51
|
Wang H, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016. [PMID: 27030359 DOI: 10.1186/s12864-016-2593-2596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. RESULTS In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes. CONCLUSIONS The results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
52
|
Wang H, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H. Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016; 17:269. [PMID: 27030359 PMCID: PMC4815114 DOI: 10.1186/s12864-016-2593-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
Background Optimization of shade avoidance response (SAR) is crucial for enhancing crop yield in high-density planting conditions in modern agriculture, but a comprehensive study of the regulatory network of SAR is still lacking in monocot crops. Results In this study, the genome-wide early responses in maize seedlings to the simulated shade (low red/far-red ratio) and also to far-red light treatment were transcriptionally profiled. The two processes were predominantly mediated by phytochrome B and phytochrome A, respectively. Clustering of differentially transcribed genes (DTGs) along with functional enrichment analysis identified important biological processes regulated in response to both treatments. Co-expression network analysis identified two transcription factor modules as potentially pivotal regulators of SAR and de-etiolation, respectively. A comprehensive cross-species comparison of orthologous DTG pairs between maize and Arabidopsis in SAR was also conducted, with emphasis on regulatory circuits controlling accelerated flowering and elongated growth, two physiological hallmarks of SAR. Moreover, it was found that the genome-wide distribution of DTGs in SAR and de-etiolation both biased toward the maize1 subgenome, and this was associated with differential retention of various cis-elements between the two subgenomes. Conclusions The results provide the first transcriptional picture for the early dynamics of maize phytochrome signaling. Candidate genes with regulatory functions involved in maize shade avoidance response have been identified, offering a starting point for further functional genomics investigation of maize adaptation to heavily shaded field conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2593-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Binbin Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
53
|
Liu W, Stewart CN. Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 2016; 37:36-44. [DOI: 10.1016/j.copbio.2015.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
54
|
Wang F, Guo Z, Li H, Wang M, Onac E, Zhou J, Xia X, Shi K, Yu J, Zhou Y. Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. PLANT PHYSIOLOGY 2016; 170:459-71. [PMID: 26527654 PMCID: PMC4704577 DOI: 10.1104/pp.15.01171] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/29/2015] [Indexed: 05/18/2023]
Abstract
Light signaling and phytohormones both influence plant growth, development, and stress responses; however, cross talk between these two signaling pathways in response to cold remains underexplored. Here, we report that far-red light (FR) and red light (R) perceived by phytochrome A (phyA) and phyB positively and negatively regulated cold tolerance, respectively, in tomato (Solanum lycopersicum), which were associated with the regulation of levels of phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and transcript levels of ABA- and JA-related genes and the C-REPEAT BINDING FACTOR (CBF) stress signaling pathway genes. A reduction in the R/FR ratio did not alter cold tolerance, ABA and JA accumulation, and transcript levels of ABA- and JA-related genes and the CBF pathway genes in phyA mutant plants; however, those were significantly increased in wild-type and phyB plants with the reduction in the R/FR ratio. Even though low R/FR treatments did not confer cold tolerance in ABA-deficient (notabilis [not]) and JA-deficient (prosystemin-mediated responses2 [spr2]) mutants, it up-regulated ABA accumulation and signaling in the spr2 mutant, with no effect on JA levels and signaling in the not mutant. Foliar application of ABA and JA further confirmed that JA functioned downstream of ABA to activate the CBF pathway in light quality-mediated cold tolerance. It is concluded that phyA and phyB function antagonistically to regulate cold tolerance that essentially involves FR light-induced activation of phyA to induce ABA signaling and, subsequently, JA signaling, leading to an activation of the CBF pathway and a cold response in tomato plants.
Collapse
Affiliation(s)
- Feng Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Zhixin Guo
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Huizi Li
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Mengmeng Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Eugen Onac
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, People's Republic of China (F.W., Z.G., H.L., J.Z., X.X., K.S., J.Y., Y.Z.);Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, People's Republic of China (F.W., J.Y., Y.Z.);Philips Research China, Shanghai 200233, People's Republic of China (M.W.); andPhilips Research Europe, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands (E.O.)
| |
Collapse
|
55
|
Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y, Wang H, Tsai SN, Ngai S, Du L. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars. Mol Cell Proteomics 2016; 15:266-88. [PMID: 26407991 PMCID: PMC4762511 DOI: 10.1074/mcp.m115.051961] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Understanding molecular mechanisms underlying plant salinity tolerance provides valuable knowledgebase for effective crop improvement through genetic engineering. Current proteomic technologies, which support reliable and high-throughput analyses, have been broadly used for exploring sophisticated molecular networks in plants. In the current study, we compared phosphoproteomic and proteomic changes in roots of different soybean seedlings of a salt-tolerant cultivar (Wenfeng07) and a salt-sensitive cultivar (Union85140) induced by salt stress. The root samples of Wenfeng07 and Union85140 at three-trifoliate stage were collected at 0 h, 0.5 h, 1 h, 4 h, 12 h, 24 h, and 48 h after been treated with 150 mm NaCl. LC-MS/MS based phosphoproteomic analysis of these samples identified a total of 2692 phosphoproteins and 5509 phosphorylation sites. Of these, 2344 phosphoproteins containing 3744 phosphorylation sites were quantitatively analyzed. Our results showed that 1163 phosphorylation sites were differentially phosphorylated in the two compared cultivars. Among them, 10 MYB/MYB transcription factor like proteins were identified with fluctuating phosphorylation modifications at different time points, indicating that their crucial roles in regulating flavonol accumulation might be mediated by phosphorylated modifications. In addition, the protein expression profiles of these two cultivars were compared using LC MS/MS based shotgun proteomic analysis, and expression pattern of all the 89 differentially expressed proteins were independently confirmed by qRT-PCR. Interestingly, the enzymes involved in chalcone metabolic pathway exhibited positive correlations with salt tolerance. We confirmed the functional relevance of chalcone synthase, chalcone isomerase, and cytochrome P450 monooxygenase genes using soybean composites and Arabidopsis thaliana mutants, and found that their salt tolerance were positively regulated by chalcone synthase, but was negatively regulated by chalcone isomerase and cytochrome P450 monooxygenase. A novel salt tolerance pathway involving chalcone metabolism, mostly mediated by phosphorylated MYB transcription factors, was proposed based on our findings. (The mass spectrometry raw data are available via ProteomeXchange with identifier PXD002856).
Collapse
Affiliation(s)
- Erxu Pi
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China;
| | - Liqun Qu
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Jianwen Hu
- §Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, PR China
| | - Yingying Huang
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Lijuan Qiu
- ¶The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongfei Lu
- ‖College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Bo Jiang
- **College of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Cong Liu
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Tingting Peng
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Ying Zhao
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Huizhong Wang
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China
| | - Sau-Na Tsai
- ‡‡Centre for Soybean Research of Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Saiming Ngai
- ‡‡Centre for Soybean Research of Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Liqun Du
- From the ‡College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, PR China;
| |
Collapse
|
56
|
Xu D, Lin F, Jiang Y, Ling J, Hettiarachchi C, Tellgren-Roth C, Holm M, Wei N, Deng XW. Arabidopsis COP1 SUPPRESSOR 2 Represses COP1 E3 Ubiquitin Ligase Activity through Their Coiled-Coil Domains Association. PLoS Genet 2015; 11:e1005747. [PMID: 26714275 PMCID: PMC4694719 DOI: 10.1371/journal.pgen.1005747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/27/2015] [Indexed: 01/08/2023] Open
Abstract
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) functions as an E3 ubiquitin ligase and mediates a variety of developmental processes in Arabidopsis by targeting a number of key regulators for ubiquitination and degradation. Here, we identify a novel COP1 interacting protein, COP1 SUPPRESSOR 2 (CSU2). Loss of function mutations in CSU2 suppress the constitutive photomorphogenic phenotype of cop1-6 in darkness. CSU2 directly interacts with COP1 via their coiled-coil domains and is recruited by COP1 into nuclear speckles in living plant cells. Furthermore, CSU2 inhibits COP1 E3 ubiquitin ligase activity in vitro, and represses COP1 mediated turnover of HY5 in cell-free extracts. We propose that in csu2 cop1-6 mutants, the lack of CSU2’s repression of COP1 allows the low level of COP1 to exhibit higher activity that is sufficient to prevent accumulation of HY5 in the dark, thus restoring the etiolated phenotype. In addition, CSU2 is required for primary root development under normal light growth condition. CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is a key regulator of light mediated developmental processes and it works as an E3 ubiquitin ligase controlling the abundance of multiple transcription factors. In the work presented here, we identified a novel repressor of COP1, the COP1 SUPPRESSOR 2 (CSU2), via a forward genetic screen. Mutations in CSU2 completely suppress cop1-6 constitutive photomorphogenic phenotype in darkness. CSU2 interacts and co-localizes with COP1 in nuclear speckles via the coiled-coil domain association. CSU2 negatively regulates COP1 E3 ubiquitin ligase activity, and repress COP1 mediated HY5 degradation in cell-free extracts.
Collapse
Affiliation(s)
- Dongqing Xu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Fang Lin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yan Jiang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Junjie Ling
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
| | | | - Christian Tellgren-Roth
- Uppsala Genome Center, National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, BMC, Uppsala, Sweden
| | - Magnus Holm
- Department of Biological and Environmental Sciences, Gothenburg University, Gothenburg, Sweden
| | - Ning Wei
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (NW); (XWD)
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- * E-mail: (NW); (XWD)
| |
Collapse
|
57
|
Pedmale UV, Huang SSC, Zander M, Cole BJ, Hetzel J, Ljung K, Reis PAB, Sridevi P, Nito K, Nery JR, Ecker JR, Chory J. Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell 2015; 164:233-245. [PMID: 26724867 DOI: 10.1016/j.cell.2015.12.018] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/29/2015] [Accepted: 12/06/2015] [Indexed: 11/28/2022]
Abstract
Sun-loving plants have the ability to detect and avoid shading through sensing of both blue and red light wavelengths. Higher plant cryptochromes (CRYs) control how plants modulate growth in response to changes in blue light. For growth under a canopy, where blue light is diminished, CRY1 and CRY2 perceive this change and respond by directly contacting two bHLH transcription factors, PIF4 and PIF5. These factors are also known to be controlled by phytochromes, the red/far-red photoreceptors; however, transcriptome analyses indicate that the gene regulatory programs induced by the different light wavelengths are distinct. Our results indicate that CRYs signal by modulating PIF activity genome wide and that these factors integrate binding of different plant photoreceptors to facilitate growth changes under different light conditions.
Collapse
Affiliation(s)
- Ullas V Pedmale
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Shao-Shan Carol Huang
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Genomic Analysis Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark Zander
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin J Cole
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan Hetzel
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Pedro A B Reis
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Departamento de Bioquímica e Biologia Molecular/BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570.000 Viçosa, Minas Gerais, Brazil
| | - Priya Sridevi
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kazumasa Nito
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph R Ecker
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Genomic Analysis Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
58
|
Xu X, Paik I, Zhu L, Huq E. Illuminating Progress in Phytochrome-Mediated Light Signaling Pathways. TRENDS IN PLANT SCIENCE 2015; 20:641-650. [PMID: 26440433 DOI: 10.1016/j.tplants.2015.06.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Light signals regulate a plethora of plant responses throughout their life cycle, especially the red and far-red regions of the light spectrum perceived by the phytochrome family of photoreceptors. However, the mechanisms by which phytochromes regulate gene expression and downstream responses remain elusive. Several recent studies have unraveled the details on how phytochromes regulate photomorphogenesis. These include the identification of E3 ligases that degrade PHYTOCHROME INTERACTING FACTOR (PIF) proteins, key negative regulators, in response to light, a better view of how phytochromes inhibit another key negative regulator, CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), and an understanding of why plants evolved multiple negative regulators to repress photomorphogenesis in darkness. These advances will surely fuel future research on many unanswered questions that have intrigued plant photobiologists for decades.
Collapse
Affiliation(s)
- Xiaosa Xu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ling Zhu
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
59
|
Didi V, Jackson P, Hejátko J. Hormonal regulation of secondary cell wall formation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5015-27. [PMID: 26002972 DOI: 10.1093/jxb/erv222] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Secondary cell walls (SCWs) have critical functional importance but also constitute a high proportion of the plant biomass and have high application potential. This is true mainly for the lignocellulosic constituents of the SCWs in xylem vessels and fibres, which form a structured layer between the plasma membrane and the primary cell wall (PCW). Specific patterning of the SCW thickenings contributes to the mechanical properties of the different xylem cell types, providing the plant with mechanical support and facilitating the transport of solutes via vessels. In the last decade, our knowledge of the basic molecular mechanisms controlling SCW formation has increased substantially. Several members of the multi-layered regulatory cascade participating in the initiation and transcriptional regulation of SCW formation have been described, and the first cellular components determining the pattern of SCW at the subcellular resolution are being uncovered. The essential regulatory role of phytohormones in xylem development is well known and the molecular mechanisms that link hormonal signals to SCW formation are emerging. Here, we review recent knowledge about the role of individual plant hormones and hormonal crosstalk in the control over the regulatory cascades guiding SCW formation and patterning. Based on the analogy between many of the mechanisms operating during PCW and SCW formation, recently identified mechanisms underlying the hormonal control of PCW remodelling are discussed as potentially novel mechanisms mediating hormonal regulatory inputs in SCW formation.
Collapse
Affiliation(s)
- Vojtěch Didi
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Phil Jackson
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
60
|
Wang H, Wang H. Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. TRENDS IN PLANT SCIENCE 2015; 20:453-61. [PMID: 25956482 DOI: 10.1016/j.tplants.2015.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 05/03/2023]
Abstract
FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1), initially identified as crucial components of phytochrome A (phyA)-mediated far-red (FR) light signaling in Arabidopsis thaliana, are the founding members of the FAR1-related sequence (FRS) family of transcription factors present in most angiosperms. These proteins share extensive similarity with the Mutator-like transposases, indicative of their evolutionary history of 'molecular domestication'. Here we review emerging multifaceted roles of FHY3/FAR1 in diverse developmental and physiological processes, including UV-B signaling, circadian clock entrainment, flowering, chloroplast biogenesis, chlorophyll biosynthesis, programmed cell death, reactive oxygen species (ROS) homeostasis, abscisic acid (ABA) signaling, and branching. The domestication of FHY3/FAR1 may enable angiosperms to better integrate various endogenous and exogenous signals for coordinated regulation of growth and development, thus enhancing their fitness and adaptation.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
61
|
Wang H, Wang H. Phytochrome signaling: time to tighten up the loose ends. MOLECULAR PLANT 2015; 8:540-51. [PMID: 25670340 DOI: 10.1016/j.molp.2014.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Phytochromes are red and far-red light photoreceptors that play fundamental roles in controlling many aspects of plant growth and development in response to light. The past two decades have witnessed the mechanistic elucidation of the action mode of phytochromes, including their regulation by external and endogenous factors and how they exert their function as transcriptional regulators. More importantly, recent advances have substantially deepened our understanding on the integration of the phytochrome-mediated signal into other cellular and developmental processes, such as elongation of hypocotyls, shoot branching, circadian clock, and flowering time, which often involves complex intercellular and interorgan signaling. Based on these advances, this review illustrates a blueprint of our current understanding of phytochrome signaling and its crosstalk with other signaling pathways, and also points out still open questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
62
|
Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. PLANT PHYSIOLOGY 2015; 167:1087-99. [PMID: 25624395 PMCID: PMC4348788 DOI: 10.1104/pp.114.256016] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/23/2015] [Indexed: 05/20/2023]
Abstract
Blast caused by fungal Magnaporthe oryzae is a devastating disease of rice (Oryza sativa) worldwide, and this fungus also infects barley (Hordeum vulgare). At least 11 rice WRKY transcription factors have been reported to regulate rice response to M. oryzae either positively or negatively. However, the relationships of these WRKYs in the rice defense signaling pathway against M. oryzae are unknown. Previous studies have revealed that rice WRKY13 (as a transcriptional repressor) and WRKY45-2 enhance resistance to M. oryzae. Here, we show that rice WRKY42, functioning as a transcriptional repressor, suppresses resistance to M. oryzae. WRKY42-RNA interference (RNAi) and WRKY42-overexpressing (oe) plants showed increased resistance and susceptibility to M. oryzae, accompanied by increased or reduced jasmonic acid (JA) content, respectively, compared with wild-type plants. JA pretreatment enhanced the resistance of WRKY42-oe plants to M. oryzae. WRKY13 directly suppressed WRKY42. WRKY45-2, functioning as a transcriptional activator, directly activated WRKY13. In addition, WRKY13 directly suppressed WRKY45-2 by feedback regulation. The WRKY13-RNAi WRKY45-2-oe and WRKY13-oe WRKY42-oe double transgenic lines showed increased susceptibility to M. oryzae compared with WRKY45-2-oe and WRKY13-oe plants, respectively. These results suggest that the three WRKYs form a sequential transcriptional regulatory cascade. WRKY42 may negatively regulate rice response to M. oryzae by suppressing JA signaling-related genes, and WRKY45-2 transcriptionally activates WRKY13, whose encoding protein in turn transcriptionally suppresses WRKY42 to regulate rice resistance to M. oryzae.
Collapse
Affiliation(s)
- Hongtao Cheng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Deng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
63
|
Next-generation sequencing of genomic DNA fragments bound to a transcription factor in vitro reveals its regulatory potential. Genes (Basel) 2014; 5:1115-31. [PMID: 25534860 PMCID: PMC4276929 DOI: 10.3390/genes5041115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Several transcription factors (TFs) coordinate to regulate expression of specific genes at the transcriptional level. In Arabidopsis thaliana it is estimated that approximately 10% of all genes encode TFs or TF-like proteins. It is important to identify target genes that are directly regulated by TFs in order to understand the complete picture of a plant’s transcriptome profile. Here, we investigate the role of the LONG HYPOCOTYL5 (HY5) transcription factor that acts as a regulator of photomorphogenesis. We used an in vitro genomic DNA binding assay coupled with immunoprecipitation and next-generation sequencing (gDB-seq) instead of the in vivo chromatin immunoprecipitation (ChIP)-based methods. The results demonstrate that the HY5-binding motif predicted here was similar to the motif reported previously and that in vitro HY5-binding loci largely overlapped with the HY5-targeted candidate genes identified in previous ChIP-chip analysis. By combining these results with microarray analysis, we identified hundreds of HY5-binding genes that were differentially expressed in hy5. We also observed delayed induction of some transcripts of HY5-binding genes in hy5 mutants in response to blue-light exposure after dark treatment. Thus, an in vitro gDNA-binding assay coupled with sequencing is a convenient and powerful method to bridge the gap between identifying TF binding potential and establishing function.
Collapse
|
64
|
Mellenthin M, Ellersiek U, Börger A, Baier M. Expression of the Arabidopsis Sigma Factor SIG5 Is Photoreceptor and Photosynthesis Controlled. PLANTS 2014; 3:359-91. [PMID: 27135509 PMCID: PMC4844344 DOI: 10.3390/plants3030359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/07/2014] [Accepted: 07/30/2014] [Indexed: 11/16/2022]
Abstract
Two collections of Arabidopsis GAL4 enhancer trap lines were screened for light-intensity dependent reporter gene activation. Line N9313 was isolated for its strong light-intensity regulation. The T-DNA element trapped distant enhancers of the SIG5 promoter, which drives expression of a sigma factor involved in regulation of chloroplast genes for photosystem II core proteins. The T-DNA insertion 715 bp upstream of the transcription initiation site splits the promoter in a distal and proximal part. Both parts are sensitive to blue and red light and depend on photosynthetic electron transport activity between photosystem II and the plastoquinone pool. The mainblue-light sensitivity is localized within a 196-bp sequence (-887 to -691 bp) in the proximal promoter region It is preferentially CRY1 and PHYB controlled. Type-I and type-II phytochromes mediate red-light sensitivity via various promoter elements spread over the proximal and distal upstream region. This work characterizes SIG5 as an anterograde control factor of chloroplast gene expression, which is controlled by chloroplast signals in a retrograde manner.
Collapse
Affiliation(s)
- Marina Mellenthin
- Plant Sciences, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf 40225, Germany.
| | - Ulrike Ellersiek
- Plant Sciences, Heinrich-Heine-Universität, Universitätsstraße 1, Düsseldorf 40225, Germany.
| | - Anna Börger
- Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, Berlin 14195, Germany.
| | - Margarete Baier
- Plant Physiology, Freie Universität Berlin, Königin-Luise-Straße 12-16, Berlin 14195, Germany.
| |
Collapse
|
65
|
Photoreceptor partner FHY1 has an independent role in gene modulation and plant development under far-red light. Proc Natl Acad Sci U S A 2014; 111:11888-93. [PMID: 25071219 DOI: 10.1073/pnas.1412528111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To incorporate the far-red light (FR) signal into a strategy for optimizing plant growth, FAR-RED ELONGATED HYPOCOTYL1 (FHY1) mediates the nuclear translocation of the FR photoreceptor phytochrome A (phyA) and facilitates the association of phyA with the promoters of numerous associated genes crucial for the response to environmental stimuli. However, whether FHY1 plays additional roles after FR irradiation remains elusive. Here, through the global identification of FHY1 chromatin association sites through ChIP-seq analysis and by the comparison of FHY1-associated sites with phyA-associated sites, we demonstrated that nuclear FHY1 can either act independently of phyA or act in association with phyA to activate the expression of distinct target genes. We also determined that phyA can act independently of FHY1 in regulating phyA-specific target genes. Furthermore, we determined that the independent FHY1 nuclear pathway is involved in crucial aspects of plant development, as in the case of inhibited seed germination under FR during salt stress. Notably, the differential presence of cis-elements and transcription factors in common and unique FHY1- and/or phyA-associated genes are indicative of the complexity of the independent and coordinated FHY1 and phyA pathways. Our study uncovers previously unidentified aspects of FHY1 function beyond its currently recognized role in phyA-dependent photomorphogenesis.
Collapse
|
66
|
Mach J. Walk into the Light Response: Direct Targets of Phytochrome A Include Genes That Respond to Light, Stress, and Hormones. THE PLANT CELL 2014; 26:1832. [PMID: 24794134 PMCID: PMC4079347 DOI: 10.1105/tpc.114.127019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|