daniel B Szymanski
- Department of Biological Sciences (C.C., J.L.H.-R., C.J.S.), Center for the Direct Catalytic Conversion of Biomass to Biofuels (C.C., J.L.H.-R., D.B.S., C.J.S.), and Department of Agronomy (D.B.S.), Purdue University, West Lafayette, Indiana 47907
| | - Christopher J Staiger
- Department of Biological Sciences (C.C., J.L.H.-R., C.J.S.), Center for the Direct Catalytic Conversion of Biomass to Biofuels (C.C., J.L.H.-R., D.B.S., C.J.S.), and Department of Agronomy (D.B.S.), Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
78
|
Huang X, Ouyang X, Deng XW. Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:96-103. [PMID: 25061897 DOI: 10.1016/j.pbi.2014.07.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 05/04/2023]
Abstract
Light is a pivotal environmental stimulus that promotes plant photomorphogenesis. Substantial progress has been achieved in defining the central repressors of photomorphogenesis, the CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS) loci, in the past 20 years. COP/DET/FUS proteins are well-conserved, and regulate a variety of biological processes in plants and animals. The fact that these proteins contribute to the repression of plant photomorphogenesis by regulating the ubiquitin-proteasome-dependent pathway has been well established. Recently, molecular insight has been gained into the functional diversity of COP/DET/FUS. Here, we review the current research on the roles of COP/DET/FUS, with a focus on the functional conversion of COP1 in photomorphogenesis.
Collapse
Affiliation(s)
- Xi Huang
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinhao Ouyang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA.
| |
Collapse
|
79
|
Dyachok J, Sparks JA, Liao F, Wang YS, Blancaflor EB. Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: Fluorophore variant, actin binding domain, and promoter considerations. Cytoskeleton (Hoboken) 2014; 71:311-27. [DOI: 10.1002/cm.21174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Julia Dyachok
- Plant Biology Division; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - J. Alan Sparks
- Plant Biology Division; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - Fuqi Liao
- Department of Computing Services; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - Yuh-Shuh Wang
- Plant Signal Research Group; Institute of Technology, University of Tartu; Nooruse 1 Tartu 50411 Estonia
| | | |
Collapse
|
80
|
Bai S, Yao T, Li M, Guo X, Zhang Y, Zhu S, He Y. PIF3 is involved in the primary root growth inhibition of Arabidopsis induced by nitric oxide in the light. MOLECULAR PLANT 2014; 7:616-25. [PMID: 24157606 PMCID: PMC3973492 DOI: 10.1093/mp/sst142] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/07/2013] [Indexed: 05/21/2023]
Abstract
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is an important component in the phytochrome signaling pathway and mediates plant responses to various environmental conditions. We found that PIF3 is involved in the inhibition of root growth of Arabidopsis thaliana seedlings induced by nitric oxide (NO) in light. Overexpression of PIF3 partially alleviated the inhibitory effect of NO on root growth, whereas the pif3-1 mutant displayed enhanced sensitivity to NO in terms of root growth. During phytochrome signaling, the photoreceptor PHYB mediates the degradation of PIF3. We found that the phyB-9 mutant had a similar phenotype to that of PIF3ox in terms of responsiveness to NO. Furthermore, NO treatment promoted the accumulation of PHYB, and thus reduced PIF3 content. Our results further show that the activity of PIF3 is regulated by the DELLA protein RGL3[RGA (repressor of ga1-3) LIKE 3]. Therefore, we speculate that PIF3 lies downstream of PHYB and RGL3, and plays an important role in the inhibitory effect of NO on root growth of Arabidopsis seedlings in light.
Collapse
Affiliation(s)
- Sulan Bai
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Tao Yao
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Miaomiao Li
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Xiaomin Guo
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| | - Yaochuan Zhang
- Beijing Vocational College of Agriculture, Beijing 102442, PR China
| | - Shengwei Zhu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100731, PR China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, PR China
| |
Collapse
|
81
|
Li J, Staiger BH, Henty-Ridilla JL, Abu-Abied M, Sadot E, Blanchoin L, Staiger CJ. The availability of filament ends modulates actin stochastic dynamics in live plant cells. Mol Biol Cell 2014; 25:1263-75. [PMID: 24523291 PMCID: PMC3982992 DOI: 10.1091/mbc.e13-07-0378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A network of individual filaments that undergoes incessant remodeling through a process known as stochastic dynamics comprises the cortical actin cytoskeleton in plant epidermal cells. From images at high spatial and temporal resolution, it has been inferred that the regulation of filament barbed ends plays a central role in choreographing actin organization and turnover. How this occurs at a molecular level, whether different populations of ends exist in the array, and how individual filament behavior correlates with the overall architecture of the array are unknown. Here we develop an experimental system to modulate the levels of heterodimeric capping protein (CP) and examine the consequences for actin dynamics, architecture, and cell expansion. Significantly, we find that all phenotypes are the opposite for CP-overexpression (OX) cells compared with a previously characterized cp-knockdown line. Specifically, CP OX lines have fewer filament-filament annealing events, as well as reduced filament lengths and lifetimes. Further, cp-knockdown and OX lines demonstrate the existence of a subpopulation of filament ends sensitive to CP concentration. Finally, CP levels correlate with the biological process of axial cell expansion; for example, epidermal cells from hypocotyls with reduced CP are longer than wild-type cells, whereas CP OX lines have shorter cells. On the basis of these and other genetic studies in this model system, we hypothesize that filament length and lifetime positively correlate with the extent of axial cell expansion in dark-grown hypocotyls.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2064 Institute of Plant Sciences, Volcani Center, Bet-Dagan 50250, Israel Institut de Recherches en Technologie et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, Comissariat a l'Energie Atomique/Centre National de la Recherche Scientifique/Institute de la Recherche Agronomique/Université Joseph Fourier, F38054 Grenoble, France Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| | | | | | | | | | | | | |
Collapse
|
82
|
Yokawa K, Fasano R, Kagenishi T, Baluška F. Light as stress factor to plant roots - case of root halotropism. FRONTIERS IN PLANT SCIENCE 2014; 5:718. [PMID: 25566292 PMCID: PMC4264407 DOI: 10.3389/fpls.2014.00718] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/28/2014] [Indexed: 05/04/2023]
Abstract
Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.
Collapse
Affiliation(s)
- Ken Yokawa
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
- Department of Biological Sciences, Tokyo Metropolitan UniversityTokyo, Japan
| | - Rossella Fasano
- Department of Pharmacy, University of SalernoFisciano, Italy
| | - Tomoko Kagenishi
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - František Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
- *Correspondence: František Baluška, Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany e-mail:
| |
Collapse
|
83
|
Nakashima J, Liao F, Sparks JA, Tang Y, Blancaflor EB. The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:142-50. [PMID: 23952736 DOI: 10.1111/plb.12062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/24/2013] [Indexed: 05/11/2023]
Abstract
Before plants can be effectively utilised as a component of enclosed life-support systems for space exploration, it is important to understand the molecular mechanisms by which they develop in microgravity. Using the Biological Research in Canisters (BRIC) hardware on board the second to the last flight of the Space Shuttle Discovery (STS-131 mission), we studied how microgravity impacts root growth in Arabidopsis thaliana. Ground-based studies showed that the actin cytoskeleton negatively regulates root gravity responses on Earth, leading us to hypothesise that actin might also be an important modulator of root growth behaviour in space. We investigated how microgravity impacted root growth of wild type (ecotype Columbia) and a mutant (act2-3) disrupted in a root-expressed vegetative actin isoform (ACTIN2). Roots of etiolated wild-type and act2-3 seedlings grown in space skewed vigorously toward the left, which was unexpected given the reduced directional cue provided by gravity. The left-handed directional root growth in space was more pronounced in act2-3 mutants than wild type. To quantify differences in root orientation of these two genotypes in space, we developed an algorithm where single root images were converted into binary images using computational edge detection methods. Binary images were processed with Fast Fourier Transformation (FFT), and histogram and entropy were used to determine spectral distribution, such that high entropy values corresponded to roots that deviated more strongly from linear orientation whereas low entropy values represented straight roots. We found that act2-3 roots had a statistically stronger skewing/coiling response than wild-type roots, but such differences were not apparent on Earth. Ultrastructural studies revealed that newly developed cell walls of space-grown act2-3 roots were more severely disrupted compared to space-grown wild type, and ground control wild-type and act2-3 roots. Collectively, our results provide evidence that, like root gravity responses on Earth, endogenous directional growth patterns of roots in microgravity are suppressed by the actin cytoskeleton. Modulation of root growth in space by actin could be facilitated in part through its impact on cell wall architecture.
Collapse
Affiliation(s)
- J Nakashima
- Division of Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | | | | | | | | |
Collapse
|
84
|
Oh S, Montgomery BL. Phytochrome-induced SIG2 expression contributes to photoregulation of phytochrome signalling and photomorphogenesis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5457-72. [PMID: 24078666 PMCID: PMC3871806 DOI: 10.1093/jxb/ert308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast-localized sigma factor (SIG) proteins promote specificity of the plastid-encoded RNA polymerase. SIG2 function appears to be necessary for light-grown Arabidopsis thaliana plants. Specific photoreceptors or light-dependent factors that impact the light-induced accumulation of SIG2 have not been reported. A molecular link between phytochromes and nuclear-encoded SIG2, which impacts photomorphogenesis specifically under red (R) and far-red (FR) light, is described here. Both phyA and phyB promote SIG2 transcript accumulation. Disruption of SIG2 results in R- and FR-specific defects in the inhibition of hypocotyl elongation and cotyledon expansion, although no impairments in these responses are detected for sig2 mutants under blue (B) or white (W) light. SIG2 also impacts root elongation under W and R, and the R-dependent expression of PIF4, encoding a phytochrome-interacting factor, and HY2, which encodes a phytochrome chromophore biosynthetic enzyme. Whereas SIG2 apparently impacts the accumulation of the phytochromobilin (PΦB) phytochrome chromophore, sig2 mutants differ significantly from PΦB mutants, primarily due to wavelength-specific defects in photomorphogenesis and disruption of a distinct subset of phytochrome-dependent responses. The molecular link between phytochromes and SIG2 is likely to be an important part of the co-ordination of gene expression to maintain stoichiometry between the nuclear-encoded phytochrome apoprotein and plastid-derived PΦB, which combine to form photoactive phytochromes, and/or light-dependent SIG2 accumulation is involved in an inductive light signalling pathway co-ordinating components between nucleus and plastids.
Collapse
Affiliation(s)
- Sookyung Oh
- Department of Energy—Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Beronda L. Montgomery
- Department of Energy—Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
85
|
Zhao Y, Pan Z, Zhang Y, Qu X, Zhang Y, Yang Y, Jiang X, Huang S, Yuan M, Schumaker KS, Guo Y. The actin-related Protein2/3 complex regulates mitochondrial-associated calcium signaling during salt stress in Arabidopsis. THE PLANT CELL 2013; 25:4544-59. [PMID: 24280386 PMCID: PMC3875735 DOI: 10.1105/tpc.113.117887] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/30/2013] [Accepted: 11/14/2013] [Indexed: 05/18/2023]
Abstract
Microfilament and Ca(2+) dynamics play important roles in stress signaling in plants. Through genetic screening of Arabidopsis thaliana mutants that are defective in stress-induced increases in cytosolic Ca(2+) ([Ca(2+)]cyt), we identified Actin-Related Protein2 (Arp2) as a regulator of [Ca(2+)]cyt in response to salt stress. Plants lacking Arp2 or other proteins in the Arp2/3 complex exhibited enhanced salt-induced increases in [Ca(2+)]cyt, decreased mitochondria movement, and hypersensitivity to salt. In addition, mitochondria aggregated, the mitochondrial permeability transition pore opened, and mitochondrial membrane potential Ψm was impaired in the arp2 mutant, and these changes were associated with salt-induced cell death. When opening of the enhanced mitochondrial permeability transition pore was blocked or increases in [Ca(2+)]cyt were prevented, the salt-sensitive phenotype of the arp2 mutant was partially rescued. These results indicate that the Arp2/3 complex regulates mitochondrial-dependent Ca(2+) signaling in response to salt stress.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Pan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolu Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuguo Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangning Jiang
- College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- National Engineering Laboratory of Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, Beijing 100083, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- National Center for Plant Gene Research, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
86
|
Schrader A, Welter B, Hulskamp M, Hoecker U, Uhrig JF. MIDGET connects COP1-dependent development with endoreduplication in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:67-79. [PMID: 23573936 DOI: 10.1111/tpj.12199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/02/2013] [Accepted: 04/07/2013] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, loss of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) function leads to constitutive photomorphogenesis in the dark associated with inhibition of endoreduplication in the hypocotyl, and a post-germination growth arrest. MIDGET (MID), a component of the TOPOISOMERASE VI (TOPOVI) complex, is essential for endoreduplication and genome integrity in A. thaliana. Here we show that MID and COP1 interact in vitro and in vivo through the amino terminus of COP1. We further demonstrate that MID supports sub-nuclear accumulation of COP1. The MID protein is not degraded in a COP1-dependent fashion in darkness, and the phenotypes of single and double mutants prove that MID is not a target of COP1 but rather a necessary factor for proper COP1 activity with respect to both, control of COP1-dependent morphogenesis and regulation of endoreduplication. Our data provide evidence for a functional connection between COP1 and the TOPOVI in plants linking COP1-dependent development with the regulation of endoreduplication.
Collapse
Affiliation(s)
- Andrea Schrader
- University of Cologne, Botanical Institute III, Zuelpicher Str. 47b, 50674, Koeln, Germany
| | - Bastian Welter
- University of Cologne, Botanical Institute III, Zuelpicher Str. 47b, 50674, Koeln, Germany
| | - Martin Hulskamp
- University of Cologne, Botanical Institute III, Zuelpicher Str. 47b, 50674, Koeln, Germany
| | - Ute Hoecker
- University of Cologne, Botanical Institute II, Zuelpicher Str. 47b, 50674, Koeln, Germany
| | - Joachim F Uhrig
- University of Cologne, Botanical Institute III, Zuelpicher Str. 47b, 50674, Koeln, Germany
| |
Collapse
|
87
|
Zhang C, Mallery E, Reagan S, Boyko VP, Kotchoni SO, Szymanski DB. The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. PLANT PHYSIOLOGY 2013; 162:689-706. [PMID: 23613272 PMCID: PMC3668063 DOI: 10.1104/pp.113.217422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During plant cell morphogenesis, signal transduction and cytoskeletal dynamics interact to locally organize the cytoplasm and define the geometry of cell expansion. The WAVE/SCAR (for WASP family verprolin homologous/suppressor of cyclic AMP receptor) regulatory complex (W/SRC) is an evolutionarily conserved heteromeric protein complex. Within the plant kingdom W/SRC is a broadly used effector that converts Rho-of-Plants (ROP)/Rac small GTPase signals into Actin-Related Protein2/3 and actin-dependent growth responses. Although the components and biochemistry of the W/SRC pathway are well understood, a basic understanding of how cells partition W/SRC into active and inactive pools is lacking. In this paper, we report that the endoplasmic reticulum (ER) is an important organelle for W/SRC regulation. We determined that a large intracellular pool of the core W/SRC subunit NAP1, like the known positive regulator of W/SRC, the DOCK family guanine nucleotide-exchange factor SPIKE1 (SPK1), localizes to the surface of the ER. The ER-associated NAP1 is inactive because it displays little colocalization with the actin network, and ER localization requires neither activating signals from SPK1 nor a physical association with its W/SRC-binding partner, SRA1. Our results indicate that in Arabidopsis (Arabidopsis thaliana) leaf pavement cells and trichomes, the ER is a reservoir for W/SRC signaling and may have a key role in the early steps of W/SRC assembly and/or activation.
Collapse
|
88
|
Frémont N, Riefler M, Stolz A, Schmülling T. The Arabidopsis TUMOR PRONE5 gene encodes an acetylornithine aminotransferase required for arginine biosynthesis and root meristem maintenance in blue light. PLANT PHYSIOLOGY 2013; 161:1127-40. [PMID: 23321422 PMCID: PMC3585585 DOI: 10.1104/pp.112.210583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arginine is an essential amino acid necessary for protein synthesis and is also a nitrogen storage compound. The genes encoding the enzymes of arginine biosynthesis in plants are not well characterized and have mainly been predicted from homologies to bacterial and fungal genes. We report the cloning and characterization of the TUMOR PRONE5 (TUP5) gene of Arabidopsis (Arabidopsis thaliana) encoding an acetylornithine aminotransferase (ACOAT), catalyzing the fourth step of arginine biosynthesis. The free arginine content was strongly reduced in the chemically induced recessive mutant tup5-1, root growth was restored by supplementation with arginine and its metabolic precursors, and a yeast (Saccharomyces cerevisiae) ACOAT mutant was complemented by TUP5. Two null alleles of TUP5 caused a reduced viability of gametes and embryo lethality, possibly caused by insufficient Arg supply from maternal tissue. TUP5 expression is positively regulated by light, and a TUP5-green fluorescent protein was localized in chloroplasts. tup5-1 has a unique light-dependent short root phenotype. Roots of light-grown tup5-1 seedlings switch from indeterminate growth to determinate growth with arresting cell production and an exhausted root apical meristem. The inhibitory activity was specific for blue light, and the inhibiting light was perceived by the root. Thus, tup5-1 reveals a novel role of amino acids and blue light in regulating root meristem function.
Collapse
|
89
|
Yokawa K, Kagenishi T, Baluška F. Root photomorphogenesis in laboratory-maintained Arabidopsis seedlings. TRENDS IN PLANT SCIENCE 2013; 18:117-9. [PMID: 23395309 DOI: 10.1016/j.tplants.2013.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 05/04/2023]
Abstract
In nature, root systems of most terrestrial plants are underground in darkness. Nevertheless, several photoreceptors have been found in roots and light-responsive mechanisms allowing roots to escape from strong light conditions have been discovered. In transparent Petri dishes, regular light exposure affects root morphology and behavior. We advocate the use of darkened Petri dishes to allow roots to be kept in darkness, thus mimicking more closely the conditions in nature.
Collapse
Affiliation(s)
- Ken Yokawa
- IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | | | |
Collapse
|
90
|
Yanagisawa M, Zhang C, Szymanski DB. ARP2/3-dependent growth in the plant kingdom: SCARs for life. FRONTIERS IN PLANT SCIENCE 2013; 4:166. [PMID: 23802001 PMCID: PMC3689024 DOI: 10.3389/fpls.2013.00166] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/12/2013] [Indexed: 05/18/2023]
Abstract
In the human experience SCARs (suppressor of cAMP receptors) are permanent reminders of past events, not always based on bad decisions, but always those in which an interplay of opposing forces leaves behind a clear record in the form of some permanent watery mark. During plant morphogenesis, SCARs are important proteins that reflect an unusual evolutionary outcome, in which the plant kingdom relies heavily on this single class of actin-related protein (ARP) 2/3 complex activator to dictate the time and place of actin filament nucleation. This unusually simple arrangement may serve as a permanent reminder that cell shape control in plants is fundamentally different from that of crawling cells in mammals that use the power of actin polymerization to define and maintain cell shape. In plant cells, actin filaments indirectly affect cell shape by determining the transport properties of organelles and cargo molecules that modulate the mechanical properties of the wall. It is becoming increasingly clear that polarized bundles of actin filaments operate at whole cell spatial scales to organize the cytoplasm and dictate the patterns of long-distance intracellular transport and secretion. The number of actin-binding proteins and actin filament nucleators that are known to participate in the process of actin network formation are rapidly increasing. In plants, formins and ARP2/3 are two important actin filament nucleators. This review will focus on ARP2/3, and the apparent reliance of most plant species on the SCAR/WAVE (WASP family verprolin homologous) regulatory complex as the sole pathway for ARP2/3 activation.
Collapse
Affiliation(s)
| | - Chunhua Zhang
- Department of Botany and Plant Sciences, University of CaliforniaRiverside, CA, USA
| | - Daniel B. Szymanski
- Department of Agronomy, Purdue UniversityWest Lafayette, IN, USA
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
- *Correspondence: Daniel B. Szymanski, Department of Agronomy, Purdue University, 1150 Lilly Hall of Life Sciences, West Lafayette, IN 47907-1150, USA e-mail:
| |
Collapse
|
91
|
Xu W, Ding G, Yokawa K, Baluška F, Li QF, Liu Y, Shi W, Liang J, Zhang J. An improved agar-plate method for studying root growth and response of Arabidopsis thaliana. Sci Rep 2013; 3:1273. [PMID: 23429403 PMCID: PMC3572446 DOI: 10.1038/srep01273] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/30/2013] [Indexed: 11/20/2022] Open
Abstract
Arabidopsis thaliana is a widely used model plant for plant biology research. Under traditional agar-plate culture system (TPG, traditional plant-growing), both plant shoots and roots are exposed to illumination, and roots are grown in sucrose-added medium. This is not a natural environment for the roots and may cause artifact responses. We have developed an improved agar-plate culture system (IPG, improved plant-growing) where shoots are illuminated but roots are grown in darkness without sucrose addition. Compared to TPG, IPG produced plants with significantly less total root length, lateral root length and root hair density, although their primary roots were longer. Root gravitropism, PIN2 (an auxin efflux carrier) abundance, H⁺ efflux or Ca²⁺ influx in root apexes, were weaker in IPG-grown roots than those in TPG-grown roots. We conclude that IPG offers a more natural way to study the root growth and response of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Weifeng Xu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- These authors contributed equally to this work
| | - Guochang Ding
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- These authors contributed equally to this work
| | - Ken Yokawa
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Qian-Feng Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Yinggao Liu
- College of Life Science, Shandong Agricultural University, Taian, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiansheng Liang
- Department of Biology, South University of Science and Technology of China, Shenzhen, 518055, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
92
|
Blancaflor EB. Regulation of plant gravity sensing and signaling by the actin cytoskeleton. AMERICAN JOURNAL OF BOTANY 2013; 100:143-52. [PMID: 23002165 DOI: 10.3732/ajb.1200283] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gravitropism is a process by which plant organs readjust their growth toward or away from the gravity vector when the plant is reoriented. The actin cytoskeleton has often been a significant component of models explaining gravitropism, but its role in this process has become somewhat controversial in light of reports showing that actin inhibitors enhance the gravitropic response. The work with inhibitors implies that actin might function as a negative regulator of gravitropism. In this article, possibilities for how such a role might be accomplished are presented. First, the organization of actin in statocytes is revisited in an attempt to rationalize how compressive forces exerted by statoliths on membranes can lead to enhanced gravity sensing. Second, recent genetic work in the model plant Arabidopsis thaliana is discussed, focusing on the potential involvement of the protein degradation machinery in actin-mediated control of statolith dynamics and on the intriguing possibility that an actin-regulated, ligand-receptor mechanism for gravity signal transduction might operate in higher plants. Third, modifications in the trafficking of auxin efflux transporters are considered as possible mechanisms for the enhanced gravity responses observed in plant organs when the actin cytoskeleton is disrupted by chemical inhibitors. The various possibilities presented in this review emphasize the large amount of research that remains to be done before we can fully understand how the actin cytoskeleton modulates tropisms in higher plants.
Collapse
Affiliation(s)
- Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA.
| |
Collapse
|
93
|
Zhang C, Mallery EL, Szymanski DB. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. FRONTIERS IN PLANT SCIENCE 2013; 4:238. [PMID: 23874346 PMCID: PMC3709099 DOI: 10.3389/fpls.2013.00238] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/16/2013] [Indexed: 05/03/2023]
Abstract
In plant cells the actin cytoskeleton adopts many configurations, but is best understood as an unstable, interconnected track that rearranges to define the patterns of long distance transport of organelles during growth. Actin filaments do not form spontaneously; instead filament nucleators, such as the evolutionarily conserved actin-related protein (ARP) 2/3 complex, can efficiently generate new actin filament networks when in a fully activated state. A growing number of genetic experiments have shown that ARP2/3 is necessary for morphogenesis in processes that range from tip growth during root nodule formation to the diffuse polarized growth of leaf trichomes and pavement cells. Although progress has been rapid in the identification of proteins that function in series to positively regulate ARP2/3, less has been learned about the actual function of ARP2/3 in cells. In this paper, we analyze the localization of ARP2/3 in Arabidopsis leaf pavement cells. We detect a pool of ARP2/3 in the nucleus, and also find that ARP2/3 is efficiently and specifically clustered on multiple organelle surfaces and associates with both the actin filament and microtubule cytoskeletons. Our mutant analyses and ARP2/3 and actin double labeling experiments indicate that the clustering of ARP2/3 on organelle surfaces and an association with actin bundles does not necessarily reflect an active pool of ARP2/3, and instead most of the complex appears to exist as a latent organelle-associated pool.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Agronomy, Purdue UniversityWest Lafayette, IN, USA
| | | | - Daniel B. Szymanski
- Department of Agronomy, Purdue UniversityWest Lafayette, IN, USA
- Department of Biology, Purdue UniversityWest Lafayette, IN, USA
- *Correspondence: Daniel B. Szymanski, Department of Agronomy, Purdue University, Lily Hall of Life Sciences, 915 West State Street, West Lafayette, IN 47907-2054, USA e-mail:
| |
Collapse
|
94
|
Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y, Yu X, Traas J, Ruberti I, Wang H, Scheres B, Vernoux T, Xu J. COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 2012; 139:3402-12. [PMID: 22912415 DOI: 10.1242/dev.078212] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When a plant germinates in the soil, elongation of stem-like organs is enhanced whereas leaf and root growth is inhibited. How these differential growth responses are orchestrated by light and integrated at the organismal level to shape the plant remains to be elucidated. Here, we show that light signals through the master photomorphogenesis repressor COP1 to coordinate root and shoot growth in Arabidopsis. In the shoot, COP1 regulates shoot-to-root auxin transport by controlling the transcription of the auxin efflux carrier gene PIN-FORMED1 (PIN1), thus appropriately tuning shoot-derived auxin levels in the root. This in turn directly influences root elongation and adapts auxin transport and cell proliferation in the root apical meristem by modulating PIN1 and PIN2 intracellular distribution in the root in a COP1-dependent fashion, thus permitting a rapid and precise tuning of root growth to the light environment. Our data identify auxin as a long-distance signal in developmental adaptation to light and illustrate how spatially separated control mechanisms can converge on the same signaling system to coordinate development at the whole plant level.
Collapse
Affiliation(s)
- Massimiliano Sassi
- CNRS, INRA, ENS Lyon, UCBL, Université de Lyon, Laboratoire de Reproduction et Développement des Plantes, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Lau OS, Deng XW. The photomorphogenic repressors COP1 and DET1: 20 years later. TRENDS IN PLANT SCIENCE 2012; 17:584-93. [PMID: 22705257 DOI: 10.1016/j.tplants.2012.05.004] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 05/18/2023]
Abstract
COP1 and DET1 are among the first repressors of photomorphogenesis to be identified, more than 20 years ago. Discovery of these repressors as conserved regulators of the ubiquitin-proteasome system has established protein degradation as a central theme in light signal transduction. COP1 is a RING E3 ubiquitin ligase that targets key regulators for degradation, and DET1 complexes with COP10 and DDB1, which is proposed to aid in COP1-mediated degradation. Recent studies have strengthened the role of COP1 as a major signaling center. DET1 is also emerging as a chromatin regulator in repressing gene expression. Here, we review current understanding on COP1 and DET1, with a focus on their role as part of two distinct, multimeric CUL4-based E3 ligases.
Collapse
Affiliation(s)
- On Sun Lau
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| | | |
Collapse
|
96
|
Li J, Henty-Ridilla JL, Huang S, Wang X, Blanchoin L, Staiger CJ. Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. THE PLANT CELL 2012; 24:3742-54. [PMID: 22960908 PMCID: PMC3480299 DOI: 10.1105/tpc.112.103945] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 08/07/2012] [Accepted: 08/16/2012] [Indexed: 05/19/2023]
Abstract
Remodeling of actin filament arrays in response to biotic and abiotic stimuli is thought to require precise control over the generation and availability of filament ends. Heterodimeric capping protein (CP) is an abundant filament capper, and its activity is inhibited by membrane signaling phospholipids in vitro. How exactly CP modulates the properties of filament ends in cells and whether its activity is coordinated by phospholipids in vivo is not well understood. By observing directly the dynamic behavior of individual filament ends in the cortical array of living Arabidopsis thaliana epidermal cells, we dissected the contribution of CP to actin organization and dynamics in response to the signaling phospholipid, phosphatidic acid (PA). Here, we examined three cp knockdown mutants and found that reduced CP levels resulted in more dynamic activity at filament ends, and this significantly enhanced filament-filament annealing and filament elongation from free ends. The cp mutants also exhibited more dense actin filament arrays. Treatment of wild-type cells with exogenous PA phenocopied the actin-based defects in cp mutants, with an increase in the density of filament arrays and enhanced annealing frequency. These cytoskeletal responses to exogenous PA were completely abrogated in cp mutants. Our data provide compelling genetic evidence that the end-capping activity of CP is inhibited by membrane signaling lipids in eukaryotic cells. Specifically, CP acts as a PA biosensor and key transducer of fluxes in membrane signaling phospholipids into changes in actin cytoskeleton dynamics.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | | | - Shanjin Huang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Xia Wang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat á l’Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Joseph Fourier, F38054 Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
- Address correspondence to
| |
Collapse
|
97
|
Burbach C, Markus K, Zhang Y, Schlicht M, Baluška F. Photophobic behavior of maize roots. PLANT SIGNALING & BEHAVIOR 2012; 7:874-8. [PMID: 22751294 PMCID: PMC3583978 DOI: 10.4161/psb.21012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Primary roots of young maize seedlings showed peculiar growth behavior when challenged by placing them on a slope, or if whole seedlings were turned upside down. Importantly, this behavior was dependent on the light conditions. If roots were placed on slopes in the dark, they performed "crawling" behavior and advanced rapidly up the slope. However, as soon as these roots were illuminated, their crawling movements along their horizontal paths slowed down, and instead tried to grow downwards along the gravity vector. A similar light-induced switch in the root behavior was observed when roots were inverted, by placing them in thin glass capillaries. As long as they were kept in the darkness, they showed rapid growth against the gravity vector. If illuminated, these inverted roots rapidly accomplished U-turns and grew down along the gravity vector, eventually escaping from the capillaries upon reaching their open ends. De-capped roots, although growing vigorously, did not display these light-induced photophobic growth responses. We can conclude that intact root cap is essential for the photophobic root behavior in maize.
Collapse
|
98
|
Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci U S A 2012; 109:11217-21. [PMID: 22733756 DOI: 10.1073/pnas.1203746109] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most hazardous span in the life of green plants is the period after germination when the developing seedling must reach the state of autotrophy before the nutrients stored in the seed are exhausted. The need for an economically optimized utilization of limited resources in this critical period is particularly obvious in species adopting the dispersal strategy of producing a large amount of tiny seeds. The model plant Arabidopsis thaliana belongs to this category. Arabidopsis seedlings promote root development only in the light. This response to light has long been recognized and recently discussed in terms of an organ-autonomous feature of photomorphogenesis directed by the red/blue light absorbing photoreceptors phytochrome and cryptochrome and mediated by hormones such as auxin and/or gibberellin. Here we show that the primary root of young Arabidopsis seedlings responds to an interorgan signal from the cotyledons and that phloem transport of photosynthesis-derived sugar into the root tip is necessary and sufficient for the regulation of root elongation growth by light.
Collapse
|
99
|
Jiang K, Sorefan K, Deeks MJ, Bevan MW, Hussey PJ, Hetherington AM. The ARP2/3 complex mediates guard cell actin reorganization and stomatal movement in Arabidopsis. THE PLANT CELL 2012; 24:2031-40. [PMID: 22570440 PMCID: PMC3442585 DOI: 10.1105/tpc.112.096263] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/29/2012] [Accepted: 04/16/2012] [Indexed: 05/19/2023]
Abstract
Guard cell actin reorganization has been observed in stomatal responses to a wide array of stimuli. However, how the guard cell signaling machinery regulates actin dynamics is poorly understood. Here, we report the identification of an allele of the Arabidopsis thaliana ACTIN-RELATED PROTEIN C2/DISTORTED TRICHOMES2 (ARPC2) locus (encoding the ARPC2 subunit of the ARP2/3 complex) designated high sugar response3 (hsr3). The hsr3 mutant showed increased transpirational water loss that was mainly due to a lesion in stomatal regulation. Stomatal bioassay analyses revealed that guard cell sensitivity to external stimuli, such as abscisic acid (ABA), CaCl(2), and light/dark transition, was reduced or abolished in hsr3. Analysis of a nonallelic mutant of the ARP2/3 complex suggested no pleiotropic effect of ARPC2 beyond its function in the complex in regard to stomatal regulation. When treated with ABA, guard cell actin filaments underwent fast disruption in wild-type plants, whereas those in hsr3 remained largely bundled. The ABA insensitivity phenotype of hsr3 was rescued by cytochalasin D treatment, suggesting that the aberrant stomatal response was a consequence of bundled actin filaments. Our work indicates that regulation of actin reassembly through ARP2/3 complex activity is crucial for stomatal regulation.
Collapse
Affiliation(s)
- Kun Jiang
- School of Biological Sciences, University of Bristol, Bristol BS8 1UG, United Kingdom
| | - Karim Sorefan
- Cell and Developmental Biology Department, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Michael J. Deeks
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | - Michael W. Bevan
- Cell and Developmental Biology Department, John Innes Centre, Norwich, Norfolk NR4 7UH, United Kingdom
| | - Patrick J. Hussey
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | | |
Collapse
|
100
|
Warnasooriya SN, Montgomery BL. Spatial-specific regulation of root development by phytochromes in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2011; 6:2047-50. [PMID: 22112446 PMCID: PMC3337204 DOI: 10.4161/psb.6.12.18267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Distinct tissues and organs of plants exhibit dissimilar responses to light exposure--cotyledon growth is promoted by light, whereas hypocotyl growth is inhibited by light. Light can have different impacts on root development, including impacting root elongation, morphology, lateral root proliferation and root tropisms. In many cases, light inhibits root elongation. There has been much attention given to whether roots themselves are the sites of photoperception for light that impacts light-dependent growth and development of roots. A number of approaches including photoreceptor localization in planta, localized irradiation and exposure of dissected roots to light have been used to explore the site(s) of light perception for the photoregulation of root development. Such approaches have led to the observation that photoreceptors are localized to roots in many plant species, and that roots are capable of light absorption that can alter morphology and/or gene expression. Our recent results show that localized depletion of phytochrome photoreceptors in Arabidopsis thaliana disrupts root development and root responsiveness to the plant hormone jasmonic acid. Thus, root-localized light perception appears central to organ-specific, photoregulation of growth and development in roots.
Collapse
Affiliation(s)
| | - Beronda L. Montgomery
- Department of Energy Plant Research Laboratory; Michigan State University; East Lansing, MI USA
- Department of Biochemistry and Molecular Biology; Michigan State University; East Lansing, MI USA
| |
Collapse
|