51
|
Chakraborty J, Priya P, Dastidar SG, Das S. Physical interaction between nuclear accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt resistance in chickpea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:111-133. [PMID: 30348309 DOI: 10.1016/j.plantsci.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Fusarium wilt is one of the most serious diseases affecting chickpea (Cicer arietinum L.). Here, we identified a putative Resistance Gene Analog (CaRGA) from chickpea, encoding a coiled-coil (CC) nucleotide-binding oligomerization domain (NB-ARC) containing leucine-rich repeat (LRR) protein (CC-NLR protein) that confers resistance against Fusarium oxysporum f. sp. ciceri race1 (Foc1). Over-expression and silencing of CaRGA in chickpea resulted in enhanced resistance and hyper-susceptibility, respectively against Foc1. Furthermore, defense response to Foc1 depends on CC-NLR interaction with WRKY64 transcription factor. CaRGA mediated wilt resistance largely compromised when WRKY64 was silenced. We also determined in planta intramolecular interactions and self-association of chickpea CC-NLR protein. The study shows CC domain suppressing auto-activation of the full-length CC-NLR protein in the absence of pathogen through self-inhibitory intramolecular interaction with NB-ARC domain, which is attenuated by self-interactions to LRR domain. Chickpea CC-NLR protein forms homocomplexes and then interacts with WRKY64. CC-NLR protein further phosphorylates WRKY64 thereby, ubiquitination and proteasome mediated degradation are protected. Phosphorylated WRKY64 with increased stability binds to EDS1 promoter and stimulates its transcription that induces in planta ectopic cell-death. The detailed analysis of CC-NLR and WRKY interactions provide a better understanding of the immune regulation by NLR proteins under biotic stresses.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Prerna Priya
- Centre of Excellence in Bioinformatics, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Shubhra Ghosh Dastidar
- Centre of Excellence in Bioinformatics, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute, Centenary Campus, P-1/12, CIT Scheme-VIIM, Kankurgachi, Kolkata 700054, West Bengal, India.
| |
Collapse
|
52
|
Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease Resistance Mechanisms in Plants. Genes (Basel) 2018; 9:E339. [PMID: 29973557 PMCID: PMC6071103 DOI: 10.3390/genes9070339] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Plants have developed a complex defense system against diverse pests and pathogens. Once pathogens overcome mechanical barriers to infection, plant receptors initiate signaling pathways driving the expression of defense response genes. Plant immune systems rely on their ability to recognize enemy molecules, carry out signal transduction, and respond defensively through pathways involving many genes and their products. Pathogens actively attempt to evade and interfere with response pathways, selecting for a decentralized, multicomponent immune system. Recent advances in molecular techniques have greatly expanded our understanding of plant immunity, largely driven by potential application to agricultural systems. Here, we review the major plant immune system components, state of the art knowledge, and future direction of research on plant⁻pathogen interactions. In our review, we will discuss how the decentralization of plant immune systems have provided both increased evolutionary opportunity for pathogen resistance, as well as additional mechanisms for pathogen inhibition of such defense responses. We conclude that the rapid advances in bioinformatics and molecular biology are driving an explosion of information that will advance agricultural production and illustrate how complex molecular interactions evolve.
Collapse
Affiliation(s)
- Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Shaukat Ali
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Emmanuel Byamukama
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| |
Collapse
|
53
|
Cesari S. Multiple strategies for pathogen perception by plant immune receptors. THE NEW PHYTOLOGIST 2018; 219:17-24. [PMID: 29131341 DOI: 10.1111/nph.14877] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/15/2017] [Indexed: 05/20/2023]
Abstract
Contents Summary 17 I. Introduction 17 II. Pathogen perception by NLRs: from direct recognition to integrated decoys 18 III. Multiple activation and signaling pathways for NLRs 18 IV. How to engineer NLR-mediated disease resistance? 21 V. Conclusion 23 Acknowledgements 23 References 23 SUMMARY: Plants have evolved a complex immune system to protect themselves against phytopathogens. A major class of plant immune receptors called nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs) is ubiquitous in plants and is widely used for crop disease protection, making these proteins critical contributors to global food security. Until recently, NLRs were thought to be conserved in their modular architecture and functional features. Investigation of their biochemical, functional and structural properties has revealed fascinating mechanisms that enable these proteins to perceive a wide range of pathogens. Here, I review recent insights demonstrating that NLRs are more mechanistically and structurally diverse than previously thought. I also discuss how these findings provide exciting future prospects to improve plant disease resistance.
Collapse
Affiliation(s)
- Stella Cesari
- Institut National de la Recherche Agronomique, UMR de Biologie et Génétique des Interactions Plante-Pathogènes, TA A-54/K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| |
Collapse
|
54
|
Yu D, Liao L, Zhang Y, Xu K, Zhang J, Liu K, Li X, Tan G, Zheng J, He Y, Xu C, Zhao J, Fu B, Xie J, Mao J, Li C. Development of a Gateway-compatible pCAMBIA binary vector for RNAi-mediated gene knockdown in plants. Plasmid 2018; 98:52-55. [PMID: 30201136 DOI: 10.1016/j.plasmid.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 11/24/2022]
Abstract
RNA interference (RNAi), based on hairpin RNA (hpRNA) expression, plays an important role in functional analysis of plant genes. Traditional methods for making RNAi constructs usually involve multiple time-consuming cloning steps. We have developed a Gateway-compatible binary vector for RNAi-mediated gene knockdown in plants from pCAMBIA2301 and pHANNIBAL vectors. The new plant RNAi binary vector, named pCAMBIA2301-GW-RNAi, has two inverted repeated Gateway cassettes driven by the cauliflower mosaic virus 35S (CaMV 35S) promoter. This enables site-specific recombination at two sites by one Gateway LR reaction without restriction enzymes and ligases. The pCAMBIA2301-GW-RNAi vector's effectiveness was evaluated by Agrobacterium-mediated transient co-expression assays of overexpression and silencing constructs of HvCEBiP in Nicotiana benthamiana followed by western blot analysis. Obtained results show that the developed RNAi vector successfully knocked down 35S-driven expression of HvCEBiP, as expression levels of the encoded HvCEBiP protein were significantly reduced.
Collapse
Affiliation(s)
- Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Libing Liao
- Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Ju Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Kun Liu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Guangxuan Tan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Jurui Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yong He
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Changling Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jinjin Zhao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Beibei Fu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jiaxing Xie
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jie Mao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Chengwei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
55
|
A novel, easy and rapid method for constructing yeast two-hybrid vectors using In-Fusion technology. Biotechniques 2018; 64:219-224. [PMID: 29673256 DOI: 10.2144/btn-2018-0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Yeast two-hybrid systems are powerful tools for analyzing interactions between proteins. Vector construction is an essential step in yeast two-hybrid experiments, which require bait and prey plasmids. In this study, we modified the multiple cloning site sequence of the yeast plasmid pGADT7 by site-directed mutagenesis PCR to generate the pGADT7-In vector, which resulted in an easy and rapid method for constructing yeast two-hybrid vectors using the In-Fusion cloning technique. This method has three key advantages: only one pair of primers and one round of PCR are needed to generate bait and prey plasmids for each gene, it is restriction endonuclease- and ligase-independent, and it is fast and easily performed.
Collapse
|
56
|
Chen S, Zhang W, Bolus S, Rouse MN, Dubcovsky J. Identification and characterization of wheat stem rust resistance gene Sr21 effective against the Ug99 race group at high temperature. PLoS Genet 2018; 14:e1007287. [PMID: 29614079 PMCID: PMC5882135 DOI: 10.1371/journal.pgen.1007287] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/05/2018] [Indexed: 11/24/2022] Open
Abstract
Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a devastating foliar disease. The Ug99 race group has combined virulence to most stem rust (Sr) resistance genes deployed in wheat and is a threat to global wheat production. Here we identified a coiled-coil, nucleotide-binding leucine-rich repeat protein (NLR) completely linked to the Ug99 resistance gene Sr21 from Triticum monococcum. Loss-of-function mutations and transgenic complementation confirmed that this gene is Sr21. Sr21 transcripts were significantly higher at high temperatures, and this was associated with significant upregulation of pathogenesis related (PR) genes and increased levels of resistance at those temperatures. Introgression of Sr21 into hexaploid wheat resulted in lower levels of resistance than in diploid wheat, but transgenic hexaploid wheat lines with high levels of Sr21 expression showed high levels of resistance. Sr21 can be a valuable component of transgenic cassettes or gene pyramids combining multiple resistance genes against Ug99. Wheat stem rust is a devastating disease that is threatening global wheat production. The emergence of new virulent races of this pathogen in Africa, including the Ug99 race group, has prompted global efforts to find effective resistance genes. We report here the identification of stem rust resistance gene Sr21 that is effective against the Ug99 race group. We developed a diagnostic marker to accelerate its deployment in wheat breeding programs and demonstrated that the introduction of two Sr21 copies in transgenic wheat results in high levels of resistance. An unusual characteristic of Sr21 is its increased resistance to stem rust at high temperatures. We show here that this is associated with the ability of Sr21 to coordinate the upregulation of multiple pathogenesis related genes at high temperatures. These genes slow down the growth of the pathogen and result in the characteristic Sr21 intermediate resistance reaction at high temperatures. A better understanding of this temperature dependent resistance mechanism will be useful for controlling the rust pathogens in our changing environments.
Collapse
Affiliation(s)
- Shisheng Chen
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States of America
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States of America
| | - Stephen Bolus
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States of America
| | - Matthew N Rouse
- USDA-ARS Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| |
Collapse
|
57
|
Townsend PD, Dixon CH, Slootweg EJ, Sukarta OCA, Yang AWH, Hughes TR, Sharples GJ, Pålsson LO, Takken FLW, Goverse A, Cann MJ. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. J Biol Chem 2018; 293:3218-3233. [PMID: 29217772 PMCID: PMC5836133 DOI: 10.1074/jbc.ra117.000485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming, and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further able to bind and distort double-stranded DNA. However, Rx1 host targets that support a role for Rx1 in transcriptional reprogramming at DNA are unknown. Here, we report a functional interaction between Rx1 and NbGlk1, a Golden2-like transcription factor. Rx1 binds to NbGlk1 in vitro and in planta. NbGlk1 binds to known Golden2-like consensus DNA sequences. Rx1 reduces the binding affinity of NbGlk1 for DNA in vitro. NbGlk1 activates cellular responses to potato virus X, whereas Rx1 associates with NbGlk1 and prevents its assembly on DNA in planta unless activated by PVX. This study provides new mechanistic insight into how an NLR can coordinate an immune signaling response at DNA following pathogen perceptions.
Collapse
Affiliation(s)
- Philip D Townsend
- From the Department of Biosciences
- Biophysical Sciences Institute, and
| | | | - Erik J Slootweg
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Octavina C A Sukarta
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Ally W H Yang
- the Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada, and
| | - Timothy R Hughes
- the Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada, and
| | - Gary J Sharples
- From the Department of Biosciences
- Biophysical Sciences Institute, and
| | - Lars-Olof Pålsson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aska Goverse
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martin J Cann
- From the Department of Biosciences,
- Biophysical Sciences Institute, and
| |
Collapse
|
58
|
Kong L, Chang C. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f.sp. tritici by interfering with very-long-chain aldehyde biosynthesis. PLANT MOLECULAR BIOLOGY 2018; 96:165-178. [PMID: 29197938 DOI: 10.1007/s11103-017-0687-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/27/2017] [Indexed: 05/29/2023]
Abstract
Wheat TaCDK8 interacts with TaWIN1 to regulate very-long-chain aldehyde biosynthesis required for efficient germination of Blumeria graminis f.sp. tritici. Powdery mildew caused by Blumeria graminis f.sp. tritici (Bgt) is a devastating disease of common wheat (Triticum aestivum L.). Bgt infection initiates with its conidia germination on the aerial surface of wheat. In this study, we isolated the cyclin-dependent kinase 8 (TaCDK8) from wheat cultivar Jing411 and found that silencing of TaCDK8 impeded Bgt germination. The biochemical and molecular-biological assays revealed that TaCDK8 interacts with and phosphorylates the wheat transcription factor wax inducer 1 (TaWIN1) to stimulate the TaWIN1-dependent transcription. Bgt conidia on the leaves of TaWIN1-silenced plants also showed reduced germination. Gas chromatographic analysis revealed that knockdown of TaCDK8 or TaWIN1 resulted in decreases of wax components and cutin monomers in wheat leaves. Moreover, Bgt germination on leaves of TaCDK8 or TaWIN1 silenced plants could be fully restored by application of wild-type cuticular wax. In vitro studies demonstrated that very-long-chain aldehydes absent from the cuticular wax of the TaCDK8 or TaWIN1 silenced plants were capable of chemically stimulating Bgt germination. These results implicated that the suppression of TaCDK8/TaWIN1 interaction negatively affects Bgt germination by interfering with very-long-chain aldehyde biosynthesis required for efficient fungal germination.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
59
|
Hu L, Wu Y, Wu D, Rao W, Guo J, Ma Y, Wang Z, Shangguan X, Wang H, Xu C, Huang J, Shi S, Chen R, Du B, Zhu L, He G. The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice. THE PLANT CELL 2017; 29:3157-3185. [PMID: 29093216 PMCID: PMC5757267 DOI: 10.1105/tpc.17.00263] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/04/2017] [Accepted: 10/31/2017] [Indexed: 05/22/2023]
Abstract
BROWN PLANTHOPPER RESISTANCE14 (BPH14), the first planthopper resistance gene isolated via map-based cloning in rice (Oryza sativa), encodes a coiled-coil, nucleotide binding site, leucine-rich repeat (CC-NB-LRR) protein. Several planthopper and aphid resistance genes encoding proteins with similar structures have recently been identified. Here, we analyzed the functions of the domains of BPH14 to identify molecular mechanisms underpinning BPH14-mediated planthopper resistance. The CC or NB domains alone or in combination (CC-NB [CN]) conferred a similar level of brown planthopper resistance to that of full-length (FL) BPH14. Both domains activated the salicylic acid signaling pathway and defense gene expression. In rice protoplasts and Nicotiana benthamiana leaves, these domains increased reactive oxygen species levels without triggering cell death. Additionally, the resistance domains and FL BPH14 protein formed homocomplexes that interacted with transcription factors WRKY46 and WRKY72. In rice protoplasts, the expression of FL BPH14 or its CC, NB, and CN domains increased the accumulation of WRKY46 and WRKY72 as well as WRKY46- and WRKY72-dependent transactivation activity. WRKY46 and WRKY72 bind to the promoters of the receptor-like cytoplasmic kinase gene RLCK281 and the callose synthase gene LOC_Os01g67364.1, whose transactivation activity is dependent on WRKY46 or WRKY72. These findings shed light on this important insect resistance mechanism.
Collapse
Affiliation(s)
- Liang Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weiwei Rao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yinhua Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhizheng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xinxin Shangguan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huiying Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chunxue Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shaojie Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
60
|
Kuska MT, Brugger A, Thomas S, Wahabzada M, Kersting K, Oerke EC, Steiner U, Mahlein AK. Spectral Patterns Reveal Early Resistance Reactions of Barley Against Blumeria graminis f. sp. hordei. PHYTOPATHOLOGY 2017; 107:1388-1398. [PMID: 28665761 DOI: 10.1094/phyto-04-17-0128-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Differences in early plant-pathogen interactions are mainly characterized by using destructive methods. Optical sensors are advanced techniques for phenotyping host-pathogen interactions on different scales and for detecting subtle plant resistance responses against pathogens. A microscope with a hyperspectral camera was used to study interactions between Blumeria graminis f. sp. hordei and barley (Hordeum vulgare) genotypes with high susceptibility or resistance due to hypersensitive response (HR) and papilla formation. Qualitative and quantitative assessment of pathogen development was used to explain changes in hyperspectral signatures. Within 48 h after inoculation, genotype-specific changes in the green and red range (500 to 690 nm) and a blue shift of the red-edge inflection point were observed. Manual analysis indicated resistance-specific reflectance patterns from 1 to 3 days after inoculation. These changes could be linked to host plant modifications depending on individual host-pathogen interactions. Retrospective analysis of hyperspectral images revealed spectral characteristics of HR against B. graminis f. sp. hordei. For early HR detection, an advanced data mining approach localized HR spots before they became visible on the RGB images derived from hyperspectral imaging. The link among processes during pathogenesis and host resistance to changes in hyperspectral signatures provide evidence that sensor-based phenotyping is suitable to advance time-consuming and cost-expensive visual rating of plant disease resistances.
Collapse
Affiliation(s)
- Matheus Thomas Kuska
- First, second, third, fourth, sixth, seventh, and eighth authors: Institute for Crop Science and Resource Conservation (INRES)-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn, Germany; fifth author: CS Department and Centre for Cognitive Science, TU Darmstadt, Hochschulstrasse 1, 64289 Darmstadt, Germany; and eighth author: Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Anna Brugger
- First, second, third, fourth, sixth, seventh, and eighth authors: Institute for Crop Science and Resource Conservation (INRES)-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn, Germany; fifth author: CS Department and Centre for Cognitive Science, TU Darmstadt, Hochschulstrasse 1, 64289 Darmstadt, Germany; and eighth author: Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Stefan Thomas
- First, second, third, fourth, sixth, seventh, and eighth authors: Institute for Crop Science and Resource Conservation (INRES)-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn, Germany; fifth author: CS Department and Centre for Cognitive Science, TU Darmstadt, Hochschulstrasse 1, 64289 Darmstadt, Germany; and eighth author: Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Mirwaes Wahabzada
- First, second, third, fourth, sixth, seventh, and eighth authors: Institute for Crop Science and Resource Conservation (INRES)-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn, Germany; fifth author: CS Department and Centre for Cognitive Science, TU Darmstadt, Hochschulstrasse 1, 64289 Darmstadt, Germany; and eighth author: Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Kristian Kersting
- First, second, third, fourth, sixth, seventh, and eighth authors: Institute for Crop Science and Resource Conservation (INRES)-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn, Germany; fifth author: CS Department and Centre for Cognitive Science, TU Darmstadt, Hochschulstrasse 1, 64289 Darmstadt, Germany; and eighth author: Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Erich-Christian Oerke
- First, second, third, fourth, sixth, seventh, and eighth authors: Institute for Crop Science and Resource Conservation (INRES)-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn, Germany; fifth author: CS Department and Centre for Cognitive Science, TU Darmstadt, Hochschulstrasse 1, 64289 Darmstadt, Germany; and eighth author: Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Ulrike Steiner
- First, second, third, fourth, sixth, seventh, and eighth authors: Institute for Crop Science and Resource Conservation (INRES)-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn, Germany; fifth author: CS Department and Centre for Cognitive Science, TU Darmstadt, Hochschulstrasse 1, 64289 Darmstadt, Germany; and eighth author: Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079 Göttingen, Germany
| | - Anne-Katrin Mahlein
- First, second, third, fourth, sixth, seventh, and eighth authors: Institute for Crop Science and Resource Conservation (INRES)-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn, Germany; fifth author: CS Department and Centre for Cognitive Science, TU Darmstadt, Hochschulstrasse 1, 64289 Darmstadt, Germany; and eighth author: Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079 Göttingen, Germany
| |
Collapse
|
61
|
Interchromosomal Transfer of Immune Regulation During Infection of Barley with the Powdery Mildew Pathogen. G3-GENES GENOMES GENETICS 2017; 7:3317-3329. [PMID: 28790145 PMCID: PMC5633382 DOI: 10.1534/g3.117.300125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Powdery mildew pathogens colonize over 9500 plant species, causing critical yield loss. The Ascomycete fungus, Blumeria graminis f. sp. hordei (Bgh), causes powdery mildew disease in barley (Hordeum vulgare L.). Successful infection begins with penetration of host epidermal cells, culminating in haustorial feeding structures, facilitating delivery of fungal effectors to the plant and exchange of nutrients from host to pathogen. We used expression Quantitative Trait Locus (eQTL) analysis to dissect the temporal control of immunity-associated gene expression in a doubled haploid barley population challenged with Bgh. Two highly significant regions possessing trans eQTL were identified near the telomeric ends of chromosomes (Chr) 2HL and 1HS. Within these regions reside diverse resistance loci derived from barley landrace H. laevigatum (MlLa) and H. vulgare cv. Algerian (Mla1), which associate with the altered expression of 961 and 3296 genes during fungal penetration of the host and haustorial development, respectively. Regulatory control of transcript levels for 299 of the 961 genes is reprioritized from MlLa on 2HL to Mla1 on 1HS as infection progresses, with 292 of the 299 alternating the allele responsible for higher expression, including Adaptin Protein-2 subunit μ AP2M and Vesicle Associated Membrane Protein VAMP72 subfamily members VAMP721/722. AP2M mediates effector-triggered immunity (ETI) via endocytosis of plasma membrane receptor components. VAMP721/722 and SNAP33 form a Soluble N-ethylmaleimide-sensitive factor Attachment Protein REceptor (SNARE) complex with SYP121 (PEN1), which is engaged in pathogen associated molecular pattern (PAMP)-triggered immunity via exocytosis. We postulate that genes regulated by alternate chromosomal positions are repurposed as part of a conserved immune complex to respond to different pathogen attack scenarios.
Collapse
|
62
|
Zhang X, Dodds PN, Bernoux M. What Do We Know About NOD-Like Receptors in Plant Immunity? ANNUAL REVIEW OF PHYTOPATHOLOGY 2017. [PMID: 28637398 DOI: 10.1146/annurev-phyto-080516-035250] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The first plant disease resistance (R) genes were identified and cloned more than two decades ago. Since then, many more R genes have been identified and characterized in numerous plant pathosystems. Most of these encode members of the large family of intracellular NLRs (NOD-like receptors), which also includes animal immune receptors. New discoveries in this expanding field of research provide new elements for our understanding of plant NLR function. But what do we know about plant NLR function today? Genetic, structural, and functional analyses have uncovered a number of commonalities and differences in pathogen recognition strategies as well as how NLRs are regulated and activate defense signaling, but many unknowns remain. This review gives an update on the latest discoveries and breakthroughs in this field, with an emphasis on structural findings and some comparison to animal NLRs, which can provide additional insights and paradigms in plant NLR function.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia;
| |
Collapse
|
63
|
Zhu X, Lu C, Du L, Ye X, Liu X, Coules A, Zhang Z. The wheat NB-LRR gene TaRCR1 is required for host defence response to the necrotrophic fungal pathogen Rhizoctonia cerealis. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:674-687. [PMID: 27862842 PMCID: PMC5425395 DOI: 10.1111/pbi.12665] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 05/20/2023]
Abstract
The necrotrophic fungus Rhizoctonia cerealis is the major pathogen causing sharp eyespot disease in wheat (Triticum aestivum). Nucleotide-binding leucine-rich repeat (NB-LRR) proteins often mediate plant disease resistance to biotrophic pathogens. Little is known about the role of NB-LRR genes involved in wheat response to R. cerealis. In this study, a wheat NB-LRR gene, named TaRCR1, was identified in response to R. cerealis infection using Artificial Neural Network analysis based on comparative transcriptomics and its defence role was characterized. The transcriptional level of TaRCR1 was enhanced after R. cerealis inoculation and associated with the resistance level of wheat. TaRCR1 was located on wheat chromosome 3BS and encoded an NB-LRR protein that was consisting of a coiled-coil domain, an NB-ARC domain and 13 imperfect leucine-rich repeats. TaRCR1 was localized in both the cytoplasm and the nucleus. Silencing of TaRCR1 impaired wheat resistance to R. cerealis, whereas TaRCR1 overexpression significantly increased the resistance in transgenic wheat. TaRCR1 regulated certain reactive oxygen species (ROS)-scavenging and production, and defence-related genes, and peroxidase activity. Furthermore, H2 O2 pretreatment for 12-h elevated expression levels of TaRCR1 and the above defence-related genes, whereas treatment with a peroxidase inhibitor for 12 h reduced the resistance of TaRCR1-overexpressing transgenic plants and expression levels of these defence-related genes. Taken together, TaRCR1 positively contributes to defence response to R. cerealis through maintaining ROS homoeostasis and regulating the expression of defence-related genes.
Collapse
Affiliation(s)
- Xiuliang Zhu
- The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Chungui Lu
- School of Animal, Rural and Environmental SciencesNottingham Trent UniversityNottinghamUK
| | - Lipu Du
- The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xingguo Ye
- The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xin Liu
- The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Anne Coules
- School of Animal, Rural and Environmental SciencesNottingham Trent UniversityNottinghamUK
| | - Zengyan Zhang
- The National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
64
|
Wang J, Tao F, An F, Zou Y, Tian W, Chen X, Xu X, Hu X. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. MOLECULAR PLANT PATHOLOGY 2017; 18:649-661. [PMID: 27145738 PMCID: PMC6638234 DOI: 10.1111/mpp.12425] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/16/2016] [Accepted: 05/01/2016] [Indexed: 05/18/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat (Triticum aestivum) worldwide. Wheat high-temperature seedling plant (HTSP) resistance to Pst is non-race-specific and durable. WRKY transcription factors have been proven to play important roles in plant defence responses to attacks by several pathogens. However, there is no direct evidence as to whether WRKY transcription factors play a role in HTSP resistance to Pst. We isolated a WRKY gene, named TaWRKY70, from wheat cultivar Xiaoyan 6. The expression level of TaWRKY70 was increased significantly when exposed to high temperatures (HTs) during the initial symptom expression stage of Pst infection. The expression of this gene increased in plants treated with ethylene (ET), salicylic acid (SA) and cold (4°C) stresses, but decreased in plants treated with methyl jasmonate (MeJA) and heat (40°C) stresses. Silencing of TaWRKY70 led to greater susceptibility to Pst (in terms of the increase in length of uredinial pustules and the decrease in the number of necrotic cells) compared with non-silenced plants when exposed to HT during the initial symptom expression stage of Pst infection, coinciding with expression changes of the ET- and SA-responsive genes TaPIE1 and TaPR1.1. In contrast, the expression level of the jasmonic acid (JA)-responsive gene TaAOS was not affected by TaWRKY70. These results indicate that TaWRKY70 is positively involved in HTSP resistance, during which SA and ET signalling are probably activated.
Collapse
Affiliation(s)
- Junjuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityTaicheng Road 3YanglingShaanxi712100China
| | - Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityTaicheng Road 3YanglingShaanxi712100China
| | - Fei An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityTaicheng Road 3YanglingShaanxi712100China
| | - Yiping Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityTaicheng Road 3YanglingShaanxi712100China
| | - Wei Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityTaicheng Road 3YanglingShaanxi712100China
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant PathologyWashington State UniversityPullmanWA 99164–6430USA
| | - Xiangming Xu
- East Malling ResearchNew Road, East MallingKentME19 6BJUK
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F UniversityTaicheng Road 3YanglingShaanxi712100China
| |
Collapse
|
65
|
TaPIMP2, a pathogen-induced MYB protein in wheat, contributes to host resistance to common root rot caused by Bipolaris sorokiniana. Sci Rep 2017; 7:1754. [PMID: 28496196 PMCID: PMC5431884 DOI: 10.1038/s41598-017-01918-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/06/2017] [Indexed: 11/08/2022] Open
Abstract
MYB transcription factors (TFs) have been implicated in various biology processes in model plants. However, functions of the great majority of MYB TFs in wheat (Triticum aestivum L.) have not been characterized. The soil-borne fungal pathogens Bipolaris sorokiniana and Rhizoctonia cerealis are the causal agents of important destructive diseases of wheat. Here, the TaPIMP2 gene, encoding a pathogen-induced MYB protein in wheat, was isolated through comparative transcriptomic analysis, and its defensive role was studied. TaPIMP2 was proved to localize in nuclei. TaPIMP2 responded in a different extent and speed upon infections of B. sorokiniana or R. cerealis. TaPIMP2 displayed different expression patterns after exogenous application of phytohormones, including abscisic acid, ethylene, and salicylic acid. Silencing of TaPIMP2 repressed resistance of wheat cultivar Yangmai 6 to B. sorokiniana, but did not alter resistance of wheat line CI12633 to R. cerealis. TaPIMP2 overexpression significantly improved resistance to B. sorokiniana rather than R. cerealis in transgenic wheat. Moreover, TaPIMP2 positively modulated the expression of pathogenesis-related genes, including PR1a, PR2, PR5, and PR10. Collectively, TaPIMP2 positively contributes to wheat resistance to B. sorokiniana possibly through regulating the expression of defense-related genes, and TaPIMP2 plays distinct roles in defense responses to different fungal infection.
Collapse
|
66
|
Huh SU, Cevik V, Ding P, Duxbury Z, Ma Y, Tomlinson L, Sarris PF, Jones JDG. Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathog 2017; 13:e1006376. [PMID: 28475615 PMCID: PMC5435354 DOI: 10.1371/journal.ppat.1006376] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/17/2017] [Accepted: 04/25/2017] [Indexed: 11/18/2022] Open
Abstract
Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation.
Collapse
Affiliation(s)
- Sung Un Huh
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Pingtao Ding
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Zane Duxbury
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Yan Ma
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Laurence Tomlinson
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Panagiotis F. Sarris
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan D. G. Jones
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| |
Collapse
|
67
|
Wang Y, Wu Y, Yu B, Yin Z, Xia Y. EXTRA-LARGE G PROTEINs Interact with E3 Ligases PUB4 and PUB2 and Function in Cytokinin and Developmental Processes. PLANT PHYSIOLOGY 2017; 173:1235-1246. [PMID: 27986866 PMCID: PMC5291011 DOI: 10.1104/pp.16.00816] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/07/2016] [Indexed: 05/06/2023]
Abstract
Heterotrimeric GTP-binding proteins (G proteins) composed of Gα, Gβ, and Gγ subunits are conserved signal transduction molecules in animals and plants. In Arabidopsis (Arabidopsis thaliana), there are three Gα-like proteins named EXTRA-LARGE G PROTEINs (XLGs) in addition to the canonical Gα protein GPA1. XLGs have been reported to be implicated in multiple pathways, although the underlying mechanisms of their action remain elusive. Here, we report that all three XLGs interact with two closely related plant U-box (PUB) E3 ligases, PUB2 and PUB4. Three XLGs are predominantly localized at the plasma membrane, whereas XLG2 and XLG3 also show nuclear localization. The interactions between PUB2/4 and XLGs suggest that they might function in the same pathways. Indeed, we found that a newly obtained xlg1/2/3 triple knockout mutant, the pub4 mutant, and the pub2/4 double mutant all exhibited defects in cytokinin responses, stamen development, tapetum development, and male fertility. However, the xlg single mutants and the pub2 mutant did not exhibit an obvious defect in these processes, which suggests functional redundancy among the three XLGs and between PUB2 and PUB4. Overexpressing ARR10 to enhance the cytokinin response in pub4 or in the xlg1/2/3 triple mutant partially restored several phenotypes caused by the pub4 and xlg1/2/3 mutations. Our findings reveal that the XLGs and PUB2/4 are components in the complex cytokinin signaling networks regulating many developmental and physiological processes.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China (Y. Wang, Y. Wu, B.Y., Z.Y., Y.X.); and
- Partner State Key Laboratory of Agricultural Biotechnology, Chinese University of Hong Kong, Hong Kong, China (Y.X.)
| | - Yingying Wu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China (Y. Wang, Y. Wu, B.Y., Z.Y., Y.X.); and
- Partner State Key Laboratory of Agricultural Biotechnology, Chinese University of Hong Kong, Hong Kong, China (Y.X.)
| | - Boying Yu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China (Y. Wang, Y. Wu, B.Y., Z.Y., Y.X.); and
- Partner State Key Laboratory of Agricultural Biotechnology, Chinese University of Hong Kong, Hong Kong, China (Y.X.)
| | - Zhao Yin
- Department of Biology, Hong Kong Baptist University, Hong Kong, China (Y. Wang, Y. Wu, B.Y., Z.Y., Y.X.); and
- Partner State Key Laboratory of Agricultural Biotechnology, Chinese University of Hong Kong, Hong Kong, China (Y.X.)
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China (Y. Wang, Y. Wu, B.Y., Z.Y., Y.X.); and
- Partner State Key Laboratory of Agricultural Biotechnology, Chinese University of Hong Kong, Hong Kong, China (Y.X.)
| |
Collapse
|
68
|
Wang T, Chang C, Gu C, Tang S, Xie Q, Shen QH. An E3 Ligase Affects the NLR Receptor Stability and Immunity to Powdery Mildew. PLANT PHYSIOLOGY 2016; 172:2504-2515. [PMID: 27780896 PMCID: PMC5129731 DOI: 10.1104/pp.16.01520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/21/2016] [Indexed: 05/24/2023]
Abstract
Following the detection of pathogen cognate effectors, plant Nod-like receptors (NLRs) trigger isolate-specific immunity that is generally associated with cell death. The regulation of NLR stability is important to ensure effective immunity. In barley (Hordeum vulgare), the allelic Mildew locus A (MLA) receptors mediate isolate-specific disease resistance against powdery mildew fungus (Blumeria graminis f. sp. hordei). Currently, how MLA stability is controlled remains unknown. Here, we identified an MLA-interacting RING-type E3 ligase, MIR1, that interacts with several MLAs. We showed that the carboxyl-terminal TPR domain of MIR1 mediates the interaction with the coiled-coil domain-containing region of functional MLAs, such as MLA1, MLA6, and MLA10, but not with that of the nonfunctional MLA18-1. MIR1 can ubiquitinate the amino-terminal region of MLAs in vitro and promotes the proteasomal degradation of MLAs in vitro and in planta. Both proteasome inhibitor treatment and virus-induced gene silencing-mediated MIR1 silencing significantly increased MLA abundance in barley transgenic lines. Furthermore, overexpression of MIR1 specifically compromised MLA-mediated disease resistance in barley, while coexpression of MIR1 and MLA10 attenuated MLA10-induced cell death signaling in Nicotiana benthamiana Together, our data reveal a mechanism for the control of the stability of MLA immune receptors and for the attenuation of MLA-triggered defense signaling by a RING-type E3 ligase via the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Gu
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering (T.W., C.C., C.G., Q.-H.S.) and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology (S.T., Q.X.), Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
69
|
Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. Proc Natl Acad Sci U S A 2016; 113:10204-9. [PMID: 27555587 PMCID: PMC5018743 DOI: 10.1073/pnas.1605483113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plants possess intracellular immune receptors designated "nucleotide-binding domain and leucine-rich repeat" (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.
Collapse
Affiliation(s)
- Stella Cesari
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - John Moore
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Chunhong Chen
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT 0200, Australia
| | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia;
| |
Collapse
|
70
|
Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang GL. Immunity to Rice Blast Disease by Suppression of Effector-Triggered Necrosis. Curr Biol 2016; 26:2399-2411. [DOI: 10.1016/j.cub.2016.06.072] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022]
|
71
|
Hückelhoven R, Seidl A. PAMP-triggered immune responses in barley and susceptibility to powdery mildew. PLANT SIGNALING & BEHAVIOR 2016; 11:e1197465. [PMID: 27348336 PMCID: PMC4991337 DOI: 10.1080/15592324.2016.1197465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pathogen-associated molecular pattern-triggered immunity (PTI) builds one of the first layers of plant disease resistance. In susceptible plants, PTI is overcome by adapted pathogens. This can be achieved by suppression of PTI with the help of pathogen virulence effectors. However, effectors may also contribute to modification of host metabolism or cell architecture to ensure successful pathogenesis. Barley responds to treatment with the pathogen-associated molecular patterns flg22 or chitin with phosphorylation of mitogen-activated protein kinases and an oxidative burst. RAC/ROP GTPases can act as positive or negative modulators of these plant immune responses. The RAC/ROP GTPase RACB is a powdery mildew susceptibility factor of barley. However, RACB apparently does not negatively control early PTI responses but functions in polar cell development during invasion of the pathogen into living host epidermal cells. Here, we further discuss the incomplete picture of PTI in Triticeae.
Collapse
Affiliation(s)
- Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- CONTACT Ralph Hückelhoven
| | - Anna Seidl
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
72
|
The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci Rep 2016; 6:28777. [PMID: 27364458 PMCID: PMC4929490 DOI: 10.1038/srep28777] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/08/2016] [Indexed: 01/23/2023] Open
Abstract
The necrotrophic fungus Rhizoctonia cerealis is a major pathogen of sharp eyespot that is a devastating disease of wheat (Triticum aestivum). Little is known about roles of MYB genes in wheat defense response to R. cerealis. In this study, TaRIM1, a R. cerealis-induced wheat MYB gene, was identified by transcriptome analysis, then cloned from resistant wheat CI12633, and its function and preliminary mechanism were studied. Sequence analysis showed that TaRIM1 encodes a R2R3-MYB transcription factor with transcription-activation activity. The molecular-biological assays revealed that the TaRIM1 protein localizes to nuclear and can bind to five MYB-binding site cis-elements. Functional dissection results showed that following R. cerealis inoculation, TaRIM1 silencing impaired the resistance of wheat CI12633, whereas TaRIM1 overexpression significantly increased resistance of transgenic wheat compared with susceptible recipient. TaRIM1 positively regulated the expression of five defense genes (Defensin, PR10, PR17c, nsLTP1, and chitinase1) possibly through binding to MYB-binding sites in their promoters. These results suggest that the R2R3-MYB transcription factor TaRIM1 positively regulates resistance response to R. cerealis infection through modulating the expression of a range of defense genes, and that TaRIM1 is a candidate gene to improve sharp eyespot resistance in wheat.
Collapse
|
73
|
Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JDG, Sarris PF. Pathogen perception by NLRs in plants and animals: Parallel worlds. Bioessays 2016; 38:769-81. [PMID: 27339076 DOI: 10.1002/bies.201600046] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intracellular NLR (Nucleotide-binding domain and Leucine-rich Repeat-containing) receptors are sensitive monitors that detect pathogen invasion of both plant and animal cells. NLRs confer recognition of diverse molecules associated with pathogen invasion. NLRs must exhibit strict intramolecular controls to avoid harmful ectopic activation in the absence of pathogens. Recent discoveries have elucidated the assembly and structure of oligomeric NLR signalling complexes in animals, and provided insights into how these complexes act as scaffolds for signal transduction. In plants, recent advances have provided novel insights into signalling-competent NLRs, and into the myriad strategies that diverse plant NLRs use to recognise pathogens. Here, we review recent insights into the NLR biology of both animals and plants. By assessing commonalities and differences between kingdoms, we are able to develop a more complete understanding of NLR function.
Collapse
Affiliation(s)
- Zane Duxbury
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Yan Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Oliver J Furzer
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Sung Un Huh
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Panagiotis F Sarris
- Division of Plant and Microbial Sciences, School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
74
|
Liu J, Chen X, Liang X, Zhou X, Yang F, Liu J, He SY, Guo Z. Alternative Splicing of Rice WRKY62 and WRKY76 Transcription Factor Genes in Pathogen Defense. PLANT PHYSIOLOGY 2016; 171:1427-42. [PMID: 27208272 PMCID: PMC4902586 DOI: 10.1104/pp.15.01921] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/13/2016] [Indexed: 05/02/2023]
Abstract
The WRKY family of transcription factors (TFs) functions as transcriptional activators or repressors in various signaling pathways. In this study, we discovered that OsWRKY62 and OsWRKY76, two genes of the WRKY IIa subfamily, undergo constitutive and inducible alternative splicing. The full-length OsWRKY62.1 and OsWRKY76.1 proteins formed homocomplexes and heterocomplexes, and the heterocomplex dominates in the nuclei when analyzed in Nicotiana benthamiana leaves. Transgenic overexpression of OsWRKY62.1 and OsWRKY76.1 in rice (Oryza sativa) enhanced plant susceptibility to the blast fungus Magnaporthe oryzae and the leaf blight bacterium Xanthomonas oryzae pv oryzae, whereas RNA interference and loss-of-function knockout plants exhibited elevated resistance. The dsOW62/76 and knockout lines of OsWRKY62 and OsWRKY76 also showed greatly increased expression of defense-related genes and the accumulation of phytoalexins. The ratio of full-length versus truncated transcripts changed in dsOW62/76 plants as well as in response to pathogen infection. The short alternative OsWRKY62.2 and OsWRKY76.2 isoforms could interact with each other and with full-length proteins. OsWRKY62.2 showed a reduced repressor activity in planta, and two sequence determinants required for the repressor activity were identified in the amino terminus of OsWRKY62.1. The amino termini of OsWRKY62 and OsWRKY76 splice variants also showed reduced binding to the canonical W box motif. These results not only enhance our understanding of the DNA-binding property, the repressor sequence motifs, and the negative feedback regulation of the IIa subfamily of WRKYs but also provide evidence for alternative splicing of WRKY TFs during the plant defense response.
Collapse
Affiliation(s)
- Jiqin Liu
- Key Laboratory of Plant Pathology, MOA, China Agricultural University, Beijing 100193, China (Jiq.L., X.C., X.L., X.Z., F.Y., Jia.L., Z.G.); andHoward Hughes Medical Institute, Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (S.Y.H.)
| | - Xujun Chen
- Key Laboratory of Plant Pathology, MOA, China Agricultural University, Beijing 100193, China (Jiq.L., X.C., X.L., X.Z., F.Y., Jia.L., Z.G.); andHoward Hughes Medical Institute, Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (S.Y.H.)
| | - Xiaoxing Liang
- Key Laboratory of Plant Pathology, MOA, China Agricultural University, Beijing 100193, China (Jiq.L., X.C., X.L., X.Z., F.Y., Jia.L., Z.G.); andHoward Hughes Medical Institute, Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (S.Y.H.)
| | - Xiangui Zhou
- Key Laboratory of Plant Pathology, MOA, China Agricultural University, Beijing 100193, China (Jiq.L., X.C., X.L., X.Z., F.Y., Jia.L., Z.G.); andHoward Hughes Medical Institute, Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (S.Y.H.)
| | - Fang Yang
- Key Laboratory of Plant Pathology, MOA, China Agricultural University, Beijing 100193, China (Jiq.L., X.C., X.L., X.Z., F.Y., Jia.L., Z.G.); andHoward Hughes Medical Institute, Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (S.Y.H.)
| | - Jia Liu
- Key Laboratory of Plant Pathology, MOA, China Agricultural University, Beijing 100193, China (Jiq.L., X.C., X.L., X.Z., F.Y., Jia.L., Z.G.); andHoward Hughes Medical Institute, Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (S.Y.H.)
| | - Sheng Yang He
- Key Laboratory of Plant Pathology, MOA, China Agricultural University, Beijing 100193, China (Jiq.L., X.C., X.L., X.Z., F.Y., Jia.L., Z.G.); andHoward Hughes Medical Institute, Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (S.Y.H.)
| | - Zejian Guo
- Key Laboratory of Plant Pathology, MOA, China Agricultural University, Beijing 100193, China (Jiq.L., X.C., X.L., X.Z., F.Y., Jia.L., Z.G.); andHoward Hughes Medical Institute, Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824 (S.Y.H.)
| |
Collapse
|
75
|
Sukarta OCA, Slootweg EJ, Goverse A. Structure-informed insights for NLR functioning in plant immunity. Semin Cell Dev Biol 2016; 56:134-149. [PMID: 27208725 DOI: 10.1016/j.semcdb.2016.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 01/07/2023]
Abstract
To respond to foreign invaders, plants have evolved a cell autonomous multilayered immune system consisting of extra- and intracellular immune receptors. Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) mediate recognition of pathogen effectors inside the cell and trigger a host specific defense response, often involving controlled cell death. NLRs consist of a central nucleotide-binding domain, which is flanked by an N-terminal CC or TIR domain and a C-terminal leucine-rich repeat domain (LRR). These multidomain proteins function as a molecular switch and their activity is tightly controlled by intra and inter-molecular interactions. In contrast to metazoan NLRs, the structural basis underlying NLR functioning as a pathogen sensor and activator of immune responses in plants is largely unknown. However, the first crystal structures of a number of plant NLR domains were recently obtained. In addition, biochemical and structure-informed analyses revealed novel insights in the cooperation between NLR domains and the formation of pre- and post activation complexes, including the coordinated activity of NLR pairs as pathogen sensor and executor of immune responses. Moreover, the discovery of novel integrated domains underscores the structural diversity of NLRs and provides alternative models for how these immune receptors function in plants. In this review, we will highlight these recent advances to provide novel insights in the structural, biochemical and molecular aspects involved in plant NLR functioning.
Collapse
Affiliation(s)
- Octavina C A Sukarta
- Dept. of Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Erik J Slootweg
- Dept. of Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Aska Goverse
- Dept. of Plant Sciences, Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
76
|
Garner CM, Kim SH, Spears BJ, Gassmann W. Express yourself: Transcriptional regulation of plant innate immunity. Semin Cell Dev Biol 2016; 56:150-162. [PMID: 27174437 DOI: 10.1016/j.semcdb.2016.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
The plant immune system is a complex network of components that function together to sense the presence and activity of potential biotic threats, and integrate these signals into an appropriate output, namely the transcription of genes that activate an immune response that is commensurate with the perceived threat. Given the variety of biotic threats a plant must face the immune response must be plastic, but because an immune response is costly to the plant in terms of energy expenditure and development it must also be under tight control. To meet these needs transcriptional control is exercised at multiple levels. In this article we will review some of the latest developments in understanding how the plant immune response is regulated at the level of transcription. New roles are being discovered for the long-studied WRKY and TGA transcription factor families, while additional critical defense functions are being attributed to TCPs and other transcription factors. Dynamically controlling access to DNA through post-translational modification of histones is emerging as an essential component of priming, maintaining, attenuating, and repressing transcription in response to biotic stress. Unsurprisingly, the plant's transcriptional response is targeted by pathogen effectors, and in turn resistance proteins stand guard over and participate in transcriptional regulation. Together, these multiple layers lead to the observed complexity of the plant transcriptional immune response, with different transcription factors or chromatin components playing a prominent role depending on the plant-pathogen interaction being studied.
Collapse
Affiliation(s)
- Christopher M Garner
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Sang Hee Kim
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Benjamin J Spears
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA
| | - Walter Gassmann
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA; C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
77
|
Zhang J, Zheng H, Li Y, Li H, Liu X, Qin H, Dong L, Wang D. Coexpression network analysis of the genes regulated by two types of resistance responses to powdery mildew in wheat. Sci Rep 2016; 6:23805. [PMID: 27033636 PMCID: PMC4817125 DOI: 10.1038/srep23805] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/15/2016] [Indexed: 02/06/2023] Open
Abstract
Powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) inflicts severe economic losses in wheat crops. A systematic understanding of the molecular mechanisms involved in wheat resistance to Bgt is essential for effectively controlling the disease. Here, using the diploid wheat Triticum urartu as a host, the genes regulated by immune (IM) and hypersensitive reaction (HR) resistance responses to Bgt were investigated through transcriptome sequencing. Four gene coexpression networks (GCNs) were developed using transcriptomic data generated for 20 T. urartu accessions showing IM, HR or susceptible responses. The powdery mildew resistance regulated (PMRR) genes whose expression was significantly correlated with Bgt resistance were identified, and they tended to be hubs and enriched in six major modules. A wide occurrence of negative regulation of PMRR genes was observed. Three new candidate immune receptor genes (TRIUR3_13045, TRIUR3_01037 and TRIUR3_06195) positively associated with Bgt resistance were discovered. Finally, the involvement of TRIUR3_01037 in Bgt resistance was tentatively verified through cosegregation analysis in a F2 population and functional expression assay in Bgt susceptible leaf cells. This research provides insights into the global network properties of PMRR genes. Potential molecular differences between IM and HR resistance responses to Bgt are discussed.
Collapse
Affiliation(s)
- Juncheng Zhang
- The State Key Laboratory of Plant Cell and chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongyuan Zheng
- The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongjie Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Liu
- The State Key Laboratory of Plant Cell and chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
78
|
Wang WM, Liu PQ, Xu YJ, Xiao S. Protein trafficking during plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:284-98. [PMID: 26345282 DOI: 10.1111/jipb.12426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/06/2015] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng-Qiang Liu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, MD, 20850, USA
| |
Collapse
|
79
|
Christie N, Tobias PA, Naidoo S, Külheim C. The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots. FRONTIERS IN PLANT SCIENCE 2016; 6:1238. [PMID: 26793216 PMCID: PMC4709456 DOI: 10.3389/fpls.2015.01238] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/20/2015] [Indexed: 05/03/2023]
Abstract
Eucalyptus grandis is a commercially important hardwood species and is known to be susceptible to a number of pests and pathogens. Determining mechanisms of defense is therefore a research priority. The published genome for E. grandis has aided the identification of one important class of resistance (R) genes that incorporate nucleotide binding sites and leucine-rich repeat domains (NBS-LRR). Using an iterative search process we identified NBS-LRR gene models within the E. grandis genome. We characterized the gene models and identified their genomic arrangement. The gene expression patterns were examined in E. grandis clones, challenged with a fungal pathogen (Chrysoporthe austroafricana) and insect pest (Leptocybe invasa). One thousand two hundred and fifteen putative NBS-LRR coding sequences were located which aligned into two large classes, Toll or interleukin-1 receptor (TIR) and coiled-coil (CC) based on NB-ARC domains. NBS-LRR gene-rich regions were identified with 76% organized in clusters of three or more genes. A further 272 putative incomplete resistance genes were also identified. We determined that E. grandis has a higher ratio of TIR to CC classed genes compared to other woody plant species as well as a smaller percentage of single NBS-LRR genes. Transcriptome profiles indicated expression hotspots, within physical clusters, including expression of many incomplete genes. The clustering of putative NBS-LRR genes correlates with differential expression responses in resistant and susceptible plants indicating functional relevance for the physical arrangement of this gene family. This analysis of the repertoire and expression of E. grandis putative NBS-LRR genes provides an important resource for the identification of novel and functional R-genes; a key objective for strategies to enhance resilience.
Collapse
Affiliation(s)
- Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Peri A. Tobias
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of SydneyNSW, Australia
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Carsten Külheim
- Research School of Biology, College of Medicine, Biology and Environment, Australian National UniversityCanberra, ACT, Australia
| |
Collapse
|
80
|
Zhang Y, Nan J, Yu B. OMICS Technologies and Applications in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2016; 7:900. [PMID: 27446130 PMCID: PMC4916227 DOI: 10.3389/fpls.2016.00900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/08/2023]
Abstract
Sugar beet is a species of the Chenopodiaceae family. It is an important sugar crop that supplies approximately 35% of the sugar in the world. Sugar beet M14 line is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss. And exhibits tolerance to salt stress. In this review, we have summarized OMICS technologies and applications in sugar beet including M14 for identification of novel genes, proteins related to biotic and abiotic stresses, apomixes and metabolites related to energy and food. An OMICS overview for the discovery of novel genes, proteins and metabolites in sugar beet has helped us understand the complex mechanisms underlying many processes such as apomixes, tolerance to biotic and abiotic stresses. The knowledge gained is valuable for improving the tolerance of sugar beet and other crops to biotic and abiotic stresses as well as for enhancing the yield of sugar beet for energy and food production.
Collapse
Affiliation(s)
- Yongxue Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Jingdong Nan
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
| | - Bing Yu
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang UniversityHarbin, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang UniversityHarbin, China
- *Correspondence: Bing Yu
| |
Collapse
|
81
|
Wang GF, He Y, Strauch R, Olukolu BA, Nielsen D, Li X, Balint-Kurti PJ. Maize Homologs of Hydroxycinnamoyltransferase, a Key Enzyme in Lignin Biosynthesis, Bind the Nucleotide Binding Leucine-Rich Repeat Rp1 Proteins to Modulate the Defense Response. PLANT PHYSIOLOGY 2015; 169:2230-43. [PMID: 26373661 PMCID: PMC4634058 DOI: 10.1104/pp.15.00703] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/08/2015] [Indexed: 05/18/2023]
Abstract
In plants, most disease resistance genes encode nucleotide binding Leu-rich repeat (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) upon pathogen recognition. The maize (Zea mays) NLR protein Rp1-D21 derives from an intragenic recombination between two NLRs, Rp1-D and Rp1-dp2, and confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified a single-nucleotide polymorphism locus highly associated with variation in the severity of Rp1-D21-induced HR. Two maize genes encoding hydroxycinnamoyltransferase (HCT; a key enzyme involved in lignin biosynthesis) homologs, termed HCT1806 and HCT4918, were adjacent to this single-nucleotide polymorphism. Here, we show that both HCT1806 and HCT4918 physically interact with and suppress the HR conferred by Rp1-D21 but not other autoactive NLRs when transiently coexpressed in Nicotiana benthamiana. Other maize HCT homologs are unable to confer the same level of suppression on Rp1-D21-induced HR. The metabolic activity of HCT1806 and HCT4918 is unlikely to be necessary for their role in suppressing HR. We show that the lignin pathway is activated by Rp1-D21 at both the transcriptional and metabolic levels. We derive a model to explain the roles of HCT1806 and HCT4918 in Rp1-mediated disease resistance.
Collapse
Affiliation(s)
- Guan-Feng Wang
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Yijian He
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Renee Strauch
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Bode A Olukolu
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Dahlia Nielsen
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Xu Li
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| | - Peter J Balint-Kurti
- Departments of Plant Pathology (G.-F.W., Y.H., B.A.O., P.J.B.-K.),Plant and Microbial Biology (R.S., X.L.), andBiological Sciences (D.N.), North Carolina State University, Raleigh, North Carolina 27695;Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina 28081 (R.S., X.L.); andPlant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (P.J.B.-K.)
| |
Collapse
|
82
|
Fenyk S, Townsend PD, Dixon CH, Spies GB, de San Eustaquio Campillo A, Slootweg EJ, Westerhof LB, Gawehns FKK, Knight MR, Sharples GJ, Goverse A, Pålsson LO, Takken FLW, Cann MJ. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein. J Biol Chem 2015; 290:24945-60. [PMID: 26306038 PMCID: PMC4599002 DOI: 10.1074/jbc.m115.672121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Indexed: 11/06/2022] Open
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR.
Collapse
Affiliation(s)
- Stepan Fenyk
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Philip D Townsend
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Christopher H Dixon
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Gerhard B Spies
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | | | - Erik J Slootweg
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands, and
| | - Lotte B Westerhof
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands, and
| | - Fleur K K Gawehns
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marc R Knight
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Gary J Sharples
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute
| | - Aska Goverse
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands, and
| | - Lars-Olof Pålsson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Martin J Cann
- From the School of Biological and Biomedical Sciences, Biophysical Sciences Institute,
| |
Collapse
|
83
|
Wang GF, Balint-Kurti PJ. Cytoplasmic and Nuclear Localizations Are Important for the Hypersensitive Response Conferred by Maize Autoactive Rp1-D21 Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1023-1031. [PMID: 26039083 DOI: 10.1094/mpmi-01-15-0014-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Disease resistance (R) genes have been isolated from many plant species. Most encode nucleotide binding leucine-rich repeat (NLR) proteins that trigger a rapid localized programmed cell death called the hypersensitive response (HR) upon pathogen recognition. Despite their structural similarities, different NLR are distributed in a range of subcellular locations, and analogous domains play diverse functional roles. The autoactive maize NLR gene Rp1-D21 derives from an intragenic recombination between two NLR genes, Rp1-D and Rp1-dp2, and confers a HR independent of the presence of a pathogen. Rp1-D21 and its N-terminal coiled coil (CC) domain (CCD21) confer autoactive HR when transiently expressed in Nicotiana benthamiana. Rp1-D21 was predominantly localized in cytoplasm with a small amount in the nucleus, while CCD21 was localized in both nucleus and cytoplasm. Targeting of Rp1-D21 or CCD21 predominantly to either the nucleus or the cytoplasm abolished HR-inducing activity. Coexpression of Rp1-D21 or CCD21 constructs confined, respectively, to the nucleus and cytoplasm did not rescue full activity, suggesting nucleocytoplasmic movement was important for HR induction. This work emphasizes the diverse structural and subcellular localization requirements for activity found among plant NLR R genes.
Collapse
Affiliation(s)
- Guan-Feng Wang
- 1 Dept. of Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
| | - Peter J Balint-Kurti
- 1 Dept. of Plant Pathology, North Carolina State University, Raleigh, NC 27695, U.S.A
- 2 USDA-ARS Plant Science Research Unit, Raleigh, NC 27695, U.S.A
| |
Collapse
|
84
|
Du Y, Berg J, Govers F, Bouwmeester K. Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1. THE NEW PHYTOLOGIST 2015; 207:735-47. [PMID: 25760731 DOI: 10.1111/nph.13355] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/03/2015] [Indexed: 05/21/2023]
Abstract
Resistance against oomycete pathogens is mainly governed by intracellular nucleotide-binding leucine-rich repeat (NLR) receptors that recognize matching avirulence (AVR) proteins from the pathogen, RXLR effectors that are delivered inside host cells. Detailed molecular understanding of how and where NLR proteins and RXLR effectors interact is essential to inform the deployment of durable resistance (R) genes. Fluorescent tags, nuclear localization signals (NLSs) and nuclear export signals (NESs) were exploited to determine the subcellular localization of the potato late blight protein R1 and the Phytophthora infestans RXLR effector AVR1, and to target these proteins to the nucleus or cytoplasm. Microscopic imaging revealed that both R1 and AVR1 occurred in the nucleus and cytoplasm, and were in close proximity. Transient expression of NLS- or NES-tagged R1 and AVR1 in Nicotiana benthamiana showed that activation of the R1-mediated hypersensitive response and resistance required localization of the R1/AVR1 pair in the nucleus. However, AVR1-mediated suppression of cell death in the absence of R1 was dependent on localization of AVR1 in the cytoplasm. Balanced nucleocytoplasmic partitioning of AVR1 seems to be a prerequisite. Our results show that R1-mediated immunity is activated inside the nucleus with AVR1 in close proximity and suggest that nucleocytoplasmic transport of R1 and AVR1 is tightly regulated.
Collapse
Affiliation(s)
- Yu Du
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Jeroen Berg
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
85
|
Le Roux C, Huet G, Jauneau A, Camborde L, Trémousaygue D, Kraut A, Zhou B, Levaillant M, Adachi H, Yoshioka H, Raffaele S, Berthomé R, Couté Y, Parker JE, Deslandes L. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 2015; 161:1074-1088. [PMID: 26000483 DOI: 10.1016/j.cell.2015.04.025] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/04/2015] [Accepted: 04/03/2015] [Indexed: 01/10/2023]
Abstract
Microbial pathogens infect host cells by delivering virulence factors (effectors) that interfere with defenses. In plants, intracellular nucleotide-binding/leucine-rich repeat receptors (NLRs) detect specific effector interference and trigger immunity by an unknown mechanism. The Arabidopsis-interacting NLR pair, RRS1-R with RPS4, confers resistance to different pathogens, including Ralstonia solanacearum bacteria expressing the acetyltransferase effector PopP2. We show that PopP2 directly acetylates a key lysine within an additional C-terminal WRKY transcription factor domain of RRS1-R that binds DNA. This disrupts RRS1-R DNA association and activates RPS4-dependent immunity. PopP2 uses the same lysine acetylation strategy to target multiple defense-promoting WRKY transcription factors, causing loss of WRKY-DNA binding and transactivating functions needed for defense gene expression and disease resistance. Thus, RRS1-R integrates an effector target with an NLR complex at the DNA to switch a potent bacterial virulence activity into defense gene activation.
Collapse
Affiliation(s)
- Clémentine Le Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France; Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Köln 50829, Germany
| | - Gaëlle Huet
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Alain Jauneau
- Institut Fédératif de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan 31326, France
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, UMR 5546, BP 42617 Auzeville, Castanet-Tolosan 31326, France; CNRS, UMR 5546, BP 42617, Castanet-Tolosan 31326, France
| | - Dominique Trémousaygue
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Alexandra Kraut
- Université Grenoble Alpes, iRTSV-BGE, Grenoble 38000, France; CEA, iRTSV-BGE, Grenoble 38000, France; INSERM, BGE, Grenoble 38000, France
| | - Binbin Zhou
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Marie Levaillant
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Hiroaki Adachi
- Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hirofumi Yoshioka
- Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Sylvain Raffaele
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Richard Berthomé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Yohann Couté
- Université Grenoble Alpes, iRTSV-BGE, Grenoble 38000, France; CEA, iRTSV-BGE, Grenoble 38000, France; INSERM, BGE, Grenoble 38000, France
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Köln 50829, Germany
| | - Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France.
| |
Collapse
|
86
|
Wu L, Chen H, Curtis C, Fu ZQ. Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. [Corrected]. Virulence 2015; 5:710-21. [PMID: 25513772 PMCID: PMC4189877 DOI: 10.4161/viru.29755] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review.
Collapse
Affiliation(s)
- Liang Wu
- a Department of Biological Sciences; University of South Carolina; Columbia, SC USA
| | | | | | | |
Collapse
|
87
|
Tsuda K, Somssich IE. Transcriptional networks in plant immunity. THE NEW PHYTOLOGIST 2015; 206:932-947. [PMID: 25623163 DOI: 10.1111/nph.13286] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/09/2014] [Indexed: 05/18/2023]
Abstract
Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.
Collapse
Affiliation(s)
- Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, Cologne, 50829, Germany
| |
Collapse
|
88
|
Abstract
Intracellular immune receptors with nucleotide-binding, leucine-rich domains (NLRs) are found in both plants and animals. Compared to animals, NLR-encoding gene families are expanded, more prevalent and have enriched diversity in higher plants. Strong host defense triggered by the recognition of specific pathogen effectors constitutes a major part of the plant immune response that has long been exploited to breed crops for enhanced resistance. Although the first plant NLR genes were cloned about 20 years ago, their signaling mechanisms remain obscure. Here we review recent progress in plant NLR studies, focusing on their pathogen recognition, homeostasis control and potential signaling activation mechanisms.
Collapse
|
89
|
Cui H, Tsuda K, Parker JE. Effector-triggered immunity: from pathogen perception to robust defense. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:487-511. [PMID: 25494461 DOI: 10.1146/annurev-arplant-050213-040012] [Citation(s) in RCA: 829] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; , ,
| | | | | |
Collapse
|
90
|
Liu J, Cheng X, Liu D, Xu W, Wise R, Shen QH. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling. PLoS Genet 2014; 10:e1004755. [PMID: 25502438 PMCID: PMC4263374 DOI: 10.1371/journal.pgen.1004755] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/15/2014] [Indexed: 01/19/2023] Open
Abstract
Barley (Hordeum vulgare L.) Mla alleles encode coiled-coil (CC), nucleotide binding, leucine-rich repeat (NB-LRR) receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP) in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs) and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley. Plants rely on cell-surface and intracellular immune receptors to sense pathogen invasion and to mediate defense responses. However, uncontrolled activation of immune responses is harmful to plant growth and development. Small RNAs have recently been shown to fine-tune the expression of intracellular immune receptors and contribute to the regulation of defense signaling in dicot plants, while similar processes have not been well documented in monocot grain crops, such as barley and wheat. Here, we show that, in barley, some members of the miR9863 family target a subset of Mla alleles that confer race-specific disease resistance to the powdery mildew fungus. These miRNAs act on Mla transcripts by cleavage and translational repression. Production of a type of trans-acting small RNAs, designated as phasiRNAs, enhances the effects of miRNA regulation on Mla targets. We propose that Mla-mediated immune signaling is fine-tuned by the miRNAs at later stage of MLA activation to avoid overloading of immune responses in barley cells.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Centre for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiliu Cheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Centre for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Da Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Centre for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weihui Xu
- Department of Plant Pathology & Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa, United States of America
| | - Roger Wise
- Department of Plant Pathology & Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Iowa State University, Ames, Iowa, United States of America
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Centre for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
91
|
Griebel T, Maekawa T, Parker JE. NOD-like receptor cooperativity in effector-triggered immunity. Trends Immunol 2014; 35:562-70. [PMID: 25308923 DOI: 10.1016/j.it.2014.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
Abstract
Intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are basic elements of innate immunity in plants and animals. Whereas animal NLRs react to conserved microbe- or damage-associated molecular patterns, plant NLRs intercept the actions of diverse pathogen virulence factors (effectors). In this review, we discuss recent genetic and molecular evidence for functional NLR pairs, and discuss the significance of NLR self-association and heteromeric NLR assemblies in the triggering of downstream signaling pathways. We highlight the versatility and impact of cooperating NLR pairs that combine pathogen sensing with the initiation of defense signaling in both plant and animal immunity. We propose that different NLR receptor molecular configurations provide opportunities for fine-tuning resistance pathways and enhancing the host's pathogen recognition spectrum to keep pace with rapidly evolving microbial populations.
Collapse
Affiliation(s)
- Thomas Griebel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Takaki Maekawa
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
92
|
Xu F, Kapos P, Cheng YT, Li M, Zhang Y, Li X. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PLoS Pathog 2014; 10:e1004312. [PMID: 25144198 PMCID: PMC4140859 DOI: 10.1371/journal.ppat.1004312] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/03/2014] [Indexed: 12/22/2022] Open
Abstract
In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. In plants and animals, NLR immune receptors are utilized to detect pathogen-derived molecules and activate immunity. However, the mechanisms of plant NLR activation remain unclear. Here, we report on bHLH84, which functions as a transcriptional activator. Simultaneously knocking out three closely related bHLH paralogs partially suppresses the autoimmunity of snc1 and compromises RPS4-mediated defense, while overexpression of these close paralogs renders strong autoimmunity, suggesting functional redundancy in the gene family. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4. Therefore bHLH84 family transcription factors associate with these NLRs to activate defense responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition.
Collapse
Affiliation(s)
- Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu Ti Cheng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Meng Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
93
|
Liu D, Leib K, Zhao P, Kogel KH, Langen G. Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and -2 as repressors of the pathogen-inducible gene HvGER4c. Mol Genet Genomics 2014; 289:1331-45. [PMID: 25138194 DOI: 10.1007/s00438-014-0893-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 07/26/2014] [Indexed: 11/25/2022]
Abstract
The WRKY transcription factors belong to an evolutionarily conserved superprotein family predominantly present in the plant kingdom. WRKY proteins of barley are not yet fully annotated and most of them are not functionally characterized. We performed a genome-wide identification of WRKY members based on the recently accessible barley draft genome sequence and full-length cDNA datasets. As a result, 34 novel putative proteins have been identified which extend the existing list for barley WRKYs to 94. Phylogenetic analysis of the WRKY domains allowed ranking into three groups (I, II, III), with an expansion in group III in monocots. Two members of subgroup IIa, the wound and pathogen-inducible HvWRKY1 and HvWRKY2, are known as negative defense regulators. Here, we demonstrate that both transcription factors repress the activity of the powdery mildew-induced promoter of HvGER4c, a germin-like defense-related protein. The repression did not require the negative defense regulator MLO nor was it affected by the presence of the R protein MLA12. Moreover, the expression of the Arabidopsis ortholog AtWRKY40 in barley compromised basal resistance to powdery mildew, providing evidence for functional conservation of sequence-related WRKY proteins across monocots and dicots.
Collapse
Affiliation(s)
- Dilin Liu
- Research Centre for BioSystems, Land Use, and Nutrition (IFZ Giessen), Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | | | | | | | | |
Collapse
|
94
|
Buscaill P, Rivas S. Transcriptional control of plant defence responses. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:35-46. [PMID: 24840291 DOI: 10.1016/j.pbi.2014.04.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 05/22/2023]
Abstract
Mounting of efficient plant defence responses depends on the ability to trigger a rapid defence reaction after recognition of the invading microbe. Activation of plant resistance is achieved by modulation of the activity of multiple transcriptional regulators, both DNA-binding transcription factors and their regulatory proteins, that are able to reprogram transcription in the plant cell towards the activation of defence signalling. Here we provide an overview of recent developments on the transcriptional control of plant defence responses and discuss defence-related hormone signalling, the role of WRKY transcription factors during the regulation of plant responses to pathogens, nuclear functions of plant immune receptor proteins, as well as varied ways by which microbial effectors subvert plant transcriptional reprogramming to promote disease.
Collapse
Affiliation(s)
- Pierre Buscaill
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326 Castanet-Tolosan, France
| | - Susana Rivas
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326 Castanet-Tolosan, France.
| |
Collapse
|
95
|
Stirnweis D, Milani SD, Jordan T, Keller B, Brunner S. Substitutions of two amino acids in the nucleotide-binding site domain of a resistance protein enhance the hypersensitive response and enlarge the PM3F resistance spectrum in wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:265-76. [PMID: 24329172 DOI: 10.1094/mpmi-10-13-0297-fi] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains are major components of the plant immune system. They usually mediate resistance against a subgroup of races of a specific pathogen. For the allelic series of the wheat powdery mildew resistance gene Pm3, alleles with a broad and a narrow resistance spectrum have been described. Here, we show that a broad Pm3 spectrum range correlates with a fast and intense hypersensitive response (HR) in a Nicotiana transient-expression system and this activity can be attributed to two particular amino acids in the ARC2 subdomain of the NBS. The combined substitution of these amino acids in narrow-spectrum PM3 proteins enhances their capacity to induce an HR in Nicotiana benthamiana, and we demonstrate that these substitutions also enlarge the resistance spectrum of the Pm3f allele in wheat. Finally, using Bph14, we show that the region carrying the relevant amino acids also plays a role in the HR regulation of another coiled-coil NBS-LRR resistance protein. These results highlight the importance of an optimized NBS-'molecular switch' for the conversion of initial pathogen perception by the LRR into resistance-protein activation, and we describe a possible approach to extend the effectiveness of resistance genes via minimal targeted modifications in the NBS domain.
Collapse
|
96
|
Xu W, Meng Y, Wise RP. Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. THE NEW PHYTOLOGIST 2014; 201:1396-1412. [PMID: 24246006 DOI: 10.1111/nph.12598] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/08/2013] [Indexed: 05/07/2023]
Abstract
• Barley (Hordeum vulgare L.) Mildew resistance locus a (Mla) confers allele-specific interactions with natural variants of the ascomycete fungus Blumeria graminis f. sp. hordei (Bgh), the causal agent of powdery mildew disease. Significant reprogramming of Mla-mediated gene expression occurs upon infection by this obligate biotrophic pathogen. • We utilized a proteomics-based approach, combined with barley mla, required for Mla12 resistance1 (rar1), and restoration of Mla resistance1 (rom1) mutants, to identify components of Mla-directed signaling. • Loss-of-function mutations in Mla and Rar1 both resulted in the reduced accumulation of chloroplast copper/zinc superoxide dismutase 1 (HvSOD1), whereas loss of function in Rom1 re-established HvSOD1 levels. In addition, both Mla and Rom1 negatively regulated hvu-microRNA398 (hvu-miR398), and up-regulation of miR398 was coupled to reduced HvSOD1 expression. Barley stripe mosaic virus (BSMV)-mediated over-expression of both barley and Arabidopsis miR398 repressed accumulation of HvSOD1, and BSMV-induced gene silencing of HvSod1 impeded Mla-triggered H₂O₂ and hypersensitive reaction (HR) at barley-Bgh interaction sites. • These data indicate that Mla- and Rom1-regulated hvu-miR398 represses HvSOD1 accumulation, influencing effector-induced HR in response to the powdery mildew fungus.
Collapse
Affiliation(s)
- Weihui Xu
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011-1020, USA
| | - Yan Meng
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011-1020, USA
| | - Roger P Wise
- Department of Plant Pathology and Microbiology, Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, IA, 50011-1020, USA
- Corn Insects and Crop Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Iowa State University, Ames, IA, 50011-1020, USA
| |
Collapse
|
97
|
Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:957-69. [PMID: 24124925 DOI: 10.1111/tpj.12345] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/25/2013] [Accepted: 10/04/2013] [Indexed: 05/18/2023]
Abstract
The improvement of wheat through breeding has relied strongly on the use of genetic material from related wild and domesticated grass species. The 1RS chromosome arm from rye was introgressed into wheat and crossed into many wheat lines, as it improves yield and fungal disease resistance. Pm8 is a powdery mildew resistance gene on 1RS which, after widespread agricultural cultivation, is now widely overcome by adapted mildew races. Here we show by homology-based cloning and subsequent physical and genetic mapping that Pm8 is the rye orthologue of the Pm3 allelic series of mildew resistance genes in wheat. The cloned gene was functionally validated as Pm8 by transient, single-cell expression analysis and stable transformation. Sequence analysis revealed a complex mosaic of ancient haplotypes among Pm3- and Pm8-like genes from different members of the Triticeae. These results show that the two genes have evolved independently after the divergence of the species 7.5 million years ago and kept their function in mildew resistance. During this long time span the co-evolving pathogens have not overcome these genes, which is in strong contrast to the breakdown of Pm8 resistance since its introduction into commercial wheat 70 years ago. Sequence comparison revealed that evolutionary pressure acted on the same subdomains and sequence features of the two orthologous genes. This suggests that they recognize directly or indirectly the same pathogen effectors that have been conserved in the powdery mildews of wheat and rye.
Collapse
Affiliation(s)
- Severine Hurni
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Neerincx A, Castro W, Guarda G, Kufer TA. NLRC5, at the Heart of Antigen Presentation. Front Immunol 2013; 4:397. [PMID: 24319445 PMCID: PMC3837245 DOI: 10.3389/fimmu.2013.00397] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/07/2013] [Indexed: 01/25/2023] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are intracellular proteins mainly involved in pathogen recognition, inflammatory responses, and cell death. Until recently, the function of the family member NLR caspase recruitment domain (CARD) containing 5 (NLRC5) has been a matter of debate. It is now clear that NLRC5 acts as a transcriptional regulator of the major-histocompatibility complex class I. In this review we detail the development of our understanding of NLRC5 function, discussing both the accepted and the controversial aspects of NLRC5 activity. We give insight into the molecular mechanisms, and the potential implications, of NLRC5 function in health and disease.
Collapse
Affiliation(s)
- Andreas Neerincx
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne , Cologne , Germany
| | | | | | | |
Collapse
|
99
|
Qi D, Innes RW. Recent Advances in Plant NLR Structure, Function, Localization, and Signaling. Front Immunol 2013; 4:348. [PMID: 24155748 PMCID: PMC3801107 DOI: 10.3389/fimmu.2013.00348] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/09/2013] [Indexed: 12/14/2022] Open
Abstract
Nucleotide-binding domain leucine-rich repeat (NLR) proteins play a central role in the innate immune systems of plants and vertebrates. In plants, NLR proteins function as intracellular receptors that detect pathogen effector proteins directly, or indirectly by recognizing effector-induced modifications to other host proteins. NLR activation triggers a suite of defense responses associated with programed cell death (PCD). The molecular mechanisms underlying NLR activation, and how activation is translated into defense responses, have been particularly challenging to elucidate in plants. Recent reports, however, are beginning to shed some light. It is becoming clear that plant NLR proteins are targeted to diverse sub-cellular locations, likely depending on the locations where the effectors are detected. These reports also indicate that some NLRs re-localize following effector detection, while others do not, and such relocalization may reflect differences in signaling pathways. There have also been recent advances in understanding the structure of plant NLR proteins, with crystal structures now available for the N-terminal domains of two well-studied NLRs, a coiled-coil (CC) domain and a Toll-interleukin Receptor (TIR). Significant improvements in molecular modeling have enabled more informed structure-function studies, illuminating roles of intra- and inter-molecular interactions in NLR activation regulation. Several independent studies also suggest that intracellular trafficking is involved in NLR-mediated resistance. Lastly, progress is being made on identifying transcriptional regulatory complexes activated by NLRs. Current models for how plant NLR proteins are activated and how they induce defenses are discussed, with an emphasis on what remains to be determined.
Collapse
Affiliation(s)
- Dong Qi
- Department of Biology, Indiana University , Bloomington, IN , USA
| | | |
Collapse
|
100
|
Chang C, Zhang L, Shen QH. Partitioning, repressing and derepressing: dynamic regulations in MLA immune receptor triggered defense signaling. FRONTIERS IN PLANT SCIENCE 2013; 4:396. [PMID: 24115952 PMCID: PMC3792363 DOI: 10.3389/fpls.2013.00396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/16/2013] [Indexed: 05/09/2023]
Abstract
Plants and animals have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing immune receptors (NLRs) to perceive non-self and trigger immune responses. Plant NLRs detect strain-specific pathogen effectors and activate immune signaling leading to extensive transcriptional reprogramming and termination of pathogen infection. Here we review the recent findings in barley MLA immune receptor mediated immune responses against the barley powdery mildew fungus. We focus on nucleocytoplasmic partitioning of immune receptor, bifurcation of immune signaling, transcriptional repression and derepression connecting receptor activation to immune responses. We also discuss similar findings from other plant NLRs where appropriate.
Collapse
Affiliation(s)
- Cheng Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- Graduate University of Chinese Academy of SciencesBeijing, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Qian-Hua Shen, State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China e-mail:
| |
Collapse
|