51
|
Zhang X, Campbell R, Ducreux LJM, Morris J, Hedley PE, Mellado‐Ortega E, Roberts AG, Stephens J, Bryan GJ, Torrance L, Chapman SN, Prat S, Taylor MA. TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberisation via protein interaction with the tuberigen activation complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2263-2278. [PMID: 32593210 PMCID: PMC7540344 DOI: 10.1111/tpj.14898] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 05/04/2023]
Abstract
Potato tuber formation is a secondary developmental programme by which cells in the subapical stolon region divide and radially expand to further differentiate into starch-accumulating parenchyma. Although some details of the molecular pathway that signals tuberisation are known, important gaps in our knowledge persist. Here, the role of a member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family (termed StCEN) in the negative control of tuberisation is demonstrated for what is thought to be the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines overexpressing this gene display delayed tuberisation and reduced tuber yield. Protein-protein interaction studies (yeast two-hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays, we show that the StSP6A tuberisation signal is an activation target of the tuberigen activation complex, and that co-expression of StCEN blocks activation of the StSP6A gene by StFD-Like-1. Transcriptomic analysis of transgenic lines misexpressing StCEN identifies early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberisation by directly antagonising the function of StSP6A in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield through the selection of genotypes with reduced StCEN expression.
Collapse
Affiliation(s)
- Xing Zhang
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Raymond Campbell
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | | | - Jennifer Morris
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Pete E. Hedley
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Elena Mellado‐Ortega
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Alison G. Roberts
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Jennifer Stephens
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Glenn J. Bryan
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Lesley Torrance
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
- School of BiologyBiomolecular Sciences BuildingUniversity of St AndrewsNorth HaughSt AndrewsFifeY16 9STUK
| | - Sean N. Chapman
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Salomé Prat
- Centro Nacional de BiotecnologíaC/Darwin no. 3, Campus de CantoblancoMadrid28049Spain
| | - Mark A. Taylor
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| |
Collapse
|
52
|
Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, Silva CS, Lai X, Pierre E, Geng F, Kim SB, Baek S, Zubieta C, Jaeger KE, Wigge PA. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 2020. [PMID: 32848244 DOI: 10.1038/s41586-020-2644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Temperature controls plant growth and development, and climate change has already altered the phenology of wild plants and crops1. However, the mechanisms by which plants sense temperature are not well understood. The evening complex is a major signalling hub and a core component of the plant circadian clock2,3. The evening complex acts as a temperature-responsive transcriptional repressor, providing rhythmicity and temperature responsiveness to growth through unknown mechanisms2,4-6. The evening complex consists of EARLY FLOWERING 3 (ELF3)4,7, a large scaffold protein and key component of temperature sensing; ELF4, a small α-helical protein; and LUX ARRYTHMO (LUX), a DNA-binding protein required to recruit the evening complex to transcriptional targets. ELF3 contains a polyglutamine (polyQ) repeat8-10, embedded within a predicted prion domain (PrD). Here we find that the length of the polyQ repeat correlates with thermal responsiveness. We show that ELF3 proteins in plants from hotter climates, with no detectable PrD, are active at high temperatures, and lack thermal responsiveness. The temperature sensitivity of ELF3 is also modulated by the levels of ELF4, indicating that ELF4 can stabilize the function of ELF3. In both Arabidopsis and a heterologous system, ELF3 fused with green fluorescent protein forms speckles within minutes in response to higher temperatures, in a PrD-dependent manner. A purified fragment encompassing the ELF3 PrD reversibly forms liquid droplets in response to increasing temperatures in vitro, indicating that these properties reflect a direct biophysical response conferred by the PrD. The ability of temperature to rapidly shift ELF3 between active and inactive states via phase transition represents a previously unknown thermosensory mechanism.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | | | - Stephanie Hutin
- Laboratoire de Physiologie Cellulaire and Végétale, Université Grenoble Alpes/CNRS/CEA/INRAE, Grenoble, France
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Mingjun Gao
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Catarina S Silva
- Laboratoire de Physiologie Cellulaire and Végétale, Université Grenoble Alpes/CNRS/CEA/INRAE, Grenoble, France
| | - Xuelei Lai
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Laboratoire de Physiologie Cellulaire and Végétale, Université Grenoble Alpes/CNRS/CEA/INRAE, Grenoble, France
| | - Elodie Pierre
- Laboratoire de Physiologie Cellulaire and Végétale, Université Grenoble Alpes/CNRS/CEA/INRAE, Grenoble, France
| | - Feng Geng
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Sol-Bi Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Sujeong Baek
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire and Végétale, Université Grenoble Alpes/CNRS/CEA/INRAE, Grenoble, France
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren, Germany
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
53
|
Soyk S, Benoit M, Lippman ZB. New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annu Rev Genet 2020; 54:287-307. [PMID: 32870731 DOI: 10.1146/annurev-genet-050720-122916] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.
Collapse
Affiliation(s)
- Sebastian Soyk
- Center for Integrative Genomics, University of Lausanne, CH-1005 Lausanne, Switzerland;
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; .,Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
54
|
Jung JH, Barbosa AD, Hutin S, Kumita JR, Gao M, Derwort D, Silva CS, Lai X, Pierre E, Geng F, Kim SB, Baek S, Zubieta C, Jaeger KE, Wigge PA. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 2020; 585:256-260. [DOI: 10.1038/s41586-020-2644-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
|
55
|
Kang X, Hajek B, Hanzawa Y. From graph topology to ODE models for gene regulatory networks. PLoS One 2020; 15:e0235070. [PMID: 32603340 PMCID: PMC7326199 DOI: 10.1371/journal.pone.0235070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/08/2020] [Indexed: 11/28/2022] Open
Abstract
A gene regulatory network can be described at a high level by a directed graph with signed edges, and at a more detailed level by a system of ordinary differential equations (ODEs). The former qualitatively models the causal regulatory interactions between ordered pairs of genes, while the latter quantitatively models the time-varying concentrations of mRNA and proteins. This paper clarifies the connection between the two types of models. We propose a property, called the constant sign property, for a general class of ODE models. The constant sign property characterizes the set of conditions (system parameters, external signals, or internal states) under which an ODE model is consistent with a signed, directed graph. If the constant sign property for an ODE model holds globally for all conditions, then the ODE model has a single signed, directed graph. If the constant sign property for an ODE model only holds locally, which may be more typical, then the ODE model corresponds to different graphs under different sets of conditions. In addition, two versions of constant sign property are given and a relationship between them is proved. As an example, the ODE models that capture the effect of cis-regulatory elements involving protein complex binding, based on the model in the GeneNetWeaver source code, are described in detail and shown to satisfy the global constant sign property with a unique consistent gene regulatory graph. Even a single gene regulatory graph is shown to have many ODE models of GeneNetWeaver type consistent with it due to combinatorial complexity and continuous parameters. Finally the question of how closely data generated by one ODE model can be fit by another ODE model is explored. It is observed that the fit is better if the two models come from the same graph.
Collapse
Affiliation(s)
- Xiaohan Kang
- Department of Electrical and Computer Engineering, and Coordinated Science Laboratory, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States of America
| | - Bruce Hajek
- Department of Electrical and Computer Engineering, and Coordinated Science Laboratory, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States of America
| | - Yoshie Hanzawa
- Department of Biology, California State University, Northridge, Northridge, California, United States of America
| |
Collapse
|
56
|
The Response of COL and FT Homologues to Photoperiodic Regulation in Carrot (Daucus carota L.). Sci Rep 2020; 10:9984. [PMID: 32561786 PMCID: PMC7305175 DOI: 10.1038/s41598-020-66807-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
Carrot (Daucus carota L.) is a biennial plant requiring vernalization to induce flowering, but long days can promote its premature bolting and flowering. The basic genetic network controlling the flowering time has been constructed for carrot, but there is limited information on the molecular mechanisms underlying the photoperiodic flowering response. The published carrot genome could provide an effective tool for systematically retrieving the key integrator genes of GIGANTEA (GI), CONSTANS-LIKE (COL), FLOWERING LOCUS T (FT), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) homologues in the photoperiod pathway. In this study, the bolting time of wild species “Songzi” (Ws) could be regulated by different photoperiods, but the orange cultivar “Amsterdam forcing” (Af) displayed no bolting phenomenon. According to the carrot genome and previous de novo transcriptome, 1 DcGI, 15 DcCOLs, 2 DcFTs, and 3 DcSOC1s were identified in the photoperiod pathway. The circadian rhythm peaks of DcGI, DcCOL2, DcCOL5a, and DcCOL13b could be delayed under long days (LDs). The peak value of DcCOL2 in Af (12.9) was significantly higher than that in Ws (6.8) under short day (SD) conditions, and was reduced under LD conditions (5.0). The peak values of DcCOL5a in Ws were constantly higher than those in Af under the photoperiod treatments. The expression levels of DcFT1 in Ws (463.0) were significantly upregulated under LD conditions compared with those in Af (1.4). These responses of DcCOL2, DcCOL5a, and DcFT1 might be related to the different bolting responses of Ws and Af. This study could provide valuable insights into understanding the key integrator genes in the carrot photoperiod pathway.
Collapse
|
57
|
Romera-Branchat M, Severing E, Pocard C, Ohr H, Vincent C, Née G, Martinez-Gallegos R, Jang S, Andrés F, Madrigal P, Coupland G. Functional Divergence of the Arabidopsis Florigen-Interacting bZIP Transcription Factors FD and FDP. Cell Rep 2020; 31:107717. [PMID: 32492426 PMCID: PMC7273178 DOI: 10.1016/j.celrep.2020.107717] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 01/18/2023] Open
Abstract
Flowering of many plant species depends on interactions between basic leucine zipper (bZIP) transcription factors and systemically transported florigen proteins. Members of the genus Arabidopsis contain two of these bZIPs, FD and FDP, which we show have largely complementary expression patterns in shoot apices before and during flowering. CRISPR-Cas9-induced null mutants for FDP flower slightly earlier than wild-type, whereas fd mutants are late flowering. Identical G-box sequences are enriched at FD and FDP binding sites, but only FD binds to genes involved in flowering and only fd alters their transcription. However, both proteins bind to genes involved in responses to the phytohormone abscisic acid (ABA), which controls developmental and stress responses. Many of these genes are differentially expressed in both fd and fdp mutant seedlings, which also show reduced ABA sensitivity. Thus, florigen-interacting bZIPs have distinct functions in flowering dependent on their expression patterns and, at earlier stages in development, play common roles in phytohormone signaling.
Collapse
Affiliation(s)
- Maida Romera-Branchat
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Edouard Severing
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Chloé Pocard
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Hyonhwa Ohr
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Coral Vincent
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Guillaume Née
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48143 Münster, Germany
| | | | - Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Fernando Andrés
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Pedro Madrigal
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
58
|
Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Semin Cell Dev Biol 2020; 109:20-30. [PMID: 32507412 DOI: 10.1016/j.semcdb.2020.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
Abstract
Plant growth and development, particularly the induction of flowering, are tightly controlled by key regulators in response to endogenous and environmental cues. The FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family of phosphatidylethanolamine-binding protein (PEBP) genes is central to plant development, especially the regulation of flowering time and plant architecture. FT, the long-sought florigen, promotes flowering and TFL1 represses flowering. The balance between FT and TFL1 modulates plant architecture by switching the meristem from indeterminate to determinate growth, or vice versa. Recent studies in a broad range of plant species demonstrated that, in addition to their roles in flowering time and plant architecture, FT/TFL1 family genes participate in diverse aspects of plant development, such as bamboo seed germination and potato tuber formation. In this review, we briefly summarize the evolution of the FT/TFL1 family and highlight recent findings on their conserved and divergent functions in different species.
Collapse
|
59
|
Kinoshita A, Richter R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2490-2504. [PMID: 32067033 PMCID: PMC7210760 DOI: 10.1093/jxb/eraa057] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/03/2020] [Indexed: 05/18/2023]
Abstract
Many plants synchronize their life cycles in response to changing seasons and initiate flowering under favourable environmental conditions to ensure reproductive success. To confer a robust seasonal response, plants use diverse genetic programmes that integrate environmental and endogenous cues and converge on central floral regulatory hubs. Technological advances have allowed us to understand these complex processes more completely. Here, we review recent progress in our understanding of genetic and molecular mechanisms that control flowering in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Correspondence: or
| | - René Richter
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Australia
- Correspondence: or
| |
Collapse
|
60
|
Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, Franaszek K, Marriott P, Brierley I, Firth AE, Wigge PA. An RNA thermoswitch regulates daytime growth in Arabidopsis. NATURE PLANTS 2020; 6:522-532. [PMID: 32284544 PMCID: PMC7231574 DOI: 10.1038/s41477-020-0633-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/10/2020] [Indexed: 05/18/2023]
Abstract
Temperature is a major environmental cue affecting plant growth and development. Plants often experience higher temperatures in the context of a 24 h day-night cycle, with temperatures peaking in the middle of the day. Here, we find that the transcript encoding the bHLH transcription factor PIF7 undergoes a direct increase in translation in response to warmer temperature. Diurnal expression of PIF7 transcript gates this response, allowing PIF7 protein to quickly accumulate in response to warm daytime temperature. Enhanced PIF7 protein levels directly activate the thermomorphogenesis pathway by inducing the transcription of key genes such as the auxin biosynthetic gene YUCCA8, and are necessary for thermomorphogenesis to occur under warm cycling daytime temperatures. The temperature-dependent translational enhancement of PIF7 messenger RNA is mediated by the formation of an RNA hairpin within its 5' untranslated region, which adopts an alternative conformation at higher temperature, leading to increased protein synthesis. We identified similar hairpin sequences that control translation in additional transcripts including WRKY22 and the key heat shock regulator HSFA2, suggesting that this is a conserved mechanism enabling plants to respond and adapt rapidly to high temperatures.
Collapse
Affiliation(s)
- Betty Y W Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | - Marco Di Antonio
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren, Germany
| | - Feng Geng
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Poppy Marriott
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Ian Brierley
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Philip A Wigge
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
61
|
Goretti D, Silvestre M, Collani S, Langenecker T, Méndez C, Madueño F, Schmid M. TERMINAL FLOWER1 Functions as a Mobile Transcriptional Cofactor in the Shoot Apical Meristem. PLANT PHYSIOLOGY 2020; 182:2081-2095. [PMID: 31996406 PMCID: PMC7140938 DOI: 10.1104/pp.19.00867] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/17/2020] [Indexed: 05/26/2023]
Abstract
The floral transition is a critical step in the life cycle of flowering plants, and several mechanisms control this finely orchestrated process. TERMINAL FLOWER1 (TFL1) is a floral repressor and close relative of the florigen, FLOWERING LOCUS T (FT). During the floral transition, TFL1 expression is up-regulated in the inflorescence apex to maintain the indeterminate growth of the shoot apical meristem (SAM). Both TFL1 and FT are mobile proteins, but they move in different ways. FT moves from the leaves to the SAM, while TFL1 appears to move within the SAM. The importance of TFL1 movement for its function in the regulation of flowering time and shoot indeterminacy and its molecular function are still largely unclear. Our results using Arabidopsis (Arabidopsis thaliana) indicate that TFL1 moves from its place of expression in the center of the SAM to the meristem layer L1 and that the movement in the SAM is required for the regulation of the floral transition. Chromatin immunoprecipitation sequencing and RNA sequencing demonstrated that TFL1 functions as a cotranscription factor that associates with and regulates the expression of hundreds of genes. These newly identified direct TFL1 targets provide the possibility to discover new roles for TFL1 in the regulation of floral transition and inflorescence development.
Collapse
Affiliation(s)
- Daniela Goretti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umea, Sweden
| | - Marina Silvestre
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia (CSIC-UPV), 46022 Valencia, Spain
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umea, Sweden
| | - Tobias Langenecker
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, 72076 Tuebingen, Germany
| | - Carla Méndez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia (CSIC-UPV), 46022 Valencia, Spain
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia (CSIC-UPV), 46022 Valencia, Spain
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umea, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
62
|
Podolny BS, Gursky VV, Samsonova MG. A Machine-Learning Analysis of Flowering Gene Expression in the CDC Frontier Chickpea Cultivar. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
63
|
Andrés F, Kinoshita A, Kalluri N, Fernández V, Falavigna VS, Cruz TMD, Jang S, Chiba Y, Seo M, Mettler-Altmann T, Huettel B, Coupland G. The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:53. [PMID: 32013867 PMCID: PMC6998834 DOI: 10.1186/s12870-020-2266-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/27/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Floral transition initiates reproductive development of plants and occurs in response to environmental and endogenous signals. In Arabidopsis thaliana, this process is accelerated by several environmental cues, including exposure to long days. The photoperiod-dependent promotion of flowering involves the transcriptional induction of FLOWERING LOCUS T (FT) in the phloem of the leaf. FT encodes a mobile protein that is transported from the leaves to the shoot apical meristem, where it forms part of a regulatory complex that induces flowering. Whether FT also has biological functions in leaves of wild-type plants remains unclear. RESULTS In order to address this issue, we first studied the leaf transcriptomic changes associated with FT overexpression in the companion cells of the phloem. We found that FT induces the transcription of SWEET10, which encodes a bidirectional sucrose transporter, specifically in the leaf veins. Moreover, SWEET10 is transcriptionally activated by long photoperiods, and this activation depends on FT and one of its earliest target genes SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1). The ectopic expression of SWEET10 causes early flowering and leads to higher levels of transcription of flowering-time related genes in the shoot apex. CONCLUSIONS Collectively, our results suggest that the FT-signaling pathway activates the transcription of a sucrose uptake/efflux carrier during floral transition, indicating that it alters the metabolism of flowering plants as well as reprogramming the transcription of floral regulators in the shoot meristem.
Collapse
Affiliation(s)
- Fernando Andrés
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
- Present Address: UMR AGAP, Univ. Montpellier, INRAE, CIRAD, INSAAE, Montpellier, France
| | - Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Naveen Kalluri
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Virginia Fernández
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
- Present Address: BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Vítor S. Falavigna
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Tiago M. D. Cruz
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
- Present Address: World Vegetable Center Korea Office (WKO), 100 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jellabuk-do 55365 Republic of Korea
| | - Yasutaka Chiba
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Tabea Mettler-Altmann
- Cluster of Excellence on Plant Sciences and Institute of Plant Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| |
Collapse
|
64
|
Barco B, Clay NK. Hierarchical and Dynamic Regulation of Defense-Responsive Specialized Metabolism by WRKY and MYB Transcription Factors. FRONTIERS IN PLANT SCIENCE 2020; 10:1775. [PMID: 32082343 PMCID: PMC7005594 DOI: 10.3389/fpls.2019.01775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/19/2019] [Indexed: 05/07/2023]
Abstract
The plant kingdom produces hundreds of thousands of specialized bioactive metabolites, some with pharmaceutical and biotechnological importance. Their biosynthesis and function have been studied for decades, but comparatively less is known about how transcription factors with overlapping functions and contrasting regulatory activities coordinately control the dynamics and output of plant specialized metabolism. Here, we performed temporal studies on pathogen-infected intact host plants with perturbed transcription factors. We identified WRKY33 as the condition-dependent master regulator and MYB51 as the dual functional regulator in a hierarchical gene network likely responsible for the gene expression dynamics and metabolic fluxes in the camalexin and 4-hydroxy-indole-3-carbonylnitrile (4OH-ICN) pathways. This network may have also facilitated the regulatory capture of the newly evolved 4OH-ICN pathway in Arabidopsis thaliana by the more-conserved transcription factor MYB51. It has long been held that the plasticity of plant specialized metabolism and the canalization of development should be differently regulated; our findings imply a common hierarchical regulatory architecture orchestrated by transcription factors for specialized metabolism and development, making it an attractive target for metabolic engineering.
Collapse
Affiliation(s)
| | - Nicole K. Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
65
|
Yang Z, Chen L, Kohnen MV, Xiong B, Zhen X, Liao J, Oka Y, Zhu Q, Gu L, Lin C, Liu B. Identification and Characterization of the PEBP Family Genes in Moso Bamboo (Phyllostachys heterocycla). Sci Rep 2019; 9:14998. [PMID: 31628413 PMCID: PMC6802209 DOI: 10.1038/s41598-019-51278-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
Abstract
Moso bamboo is one of the economically most important plants in China. Moso bamboo is a monocarpic perennial that exhibits poor and slow germination. Thus, the flowering often causes destruction of moso bamboo forestry. However, how control of flowering and seed germination are regulated in moso bamboo is largely unclear. In this study, we identified 5 members (PhFT1-5) of the phosphatidyl ethanolamine-binding proteins (PEBP) family from moso bamboo genome that regulate flowering, flower architecture and germination, and characterized the function of these PEBP family genes further in Arabidopsis. Phylogenetic analysis revealed that 3 (PhFT1, PhFT2 and PhFT3), 1 (PhFT4) and 1 (PhFT5) members belong to the TFL1-like clade, FT-like clade, and MFT-like clade, respectively. These PEBP family genes possess all structure necessary for PEBP gene function. The ectopic overexpression of PhFT4 and PhFT5 promotes flowering time in Arabidopsis, and that of PhFT1, PhFT2 and PhFT3 suppresses it. In addition, the overexpression of PhFT5 promotes seed germination rate. Interestingly, the overexpression of PhFT1 suppressed seed germination rate in Arabidopsis. The expression of PhFT1 and PhFT5 is significantly higher in seed than in tissues including leaf and shoot apical meristem, implying their function in seed germination. Taken together, our results suggested that the PEBP family genes play important roles as regulators of flowering and seed germination in moso bamboo and thereby are necessary for the sustainability of moso bamboo forest.
Collapse
Affiliation(s)
- Zhaohe Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lei Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Markus V Kohnen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Bei Xiong
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xi Zhen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiakai Liao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Bobin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
66
|
Li D, Zhang H, Mou M, Chen Y, Xiang S, Chen L, Yu D. Arabidopsis Class II TCP Transcription Factors Integrate with the FT-FD Module to Control Flowering. PLANT PHYSIOLOGY 2019; 181:97-111. [PMID: 31235561 PMCID: PMC6716235 DOI: 10.1104/pp.19.00252] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/08/2019] [Indexed: 05/04/2023]
Abstract
The appropriate timing of flowering is critical for plant reproductive success. Although the FLOWERING LOCUS T (FT)-FD module plays crucial roles in the photoperiodic flowering pathway, the underlying mechanisms and signaling pathways involved still remain elusive. Here, we demonstrate that class II TCP transcription factors (TFs) integrate into the FT-FD complex to control floral initiation in Arabidopsis (Arabidopsis thaliana). Class II CINCINNATA (CIN) TCP TFs function as transcriptional activators by directly binding to the promoters of downstream floral meristem identity genes, such as APETALA1 (AP1). In addition, these TCPs directly interact with FD, a basic Leu zipper TF that plays a critical role in photoperiodic flowering, which further activates AP1 expression. Genetic analyses indicated that class II CIN TCP TFs function synergistically with FT and FD, to positively regulate flowering in an AP1-dependent manner. Thus, our results provide compelling evidence that class II CIN TCP TFs act directly at the AP1 promoter to enhance its transcription, thus further elucidating the molecular mechanisms underlying the regulation of photoperiodic flowering in Arabidopsis.
Collapse
Affiliation(s)
- Daibo Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Mou
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyuan Xiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Chen
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
67
|
Liu Y, Gao Y, Gao Y, Zhang Q. Targeted deletion of floral development genes in Arabidopsis with CRISPR/Cas9 using the RNA endoribonuclease Csy4 processing system. HORTICULTURE RESEARCH 2019; 6:99. [PMID: 31666960 PMCID: PMC6804923 DOI: 10.1038/s41438-019-0179-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 05/04/2023]
Abstract
The formation of flowers in higher plants is controlled by complex gene regulatory networks. The study of floral development in Arabidopsis is promoted and maintained by transposon-tagged mutant lines. In this study, we report a CRISPR/Cas9 genome-editing system based on RNA endoribonuclease Csy4 processing to induce high-efficiency and inheritable targeted deletion of transcription factors involved in floral development in Arabidopsis. Using AP1, SVP, and TFL1 as the target genes, multisite and multiple-gene mutations were achieved with a tandemly arrayed Csy4-sgRNA architecture to express multiplexed sgRNAs from a single transcript driven by the Pol II promoter in transgenic lines. Targeted deletions of chromosomal fragments between the first exon and second exon in either one or three genes were generated by using a single binary vector. Interestingly, the efficiency of site-targeted deletion was comparable to that of indel mutation with the multiplexed sgRNAs. DNA sequencing analysis of RT-PCR products showed that targeted deletions of AP1 and TFL1 could lead to frameshift mutations and introduce premature stop codons to disrupt the open-reading frames of the target genes. In addition, no RT-PCR amplified product was acquired after SVP-targeted deletion. Furthermore, the targeted deletions resulted in abnormal floral development in the mutant lines compared to that of wild-type plants. AP1 and SVP mutations increased plant branching significantly, while TFL1 mutant plants displayed a change from indeterminate to determinate inflorescences. Thus, our results demonstrate that CRISPR/Cas9 with the RNA endoribonuclease Csy4 processing system is an efficient tool to study floral development and improve floral traits rapidly and simply.
Collapse
Affiliation(s)
- Yingzhu Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Ornamental Horticulture and Landscape Architecture, Beijing Forestry University, 100083 Beijing, China
| | - Yike Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Ornamental Horticulture and Landscape Architecture, Beijing Forestry University, 100083 Beijing, China
| | - Yaohui Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Ornamental Horticulture and Landscape Architecture, Beijing Forestry University, 100083 Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, College of Ornamental Horticulture and Landscape Architecture, Beijing Forestry University, 100083 Beijing, China
| |
Collapse
|
68
|
Zhao J, Gao P, Li C, Lin X, Guo X, Liu S. PhePEBP family genes regulated by plant hormones and drought are associated with the activation of lateral buds and seedling growth in Phyllostachys edulis. TREE PHYSIOLOGY 2019; 39:1387-1404. [PMID: 31115464 DOI: 10.1093/treephys/tpz056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/08/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Development of lateral buds on the underground rhizome in moso bamboo is essentially the early stage of the development of aboveground branching, which is regulated by Phosphatidyl-Ethanolamine Binding Protein (PEBP) family genes, but it is unknown whether the PEBP family genes are involved in the activation and development of lateral buds underground. By scanning the whole-genome sequence of moso bamboo, we identified 25 PhePEBP family genes and amplified their full-length open reading frames (ORFs). A sequence analysis revealed that they are composed of four exons and three introns, except for PheFT10, which contains six exons and five introns. PheFT10 underwent alternative splicing, resulting in at least four transcripts (PheFT10α, PheFT10β, PheFT10γ and PheFT10δ). Although PhePEBP genes are generally expressed at low levels and show dramatically organ-specific expressions, the transcription levels of most PhePEBP genes, including the transcripts of PheFT10, change with plant age. Together with the observation that the expression of PhePEBP family genes can be regulated by plant hormones and drought, our data suggest that PhePEBP family genes might be involved in the activation of lateral buds and seedling growth. Particularly, PheFT9, PheTFL2 and PheTFL8 may play vital roles during the activation of dormant buds based on the analysis of amino acid substitution and expression profile. These findings provide insights for in-depth exploration of the biological functions of the PhePEBP family genes in regulating the activation of dormant bud and the development of seedling in moso bamboo.
Collapse
Affiliation(s)
- Jianwen Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Peijun Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Chunlong Li
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xiaoqin Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin'An, Zhejiang, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
69
|
Lee C, Kim SJ, Jin S, Susila H, Youn G, Nasim Z, Alavilli H, Chung KS, Yoo SJ, Ahn JH. Genetic interactions reveal the antagonistic roles of FT/TSF and TFL1 in the determination of inflorescence meristem identity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:452-464. [PMID: 30943325 DOI: 10.1111/tpj.14335] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/26/2019] [Accepted: 03/26/2019] [Indexed: 05/10/2023]
Abstract
During the transition to the reproductive phase, the shoot apical meristem switches from the developmental program that generates vegetative organs to instead produce flowers. In this study, we examined the genetic interactions of FLOWERING LOCUS T (FT)/TWIN SISTER OF FT (TSF) and TERMINAL FLOWER 1 (TFL1) in the determination of inflorescence meristem identity in Arabidopsis thaliana. The ft-10 tsf-1 mutants produced a compact inflorescence surrounded by serrated leaves (hyper-vegetative shoot) at the early bolting stage, as did plants overexpressing TFL1. Plants overexpressing FT or TSF (or both FT and TFL1) generated a terminal flower, as did tfl1-20 mutants. The terminal flower formed in tfl1-20 mutants converted to a hyper-vegetative shoot in ft-10 tsf-1 mutants. Grafting ft-10 tsf-1 or ft-10 tsf-1 tfl1-20 mutant scions to 35S::FT rootstock plants produced a normal inflorescence and a terminal flower in the scion plants, respectively, although both scions showed similar early flowering. Misexpression of FT in the vasculature and in the shoot apex in wild-type plants generated a normal inflorescence and a terminal flower, respectively. By contrast, in ft-10 tsf-1 mutants the vasculature-specific misexpression of FT converted the hyper-vegetative shoot to a normal inflorescence, and in the ft-10 tsf-1 tfl1-20 mutants converted the shoot to a terminal flower. TFL1 levels did not affect the inflorescence morphology caused by FT/TSF overexpression at the early bolting stage. Taking these results together, we proposed that FT/TSF and TFL1 play antagonistic roles in the determination of inflorescence meristem identity, and that FT/TSF are more important than TFL1 in this process.
Collapse
Affiliation(s)
- Chunghee Lee
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Soo-Jin Kim
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Hendry Susila
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Hemasundar Alavilli
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Kyung-Sook Chung
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Seong Jeon Yoo
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-Gu, Seoul, 02841, South Korea
| |
Collapse
|
70
|
Wen C, Zhao W, Liu W, Yang L, Wang Y, Liu X, Xu Y, Ren H, Guo Y, Li C, Li J, Weng Y, Zhang X. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 2019; 146:dev180166. [PMID: 31320327 PMCID: PMC6679365 DOI: 10.1242/dev.180166] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop that carries on vegetative growth and reproductive growth simultaneously. Indeterminate growth is favourable for fresh market under protected environments, whereas determinate growth is preferred for pickling cucumber in the once-over mechanical harvest system. The genetic basis of determinacy is largely unknown in cucumber. In this study, map-based cloning of the de locus showed that the determinate growth habit is caused by a non-synonymous SNP in CsTFL1CsTFL1 is expressed in the subapical regions of the shoot apical meristem, lateral meristem and young stems. Ectopic expression of CsTFL1 rescued the terminal flower phenotype in the Arabidopsis tfl1-11 mutant and delayed flowering in wild-type Arabidopsis Knockdown of CsTFL1 resulted in determinate growth and formation of terminal flowers in cucumber. Biochemical analyses indicated that CsTFL1 interacts with a homolog of the miRNA biogenesis gene CsNOT2a; CsNOT2a interacts with FDP. Cucumber CsFT directly interacts with CsNOT2a and CsFD, and CsFD interacts with two 14-3-3 proteins. These data suggest that CsTFL1 competes with CsFT for interaction with CsNOT2a-CsFDP to inhibit determinate growth and terminal flower formation in cucumber.
Collapse
Affiliation(s)
- Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wensheng Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Weilun Liu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Luming Yang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xingwang Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Huazhong Ren
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Yangdong Guo
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Cong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI 53706, USA
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
71
|
Feed-forward regulation adaptively evolves via dynamics rather than topology when there is intrinsic noise. Nat Commun 2019; 10:2418. [PMID: 31160574 PMCID: PMC6546794 DOI: 10.1038/s41467-019-10388-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
In transcriptional regulatory networks (TRNs), a canonical 3-node feed-forward loop (FFL) is hypothesized to evolve to filter out short spurious signals. We test this adaptive hypothesis against a novel null evolutionary model. Our mutational model captures the intrinsically high prevalence of weak affinity transcription factor binding sites. We also capture stochasticity and delays in gene expression that distort external signals and intrinsically generate noise. Functional FFLs evolve readily under selection for the hypothesized function but not in negative controls. Interestingly, a 4-node “diamond” motif also emerges as a short spurious signal filter. The diamond uses expression dynamics rather than path length to provide fast and slow pathways. When there is no idealized external spurious signal to filter out, but only internally generated noise, only the diamond and not the FFL evolves. While our results support the adaptive hypothesis, we also show that non-adaptive factors, including the intrinsic expression dynamics, matter. Feed‐forward loops (FFLs) can filter out noise, but whether their overrepresentation in GRNs reflects adaptive evolution for this function is debated. Here, the authors develop a null model of regulatory evolution and find that FFLs evolve readily under selection for the noise filtering function.
Collapse
|
72
|
Bi X, van Esse W, Mulki MA, Kirschner G, Zhong J, Simon R, von Korff M. CENTRORADIALIS Interacts with FLOWERING LOCUS T-Like Genes to Control Floret Development and Grain Number. PLANT PHYSIOLOGY 2019; 180:1013-1030. [PMID: 31004004 PMCID: PMC6548242 DOI: 10.1104/pp.18.01454] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/08/2019] [Indexed: 05/20/2023]
Abstract
CENTRORADIALIS (CEN) is a key regulator of flowering time and inflorescence architecture in plants. Natural variation in the barley (Hordeum vulgare) homolog HvCEN is important for agricultural range expansion of barley cultivation, but its effects on shoot and spike architecture and consequently yield have not yet been characterized. Here, we evaluated 23 independent hvcen, also termed mat-c, mutants to determine the pleiotropic effects of HvCEN on developmental timing and shoot and spike morphologies of barley under outdoor and controlled conditions. All hvcen mutants flowered early and showed a reduction in spikelet number per spike, tiller number, and yield in the outdoor experiments. Mutations in hvcen accelerated spikelet initiation and reduced axillary bud number in a photoperiod-independent manner but promoted floret development only under long days (LDs). The analysis of a flowering locus t3 (hvft3) hvcen double mutant showed that HvCEN interacts with HvFT3 to control spikelet initiation. Furthermore, early flowering3 (hvelf3) hvcen double mutants with high HvFT1 expression levels under short days suggested that HvCEN interacts with HvFT1 to repress floral development. Global transcriptome profiling in developing shoot apices and inflorescences of mutant and wild-type plants revealed that HvCEN controlled transcripts involved in chromatin remodeling activities, cytokinin and cell cycle regulation and cellular respiration under LDs and short days, whereas HvCEN affected floral homeotic genes only under LDs. Understanding the stage and organ-specific functions of HvCEN and downstream molecular networks will allow the manipulation of different shoot and spike traits and thereby yield.
Collapse
Affiliation(s)
- Xiaojing Bi
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Wilma van Esse
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Mohamed Aman Mulki
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Gwendolyn Kirschner
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs" 40225 Düsseldorf, Germany
- Institute for Developmental Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jinshun Zhong
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Rüdiger Simon
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs" 40225 Düsseldorf, Germany
- Institute for Developmental Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Maria von Korff
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences "SMART Plants for Tomorrow's Needs" 40225 Düsseldorf, Germany
| |
Collapse
|
73
|
Périlleux C, Bouché F, Randoux M, Orman-Ligeza B. Turning Meristems into Fortresses. TRENDS IN PLANT SCIENCE 2019; 24:431-442. [PMID: 30853243 DOI: 10.1016/j.tplants.2019.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 05/18/2023]
Abstract
TERMINAL FLOWER1 (TFL1) was named from knockout Arabidopsis thaliana mutants in which the inflorescence abnormally terminates into a flower. In wild type plants, the expression of TFL1 in the center of the inflorescence meristem represses the flower meristem identity genes LEAFY (LFY) and APETALA1 (AP1) to maintain indeterminacy. LFY and AP1 are activated by flowering signals that antagonize TFL1. Its characterization in numerous species revealed that the TFL1-mediated regulation of meristem fate has broader impacts on plant development than originally depicted in A. thaliana. By blocking floral transition, TFL1 genes participate in the control of juvenility, shoot growth pattern, inflorescence architecture, and the establishment of life history strategies. Here, we contextualize the role of the TFL1-mediated protection of meristem indeterminacy throughout plant development.
Collapse
Affiliation(s)
| | | | - Marie Randoux
- University of Liège, InBioS-PhytoSYSTEMS, Liège, Belgium
| | - Beata Orman-Ligeza
- University of Liège, InBioS-PhytoSYSTEMS, Liège, Belgium; Current address: National Institute of Agricultural Botany, Cambridge, UK
| |
Collapse
|
74
|
Thomson G, Taylor J, Putterill J. The transcriptomic response to a short day to long day shift in leaves of the reference legume Medicago truncatula. PeerJ 2019; 7:e6626. [PMID: 30923654 PMCID: PMC6432905 DOI: 10.7717/peerj.6626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/15/2019] [Indexed: 02/04/2023] Open
Abstract
Photoperiodic flowering aligns plant reproduction to favourable seasons of the year to maximise successful production of seeds and grains. However understanding of this process in the temperate legumes of the Fabaceae family, which are important both agriculturally and ecologically, is incomplete. Previous work in the reference legume Medicago truncatula has shown that the FT-like gene MtFTa1 is a potent floral activator. While MtFTa1 is upregulated by long-day photoperiods (LD) and vernalisation, the molecular basis of this is unknown as functional homologues of key regulatory genes present in other species, notably CONSTANS in A. thaliana, have not been identified. In LD MtFTa1 maintains a near constant diurnal pattern of expression unlike its homologue FT in A. thaliana, which has a notable peak in expression at dusk. This suggests a different manner of regulation. Furthermore, M. truncatula possesses other FT-like genes such as two LD induced MtFTb genes which may also act in the regulation of flowering time. MtFTb genes have a diurnal pattern of expression with peaks at both four and sixteen hours after dawn. This study utilises RNA-Seq to analyse the transcriptome of M. truncatula leaves to identify genes which may regulate or be co-expressed with these FT-like genes following a shift from short-day photoperiods to inductive long-days. Specifically this study focuses on the first four hours of the day in the young leaves, which coincides with the first diurnal peak of the FTb genes. Following differential expression analysis at each timepoint, genes which alter their pattern of expression are distinguished from those which just alter their magnitude of expression (and those that do neither). It goes on to categorise these genes into groups with similar patterns of expression using c-means clustering and identifies a number of potential candidate photoperiod flowering time genes for future studies to consider.
Collapse
Affiliation(s)
- Geoffrey Thomson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - James Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna Putterill
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
75
|
Luo X, Chen T, Zeng X, He D, He Y. Feedback Regulation of FLC by FLOWERING LOCUS T (FT) and FD through a 5' FLC Promoter Region in Arabidopsis. MOLECULAR PLANT 2019; 12:285-288. [PMID: 30685381 DOI: 10.1016/j.molp.2019.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/08/2018] [Accepted: 01/14/2019] [Indexed: 05/03/2023]
Affiliation(s)
- Xiao Luo
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Tao Chen
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Xiaolin Zeng
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingwei He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuehui He
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China.
| |
Collapse
|
76
|
Andres J, Blomeier T, Zurbriggen MD. Synthetic Switches and Regulatory Circuits in Plants. PLANT PHYSIOLOGY 2019; 179:862-884. [PMID: 30692218 PMCID: PMC6393786 DOI: 10.1104/pp.18.01362] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/18/2019] [Indexed: 05/20/2023]
Abstract
Synthetic biology is an established but ever-growing interdisciplinary field of research currently revolutionizing biomedicine studies and the biotech industry. The engineering of synthetic circuitry in bacterial, yeast, and animal systems prompted considerable advances for the understanding and manipulation of genetic and metabolic networks; however, their implementation in the plant field lags behind. Here, we review theoretical-experimental approaches to the engineering of synthetic chemical- and light-regulated (optogenetic) switches for the targeted interrogation and control of cellular processes, including existing applications in the plant field. We highlight the strategies for the modular assembly of genetic parts into synthetic circuits of different complexity, ranging from Boolean logic gates and oscillatory devices up to semi- and fully synthetic open- and closed-loop molecular and cellular circuits. Finally, we explore potential applications of these approaches for the engineering of novel functionalities in plants, including understanding complex signaling networks, improving crop productivity, and the production of biopharmaceuticals.
Collapse
Affiliation(s)
- Jennifer Andres
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Tim Blomeier
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, 40225 Duesseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
77
|
Moraes TS, Dornelas MC, Martinelli AP. FT/TFL1: Calibrating Plant Architecture. FRONTIERS IN PLANT SCIENCE 2019; 10:97. [PMID: 30815003 PMCID: PMC6381015 DOI: 10.3389/fpls.2019.00097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/21/2019] [Indexed: 05/14/2023]
Abstract
There is a very large diversity in plant architecture in nature. Over the past few years, novel theoretical concepts and analytical methods have emerged as powerful tools to understand important aspects of plant architecture. Plant architecture depends on the relative arrangement of three types of organs: leaves, shoots, and flowers. During plant development, the architecture is modulated by the balance of two homologous proteins: FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The FT/TFL1 balance defines the plant growth habit as indeterminate or determinate by modulating the pattern of formation of vegetative and reproductive structures in the apical and axillary meristems. Here, we present a summarized review of plant architecture and primarily focus on the FT/TFL1 balance and its effect on plant form and development. We also propose passion fruit as a suitable model plant to study the effect of FT/TFL1 genes on plant architecture.
Collapse
Affiliation(s)
- Tatiana Souza Moraes
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
| | - Marcelo Carnier Dornelas
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Adriana Pinheiro Martinelli
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil
- *Correspondence: Adriana Pinheiro Martinelli,
| |
Collapse
|
78
|
Haspolat E, Huard B, Angelova M. Deterministic and Stochastic Models of Arabidopsis thaliana Flowering. Bull Math Biol 2019; 81:277-311. [PMID: 30411251 PMCID: PMC6320361 DOI: 10.1007/s11538-018-0528-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/22/2018] [Indexed: 12/28/2022]
Abstract
Experimental studies of the flowering of Arabidopsis thaliana have shown that a large complex gene regulatory network (GRN) is responsible for its regulation. This process has been mathematically modelled with deterministic differential equations by considering the interactions between gene activators and inhibitors (Valentim et al. in PLoS ONE 10(2):e0116973, 2015; van Mourik et al. in BMC Syst Biol 4(1):1, 2010). However, due to complexity of the model, the properties of the network and the roles of the individual genes cannot be deducted from the numerical solution the published work offers. Here, we propose simplifications of the model, based on decoupling of the original GRN to motifs, described with three and two differential equations. A stable solution of the original model is sought by linearisation of the original model which contributes to further investigation of the role of the individual genes to the flowering. Furthermore, we study the role of noise by introducing and investigating two types of stochastic elements into the model. The deterministic and stochastic nonlinear dynamic models of Arabidopsis flowering time are considered by following the deterministic delayed model introduced in Valentim et al. (2015). Steady-state regimes and stability of the deterministic original model are investigated analytically and numerically. By decoupling some concentrations, the system was reduced to emphasise the role played by the transcription factor Suppressor of Overexpression of Constants1 ([Formula: see text]) and the important floral meristem identity genes, Leafy ([Formula: see text]) and Apetala1 ([Formula: see text]). Two-dimensional motifs, based on the dynamics of [Formula: see text] and [Formula: see text], are obtained from the reduced network and parameter ranges ensuring flowering are determined. Their stability analysis shows that [Formula: see text] and [Formula: see text] are regulating each other for flowering, matching experimental findings. New sufficient conditions of mean square stability in the stochastic model are obtained using a stochastic Lyapunov approach. Our numerical simulations demonstrate that the reduced models of Arabidopsis flowering time, describing specific motifs of the GRN, can capture the essential behaviour of the full system and also introduce the conditions of flowering initiation. Additionally, they show that stochastic effects can change the behaviour of the stability region through a stability switch. This study thus contributes to a better understanding of the role of [Formula: see text] and [Formula: see text] in Arabidopsis flowering.
Collapse
Affiliation(s)
- E Haspolat
- Department of Mathematics and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - B Huard
- Department of Mathematics and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - M Angelova
- School of Information Technology, Deakin University, Melbourne Burwood Campus, Burwood, VIC, 3125, Australia.
| |
Collapse
|
79
|
Gupta P, Singh SK. Gene Regulatory Networks: Current Updates and Applications in Plant Biology. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2019. [DOI: 10.1007/978-981-15-0690-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
80
|
Gursky VV, Kozlov KN, Nuzhdin SV, Samsonova MG. Dynamical Modeling of the Core Gene Network Controlling Flowering Suggests Cumulative Activation From the FLOWERING LOCUS T Gene Homologs in Chickpea. Front Genet 2018; 9:547. [PMID: 30524469 PMCID: PMC6262361 DOI: 10.3389/fgene.2018.00547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/26/2018] [Indexed: 11/13/2022] Open
Abstract
Initiation of flowering moves plants from vegetative to reproductive development. The time when this transition happens (flowering time), an important indicator of productivity, depends on both endogenous and environmental factors. The core genetic regulatory network canalizing the flowering signals to the decision to flower has been studied extensively in the model plant Arabidopsis thaliana and has been shown to preserve its main regulatory blocks in other species. It integrates activation from the FLOWERING LOCUS T (FT) gene or its homologs to the flowering decision expressed as high expression of the meristem identity genes, including AP1. We elaborated a dynamical model of this flowering gene regulatory network and applied it to the previously published expression data from two cultivars of domesticated chickpea (Cicer arietinum), obtained for two photoperiod durations. Due to a large number of free parameters in the model, we used an ensemble approach analyzing the model solutions at many parameter sets that provide equally good fit to data. Testing several alternative hypotheses about regulatory roles of the five FT homologs present in chickpea revealed no preference in segregating individual FT copies as singled-out activators with their own regulatory parameters, thus favoring the hypothesis that the five genes possess similar regulatory properties and provide cumulative activation in the network. The analysis reveals that different levels of activation from AP1 can explain a small difference observed in the expression of the two homologs of the repressor gene TFL1. Finally, the model predicts highly reduced activation between LFY and AP1, thus suggesting that this regulatory block is not conserved in chickpea and needs other mechanisms. Overall, this study provides the first attempt to quantitatively test the flowering time gene network in chickpea based on data-driven modeling.
Collapse
Affiliation(s)
- Vitaly V Gursky
- Theoretical Department, Ioffe Institute, Saint Petersburg, Russia.,Systems Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Konstantin N Kozlov
- Systems Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Sergey V Nuzhdin
- Systems Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia.,Molecular and Computational Biology, University of Southern California, Los Angeles, CA, United States
| | - Maria G Samsonova
- Systems Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
81
|
Fritsche S, Klocko AL, Boron A, Brunner AM, Thorlby G. Strategies for Engineering Reproductive Sterility in Plantation Forests. FRONTIERS IN PLANT SCIENCE 2018; 9:1671. [PMID: 30498505 PMCID: PMC6249417 DOI: 10.3389/fpls.2018.01671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/26/2018] [Indexed: 05/03/2023]
Abstract
A considerable body of research exists concerning the development of technologies to engineer sterility in forest trees. The primary driver for this work has been to mitigate concerns arising from gene flow from commercial plantings of genetically engineered (GE) trees to non-GE plantations, or to wild or feral relatives. More recently, there has been interest in the use of sterility technologies as a means to mitigate the global environmental and socio-economic damage caused by the escape of non-native invasive tree species from planted forests. The current sophisticated understanding of the molecular processes underpinning sexual reproduction in angiosperms has facilitated the successful demonstration of a number of control strategies in hardwood tree species, particularly in the model hardwood tree Poplar. Despite gymnosperm softwood trees, such as pines, making up the majority of the global planted forest estate, only pollen sterility, via cell ablation, has been demonstrated in softwoods. Progress has been limited by the lack of an endogenous model system, long timescales required for testing, and key differences between softwood reproductive pathways and those of well characterized angiosperm model systems. The availability of comprehensive genome and transcriptome resources has allowed unprecedented insights into the reproductive processes of both hardwood and softwood tree species. This increased fundamental knowledge together with the implementation of new breeding technologies, such as gene editing, which potentially face a less oppressive regulatory regime, is making the implementation of engineered sterility into commercial forestry a realistic possibility.
Collapse
Affiliation(s)
| | - Amy L. Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | | | - Amy M. Brunner
- Department of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
82
|
Jones DM, Wells R, Pullen N, Trick M, Irwin JA, Morris RJ. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:103-118. [PMID: 29989238 PMCID: PMC6175450 DOI: 10.1111/tpj.14020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy is a recurrent feature of eukaryotic evolution and has been linked to increases in complexity, adaptive radiation and speciation. Within angiosperms such events have occurred repeatedly in many plant lineages. Here we investigate the retention and spatio-temporal expression dynamics of duplicated genes predicted to regulate the floral transition in Brassica napus (oilseed rape, OSR). We show that flowering time genes are preferentially retained relative to other genes in the OSR genome. Using a transcriptome time series in two tissues (leaf and shoot apex) across development we show that 67% of these retained flowering time genes are expressed. Furthermore, between 64% (leaf) and 74% (shoot apex) of the retained gene homologues show diverged expression patterns relative to each other across development, suggesting neo- or subfunctionalization. A case study of homologues of the shoot meristem identity gene TFL1 reveals differences in cis-regulatory elements that could explain this divergence. Such differences in the expression dynamics of duplicated genes highlight the challenges involved in translating gene regulatory networks from diploid model systems to more complex polyploid crop species.
Collapse
Affiliation(s)
- D. Marc Jones
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Rachel Wells
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Nick Pullen
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Martin Trick
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Judith A. Irwin
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Richard J. Morris
- Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- Computational and Systems BiologyJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
83
|
Zhao W, Gu R, Che G, Cheng Z, Zhang X. CsTFL1b may regulate the flowering time and inflorescence architecture in cucumber (Cucumis sativus L.). Biochem Biophys Res Commun 2018; 499:307-313. [PMID: 29574158 DOI: 10.1016/j.bbrc.2018.03.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 01/22/2023]
Abstract
Cucumber is an important vegetable with indeterminate growth habit which is beneficial to its yield. In this study, we cloned the TFL1 homolog CsTFL1b in cucumber. CsTFL1b shares highly sequence similarity to TFL1 from Arabidopsis and has conservative histidine amino acid residue which is necessary for TFL1 function. However, phylogenetic analysis suggested that cucurbits TFL1s (CsTFL1b of cucumber and CmTFL1 of melon) formed a subclade which is far from the AtTFL1 in Arabidopsis or CEN in Antirrhinum. CsTFL1b was highest expressed in male flower but barely expressed in SAM which was different from TFL1 in Arabidopsis with highly transcription accumulation in SAM and CsTFL1b was located in nucleus and cytoplasm. Upon ectopic expression of CsTFL1b in Arabidopsis, the flowering time of transgenic plants was significantly delayed in both wild type and tfl1-11 mutant background but the terminal flower phenotype of tfl1-11 mutant was partially rescued. These results may underlie the discrepant function of CsTFL1b in cucumber from that in Arabidopsis.
Collapse
Affiliation(s)
- Wensheng Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ran Gu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Gen Che
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Zhihua Cheng
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
84
|
Patil HB, Chaurasia AK, Azeez A, Krishna B, Subramaniam VR, Sane AP, Sane PV. Characterization of two TERMINAL FLOWER1 homologs PgTFL1 and PgCENa from pomegranate (Punica granatum L.). TREE PHYSIOLOGY 2018; 38:772-784. [PMID: 29281116 DOI: 10.1093/treephys/tpx154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/04/2017] [Indexed: 05/27/2023]
Abstract
FLOWERING LOCUS T (FT) and TERMINAL FLOWER1/CENTRORADIALIS (TFL1/CEN) are the key regulators of flowering time in plants with FT promoting flowering and TFL1 repressing flowering. TFL1 also controls floral meristem identity and its maintenance. In this study we have characterized two pomegranate (Punica granatum L.) TFL1/CEN-like genes designated as PgTFL1 and PgCENa. The expression of PgTFL1 and PgCENa fluctuated through alternate pruning and flowering cycles, being highly expressed during the vegetative phase (immediately after pruning) and decreasing gradually in the months thereafter such that their lowest levels, especially for PgCENa coincided with the flowering phase. Both the genes are able to functionally suppress the Arabidopsis tfl1-14 mutant flowering defect. Their expression in Arabidopsis resulted in delayed flowering time, increased plant height and leaf number, branches and shoot buds as compared with wild type, suggesting that PgTFL1 and PgCENa are bonafide homologs of TFL1. However, both the genes show distinct expression patterns, being expressed differentially in vegetative shoot apex and floral bud samples. While PgTFL1 expression was low in vegetative shoot apex and high in flower bud, PgCENa expression showed the opposite trend. These results suggest that the two TFL1s in pomegranate may be utilized to control distinct developmental processes, namely repression of flowering by PgCENa and development and growth of the reproductive tissues by PgTFL1 via distinct temporal and developmental regulation of their expression.
Collapse
Affiliation(s)
- Hemant B Patil
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Akhilesh K Chaurasia
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Abdul Azeez
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Bal Krishna
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - V R Subramaniam
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Prafullachandra V Sane
- Plant Molecular Biology Lab, Jain R&D Lab, Jain Hills, Jain Irrigation Systems Limited, Jalgaon 425001, India
| |
Collapse
|
85
|
Agliassa C, Narayana R, Bertea CM, Rodgers CT, Maffei ME. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes. Bioelectromagnetics 2018; 39:361-374. [PMID: 29709075 PMCID: PMC6032911 DOI: 10.1002/bem.22123] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
Variations in magnetic field (MF) intensity are known to induce plant morphological and gene expression changes. In Arabidopsis thaliana Col‐0, near‐null magnetic field (NNMF, i.e., <100 nT MF) causes a delay in the transition to flowering, but the expression of genes involved in this response has been poorly studied. Here, we showed a time‐course quantitative analysis of the expression of both leaf (including clock genes, photoperiod pathway, GA20ox, SVP, and vernalization pathway) and floral meristem (including GA2ox, SOC1, AGL24, LFY, AP1, FD, and FLC) genes involved in the transition to flowering in A. thaliana under NNMF. NNMF induced a delayed flowering time and a significant reduction of leaf area index and flowering stem length, with respect to controls under geomagnetic field. Generation experiments (F1‐ and F2‐NNMF) showed retention of flowering delay. The quantitative expression (qPCR) of some A. thaliana genes expressed in leaves and floral meristem was studied during transition to flowering. In leaves and flowering meristem, NNMF caused an early downregulation of clock, photoperiod, gibberellin, and vernalization pathways and a later downregulation of TSF, AP1, and FLC. In the floral meristem, the downregulation of AP1, AGL24, FT, and FLC in early phases of floral development was accompanied by a downregulation of the gibberellin pathway. The progressive upregulation of AGL24 and AP1 was also correlated to the delayed flowering by NNMF. The flowering delay is associated with the strong downregulation of FT, FLC, and GA20ox in the floral meristem and FT, TSF, FLC, and GA20ox in leaves. Bioelectromagnetics. 39:361–374, 2018. © 2018 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Agliassa
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Cinzia M Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Christopher T Rodgers
- The Wolfson Brain Imaging Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
86
|
Higuchi Y. Florigen and anti-florigen: flowering regulation in horticultural crops. BREEDING SCIENCE 2018; 68:109-118. [PMID: 29681753 PMCID: PMC5903977 DOI: 10.1270/jsbbs.17084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/17/2017] [Indexed: 05/20/2023]
Abstract
Flowering time regulation has significant effects on the agricultural and horticultural industries. Plants respond to changing environments and produce appropriate floral inducers (florigens) or inhibitors (anti-florigens) that determine flowering time. Recent studies have demonstrated that members of two homologous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1), act as florigen and anti-florigen, respectively. Studies in diverse plant species have revealed universal but diverse roles of the FT/TFL1 gene family in many developmental processes. Recent studies in several crop species have revealed that modification of flowering responses, either due to mutations in the florigen/anti-florigen gene itself, or by modulation of the regulatory pathway, is crucial for crop domestication. The FT/TFL1 gene family could be an important potential breeding target in many crop species.
Collapse
|
87
|
Van den Broeck L, Dubois M, Vermeersch M, Storme V, Matsui M, Inzé D. From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress. Mol Syst Biol 2017; 13:961. [PMID: 29269383 PMCID: PMC5740496 DOI: 10.15252/msb.20177840] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plants have established different mechanisms to cope with environmental fluctuations and accordingly fine-tune their growth and development through the regulation of complex molecular networks. It is largely unknown how the network architectures change and what the key regulators in stress responses and plant growth are. Here, we investigated a complex, highly interconnected network of 20 Arabidopsis transcription factors (TFs) at the basis of leaf growth inhibition upon mild osmotic stress. We tracked the dynamic behavior of the stress-responsive TFs over time, showing the rapid induction following stress treatment, specifically in growing leaves. The connections between the TFs were uncovered using inducible overexpression lines and were validated with transient expression assays. This study resulted in the identification of a core network, composed of ERF6, ERF8, ERF9, ERF59, and ERF98, which is responsible for most transcriptional connections. The analyses highlight the biological function of this core network in environmental adaptation and its redundancy. Finally, a phenotypic analysis of loss-of-function and gain-of-function lines of the transcription factors established multiple connections between the stress-responsive network and leaf growth.
Collapse
Affiliation(s)
- Lisa Van den Broeck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium .,VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
88
|
Martinez-Pastor M, Lancaster WA, Tonner PD, Adams MWW, Schmid AK. A transcription network of interlocking positive feedback loops maintains intracellular iron balance in archaea. Nucleic Acids Res 2017; 45:9990-10001. [PMID: 28973467 PMCID: PMC5737653 DOI: 10.1093/nar/gkx662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Iron is required for key metabolic processes but is toxic in excess. This circumstance forces organisms across the tree of life to tightly regulate iron homeostasis. In hypersaline lakes dominated by archaeal species, iron levels are extremely low and subject to environmental change; however, mechanisms regulating iron homeostasis in archaea remain unclear. In previous work, we demonstrated that two transcription factors (TFs), Idr1 and Idr2, collaboratively regulate aspects of iron homeostasis in the model species Halobacterium salinarum. Here we show that Idr1 and Idr2 are part of an extended regulatory network of four TFs of the bacterial DtxR family that maintains intracellular iron balance. We demonstrate that each TF directly regulates at least one of the other DtxR TFs at the level of transcription. Dynamical modeling revealed interlocking positive feedback loop architecture, which exhibits bistable or oscillatory network dynamics depending on iron availability. TF knockout mutant phenotypes are consistent with model predictions. Together, our results support that this network regulates iron homeostasis despite variation in extracellular iron levels, consistent with dynamical properties of interlocking feedback architecture in eukaryotes. These results suggest that archaea use bacterial-type TFs in a eukaryotic regulatory network topology to adapt to harsh environments.
Collapse
Affiliation(s)
| | - W Andrew Lancaster
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Peter D Tonner
- Computational Biology and Bioinformatics Graduate Program, Duke University, Durham, NC 27708, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA.,Computational Biology and Bioinformatics Graduate Program, Duke University, Durham, NC 27708, USA.,Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
89
|
Goralogia GS, Liu T, Zhao L, Panipinto PM, Groover ED, Bains YS, Imaizumi T. CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:244-262. [PMID: 28752516 PMCID: PMC5634919 DOI: 10.1111/tpj.13649] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 05/18/2023]
Abstract
CYCLING DOF FACTOR 1 (CDF1) and its homologs play an important role in the floral transition by repressing the expression of floral activator genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) in Arabidopsis. The day-length-specific removal of CDF1-dependent repression is a critical mechanism in photoperiodic flowering. However, the mechanism by which CDF1 represses CO and FT transcription remained elusive. Here we demonstrate that Arabidopsis CDF proteins contain non-EAR motif-like conserved domains required for interaction with the TOPLESS (TPL) co-repressor protein. This TPL interaction confers a repressive function on CDF1, as mutations of the N-terminal TPL binding domain largely impair the ability of CDF1 protein to repress its targets. TPL proteins are present on specific regions of the CO and FT promoters where CDF1 binds during the morning. In addition, TPL binding increases when CDF1 expression is elevated, suggesting that TPL is recruited to these promoters in a time-dependent fashion by CDFs. Moreover, reduction of TPL activity induced by expressing a dominant negative version of TPL (tpl-1) in phloem companion cells results in early flowering and a decreased sensitivity to photoperiod in a manner similar to a cdf loss-of-function mutant. Our results indicate that the mechanism of CDF1 repression is through the formation of a CDF-TPL transcriptional complex, which reduces the expression levels of CO and FT during the morning for seasonal flowering.
Collapse
Affiliation(s)
- Greg S. Goralogia
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Tongkun Liu
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Zhao
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China
| | - Paul M. Panipinto
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Evan D. Groover
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Yashkarn S. Bains
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
- For correspondence:
| |
Collapse
|
90
|
Ezer D, Shepherd SJK, Brestovitsky A, Dickinson P, Cortijo S, Charoensawan V, Box MS, Biswas S, Jaeger KE, Wigge PA. The G-Box Transcriptional Regulatory Code in Arabidopsis. PLANT PHYSIOLOGY 2017; 175:628-640. [PMID: 28864470 PMCID: PMC5619884 DOI: 10.1104/pp.17.01086] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/30/2017] [Indexed: 05/19/2023]
Abstract
Plants have significantly more transcription factor (TF) families than animals and fungi, and plant TF families tend to contain more genes; these expansions are linked to adaptation to environmental stressors. Many TF family members bind to similar or identical sequence motifs, such as G-boxes (CACGTG), so it is difficult to predict regulatory relationships. We determined that the flanking sequences near G-boxes help determine in vitro specificity but that this is insufficient to predict the transcription pattern of genes near G-boxes. Therefore, we constructed a gene regulatory network that identifies the set of bZIPs and bHLHs that are most predictive of the expression of genes downstream of perfect G-boxes. This network accurately predicts transcriptional patterns and reconstructs known regulatory subnetworks. Finally, we present Ara-BOX-cis (araboxcis.org), a Web site that provides interactive visualizations of the G-box regulatory network, a useful resource for generating predictions for gene regulatory relations.
Collapse
Affiliation(s)
- Daphne Ezer
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Samuel J K Shepherd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Anna Brestovitsky
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Patrick Dickinson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Varodom Charoensawan
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience Center, Mahidol University, Bangkok 10400, Thailand
| | - Mathew S Box
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Surojit Biswas
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Katja E Jaeger
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
91
|
Ma Q, Liu X, Franks RG, Xiang QYJ. Alterations of CorTFL1 and CorAP1 expression correlate with major evolutionary shifts of inflorescence architecture in Cornus (Cornaceae) - a proposed model for variation of closed inflorescence forms. THE NEW PHYTOLOGIST 2017; 216:519-535. [PMID: 27662246 DOI: 10.1111/nph.14197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
TFL1-, AP1- and LFY-like genes are known to be key regulators of inflorescence development. However, it remains to be tested whether the evolutionary modifications of inflorescence morphology result from shifts in their expression patterns. We compared the spatiotemporal expression patterns of CorTFL1, CorAP1 and CorLFY in six closely related Cornus species that display four types of closed inflorescence morphology using quantitative real-time polymerase chain reaction (qRT-PCR) and RNA in situ hybridization. Character mapping on the phylogeny was conducted to identify evolutionary changes and to assess the correlation between changes in gene expression and inflorescence morphology. Results demonstrated variation of gene expression patterns among species and a strong correlation between CorTFL1 expression and the branch index of the inflorescence type. Evolutionary changes in CorTFL1 and CorAP1 expression co-occurred on the phylogeny with the morphological changes underpinning inflorescence divergence. The study found a clear correlation between the expression patterns of CorTFL1 and CorAP1 and the inflorescence architecture in a natural system displaying closed inflorescences. The results suggest a role for the alteration in CorTFL1 and CorAP1 expression during the evolutionary modification of inflorescences in Cornus. We propose that a TFL1-like and AP1-like gene-based model may explain variation of closed inflorescences in Cornus and other lineages.
Collapse
Affiliation(s)
- Qing Ma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
- Key laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Liu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| |
Collapse
|
92
|
The logic of the floral transition: Reverse-engineering the switch controlling the identity of lateral organs. PLoS Comput Biol 2017; 13:e1005744. [PMID: 28931004 PMCID: PMC5624648 DOI: 10.1371/journal.pcbi.1005744] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 10/02/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Much laboratory work has been carried out to determine the gene regulatory network (GRN) that results in plant cells becoming flowers instead of leaves. However, this also involves the spatial distribution of different cell types, and poses the question of whether alternative networks could produce the same set of observed results. This issue has been addressed here through a survey of the published intercellular distribution of expressed regulatory genes and techniques both developed and applied to Boolean network models. This has uncovered a large number of models which are compatible with the currently available data. An exhaustive exploration had some success but proved to be unfeasible due to the massive number of alternative models, so genetic programming algorithms have also been employed. This approach allows exploration on the basis of both data-fitting criteria and parsimony of the regulatory processes, ruling out biologically unrealistic mechanisms. One of the conclusions is that, despite the multiplicity of acceptable models, an overall structure dominates, with differences mostly in alternative fine-grained regulatory interactions. The overall structure confirms the known interactions, including some that were not present in the training set, showing that current data are sufficient to determine the overall structure of the GRN. The model stresses the importance of relative spatial location, through explicit references to this aspect. This approach also provides a quantitative indication of how likely some regulatory interactions might be, and can be applied to the study of other developmental transitions.
Collapse
|
93
|
Samodelov SL, Zurbriggen MD. Quantitatively Understanding Plant Signaling: Novel Theoretical-Experimental Approaches. TRENDS IN PLANT SCIENCE 2017; 22:685-704. [PMID: 28668509 DOI: 10.1016/j.tplants.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
With the need to respond to and integrate a multitude of external and internal stimuli, plant signaling is highly complex, exhibiting signaling component redundancy and high interconnectedness between individual pathways. We review here novel theoretical-experimental approaches in manipulating plant signaling towards the goal of a comprehensive understanding and targeted quantitative control of plant processes. We highlight approaches taken in the field of synthetic biology used in other systems and discuss their applicability in plants. Finally, we introduce existing tools for the quantitative analysis and monitoring of plant signaling and the integration of experimentally obtained quantitative data into mathematical models. Incorporating principles of synthetic biology into plant sciences more widely will lead this field forward in both fundamental and applied research.
Collapse
Affiliation(s)
- Sophia L Samodelov
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Düsseldorf, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
94
|
Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V, Cortijo S, Lai X, Stöckle D, Zubieta C, Jaeger KE, Wigge PA. The evening complex coordinates environmental and endogenous signals in Arabidopsis. NATURE PLANTS 2017; 3:17087. [PMID: 28650433 PMCID: PMC5495178 DOI: 10.1038/nplants.2017.87] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
Plants maximize their fitness by adjusting their growth and development in response to signals such as light and temperature. The circadian clock provides a mechanism for plants to anticipate events such as sunrise and adjust their transcriptional programmes. However, the underlying mechanisms by which plants coordinate environmental signals with endogenous pathways are not fully understood. Using RNA-sequencing and chromatin immunoprecipitation sequencing experiments, we show that the evening complex (EC) of the circadian clock plays a major role in directly coordinating the expression of hundreds of key regulators of photosynthesis, the circadian clock, phytohormone signalling, growth and response to the environment. We find that the ability of the EC to bind targets genome-wide depends on temperature. In addition, co-occurrence of phytochrome B (phyB) at multiple sites where the EC is bound provides a mechanism for integrating environmental information. Hence, our results show that the EC plays a central role in coordinating endogenous and environmental signals in Arabidopsis.
Collapse
Affiliation(s)
- Daphne Ezer
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Hui Lan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Surojit Biswas
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Laura Gregoire
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Mathew S. Box
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Varodom Charoensawan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) center, Mahidol University, Bangkok 10400, Thailand
| | - Sandra Cortijo
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Xuelei Lai
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Dorothee Stöckle
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Chloe Zubieta
- LPCV, CNRS, CEA, INRA, Univ. Grenoble Alpes, BIG, 38000, Grenoble, France
| | - Katja E. Jaeger
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
| | - Philip A. Wigge
- Sainsbury Laboratory, University of Cambridge, 47 Bateman St., Cambridge CB2 1LR, UK
- Correspondence to:
| |
Collapse
|
95
|
van Dijk ADJ, Molenaar J. Floral pathway integrator gene expression mediates gradual transmission of environmental and endogenous cues to flowering time. PeerJ 2017; 5:e3197. [PMID: 28439467 PMCID: PMC5399868 DOI: 10.7717/peerj.3197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/17/2017] [Indexed: 11/20/2022] Open
Abstract
The appropriate timing of flowering is crucial for the reproductive success of plants. Hence, intricate genetic networks integrate various environmental and endogenous cues such as temperature or hormonal statues. These signals integrate into a network of floral pathway integrator genes. At a quantitative level, it is currently unclear how the impact of genetic variation in signaling pathways on flowering time is mediated by floral pathway integrator genes. Here, using datasets available from literature, we connect Arabidopsis thaliana flowering time in genetic backgrounds varying in upstream signalling components with the expression levels of floral pathway integrator genes in these genetic backgrounds. Our modelling results indicate that flowering time depends in a quite linear way on expression levels of floral pathway integrator genes. This gradual, proportional response of flowering time to upstream changes enables a gradual adaptation to changing environmental factors such as temperature and light.
Collapse
Affiliation(s)
- Aalt D J van Dijk
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands.,Laboratory of Bioinformatics, Wageningen University, Wageningen, The Netherlands.,Bioscience, Wageningen University and Research, Wageningen, The Netherlands
| | - Jaap Molenaar
- Biometris, Department for Mathematical and Statistical Methods, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
96
|
Conti L. Hormonal control of the floral transition: Can one catch them all? Dev Biol 2017; 430:288-301. [PMID: 28351648 DOI: 10.1016/j.ydbio.2017.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/05/2023]
Abstract
The transition to flowering marks a key adaptive developmental switch in plants which impacts on their survival and fitness. Different signaling pathways control the floral transition, conveying both endogenous and environmental cues. These cues are often relayed and/or modulated by different hormones, which might confer additional developmental flexibility to the floral process in the face of varying conditions. Among the different hormonal pathways, the phytohormone gibberellic acid (GA) plays a dominant role. GA is connected with the other floral pathways through the GA-regulated DELLA proteins, acting as versatile interacting modules for different signaling proteins. In this review, I will highlight the role of DELLAs as spatial and temporal modulators of different consolidated floral pathways. Next, building on recent data, I will provide an update on some emerging themes connecting other hormone signaling cascades to flowering time control. I will finally provide examples for some established as well as potential cross-regulatory mechanisms between hormonal pathways mediated by the DELLA proteins.
Collapse
Affiliation(s)
- Lucio Conti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
97
|
Jang S, Li HY, Kuo ML. Ectopic expression of Arabidopsis FD and FD PARALOGUE in rice results in dwarfism with size reduction of spikelets. Sci Rep 2017; 7:44477. [PMID: 28290557 PMCID: PMC5349553 DOI: 10.1038/srep44477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/09/2017] [Indexed: 11/14/2022] Open
Abstract
Key flowering genes, FD and FD PARALOGUE (FDP) encoding bZIP transcription factors that interact with a FLOWERING LOCUS T (FT) in Arabidopsis were ectopically expressed in rice since we found AtFD and AtFDP also interact with HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1). Transgenic rice plants overexpressing AtFD and AtFDP caused reduction in plant height and spikelet size with decreased expression of genes involved in cell elongation without significant flowering time alteration in spite of increased expression of OsMADS14 and OsMADS15, rice homologues of APETALA1 (AP1) in the leaves. Simultaneous overexpression of AtFD and AtFDP enhanced phenotypes seen with overexpression of either single gene while transgenic rice plants expressing AtFD or AtFDP under the control of phloem-specific Hd3a promoter were indistinguishable from wild-type rice. Candidate genes responsible for the phenotypes were identified by comparison of microarray hybridization and their expression pattern was also examined in WT and transgenic rice plants. It has so far not been reported that AtFD and AtFDP affect cell elongation in plants, and our findings provide novel insight into the possible roles of AtFD and AtFDP in the mesophyll cells of plants, and potential genetic tools for manipulation of crop architecture.
Collapse
Affiliation(s)
- Seonghoe Jang
- Biotechnology Center in Southern Taiwan (BCST), No. 59 Siraya Blvd., Xinshi Dist., Tainan 74145/Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
- Institute of Tropical Plant Science, National Cheng Kung University, No. 1 University Road, East Dist., Tainan 70101, Taiwan
| | - Hsing-Yi Li
- Biotechnology Center in Southern Taiwan (BCST), No. 59 Siraya Blvd., Xinshi Dist., Tainan 74145/Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Mei-Lin Kuo
- Biotechnology Center in Southern Taiwan (BCST), No. 59 Siraya Blvd., Xinshi Dist., Tainan 74145/Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
98
|
Regulation of FT splicing by an endogenous cue in temperate grasses. Nat Commun 2017; 8:14320. [PMID: 28145403 PMCID: PMC5296679 DOI: 10.1038/ncomms14320] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
Appropriate flowering timing is crucial for plant reproductive success. The florigen, FLOWERING LOCUS T (FT), interacts with 14-3-3 proteins and the bZIP transcription factor FD, functioning at core nodes in multiple flowering pathways. There are two FT homologues, FT1 and FT2, in Brachypodium distachyon. Here we show that FT2 undergoes age-dependent alternative splicing (AS), resulting in two splice variants (FT2α and FT2β). The FT2β-encoded protein cannot interact with FD or 14-3-3s but is able to form heterodimers with FT2α and FT1, thereby interfering with the florigen-mediated assembly of the flowering initiation complex. Notably, transgenic plants overproducing FT2β exhibit delayed flowering, while transgenic plants in which FT2β is silenced by an artificial microRNA display accelerated flowering, demonstrating a dominant-negative role of FT2β in flowering induction. Furthermore, we show that the AS splicing of FT2 is conserved in important cereal crops, such as barley and wheat. Collectively, these findings reveal a novel posttranscriptional mode of FT regulation in temperate grasses.
Collapse
|
99
|
Espinosa MEÁ, Moreira RO, Lima AA, Ságio SA, Barreto HG, Luiz SLP, Abreu CEA, Yanes-Paz E, Ruíz YC, González-Olmedo JL, Chalfun-Júnior A. Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction. JOURNAL OF PLANT PHYSIOLOGY 2017; 209:11-19. [PMID: 27988471 DOI: 10.1016/j.jplph.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Natural flowering can cause serious scheduling problems in the pineapple (Ananas comosus) industry and increase harvest costs. Pineapple flowering is thought to be triggered by increased ethylene levels and artificial forcing of pineapple flowering is a common practice to promote flowering synchronisation. However, little is known about the early hormonal and molecular changes of pineapple flowering induction and development. Here, we aimed to analyse the molecular, hormonal, and histological changes during artificial pineapple flowering by Ethrel®48 treatment. Histological analyses of the shoot apical meristem, leaf gibberellic acid (GA3), and ethylene quantification were carried out during the first 72h after Ethrel®48 treatment. Expression profiles from ethylene biosynthesis (AcACS2 and AcACO1), gibberellin metabolism (AcGA2-ox1 and AcDELLA1), and flower development (FT-like gene (AcFT), LFY-like gene (AcLFY), and a PISTILLATA-like gene (AcPI)) genes were analysed during the first 24h after Ethrel®48 treatment. Differentiation processes of the shoot apical meristem into flower buds were already present in the first 72h after Ethrel®48 treatment. Ethrel®48 lead to a reduction in GA3 levels, probably triggered by elevated ethylene levels and the positive regulation AcGA2-ox1. AcLFY activation upon Ethrel®48 may also have contributed to the reduction of GA3 levels and, along with the up-regulation of AcPI, are probably associated with the flower induction activation. AcFT and AcDELLA1 do not seem to be regulated by GA3 and ethylene. Decreased GA3 and increased ethylene levels suggest an accumulation of AcDELLA1, which may display an important role in pineapple flowering induction. Thus, this study shows that molecular, hormonal, and histological changes are present right after Ethrel®48 treatment, providing new insights into how pineapple flowering occurs under natural conditions.
Collapse
Affiliation(s)
| | - Rafael Oliveira Moreira
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - André Almeida Lima
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | | | - Horllys Gomes Barreto
- Federal University of Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, Brazil
| | | | | | | | | | | | - Antonio Chalfun-Júnior
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil.
| |
Collapse
|
100
|
Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP. Photoperiod- and temperature-mediated control of phenology in trees - a molecular perspective. THE NEW PHYTOLOGIST 2017; 213:511-524. [PMID: 27901272 DOI: 10.1111/nph.14346] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/07/2016] [Indexed: 05/17/2023]
Abstract
Contents 511 I. 511 II. 512 III. 513 IV. 513 V. 517 VI. 517 VII. 521 VIII. 521 Acknowledgements 521 References 521 SUMMARY: Trees growing in boreal and temperate regions synchronize their growth with seasonal climatic changes in adaptive responses that are essential for their survival. These trees cease growth before the winter and establish a dormant state during which growth cessation is maintained by repression of responses to growth-promotive signals. Reactivation of growth in the spring follows the release from dormancy promoted by prolonged exposure to low temperature during the winter. The timing of the key events and regulation of the molecular programs associated with the key stages of the annual growth cycle are controlled by two main environmental cues: photoperiod and temperature. Recently, key components mediating photoperiodic control of growth cessation and bud set have been identified, and striking similarities have been observed in signaling pathways controlling growth cessation in trees and floral transition in Arabidopsis. Although less well understood, the regulation of bud dormancy and bud burst may involve cell-cell communication and chromatin remodeling. Here, we discuss current knowledge of the molecular-level regulation of the annual growth cycle of woody trees in temperate and boreal regions, and identify key questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83, Umeå, Sweden
| | - Tetiana Svystun
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62, Lund, Sweden
| | - Badr AlDahmash
- College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Anna Maria Jönsson
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62, Lund, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83, Umeå, Sweden
- College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|