51
|
Correa SM, Fernie AR, Nikoloski Z, Brotman Y. Towards model-driven characterization and manipulation of plant lipid metabolism. Prog Lipid Res 2020; 80:101051. [PMID: 32640289 DOI: 10.1016/j.plipres.2020.101051] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Plant lipids have versatile applications and provide essential fatty acids in human diet. Therefore, there has been a growing interest to better characterize the genetic basis, regulatory networks, and metabolic pathways that shape lipid quantity and composition. Addressing these issues is challenging due to context-specificity of lipid metabolism integrating environmental, developmental, and tissue-specific cues. Here we systematically review the known metabolic pathways and regulatory interactions that modulate the levels of storage lipids in oilseeds. We argue that the current understanding of lipid metabolism provides the basis for its study in the context of genome-wide plant metabolic networks with the help of approaches from constraint-based modeling and metabolic flux analysis. The focus is on providing a comprehensive summary of the state-of-the-art of modeling plant lipid metabolic pathways, which we then contrast with the existing modeling efforts in yeast and microalgae. We then point out the gaps in knowledge of lipid metabolism, and enumerate the recent advances of using genome-wide association and quantitative trait loci mapping studies to unravel the genetic regulations of lipid metabolism. Finally, we offer a perspective on how advances in the constraint-based modeling framework can propel further characterization of plant lipid metabolism and its rational manipulation.
Collapse
Affiliation(s)
- Sandra M Correa
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel; Departamento de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; Systems Biology and Mathematical Modelling Group, Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm 14476, Germany.
| | - Yariv Brotman
- Genetics of Metabolic Traits Group, Max Planck Institute for Molecular Plant Physiology, Potsdam 14476, Germany; Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
52
|
Parajuli S, Kannan B, Karan R, Sanahuja G, Liu H, Garcia‐Ruiz E, Kumar D, Singh V, Zhao H, Long S, Shanklin J, Altpeter F. Towards oilcane: Engineering hyperaccumulation of triacylglycerol into sugarcane stems. GCB BIOENERGY 2020; 12:476-490. [DOI: 10.1111/gcbb.12684] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/16/2020] [Indexed: 08/30/2024]
Abstract
AbstractMetabolic engineering to divert carbon flux from sucrose to oil in high biomass crop like sugarcane is an emerging strategy to boost lipid yields per hectare for biodiesel production. Sugarcane stems comprise more than 70% of the crops' biomass and can accumulate sucrose in excess of 20% of their extracted juice. The energy content of oils in the form of triacylglycerol (TAG) is more than twofold that of carbohydrates. Here, we report a step change in TAG accumulation in sugarcane stem tissues achieving an average of 4.3% of their dry weight (DW) in replicated greenhouse experiments by multigene engineering. The metabolic engineering included constitutive co‐expression of wrinkled1; diacylglycerol acyltransferase1‐2; cysteine‐oleosin; and ribonucleic acid interference‐suppression of sugar‐dependent1. The TAG content in leaf tissue was also elevated by more than 400‐fold compared to non‐engineered sugarcane to an average of 8.0% of the DW and the amount of total fatty acids reached about 13% of the DW. With increasing TAG accumulation an increase of 18:1 unsaturated fatty acids was observed at the expense of 16:0 and 18:0 saturated fatty acids. Total biomass accumulation, soluble lignin, Brix and juice content were significantly reduced in the TAG hyperaccumulating sugarcane lines. Overcoming this yield drag by engineering lipid accumulation into late stem development will be critical to exceed lipid yields of current oilseed crops.
Collapse
Affiliation(s)
- Saroj Parajuli
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
| | - Baskaran Kannan
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Gainesville FL USA
| | - Ratna Karan
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
| | - Georgina Sanahuja
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
| | - Hui Liu
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Upton NY USA
- Biosciences Department Brookhaven National Laboratory Upton NY USA
| | - Eva Garcia‐Ruiz
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Deepak Kumar
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Urbana IL USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering University of Illinois at Urbana‐Champaign Urbana IL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Urbana IL USA
| | - Stephen Long
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Urbana IL USA
- Departments of Plant Biology and Crop Sciences Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | - John Shanklin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Upton NY USA
- Biosciences Department Brookhaven National Laboratory Upton NY USA
| | - Fredy Altpeter
- Agronomy Department Plant Molecular and Cellular Biology Program Genetics Institute University of Florida, IFAS Gainesville FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation Gainesville FL USA
| |
Collapse
|
53
|
Grimberg Å, Wilkinson M, Snell P, De Vos RP, González-Thuillier I, Tawfike A, Ward JL, Carlsson AS, Shewry P, Hofvander P. Transitions in wheat endosperm metabolism upon transcriptional induction of oil accumulation by oat endosperm WRINKLED1. BMC PLANT BIOLOGY 2020; 20:235. [PMID: 32450804 PMCID: PMC7249431 DOI: 10.1186/s12870-020-02438-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/10/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Cereal grains, including wheat (Triticum aestivum L.), are major sources of food and feed, with wheat being dominant in temperate zones. These end uses exploit the storage reserves in the starchy endosperm of the grain, with starch being the major storage component in most cereal species. However, oats (Avena sativa L.) differs in that the starchy endosperm stores significant amounts of oil. Understanding the control of carbon allocation between groups of storage compounds, such as starch and oil, is therefore important for understanding the composition and hence end use quality of cereals. WRINKLED1 is a transcription factor known to induce triacylglycerol (TAG; oil) accumulation in several plant storage tissues. RESULTS An oat endosperm homolog of WRI1 (AsWRI1) expressed from the endosperm-specific HMW1Dx5 promoter resulted in drastic changes in carbon allocation in wheat grains, with reduced seed weight and a wrinkled seed phenotype. The starch content of mature grain endosperms of AsWRI1-wheat was reduced compared to controls (from 62 to 22% by dry weight (dw)), TAG was increased by up to nine-fold (from 0.7 to 6.4% oil by dw) and sucrose from 1.5 to 10% by dw. Expression of AsWRI1 in wheat grains also resulted in multiple layers of elongated peripheral aleurone cells. RNA-sequencing, lipid analyses, and pulse-chase experiments using 14C-sucrose indicated that futile cycling of fatty acids could be a limitation for oil accumulation. CONCLUSIONS Our data show that expression of oat endosperm WRI1 in the wheat endosperm results in changes in metabolism which could underpin the application of biotechnology to manipulate grain composition. In particular, the striking effect on starch synthesis in the wheat endosperm indicates that an important indirect role of WRI1 is to divert carbon allocation away from starch biosynthesis in plant storage tissues that accumulate oil.
Collapse
Affiliation(s)
- Åsa Grimberg
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden.
| | - Mark Wilkinson
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Per Snell
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden
- Current address: MariboHilleshög Research AB, Box 302, 261 23, Landskrona, Sweden
| | - Rebecca P De Vos
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | - Ahmed Tawfike
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Jane L Ward
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden
| | - Peter Shewry
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden
| |
Collapse
|
54
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
55
|
Yao M, Guan M, Zhang Z, Zhang Q, Cui Y, Chen H, Liu W, Jan HU, Voss-Fels KP, Werner CR, He X, Liu Z, Guan C, Snowdon RJ, Hua W, Qian L. GWAS and co-expression network combination uncovers multigenes with close linkage effects on the oleic acid content accumulation in Brassica napus. BMC Genomics 2020; 21:320. [PMID: 32326904 PMCID: PMC7181522 DOI: 10.1186/s12864-020-6711-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/31/2020] [Indexed: 11/19/2022] Open
Abstract
Background Strong artificial and natural selection causes the formation of highly conserved haplotypes that harbor agronomically important genes. GWAS combination with haplotype analysis has evolved as an effective method to dissect the genetic architecture of complex traits in crop species. Results We used the 60 K Brassica Infinium SNP array to perform a genome-wide analysis of haplotype blocks associated with oleic acid (C18:1) in rapeseed. Six haplotype regions were identified as significantly associated with oleic acid (C18:1) that mapped to chromosomes A02, A07, A08, C01, C02, and C03. Additionally, whole-genome sequencing of 50 rapeseed accessions revealed three genes (BnmtACP2-A02, BnABCI13-A02 and BnECI1-A02) in the A02 chromosome haplotype region and two genes (BnFAD8-C02 and BnSDP1-C02) in the C02 chromosome haplotype region that were closely linked to oleic acid content phenotypic variation. Moreover, the co-expression network analysis uncovered candidate genes from these two different haplotype regions with potential regulatory interrelationships with oleic acid content accumulation. Conclusions Our results suggest that several candidate genes are closely linked, which provides us with an opportunity to develop functional haplotype markers for the improvement of the oleic acid content in rapeseed.
Collapse
Affiliation(s)
- Min Yao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Mei Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Zhenqian Zhang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Qiuping Zhang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Yixin Cui
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Hao Chen
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Liu
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Habib U Jan
- Precision Medicine Lab, Rehman Medical Institute (RMI), Phase 5, Hayatabad, Peshawar, 25000, Pakistan
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Christian R Werner
- The Roslin Institute University of Edinburgh Easter Bush Research Centre Midlothian, Edinburgh, EH25 9RG, UK
| | - Xin He
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Zhongsong Liu
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Chunyun Guan
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Wei Hua
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China. .,Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| | - Lunwen Qian
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
56
|
Zhang K, Lu H, Wan C, Tang D, Zhao Y, Luo K, Li S, Wang J. The Spread and Transmission of Sweet Potato Virus Disease (SPVD) and Its Effect on the Gene Expression Profile in Sweet Potato. PLANTS 2020; 9:plants9040492. [PMID: 32290324 PMCID: PMC7238082 DOI: 10.3390/plants9040492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/22/2023]
Abstract
Sweet potato virus disease (SPVD) is the most devastating viral disease in sweet potato (Ipomoea batatas (L.) Lam.), causing substantial yield losses worldwide. We conducted a systemic investigation on the spread, transmission, and pathogenesis of SPVD. Field experiments conducted over two years on ten sweet potato varieties showed that SPVD symptoms first occurred in newly developed top leaves, and spread from adjacent to distant plants in the field. The SPVD incidence was mainly (but not only) determined by the resistance of the varieties planted, and each variety exhibited a characteristic subset of SPVD symptoms. SPVD was not robustly transmitted through friction inoculation, but friction of the main stem might contribute to a higher SPVD incidence rate compared to friction of the leaf and branch tissues. Furthermore, our results suggested that SPVD might be latent in the storage root. Therefore, using virus-free storage roots and cuttings, purposeful monitoring for SPVD according to variety-specific symptoms, and swiftly removing infected plants (especially during the later growth stages) would help control and prevent SPVD during sweet potato production. Comparative transcriptome analysis revealed that numerous genes involved in photosynthesis, starch and sucrose metabolism, flavonoid biosynthesis, and carotenoid biosynthesis were downregulated following SPVD, whereas those involved in monolignol biosynthesis, zeatin biosynthesis, trehalose metabolism, and linoleic acid metabolism were upregulated. Notably, critical genes involved in pathogenesis and plant defense were significantly induced or suppressed following SPVD. These data provide insights into the molecular changes of sweet potato in response to SPVD and elucidate potential SPVD pathogenesis and defense mechanisms in sweet potato. Our study provides important information that can be used to tailor sustainable SPVD control strategies and guide the molecular breeding of SPVD-resistant sweet potato varieties.
Collapse
Affiliation(s)
- Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
- Correspondence: (K.Z.);
(J.W.); Tel.: +86-6825-1264 (K.Z.); +86-6825-1264 (J.W.)
| | - Huixiang Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Chuanfang Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
| | - Daobin Tang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Yong Zhao
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Kai Luo
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- The Agricultural Science Research Institute of Liupanshui, Guizhou 553001, China
| | - Shixi Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (H.L.); (C.W.); (D.T.); (Y.Z.); (K.L.); (S.L.)
- Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops in Chongqing, Beibei, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
- Correspondence: (K.Z.);
(J.W.); Tel.: +86-6825-1264 (K.Z.); +86-6825-1264 (J.W.)
| |
Collapse
|
57
|
Nam JW, Jenkins LM, Li J, Evans BS, Jaworski JG, Allen DK. A General Method for Quantification and Discovery of Acyl Groups Attached to Acyl Carrier Proteins in Fatty Acid Metabolism Using LC-MS/MS. THE PLANT CELL 2020; 32:820-832. [PMID: 32060179 PMCID: PMC7145485 DOI: 10.1105/tpc.19.00954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Acyl carrier proteins (ACPs) are the scaffolds for fatty acid biosynthesis in living systems, rendering them essential to a comprehensive understanding of lipid metabolism. However, accurate quantitative methods to assess individual acyl-ACPs do not exist. We developed a robust method to quantify acyl-ACPs to the picogram level. We successfully identified acyl-ACP elongation intermediates (3-hydroxyacyl-ACPs and 2,3-trans-enoyl-ACPs) and unexpected medium-chain (C10:1, C14:1) and polyunsaturated long-chain (C16:3) acyl-ACPs, indicating both the sensitivity of the method and how current descriptions of lipid metabolism and ACP function are incomplete. Such ACPs are likely important to medium-chain lipid production for fuels and highlight poorly understood lipid remodeling events in the chloroplast. The approach is broadly applicable to type II fatty acid synthase systems found in plants and bacteria as well as mitochondria from mammals and fungi because it capitalizes on a highly conserved Asp-Ser-Leu-Asp amino acid sequence in ACPs to which acyl groups attach. Our method allows for sensitive quantification using liquid chromatography-tandem mass spectrometry with de novo-generated standards and an isotopic dilution strategy and will fill a gap in our understanding, providing insights through quantitative exploration of fatty acid biosynthesis processes for optimal biofuels, renewable feedstocks, and medical studies in health and disease.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132
- USDA-ARS, Plant Genetics Research Unit, 975 North Warson Road, St. Louis, Missouri 63132
| | - Jia Li
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132
| | - Bradley S Evans
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132
| | - Jan G Jaworski
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132
| | - Doug K Allen
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132
- USDA-ARS, Plant Genetics Research Unit, 975 North Warson Road, St. Louis, Missouri 63132
| |
Collapse
|
58
|
Xu XY, Akbar S, Shrestha P, Venugoban L, Devilla R, Hussain D, Lee J, Rug M, Tian L, Vanhercke T, Singh SP, Li Z, Sharp PJ, Liu Q. A Synergistic Genetic Engineering Strategy Induced Triacylglycerol Accumulation in Potato ( Solanum tuberosum) Leaf. FRONTIERS IN PLANT SCIENCE 2020; 11:215. [PMID: 32210994 PMCID: PMC7069356 DOI: 10.3389/fpls.2020.00215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/12/2020] [Indexed: 05/23/2023]
Abstract
Potato is the 4th largest staple food in the world currently. As a high biomass crop, potato harbors excellent potential to produce energy-rich compounds such as triacylglycerol as a valuable co-product. We have previously reported that transgenic potato tubers overexpressing WRINKLED1, DIACYLGLYCEROL ACYLTRANSFERASE 1, and OLEOSIN genes produced considerable levels of triacylglycerol. In this study, the same genetic engineering strategy was employed on potato leaves. The overexpression of Arabidopsis thaliana WRINKED1 under the transcriptional control of a senescence-inducible promoter together with Arabidopsis thaliana DIACYLGLYCEROL ACYLTRANSFERASE 1 and Sesamum indicum OLEOSIN driven by the Cauliflower Mosaic Virus 35S promoter and small subunit of Rubisco promoter respectively, resulted in an approximately 30- fold enhancement of triacylglycerols in the senescent transgenic potato leaves compared to the wild type. The increase of triacylglycerol in the transgenic potato leaves was accompanied by perturbations of carbohydrate accumulation, apparent in a reduction in starch content and increased total soluble sugars, as well as changes of polar membrane lipids at different developmental stages. Microscopic and biochemical analysis further indicated that triacylglycerols and lipid droplets could not be produced in chloroplasts, despite the increase and enlargement of plastoglobuli at the senescent stage. Possibly enhanced accumulation of fatty acid phytyl esters in the plastoglobuli were reflected in transgenic potato leaves relative to wild type. It is likely that the plastoglobuli may have hijacked some of the carbon as the result of WRINKED1 expression, which could be a potential factor restricting the effective accumulation of triacylglycerols in potato leaves. Increased lipid production was also observed in potato tubers, which may have affected the tuberization to a certain extent. The expression of transgenes in potato leaf not only altered the carbon partitioning in the photosynthetic source tissue, but also the underground sink organs which highly relies on the leaves in development and energy deposition.
Collapse
Affiliation(s)
- Xiao-yu Xu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Sehrish Akbar
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | | | - Dawar Hussain
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jiwon Lee
- Center for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia
| | - Melanie Rug
- Center for Advanced Microscopy, The Australian National University, Canberra, ACT, Australia
| | - Lijun Tian
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | | | | | - Zhongyi Li
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Peter J. Sharp
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Qing Liu
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| |
Collapse
|
59
|
Zhou XR, Bhandari S, Johnson BS, Kotapati HK, Allen DK, Vanhercke T, Bates PD. Reorganization of Acyl Flux through the Lipid Metabolic Network in Oil-Accumulating Tobacco Leaves. PLANT PHYSIOLOGY 2020; 182:739-755. [PMID: 31792147 PMCID: PMC6997700 DOI: 10.1104/pp.19.00667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/18/2019] [Indexed: 05/02/2023]
Abstract
The triacylglycerols (TAGs; i.e. oils) that accumulate in plants represent the most energy-dense form of biological carbon storage, and are used for food, fuels, and chemicals. The increasing human population and decreasing amount of arable land have amplified the need to produce plant oil more efficiently. Engineering plants to accumulate oils in vegetative tissues is a novel strategy, because most plants only accumulate large amounts of lipids in the seeds. Recently, tobacco (Nicotiana tabacum) leaves were engineered to accumulate oil at 15% of dry weight due to a push (increased fatty acid synthesis)-and-pull (increased final step of TAG biosynthesis) engineering strategy. However, to accumulate both TAG and essential membrane lipids, fatty acid flux through nonengineered reactions of the endogenous metabolic network must also adapt, which is not evident from total oil analysis. To increase our understanding of endogenous leaf lipid metabolism and its ability to adapt to metabolic engineering, we utilized a series of in vitro and in vivo experiments to characterize the path of acyl flux in wild-type and transgenic oil-accumulating tobacco leaves. Acyl flux around the phosphatidylcholine acyl editing cycle was the largest acyl flux reaction in wild-type and engineered tobacco leaves. In oil-accumulating leaves, acyl flux into the eukaryotic pathway of glycerolipid assembly was enhanced at the expense of the prokaryotic pathway. However, a direct Kennedy pathway of TAG biosynthesis was not detected, as acyl flux through phosphatidylcholine preceded the incorporation into TAG. These results provide insight into the plasticity and control of acyl lipid metabolism in leaves.
Collapse
Affiliation(s)
- Xue-Rong Zhou
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | - Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Thomas Vanhercke
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia
| | - Philip D Bates
- Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
60
|
Pan R, Liu J, Wang S, Hu J. Peroxisomes: versatile organelles with diverse roles in plants. THE NEW PHYTOLOGIST 2020; 225:1410-1427. [PMID: 31442305 DOI: 10.1111/nph.16134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/08/2019] [Indexed: 05/18/2023]
Abstract
Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.
Collapse
Affiliation(s)
- Ronghui Pan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jun Liu
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saisai Wang
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Hu
- MSU-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
61
|
Zienkiewicz K, Zienkiewicz A. Degradation of Lipid Droplets in Plants and Algae-Right Time, Many Paths, One Goal. FRONTIERS IN PLANT SCIENCE 2020; 11:579019. [PMID: 33014002 PMCID: PMC7509404 DOI: 10.3389/fpls.2020.579019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 05/05/2023]
Abstract
In eukaryotic cells, lipids in the form of triacylglycerols (TAGs) are the major reservoir of cellular carbon and energy. These TAGs are packed into specialized organelles called lipid droplets (LDs). They can be found in most, if not all, types of cells, from bacteria to human. Recent data suggest that rather than being simple storage organelles, LDs are very dynamic structures at the center of cellular metabolism. This is also true in plants and algae, where LDs have been implicated in many processes including energy supply; membrane structure, function, trafficking; and signal transduction. Plant and algal LDs also play a vital role in human life, providing multiple sources of food and fuel. Thus, a lot of attention has been paid to metabolism and function of these organelles in recent years. This review summarizes the most recent advances on LDs degradation as a key process for TAGs release. While the initial knowledge on this process came from studies in oilseeds, the findings of the last decade revealed high complexity and specific mechanisms of LDs degradation in plants and algae. This includes identification of numerous novel proteins associated with LDs as well as a prominent role for autophagy in this process. This review outlines, systemizes, and discusses the most current data on LDs catabolism in plants and algae.
Collapse
|
62
|
Su T, Li X, Yang M, Shao Q, Zhao Y, Ma C, Wang P. Autophagy: An Intracellular Degradation Pathway Regulating Plant Survival and Stress Response. FRONTIERS IN PLANT SCIENCE 2020; 11:164. [PMID: 32184795 PMCID: PMC7058704 DOI: 10.3389/fpls.2020.00164] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 05/18/2023]
Abstract
Autophagy is an intracellular process that facilitates the bulk degradation of cytoplasmic materials by the vacuole or lysosome in eukaryotes. This conserved process is achieved through the coordination of different autophagy-related genes (ATGs). Autophagy is essential for recycling cytoplasmic material and eliminating damaged or dysfunctional cell constituents, such as proteins, aggregates or even entire organelles. Plant autophagy is necessary for maintaining cellular homeostasis under normal conditions and is upregulated during abiotic and biotic stress to prolong cell life. In this review, we present recent advances on our understanding of the molecular mechanisms of autophagy in plants and how autophagy contributes to plant development and plants' adaptation to the environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Changle Ma
- *Correspondence: Changle Ma, ; Pingping Wang,
| | | |
Collapse
|
63
|
Karki N, Johnson BS, Bates PD. Metabolically Distinct Pools of Phosphatidylcholine Are Involved in Trafficking of Fatty Acids out of and into the Chloroplast for Membrane Production. THE PLANT CELL 2019; 31:2768-2788. [PMID: 31511316 PMCID: PMC6881139 DOI: 10.1105/tpc.19.00121] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 05/18/2023]
Abstract
The eukaryotic pathway of galactolipid synthesis involves fatty acid synthesis in the chloroplast, followed by assembly of phosphatidylcholine (PC) in the endoplasmic reticulum (ER), and then turnover of PC to provide a substrate for chloroplast galactolipid synthesis. However, the mechanisms and classes of lipids transported between the chloroplast and the ER are unclear. PC, PC-derived diacylglycerol, phosphatidic acid, and lyso-phosphatidylcholine (LPC) have all been implicated in ER-to-chloroplast lipid transfer. LPC transport requires lysophosphatidylcholine acyltransferase (LPCAT) activity at the chloroplast to form PC before conversion to galactolipids. However, LPCAT has also been implicated in the opposite chloroplast-to-ER trafficking of newly synthesized fatty acids through PC acyl editing. To understand the role of LPC and LPCAT in acyl trafficking we produced and analyzed the Arabidopsis (Arabidopsis thaliana) act1 lpcat1 lpcat2 triple mutant. LPCAT1 and LPCAT2 encode the major lysophospholipid acyltransferase activity of the chloroplast, and it is predominantly for incorporation of nascent fatty acids exported form the chloroplast into PC by acyl editing. In vivo acyl flux analysis revealed eukaryotic galactolipid synthesis is not impaired in act1 lpcat1 lpcat2 and uses a PC pool distinct from that of PC acyl editing. We present a model for the eukaryotic pathway with metabolically distinct pools of PC, suggesting an underlying spatial organization of PC metabolism as part of the ER-chloroplast metabolic interactions.
Collapse
Affiliation(s)
- Nischal Karki
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406
| | - Brandon S Johnson
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Philip D Bates
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| |
Collapse
|
64
|
Kashash Y, Holland D, Porat R. Molecular mechanisms involved in postharvest chilling tolerance of pomegranate fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5617-5623. [PMID: 31321784 DOI: 10.1002/jsfa.9933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Cold storage of pomegranates is essential for prolonging postharvest storage and for the implementation of cold-quarantine insect disinfestation treatments required for international trading. However, pomegranates are chilling sensitive; they may develop chilling injuries upon exposure to unfavorable low temperatures. In this mini-review, we summarize molecular data obtained from three different RNA Seq transcriptome analyses of responses of pomegranate fruits to cold storage. These experiments included comparisons among the transcriptomic responses following a 2-week exposure to 1 °C in three different model systems: 1) unconditioned chilling-sensitive fruits versus relatively chilling-tolerant low-temperature-conditioned fruits; 2) chilling-sensitive early harvested fruits versus relatively chilling-tolerant late-harvested ones; and 3) chilling-sensitive 'Ganesh' variety versus the relatively chilling-tolerant 'Wonderful' variety. Comparisons among differentially expressed transcripts that were exclusively and significantly up-regulated in the relatively chilling-tolerant fruits in all three model systems enabled identification of 573 common chilling tolerance-associated genes in pomegranates. Functional categorization and classification of the differentially expressed transcripts revealed several regulatory, metabolic, and stress-adaptation pathways that were uniquely activated in response to cold storage in relatively chilling-tolerant fruits. More specifically, we identified common up-regulation of transcripts involved in activation of jasmonic acid and ethylene hormone biosynthesis and signaling, stress-related transcription factors, calcium and MAPK signaling, starch degradation and galactinol and raffinose biosynthesis, phenol biosynthesis, lipid metabolism, and heat-shock proteins. We hypothesized these pathways to be involved in imparting chilling tolerance to pomegranate fruits. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yael Kashash
- Department of Postharvest Science, ARO, The Volcani Center, Rishon LeZion, Israel
- The Robert H Smith Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Doron Holland
- Department of Fruit Tree Sciences, ARO, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Ron Porat
- Department of Postharvest Science, ARO, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
65
|
Yu Y, Kou M, Gao Z, Liu Y, Xuan Y, Liu Y, Tang Z, Cao Q, Li Z, Sun J. Involvement of Phosphatidylserine and Triacylglycerol in the Response of Sweet Potato Leaves to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1086. [PMID: 31552077 PMCID: PMC6746921 DOI: 10.3389/fpls.2019.01086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Lipid remodeling plays an important role in the adaptation of plants to environmental factors, but the mechanism by which lipid remodeling mediates salt stress response remains unclear. In this study, we compared the root and leaf lipidome profiles of salt-tolerant and salt-sensitive sweet potato cultivars (Xu 22 and Xu 32, respectively) under salinity stress. After salt treatment, the leaf lipidome showed more significant remodeling than the root lipidome in both cultivars. Compared with Xu 32 leaves, Xu 22 leaves generally maintained higher abundance of phospholipids, glycolipids, sphingolipids, sterol derivatives, and diacylglycerol under salinity conditions. Interestingly, salinity stress significantly increased phosphatidylserine (PS) abundance in Xu 22 leaves by predominantly triggering the increase of PS (20:5/22:6). Furthermore, Xu 32 leaves accumulated higher triacylglycerol (TG) level than Xu 22 leaves under salinity conditions. The exogenous application of PS delayed salt-induced leaf senescence in Xu 32 by reducing salt-induced K+ efflux and upregulating plasma membrane H+-ATPase activity. However, the inhibition of TG mobilization in salinized-Xu 22 leaves disturbed energy and K+/Na+ homeostasis, as well as plasma membrane H+-ATPase activity. These results demonstrate alterations in the leaf lipidome of sweet potato under salinity condition, underscoring the importance of PS and TG in mediating salt-defensive responses in sweet potato leaves.
Collapse
Affiliation(s)
- Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng Kou
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhonghui Gao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yang Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ying Xuan
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yaju Liu
- Key Laboratory for Biology and Genetic Breeding of Sweet Potato, Sweet Potato Research Institute (CAAS), Xuzhou, China
| | - Zhonghou Tang
- Key Laboratory for Biology and Genetic Breeding of Sweet Potato, Sweet Potato Research Institute (CAAS), Xuzhou, China
| | - Qinghe Cao
- Key Laboratory for Biology and Genetic Breeding of Sweet Potato, Sweet Potato Research Institute (CAAS), Xuzhou, China
| | - Zongyun Li
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jian Sun
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
66
|
WITHDRAWN: Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019. [DOI: 10.1016/j.plipres.2019.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
67
|
Fan J, Yu L, Xu C. Dual Role for Autophagy in Lipid Metabolism in Arabidopsis. THE PLANT CELL 2019; 31:1598-1613. [PMID: 31036588 PMCID: PMC6635848 DOI: 10.1105/tpc.19.00170] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 04/19/2019] [Indexed: 05/18/2023]
Abstract
Autophagy is a major catabolic pathway whereby cytoplasmic constituents including lipid droplets (LDs), storage compartments for neutral lipids, are delivered to the lysosome or vacuole for degradation. The autophagic degradation of cytosolic LDs, a process termed lipophagy, has been extensively studied in yeast and mammals, but little is known about the role for autophagy in lipid metabolism in plants. Organisms maintain a basal level of autophagy under favorable conditions and upregulate the autophagic activity under stress including starvation. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) basal autophagy contributes to triacylglycerol (TAG) synthesis, whereas inducible autophagy contributes to LD degradation. We found that disruption of basal autophagy impedes organellar membrane lipid turnover and hence fatty acid mobilization from membrane lipids to TAG. We show that lipophagy is induced under starvation as indicated by colocalization of LDs with the autophagic marker and the presence of LDs in vacuoles. We additionally show that lipophagy occurs in a process morphologically resembling microlipophagy and requires the core components of the macroautophagic machinery. Together, this study provides mechanistic insight into lipophagy and reveals a dual role for autophagy in regulating lipid synthesis and turnover in plants.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
68
|
Functional diversity of glycerolipid acylhydrolases in plant metabolism and physiology. Prog Lipid Res 2019; 75:100987. [PMID: 31078649 DOI: 10.1016/j.plipres.2019.100987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/22/2022]
Abstract
Most current knowledge about plant lipid metabolism has focused on the biosynthesis of lipids and their transport between different organelles. However, lipid composition changes during development and in response to environmental cues often go beyond adjustments of lipid biosynthesis. When lipids have to be removed to adjust the extent of membranes during down regulation of photosynthesis, or lipid composition has to be adjusted to alter the biophysical properties of membranes, or lipid derived chemical signals have to be produced, lipid-degrading enzymes come into play. This review focuses on glycerolipid acylhydrolases that remove acyl groups from glycerolipids and will highlight their roles in lipid remodeling and lipid-derived signal generation. One emerging theme is that these enzymes are involved in the dynamic movement of acyl groups through different lipid pools, for example from polar membrane lipids to neutral lipids sequestered in lipid droplets during de novo triacylglycerol synthesis. Another example of acyl group sequestration in the form of triacylglycerols in lipid droplets is membrane lipid remodeling in response to abiotic stresses. Fatty acids released for membrane lipids can also give rise to potent signaling molecules and acylhydrolases are therefore often the first step in initiating the formation of these lipid signals.
Collapse
|
69
|
Lunn D, Wallis JG, Browse J. Tri-Hydroxy-Triacylglycerol Is Efficiently Produced by Position-Specific Castor Acyltransferases. PLANT PHYSIOLOGY 2019; 179:1050-1063. [PMID: 30610110 PMCID: PMC6393782 DOI: 10.1104/pp.18.01409] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
Understanding the biochemistry of triacylglycerol (TAG) assembly is critical in tailoring seed oils to produce high-value products. Hydroxy-fatty acid (HFA) is one such valuable modified fatty acid, which can be produced at low levels in Arabidopsis (Arabidopsis thaliana) seed through transgenic expression of the castor (Ricinus communis) hydroxylase. The resulting plants have low seed oil content and poor seedling establishment, indicating that Arabidopsis lacks efficient metabolic networks for biosynthesis and catabolism of hydroxy-containing TAG. To improve utilization of such substrates, we expressed three castor acyltransferase enzymes that incorporate HFA at each stereochemical position during TAG synthesis. This produced abundant tri-HFA TAG and concentrated 44% of seed HFA moieties into this one TAG species. Ricinoleic acid was more abundant than any other fatty acid in these seeds, which had 3-fold more HFA by weight than that in seeds following simple hydroxylase expression, the highest yet measured in a nonnative plant. Efficient utilization of hydroxy-containing lipid substrates increased the rate of TAG synthesis 2-fold, leading to complete relief of the low-oil phenotype. Partition of HFA into specific TAG molecules increased the storage lipid available for mobilization during seedling development, resulting in a 1.9-fold increase in seedling establishment. Expression of a complete acyltransferase pathway to efficiently process HFA establishes a benchmark in the quest to successfully produce modified oils in plants.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
70
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
71
|
Yu L, Fan J, Xu C. Peroxisomal fatty acid β-oxidation negatively impacts plant survival under salt stress. PLANT SIGNALING & BEHAVIOR 2019; 14:1561121. [PMID: 30618323 PMCID: PMC6351088 DOI: 10.1080/15592324.2018.1561121] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/25/2023]
Abstract
Peroxisomal β-oxidation is the sole pathway for metabolic breakdown of fatty acids to generate energy and carbon skeletons in plants, is essential for oilseed germination and plays an important role in growth, development and cellular homeostasis. Yet, this process also produces cytotoxic reactive oxygen species (ROS) as byproducts. We recently showed that disruption of fatty acid β-oxidation enhance plant survival under carbon starvation conditions. Here, we extend these findings by demonstrating that blocking fatty acid import into peroxisomes reduces ROS accumulation and increases plant tolerance to salt stress, whereas increasing fatty acid flux into the β-oxidation pathway has opposite effects. Together, these results support the view that peroxisomal β-oxidation of fatty acids enhances stress-induced ROS production, thereby negatively impacting plant survival under adverse environmental conditions.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
72
|
Vanhercke T, Belide S, Taylor MC, El Tahchy A, Okada S, Rolland V, Liu Q, Mitchell M, Shrestha P, Venables I, Ma L, Blundell C, Mathew A, Ziolkowski L, Niesner N, Hussain D, Dong B, Liu G, Godwin ID, Lee J, Rug M, Zhou X, Singh SP, Petrie JR. Up-regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:220-232. [PMID: 29873878 PMCID: PMC6330533 DOI: 10.1111/pbi.12959] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 05/07/2023]
Abstract
Synthesis and accumulation of the storage lipid triacylglycerol in vegetative plant tissues has emerged as a promising strategy to meet the world's future need for vegetable oil. Sorghum (Sorghum bicolor) is a particularly attractive target crop given its high biomass, drought resistance and C4 photosynthesis. While oilseed-like triacylglycerol levels have been engineered in the C3 model plant tobacco, progress in C4 monocot crops has been lagging behind. In this study, we report the accumulation of triacylglycerol in sorghum leaf tissues to levels between 3 and 8.4% on a dry weight basis depending on leaf and plant developmental stage. This was achieved by the combined overexpression of genes encoding the Zea mays WRI1 transcription factor, Umbelopsis ramanniana UrDGAT2a acyltransferase and Sesamum indicum Oleosin-L oil body protein. Increased oil content was visible as lipid droplets, primarily in the leaf mesophyll cells. A comparison between a constitutive and mesophyll-specific promoter driving WRI1 expression revealed distinct changes in the overall leaf lipidome as well as transitory starch and soluble sugar levels. Metabolome profiling uncovered changes in the abundance of various amino acids and dicarboxylic acids. The results presented here are a first step forward towards the development of sorghum as a dedicated biomass oil crop and provide a basis for further combinatorial metabolic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Liu
- CSIRO Agriculture and FoodCanberraACTAustralia
| | | | | | | | - Lina Ma
- CSIRO Agriculture and FoodCanberraACTAustralia
| | | | - Anu Mathew
- CSIRO Agriculture and FoodCanberraACTAustralia
| | | | | | | | - Bei Dong
- CSIRO Agriculture and FoodCanberraACTAustralia
| | - Guoquan Liu
- School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneQLDAustralia
| | - Ian D. Godwin
- School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneQLDAustralia
| | - Jiwon Lee
- Centre for Advanced MicroscopyAustralian National UniversityCanberraACTAustralia
| | - Melanie Rug
- Centre for Advanced MicroscopyAustralian National UniversityCanberraACTAustralia
| | | | | | | |
Collapse
|
73
|
Li N, Zhang Y, Meng H, Li S, Wang S, Xiao Z, Chang P, Zhang X, Li Q, Guo L, Igarashi Y, Luo F. Characterization of Fatty Acid Exporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:14. [PMID: 30651755 PMCID: PMC6330502 DOI: 10.1186/s13068-018-1332-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND In the past few decades, microalgae biofuel has become one of the most interesting sources of renewable energy. However, the higher cost of microalgae biofuel compared to that of petroleum prevented microalgae biofuel production. Therefore, the research on increasing lipid productivity from microalgae becomes more important. The lipid production source, triacylglycerol biosynthesis in microalgae requires short chain fatty acids as substrates, which are synthesized in chloroplasts. However, the transport mechanism of fatty acids from microalgae chloroplasts to cytosol remains unknown. RESULTS cDNAs from two homologs of the Arabidopsis fatty acid exporter 1 (FAX1) were cloned from Chlamydomonas reinhardtii and were named crfax1 and crfax2. Both CrFAXs were involved in fatty acid transport, and their substrates were mainly C16 and C18 fatty acids. Overexpression of both CrFAXs increased the accumulation of the total lipid content in algae cells, and the fatty acid compositions were changed under normal TAP or nitrogen deprivation conditions. Overexpression of both CrFAXs also increased the chlorophyll content. The MGDG content was decreased but the TAG, DAG, DGDG and other lipid contents were increased in CrFAXs overexpression strains. CONCLUSION These results reveal that CrFAX1 and CrFAX2 were involved in mediating fatty acid export for lipids biosynthesis in C. reinhardtii. In addition, overexpression of both CrFAXs obviously increased the intracellular lipid content, especially the triacylglycerol content in microalgae, which provides a potential technology for the production of more biofuels using microalgae.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
- Academy of Agricultural Science, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Yan Zhang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Hongjun Meng
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Shengting Li
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Shufeng Wang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Zhongchun Xiao
- Academy of Agricultural Science, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Peng Chang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Xiaohui Zhang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yasuo Igarashi
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Feng Luo
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
74
|
Maraschin FDS, Kulcheski FR, Segatto ALA, Trenz TS, Barrientos-Diaz O, Margis-Pinheiro M, Margis R, Turchetto-Zolet AC. Enzymes of glycerol-3-phosphate pathway in triacylglycerol synthesis in plants: Function, biotechnological application and evolution. Prog Lipid Res 2019; 73:46-64. [DOI: 10.1016/j.plipres.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 12/01/2018] [Indexed: 01/30/2023]
|
75
|
Xu X, Vanhercke T, Shrestha P, Luo J, Akbar S, Konik-Rose C, Venugoban L, Hussain D, Tian L, Singh S, Li Z, Sharp PJ, Liu Q. Upregulated Lipid Biosynthesis at the Expense of Starch Production in Potato ( Solanum tuberosum) Vegetative Tissues via Simultaneous Downregulation of ADP-Glucose Pyrophosphorylase and Sugar Dependent1 Expressions. FRONTIERS IN PLANT SCIENCE 2019; 10:1444. [PMID: 31781148 PMCID: PMC6861213 DOI: 10.3389/fpls.2019.01444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/17/2019] [Indexed: 05/05/2023]
Abstract
Triacylglycerol is a major component of vegetable oil in seeds and fruits of many plants, but its production in vegetative tissues is rather limited. It would be intriguing and important to explore any possibility to expand current oil production platforms, for example from the plant vegetative tissues. By expressing a suite of transgenes involved in the triacylglycerol biosynthesis, we have previously observed substantial accumulation of triacylglycerol in tobacco (Nicotiana tabacum) leaf and potato (Solanum tuberosum) tuber. In this study, simultaneous RNA interference (RNAi) downregulation of ADP-glucose pyrophosphorylase (AGPase) and Sugar-dependent1 (SDP1), was able to increase the accumulation of triacylglycerol and other lipids in both wild type potato and the previously generated high oil potato line 69. Particularly, a 16-fold enhancement of triacylglycerol production was observed in the mature transgenic tubers derived from the wild type potato, and a two-fold increase in triacylglycerol was observed in the high oil potato line 69, accounting for about 7% of tuber dry weight, which is the highest triacylglycerol accumulation ever reported in potato. In addition to the alterations of lipid content and fatty acid composition, sugar accumulation, starch content of the RNAi potato lines in both tuber and leaf tissues were also substantially changed, as well as the tuber starch properties. Microscopic analysis further revealed variation of lipid droplet distribution and starch granule morphology in the mature transgenic tubers compared to their parent lines. This study reflects that the carbon partitioning between lipid and starch in both leaves and non-photosynthetic tuber tissues, respectively, are highly orchestrated in potato, and it is promising to convert low-energy starch to storage lipids via genetic manipulation of the carbon metabolism pathways.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas Vanhercke
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Pushkar Shrestha
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jixun Luo
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Sehrish Akbar
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Christine Konik-Rose
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Lauren Venugoban
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Dawar Hussain
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Lijun Tian
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Surinder Singh
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Zhongyi Li
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
- *Correspondence: Zhongyi Li, ; Peter J. Sharp, ; Qing Liu,
| | - Peter J. Sharp
- Plant Breeding Institute and Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Zhongyi Li, ; Peter J. Sharp, ; Qing Liu,
| | - Qing Liu
- Research Program of Traits, CSIRO Agriculture and Food, Canberra, ACT, Australia
- *Correspondence: Zhongyi Li, ; Peter J. Sharp, ; Qing Liu,
| |
Collapse
|
76
|
Zhang CL, Mao K, Zhou LJ, Wang GL, Zhang YL, Li YY, Hao YJ. Genome-wide identification and characterization of apple long-chain Acyl-CoA synthetases and expression analysis under different stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:320-332. [PMID: 30248518 DOI: 10.1016/j.plaphy.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/12/2018] [Accepted: 09/04/2018] [Indexed: 05/04/2023]
Abstract
Long-chain acyl-CoA synthetases (LACSs) are members of the acyl-activating enzyme superfamily that have important roles in lipid synthesis and storage, fatty acid catabolism, vectorial acylation, and synthesis of cutin and wax. Here, 11 apple MdLACS genes were identified based on the Malus × domestica reference genome, clustered into six groups and mapped to ten chromosomes. Multiple sequence alignment and conserved motifs analyses showed that the sequences of the AtLACS and MdLACS proteins were highly conserved. A cis-element analysis in the promoter regions of the MdLACS genes revealed various elements related to stress responsiveness and plant hormones. Subsequently, expression analysis demonstrated that the MdLACS genes had different expression profiles in different tissues in response to various abiotic stresses. To further study the function of MdLACS genes in apple, MdLACS1 was isolated to identify its basic function, which the function of MdLACS1 in response to apple abiotic stress resistance was determined by the transgenic method. The results showed the MdLACS1 enhanced tolerance to polyethylene glycol, salt, and abscisic acid in the apple callus, suggesting that MdLACS1 is an important regulator in response to abiotic stresses. Finally, the functional interoperability network among the MdLACS proteins was predicted and analyzed, which could the understanding of the possible interactions among proteins and genes regulatory networks concerned with wax biosynthesis and regulatory mechanisms in response to abiotic stresses in apple.
Collapse
Affiliation(s)
- Chun-Ling Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
77
|
Xu Y, Caldo KMP, Pal-Nath D, Ozga J, Lemieux MJ, Weselake RJ, Chen G. Properties and Biotechnological Applications of Acyl-CoA:diacylglycerol Acyltransferase and Phospholipid:diacylglycerol Acyltransferase from Terrestrial Plants and Microalgae. Lipids 2018; 53:663-688. [PMID: 30252128 DOI: 10.1002/lipd.12081] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
Triacylglycerol (TAG) is the major storage lipid in most terrestrial plants and microalgae, and has great nutritional and industrial value. Since the demand for vegetable oil is consistently increasing, numerous studies have been focused on improving the TAG content and modifying the fatty-acid compositions of plant seed oils. In addition, there is a strong research interest in establishing plant vegetative tissues and microalgae as platforms for lipid production. In higher plants and microalgae, TAG biosynthesis occurs via acyl-CoA-dependent or acyl-CoA-independent pathways. Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step in the acyl-CoA-dependent biosynthesis of TAG, which appears to represent a bottleneck in oil accumulation in some oilseed species. Membrane-bound and soluble forms of DGAT have been identified with very different amino-acid sequences and biochemical properties. Alternatively, TAG can be formed through acyl-CoA-independent pathways via the catalytic action of membrane-bound phospholipid:diacylglycerol acyltransferase (PDAT). As the enzymes catalyzing the terminal steps of TAG formation, DGAT and PDAT play crucial roles in determining the flux of carbon into seed TAG and thus have been considered as the key targets for engineering oil production. Here, we summarize the most recent knowledge on DGAT and PDAT in higher plants and microalgae, with the emphasis on their physiological roles, structural features, and regulation. The development of various metabolic engineering strategies to enhance the TAG content and alter the fatty-acid composition of TAG is also discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Dipasmita Pal-Nath
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Jocelyn Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2H7, Canada
| | - Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
78
|
Yu L, Fan J, Yan C, Xu C. Starch Deficiency Enhances Lipid Biosynthesis and Turnover in Leaves. PLANT PHYSIOLOGY 2018; 178:118-129. [PMID: 30076222 PMCID: PMC6130009 DOI: 10.1104/pp.18.00539] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/24/2018] [Indexed: 05/18/2023]
Abstract
Starch and lipids represent two major forms of carbon and energy storage in plants and play central roles in diverse cellular processes. However, whether and how starch and lipid metabolic pathways interact to regulate metabolism and growth are poorly understood. Here, we show that lipids can partially compensate for the lack of function of transient starch during normal growth and development in Arabidopsis (Arabidopsis thaliana). Disruption of starch synthesis resulted in a significant increase in fatty acid synthesis via posttranslational regulation of the plastidic acetyl-coenzyme A carboxylase and a concurrent increase in the synthesis and turnover of membrane lipids and triacylglycerol. Genetic analysis showed that blocking fatty acid peroxisomal β-oxidation, the sole pathway for metabolic breakdown of fatty acids in plants, significantly compromised or stunted the growth and development of mutants defective in starch synthesis under long days or short days, respectively. We also found that the combined disruption of starch synthesis and fatty acid turnover resulted in increased accumulation of membrane lipids, triacylglycerol, and soluble sugars and altered fatty acid flux between the two lipid biosynthetic pathways compartmentalized in either the chloroplast or the endoplasmic reticulum. Collectively, our findings provide insight into the role of fatty acid β-oxidation and the regulatory network controlling fatty acid synthesis, and they reveal the mechanistic basis by which starch and lipid metabolic pathways interact and undergo cross talk to modulate carbon allocation, energy homeostasis, and plant growth.
Collapse
Affiliation(s)
- Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Chengshi Yan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
79
|
John SP, Hasenstein KH. Biochemical responses of the desiccation-tolerant resurrection fern Pleopeltis polypodioides to dehydration and rehydration. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:12-18. [PMID: 29803130 DOI: 10.1016/j.jplph.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 05/14/2023]
Abstract
The epiphytic fern Pleopeltis polypodioides can tolerate repeated drying and rehydration events without conspicuous damage. To understand the biochemical principles of drought-tolerance, we analyzed the effect of dehydration and rehydration at 25 °C on hydroperoxide and lipid hydroperoxide, the activities of antioxidative (catalase and glutathione-oxidizing) enzymes and evaluated changes in fatty acid composition and saturation levels. Dehydration increased peroxide concentration and the activity of glutathione oxidases, but reduced catalase activity. During dehydration, the biosynthesis of palmitic (C16:0), linoleic (C18:2), linolenic (C18:3) and stearic acid (C18:0) increased 18, 12, 20, and 8-fold, respectively. In contrast, rehydration lowered levels of peroxides, the activity of glutathione-oxidizing enzymes, and fatty acids but increased catalase activity. The coordinated changes during de- and rehydration suggest that lipids and oxidative and antioxidative enzymes are components of the drought-resistance system.
Collapse
Affiliation(s)
- Susan P John
- Department of Biology, University of Louisiana at Lafayette, Louisiana 70503, United States
| | - Karl H Hasenstein
- Department of Biology, University of Louisiana at Lafayette, Louisiana 70503, United States.
| |
Collapse
|
80
|
Venkateshwari V, Vijayakumar A, Vijayakumar AK, Reddy LPA, Srinivasan M, Rajasekharan R. Leaf lipidome and transcriptome profiling of Portulaca oleracea: characterization of lysophosphatidylcholine acyltransferase. PLANTA 2018; 248:347-367. [PMID: 29736624 DOI: 10.1007/s00425-018-2908-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Portulaca leaves serve as an alternative bioresource for edible PUFAs. Transcriptome data provide information to explore Portulaca as a model system for galactolipids, leaf lipid metabolism, and PUFA-rich designer lipids. Poly-unsaturated fatty acids (PUFAs) are gaining importance due to their innumerable health benefits, and hence, understanding their biosynthesis in plants has attained prominence in recent years. The most common source of PUFAs is of marine origin. Although reports have identified Portulaca oleracea (purslane) as a leaf source of omega-3 fatty acids in the form of alpha-linolenic acid (ALA), the mechanism of ALA accumulation and its distribution into various lipids has not been elucidated. Here, we present the lipid profiles of leaves and seeds of several accessions of P. oleracea. Among the nineteen distinct accessions, the RR04 accession has the highest amount of ALA and is primarily associated with galactolipids. In addition, we report the transcriptome of RR04, and we have mapped the potential genes involved in lipid metabolism. Phosphatidylcholine (PC) is the major site of acyl editing, which is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), an integral membrane protein that plays a major role in supplying oleate to the PC pool for further unsaturation. Our investigations using mass spectrometric analysis of leaf microsomal fractions identified LPCAT as part of a membrane protein complex. Both native and recombinant LPCAT showed strong acyltransferase activity with various acyl-CoA substrates. Altogether, the results suggest that ALA-rich glycerolipid biosynthetic machinery is highly active in nutritionally important Portulaca leaves. Furthermore, lipidome, transcriptome, and mass spectrometric analyses of RR04 provide novel information for exploring Portulaca as a potential resource and a model system for studying leaf lipid metabolism.
Collapse
Affiliation(s)
- Varadarajan Venkateshwari
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anitha Vijayakumar
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - Arun Kumar Vijayakumar
- Food Safety and Analytical Quality Control Department, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - L Prasanna Anjaneya Reddy
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - Malathi Srinivasan
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ram Rajasekharan
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India.
- Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
81
|
Durgud M, Gupta S, Ivanov I, Omidbakhshfard MA, Benina M, Alseekh S, Staykov N, Hauenstein M, Dijkwel PP, Hörtensteiner S, Toneva V, Brotman Y, Fernie AR, Mueller-Roeber B, Gechev TS. Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant. PLANT PHYSIOLOGY 2018; 177:1319-1338. [PMID: 29789435 PMCID: PMC6053018 DOI: 10.1104/pp.18.00055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/09/2018] [Indexed: 05/28/2023]
Abstract
The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress- and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast- and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis- and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.
Collapse
Affiliation(s)
- Meriem Durgud
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Saurabh Gupta
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Ivan Ivanov
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - M Amin Omidbakhshfard
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
- Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Maria Benina
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Saleh Alseekh
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Nikola Staykov
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Mareike Hauenstein
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, 4474 Palmerston North, New Zealand
| | - Stefan Hörtensteiner
- Department of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Valentina Toneva
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department Willmitzer, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Tsanko S Gechev
- Center of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Institute of Molecular Biology and Biotechnology, Plovdiv 4000, Bulgaria
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| |
Collapse
|
82
|
Zhu Z, Yuan G, Fan X, Fan Y, Yang M, Yin Y, Liu J, Liu Y, Cao X, Tian J, Xue S. The synchronous TAG production with the growth by the expression of chloroplast transit peptide-fused ScPDAT in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:156. [PMID: 29928307 PMCID: PMC5989348 DOI: 10.1186/s13068-018-1160-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/31/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND The synchronous triacylglycerol (TAG) production with the growth is a key step to lower the cost of the microalgae-based biofuel production. Phospholipid: diacylglycerol acyltransferase (PDAT) has been identified recently and catalyzes the phospholipid contributing acyl group to diacylglycerol to synthesize TAG, and is considered as the important source of TAG in Chlamydomonas reinhardtii. RESULTS Using a chimeric Hsp70A-RbcS2 promoter, exogenous PDAT form Saccharomyces cerevisiae fused with a chloroplast transit peptide was expressed in C. reinhardtii CC-137. Proved by western blot, the expression of ScPDAT showed a synchronous trend to the growth in the exponential phase. Compared to the wild type, the strain of Scpdat achieved 22% increase in the content of total fatty acids and 32% increase in TAG content. In addition, the fluctuation of C16 series fatty acid in monogalactosyldiacylglycerol, diacylglyceryltrimethylhomoserine and TAG indicated an enhancement in the TAG accumulation pathway. CONCLUSION The TAG production was enhanced in the regular cultivation without the nutrient stress by strengthening the conversion of polar lipid to TAG in C. reinhardtii and the findings provide a candidate strategy for rational engineered strain to overcome the decline in the growth during the TAG accumulation triggered by nitrogen starvation.
Collapse
Affiliation(s)
- Zhen Zhu
- School of Bioengineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Guangze Yuan
- School of Bioengineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Xuran Fan
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yan Fan
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Miao Yang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yalei Yin
- Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jiao Liu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Xupeng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Jing Tian
- School of Bioengineering, Dalian Polytechnic University, Dalian, 116034 China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
83
|
Kong F, Romero IT, Warakanont J, Li-Beisson Y. Lipid catabolism in microalgae. THE NEW PHYTOLOGIST 2018; 218:1340-1348. [PMID: 29473650 DOI: 10.1111/nph.15047] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/15/2018] [Indexed: 05/03/2023]
Abstract
Lipid degradation processes are important in microalgae because survival and growth of microalgal cells under fluctuating environmental conditions require permanent remodeling or turnover of membrane lipids as well as rapid mobilization of storage lipids. Lipid catabolism comprises two major spatially and temporarily separated steps, namely lipolysis, which releases fatty acids and head groups and is catalyzed by lipases at membranes or lipid droplets, and degradation of fatty acids to acetyl-CoA, which occurs in peroxisomes through the β-oxidation pathway in green microalgae, and can sometimes occur in mitochondria in some other algal species. Here we review the current knowledge on the enzymes and regulatory proteins involved in lipolysis and peroxisomal β-oxidation and highlight gaps in our understanding of lipid degradation pathways in microalgae. Metabolic use of acetyl-CoA products via glyoxylate cycle and gluconeogenesis is also reviewed. We then present the implication of various cellular processes such as vesicle trafficking, cell cycle and autophagy on lipid turnover. Finally, physiological roles and the manipulation of lipid catabolism for biotechnological applications in microalgae are discussed.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Ismael Torres Romero
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Jaruswan Warakanont
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
- Department of Botany, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd, Chatuchak, Bangkok, 10900, Thailand
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|
84
|
Lunn D, Smith GA, Wallis JG, Browse J. Development Defects of Hydroxy-Fatty Acid-Accumulating Seeds Are Reduced by Castor Acyltransferases. PLANT PHYSIOLOGY 2018; 177:553-564. [PMID: 29678860 PMCID: PMC6001331 DOI: 10.1104/pp.17.01805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/02/2018] [Indexed: 05/05/2023]
Abstract
Researchers have long endeavored to produce modified fatty acids in easily managed crop plants where they are not natively found. An important step toward this goal has been the biosynthesis of these valuable products in model oilseeds. The successful production of such fatty acids has revealed barriers to the broad application of this technology, including low seed oil and low proportion of the introduced fatty acid and reduced seed vigor. Here, we analyze the impact of producing hydroxy-fatty acids on seedling development. We show that germinating seeds of a hydroxy-fatty acid-accumulating Arabidopsis (Arabidopsis thaliana) line produce chlorotic cotyledons and suffer reduced photosynthetic capacity. These seedlings retain hydroxy-fatty acids in polar lipids, including chloroplast lipids, and exhibit decreased fatty acid synthesis. Triacylglycerol mobilization in seedling development also is reduced, especially for lipids that include hydroxy-fatty acid moieties. These developmental defects are ameliorated by increased flux of hydroxy-fatty acids into seed triacylglycerol created through the expression of either castor (Ricinus communis) acyltransferase enzyme ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE2 or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1A. Such expression increases both the level of total stored triacylglycerol and the rate at which it is mobilized, fueling fatty acid synthesis and restoring photosynthetic capacity. Our results suggest that further improvements in seedling development may require the specific mobilization of triacylglycerol-containing hydroxy-fatty acids. Understanding the defects in early development caused by the accumulation of modified fatty acids and providing mechanisms to circumvent these defects are vital steps in the development of tailored oil crops.
Collapse
Affiliation(s)
- Daniel Lunn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Gracen A Smith
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - James G Wallis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
85
|
Tian Y, Lv X, Xie G, Zhang J, Xu Y, Chen F. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis. Biochem Biophys Res Commun 2018; 500:370-375. [PMID: 29654768 DOI: 10.1016/j.bbrc.2018.04.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Biosynthesis of plant seed oil is accomplished through the coordinate action of multiple enzymes in multiple subcellular compartments. Fatty acid (FA) has to be transported from plastid to endoplasmic reticulum (ER) for TAG synthesis. However, the role of plastid FA transportation during seed oil accumulation has not been evaluated. AtFAX1 (Arabidopsis fatty acid export1) mediated the FA export from plastid. In this study, we overexpressed AtFAX1 under the control of a seed specific promoter in Arabidopsis. The resultant overexpression lines (OEs) produced seeds which contained 21-33% more oil and 24-30% more protein per seed than those of the wild type (WT). The increased oil content was probably because of the enhanced FA and TAG synthetic activity. The seed size and weight were both increased accordingly. In addition, the seed number per silique and silique number per plant had no changes in transgenic plants. Taken together, our results demonstrated that seed specific overexpression of AtFAX1 could promote oil accumulation in Arabidopsis seeds and manipulating FA transportation is a feasible strategy for increasing the seed oil content.
Collapse
Affiliation(s)
- Yinshuai Tian
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, China
| | - Xueyan Lv
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Guilan Xie
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ying Xu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Fang Chen
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, China; Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
86
|
Martin RC, Vining K, Dombrowski JE. Genome-wide (ChIP-seq) identification of target genes regulated by BdbZIP10 during paraquat-induced oxidative stress. BMC PLANT BIOLOGY 2018; 18:58. [PMID: 29636001 PMCID: PMC5894230 DOI: 10.1186/s12870-018-1275-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND bZIP transcription factors play a significant role in many aspects of plant growth and development and also play critical regulatory roles during plant responses to various stresses. Overexpression of the Brachypodium bZIP10 (Bradi1g30140) transcription factor conferred enhanced oxidative stress tolerance and increased viability when plants or cells were exposed to the herbicide paraquat. To gain a better understanding of genes involved in bZIP10 conferred oxidative stress tolerance, chromatin immunoprecipitation followed by high throughput sequencing (ChIP-Seq) was performed on BdbZIP10 overexpressing plants in the presence of oxidative stress. RESULTS We identified a transcription factor binding motif, TGDCGACA, different from most known bZIP TF motifs but with strong homology to the Arabidopsis zinc deficiency response element. Analysis of the immunoprecipitated sequences revealed an enrichment of gene ontology groups with metal ion transmembrane transporter, transferase, catalytic and binding activities. Functional categories including kinases and phosphotransferases, cation/ion transmembrane transporters, transferases (phosphorus-containing and glycosyl groups), and some nucleoside/nucleotide binding activities were also enriched. CONCLUSIONS Brachypodium bZIP10 is involved in zinc homeostasis, as it relates to oxidative stress.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA ARS National Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97330 USA
| | - Kelly Vining
- Department of Horticulture, 4123 Agricultural & Life Sciences, Oregon State University, Corvallis, OR 97330 USA
| | - James E. Dombrowski
- USDA ARS National Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97330 USA
| |
Collapse
|
87
|
Yu Y, Wang A, Li X, Kou M, Wang W, Chen X, Xu T, Zhu M, Ma D, Li Z, Sun J. Melatonin-Stimulated Triacylglycerol Breakdown and Energy Turnover under Salinity Stress Contributes to the Maintenance of Plasma Membrane H +-ATPase Activity and K +/Na + Homeostasis in Sweet Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:256. [PMID: 29535758 PMCID: PMC5835075 DOI: 10.3389/fpls.2018.00256] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/12/2018] [Indexed: 05/20/2023]
Abstract
Melatonin (MT) is a multifunctional molecule in animals and plants and is involved in defense against salinity stress in various plant species. In this study, MT pretreatment was simultaneously applied to the roots and leaves of sweet potato seedlings [Ipomoea batatas (L.) Lam.], which is an important food and industry crop worldwide, followed by treatment of 150 mM NaCl. The roles of MT in mediating K+/Na+ homeostasis and lipid metabolism in salinized sweet potato were investigated. Exogenous MT enhanced the resistance to NaCl and improved K+/Na+ homeostasis in sweet potato seedlings as indicated by the low reduced K+ content in tissues and low accumulation of Na+ content in the shoot. Electrophysiological experiments revealed that exogenous MT significantly suppressed NaCl-induced K+ efflux in sweet potato roots and mesophyll tissues. Further experiments showed that MT enhanced the plasma membrane (PM) H+-ATPase activity and intracellular adenosine triphosphate (ATP) level in the roots and leaves of salinized sweet potato. Lipidomic profiling revealed that exogenous MT completely prevented salt-induced triacylglycerol (TAG) accumulation in the leaves. In addition, MT upregulated the expression of genes related to TAG breakdown, fatty acid (FA) β-oxidation, and energy turnover. Chemical inhibition of the β-oxidation pathway led to drastic accumulation of lipid droplets in the vegetative tissues of NaCl-stressed sweet potato and simultaneously disrupted the MT-stimulated energy state, PM H+-ATPase activity, and K+/Na+ homeostasis. Results revealed that exogenous MT stimulated TAG breakdown, FA β-oxidation, and energy turnover under salinity conditions, thereby contributing to the maintenance of PM H+-ATPase activity and K+/Na+ homeostasis in sweet potato.
Collapse
Affiliation(s)
- Yicheng Yu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Aimin Wang
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiang Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Meng Kou
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, China
| | - Wenjun Wang
- Beijing Qiji Biotechnology Co., Ltd., Beijing, China
| | - Xianyang Chen
- Beijing Qiji Biotechnology Co., Ltd., Beijing, China
| | - Tao Xu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Daifu Ma
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jian Sun
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
88
|
Reynolds KB, Taylor MC, Cullerne DP, Blanchard CL, Wood CC, Singh SP, Petrie JR. A reconfigured Kennedy pathway which promotes efficient accumulation of medium-chain fatty acids in leaf oils. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1397-1408. [PMID: 28301719 PMCID: PMC5633779 DOI: 10.1111/pbi.12724] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/12/2017] [Accepted: 03/10/2017] [Indexed: 05/23/2023]
Abstract
Medium-chain fatty acids (MCFA, C6-14 fatty acids) are an ideal feedstock for biodiesel and broader oleochemicals. In recent decades, several studies have used transgenic engineering to produce MCFA in seeds oils, although these modifications result in unbalance membrane lipid profiles that impair oil yields and agronomic performance. Given the ability to engineer nonseed organs to produce oils, we have previously demonstrated that MCFA profiles can be produced in leaves, but this also results in unbalanced membrane lipid profiles and undesirable chlorosis and cell death. Here we demonstrate that the introduction of a diacylglycerol acyltransferase from oil palm, EgDGAT1, was necessary to channel nascent MCFA directly into leaf oils and therefore bypassing MCFA residing in membrane lipids. This pathway resulted in increased flux towards MCFA rich leaf oils, reduced MCFA in leaf membrane lipids and, crucially, the alleviation of chlorosis. Deep sequencing of African oil palm (Elaeis guineensis) and coconut palm (Cocos nucifera) generated candidate genes of interest, which were then tested for their ability to improve oil accumulation. Thioesterases were explored for the production of lauric acid (C12:0) and myristic (C14:0). The thioesterases from Umbellularia californica and Cinnamomum camphora produced a total of 52% C12:0 and 40% C14:0, respectively, in transient leaf assays. This study demonstrated that the introduction of a complete acyl-CoA-dependent pathway for the synthesis of MFCA-rich oils avoided disturbing membrane homoeostasis and cell death phenotypes. This study outlines a transgenic strategy for the engineering of biomass crops with high levels of MCFA rich leaf oils.
Collapse
Affiliation(s)
- Kyle B. Reynolds
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
- Department of Primary IndustriesGraham Centre for Agricultural InnovationCharles Sturt UniversityWagga WaggaNSWAustralia
- ARC Industrial Transformation Training Centre for Functional GrainsCharles Sturt UniversityWagga WaggaNSWAustralia
| | - Matthew C. Taylor
- Commonwealth Scientific and Industrial Research OrganizationLand and WaterActonACTAustralia
| | - Darren P. Cullerne
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
- School of Environmental and Life SciencesUniversity of NewcastleNewcastleNSWAustralia
| | - Christopher L. Blanchard
- ARC Industrial Transformation Training Centre for Functional GrainsCharles Sturt UniversityWagga WaggaNSWAustralia
| | - Craig C. Wood
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
| | - Surinder P. Singh
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
| | - James R. Petrie
- Commonwealth Scientific and Industrial Research Organization, Agriculture and FoodActonACTAustralia
| |
Collapse
|
89
|
Manan S, Ahmad MZ, Zhang G, Chen B, Haq BU, Yang J, Zhao J. Soybean LEC2 Regulates Subsets of Genes Involved in Controlling the Biosynthesis and Catabolism of Seed Storage Substances and Seed Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1604. [PMID: 28979275 PMCID: PMC5611487 DOI: 10.3389/fpls.2017.01604] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/31/2017] [Indexed: 05/04/2023]
Abstract
Soybean is an important oilseed crop and major dietary protein resource, yet the molecular processes and regulatory mechanisms involved in biosynthesis of seed storage substances are not fully understood. The B3 domain transcription factor (TF) LEC2 essentially regulates embryo development and seed maturation in other plants, but is not functionally characterized in soybean. Here, we characterize the function of a soybean LEC2 homolog, GmLEC2a, in regulating carbohydrate catabolism, triacylglycerol (TAG) biosynthesis, and seed development. The experimental analysis showed that GmLEC2a complemented Arabidopsis atlec2 mutant defects in seedling development and TAG accumulation. Over-expression of GmLEC2a in Arabidopsis seeds increased the TAG contents by 34% and the composition of long chain fatty acids by 4% relative to the control seeds. Transcriptome analysis showed that ectopic expression of GmLEC2a in soybean hairy roots up-regulated several sets of downstream TF genes GmLEC1, GmFUS3, GmABI3, GmDof11 and GmWRI1 that regulate the seed development and production of seed storage substances. GmLEC2a regulated the lipid transporter genes and oil body protein gene OLEOSIN (OLE1). The genes involved in carbohydrate biosynthesis and storage, such as sucrose synthesis, and catabolism of TAG, such as lipases in GmLEC2a hairy roots were down-regulated. GmLEC2a targeted metabolic genes for seed protein in soybean.
Collapse
Affiliation(s)
- Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Z. Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Gaoyang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Basir U. Haq
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Jihong Yang
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- State Key Lab of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural UniversityHefei, China
| |
Collapse
|
90
|
Mueller SP, Unger M, Guender L, Fekete A, Mueller MJ. Phospholipid:Diacylglycerol Acyltransferase-Mediated Triacylglyerol Synthesis Augments Basal Thermotolerance. PLANT PHYSIOLOGY 2017; 175:486-497. [PMID: 28733391 PMCID: PMC5580778 DOI: 10.1104/pp.17.00861] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 05/22/2023]
Abstract
High temperatures rapidly induce a genetically programmed heat-shock response (HSR) that is essential to establish short-term acquired thermotolerance. In addition, an immediate HSR-independent metabolic response is triggered, resulting in an accumulation of unsaturated triacylglycerols (TAGs) in the cytosol. The metabolic processes involved in heat-induced TAG formation in plants and their physiological significance remain to be clarified. Lipidomic analyses of Arabidopsis (Arabidopsis thaliana) seedlings indicated that during heat stress, polyunsaturated fatty acids from thylakoid galactolipids are incorporated into cytosolic TAGs. In addition, rapid conversion of plastidic monogalactosyl diacylglycerols (MGDGs) into oligogalactolipids, acylated MGDGs, and diacylglycerols (DAGs), the direct precursor of TAGs, was observed. For TAG synthesis, DAG requires a fatty acid from the acyl-CoA pool or phosphatidylcholine. Since seedlings deficient in PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) were unable to accumulate TAGs after heat stress, phosphatidylcholine appears to be the major fatty acid donor. Results suggest that rapid plastid lipid metabolism drives TAG accumulation during heat stress. PDAT1-mediated TAG accumulation was found to increase heat resistance, since nonacclimated pdat1 mutant seedlings were more sensitive to severe heat stress, as indicated by a more dramatic decline of the maximum efficiency of PSII and lower seedling survival compared to wild-type seedlings. In contrast, nonacclimated trigalactosyldiacylglycerol1 (tgd1) mutants overaccumulating TAGs and oligogalactolipids were more resistant to heat stress. Hence, thylakoid lipid metabolism and TAG formation increases thermotolerance in addition to the genetically encoded HSR.
Collapse
Affiliation(s)
- Stephanie P Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Melissa Unger
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Lena Guender
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Agnes Fekete
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Martin J Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| |
Collapse
|
91
|
Yurchenko O, Shockey JM, Gidda SK, Silver MI, Chapman KD, Mullen RT, Dyer JM. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1010-1023. [PMID: 28083898 PMCID: PMC5506653 DOI: 10.1111/pbi.12695] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 05/23/2023]
Abstract
The seeds of many nondomesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered seeds remains low and is often hampered by their inefficient exclusion from phospholipids. Recent studies have established the feasibility of increasing triacylglycerol content in plant leaves, which provides a novel approach for increasing energy density of biomass crops. Here, we determined whether the fatty acid composition of leaf oil could be engineered to accumulate unusual fatty acids. Eleostearic acid (ESA) is a conjugated fatty acid produced in seeds of the tung tree (Vernicia fordii) and has both industrial and nutritional end-uses. Arabidopsis thaliana lines with elevated leaf oil were first generated by transforming wild-type, cgi-58 or pxa1 mutants (the latter two of which contain mutations disrupting fatty acid breakdown) with the diacylglycerol acyltransferases (DGAT1 or DGAT2) and/or oleosin genes from tung. High-leaf-oil plant lines were then transformed with tung FADX, which encodes the fatty acid desaturase/conjugase responsible for ESA synthesis. Analysis of lipids in leaves revealed that ESA was efficiently excluded from phospholipids, and co-expression of tung FADX and DGAT2 promoted a synergistic increase in leaf oil content and ESA accumulation. Taken together, these results provide a new approach for increasing leaf oil content that is coupled with accumulation of unusual fatty acids. Implications for production of biofuels, bioproducts, and plant-pest interactions are discussed.
Collapse
Affiliation(s)
- Olga Yurchenko
- USDA‐ARSUS Arid‐Land Agricultural Research CenterMaricopaAZUSA
| | - Jay M. Shockey
- USDA‐ARSSouthern Regional Research CenterNew OrleansLAUSA
| | - Satinder K. Gidda
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Maxwell I. Silver
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Kent D. Chapman
- Department of Biological SciencesUniversity of North TexasDentonTXUSA
| | - Robert T. Mullen
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - John M. Dyer
- USDA‐ARSUS Arid‐Land Agricultural Research CenterMaricopaAZUSA
| |
Collapse
|
92
|
Fan J, Yu L, Xu C. A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid β-Oxidation, and Plant Survival under Extended Darkness. PLANT PHYSIOLOGY 2017; 174:1517-1530. [PMID: 28572457 PMCID: PMC5490926 DOI: 10.1104/pp.17.00653] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/31/2017] [Indexed: 05/20/2023]
Abstract
Neutral lipid metabolism is a key aspect of intracellular homeostasis and energy balance and plays a vital role in cell survival under adverse conditions, including nutrient deprivation in yeast and mammals, but the role of triacylglycerol (TAG) metabolism in plant stress response remains largely unknown. By thoroughly characterizing mutants defective in SUGAR-DEPENDENT1 (SDP1) triacylglycerol lipase or PEROXISOMAL ABC TRANSPORTER 1 (PXA1), here we show that TAG is a key intermediate in the mobilization of fatty acids from membrane lipids for peroxisomal β-oxidation under prolonged dark treatment. Disruption of SDP1 increased TAG accumulation in cytosolic lipid droplets and markedly enhanced plant tolerance to extended darkness. We demonstrate that blocking TAG hydrolysis enhances plant tolerance to dark treatment via two distinct mechanisms. In pxa1 mutants, in which free fatty acids accumulated rapidly under extended darkness, SDP1 disruption resulted in a marked decrease in levels of cytotoxic lipid intermediates such as free fatty acids and phosphatidic acid, suggesting a buffer function of TAG accumulation against lipotoxicity under fatty acid overload. In the wild type, in which free fatty acids remained low and unchanged under dark treatment, disruption of SDP1 caused a decrease in reactive oxygen species production and hence the level of lipid peroxidation, indicating a role of TAG in protection against oxidative damage. Overall, our findings reveal a crucial role for TAG metabolism in membrane lipid breakdown, fatty acid turnover, and plant survival under extended darkness.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
93
|
Yang Y, Zienkiewicz A, Lavell A, Benning C. Coevolution of Domain Interactions in the Chloroplast TGD1, 2, 3 Lipid Transfer Complex Specific to Brassicaceae and Poaceae Plants. THE PLANT CELL 2017; 29:1500-1515. [PMID: 28526713 PMCID: PMC5502461 DOI: 10.1105/tpc.17.00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 05/23/2023]
Abstract
The import of lipids into the chloroplast is essential for photosynthetic membrane biogenesis. This process requires an ABC transporter in the inner envelope membrane with three subunits, TRIGALACTOSYLDIACYLGLYCEROL (TGD) 1, 2, and 3, named after the oligogalactolipids that accumulate in the respective Arabidopsis thaliana mutants. Unlike Arabidopsis, in the model grass Brachypodium distachyon, chloroplast lipid biosynthesis is largely dependent on imported precursors, resulting in a characteristic difference in chloroplast lipid acyl composition between the two plants. Accordingly, Arabidopsis is designated as a 16:3 (acyl carbons:double bounds) plant and Brachypodium as an 18:3 plant. Repression of TGD1 (BdTGD1) in Brachypodium affected growth without triggering oligogalactolipid biosynthesis. Moreover, expressing BdTGD1 in the Arabidopsis tgd1-1 mutant restored some phenotypes but did not reverse oligogalactolipid biosynthesis. A 27-amino acid loop (L45) is solely responsible for the incomplete functioning of BdTGD1 in Arabidopsis tgd1-1 Coevolutionary analysis and coimmunoprecipitation assays showed that the TGD1 L45 loop interacts with the mycobacterial cell entry domain of TGD2. To explain the observed differences in oligogalactolipid biosynthesis between the two species, we suggest that excess monogalactosyldiacylglycerol derived from chloroplast-derived precursors in Arabidopsis tgd1-1 is converted into oligogalactolipids, a process absent from Brachypodium with reduced TGD1 levels, which assembles monogalactosyldiacylglycerol exclusively from imported precursors.
Collapse
Affiliation(s)
- Yang Yang
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Agnieszka Zienkiewicz
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Anastasiya Lavell
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
94
|
Kong F, Liang Y, Légeret B, Beyly-Adriano A, Blangy S, Haslam RP, Napier JA, Beisson F, Peltier G, Li-Beisson Y. Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:358-371. [PMID: 28142200 DOI: 10.1111/tpj.13498] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 05/03/2023]
Abstract
Peroxisomes are thought to have played a key role in the evolution of metabolic networks of photosynthetic organisms by connecting oxidative and biosynthetic routes operating in different compartments. While the various oxidative pathways operating in the peroxisomes of higher plants are fairly well characterized, the reactions present in the primitive peroxisomes (microbodies) of algae are poorly understood. Screening of a Chlamydomonas insertional mutant library identified a strain strongly impaired in oil remobilization and defective in Cre05.g232002 (CrACX2), a gene encoding a member of the acyl-CoA oxidase/dehydrogenase superfamily. The purified recombinant CrACX2 expressed in Escherichia coli catalyzed the oxidation of fatty acyl-CoAs into trans-2-enoyl-CoA and produced H2 O2 . This result demonstrated that CrACX2 is a genuine acyl-CoA oxidase, which is responsible for the first step of the peroxisomal fatty acid (FA) β-oxidation spiral. A fluorescent protein-tagging study pointed to a peroxisomal location of CrACX2. The importance of peroxisomal FA β-oxidation in algal physiology was shown by the impact of the mutation on FA turnover during day/night cycles. Moreover, under nitrogen depletion the mutant accumulated 20% more oil than the wild type, illustrating the potential of β-oxidation mutants for algal biotechnology. This study provides experimental evidence that a plant-type FA β-oxidation involving H2 O2 -producing acyl-CoA oxidation activity has already evolved in the microbodies of the unicellular green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Fantao Kong
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Yuanxue Liang
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Bertrand Légeret
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Audrey Beyly-Adriano
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Stéphanie Blangy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Richard P Haslam
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Johnathan A Napier
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Fred Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Gilles Peltier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| | - Yonghua Li-Beisson
- Commissariat à l'Energie Atomique et aux Energies Alternatives, CNRS, Aix Marseille Université, UMR7265, Institut de Biosciences et Biotechnologies Aix Marseille, 13108, Cadarache, France
| |
Collapse
|
95
|
Liu Q, Guo Q, Akbar S, Zhi Y, El Tahchy A, Mitchell M, Li Z, Shrestha P, Vanhercke T, Ral J, Liang G, Wang M, White R, Larkin P, Singh S, Petrie J. Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:56-67. [PMID: 27307093 PMCID: PMC5253471 DOI: 10.1111/pbi.12590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 05/06/2023]
Abstract
Potato tuber is a high yielding food crop known for its high levels of starch accumulation but only negligible levels of triacylglycerol (TAG). In this study, we evaluated the potential for lipid production in potato tubers by simultaneously introducing three transgenes, including WRINKLED 1 (WRI1), DIACYLGLYCEROL ACYLTRANSFERASE 1 (DGAT1) and OLEOSIN under the transcriptional control of tuber-specific (patatin) and constitutive (CaMV-35S) promoters. This coordinated metabolic engineering approach resulted in over a 100-fold increase in TAG accumulation to levels up to 3.3% of tuber dry weight (DW). Phospholipids and galactolipids were also found to be significantly increased in the potato tuber. The increase of lipids in these transgenic tubers was accompanied by a significant reduction in starch content and an increase in soluble sugars. Microscopic examination revealed that starch granules in the transgenic tubers had more irregular shapes and surface indentations when compared with the relatively smooth surfaces of wild-type starch granules. Ultrastructural examination of lipid droplets showed their close proximity to endoplasmic reticulum and mitochondria, which may indicate a dynamic interaction with these organelles during the processes of lipid biosynthesis and turnover. Increases in lipid levels were also observed in the transgenic potato leaves, likely due to the constitutive expression of DGAT1 and incomplete tuber specificity of the patatin promoter. This study represents an important proof-of-concept demonstration of oil increase in tubers and provides a model system to further study carbon reallocation during development of nonphotosynthetic underground storage organs.
Collapse
Affiliation(s)
- Qing Liu
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Qigao Guo
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- College of Horticulture & Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Sehrish Akbar
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- National University of Science and Technology (NUST) IslamabadIslamabadPakistan
| | - Yao Zhi
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Anna El Tahchy
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Madeline Mitchell
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Zhongyi Li
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Pushkar Shrestha
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Thomas Vanhercke
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Jean‐Philippe Ral
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Guolu Liang
- College of Horticulture & Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Ming‐Bo Wang
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Rosemary White
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Philip Larkin
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - Surinder Singh
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| | - James Petrie
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainACTAustralia
| |
Collapse
|
96
|
Vanhercke T, Divi UK, El Tahchy A, Liu Q, Mitchell M, Taylor MC, Eastmond PJ, Bryant F, Mechanicos A, Blundell C, Zhi Y, Belide S, Shrestha P, Zhou XR, Ral JP, White RG, Green A, Singh SP, Petrie JR. Step changes in leaf oil accumulation via iterative metabolic engineering. Metab Eng 2017; 39:237-246. [PMID: 27993560 DOI: 10.1016/j.ymben.2016.12.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/16/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
Abstract
Synthesis and accumulation of plant oils in the entire vegetative biomass offers the potential to deliver yields surpassing those of oilseed crops. However, current levels still fall well short of those typically found in oilseeds. Here we show how transcriptome and biochemical analyses pointed to a futile cycle in a previously established Nicotiana tabacum line, accumulating up to 15% (dry weight) of the storage lipid triacylglycerol in leaf tissue. To overcome this metabolic bottleneck, we either silenced the SDP1 lipase or overexpressed the Arabidopsis thaliana LEC2 transcription factor in this transgenic background. Both strategies independently resulted in the accumulation of 30-33% triacylglycerol in leaf tissues. Our results demonstrate that the combined optimization of de novo fatty acid biosynthesis, storage lipid assembly and lipid turnover in leaf tissue results in a major overhaul of the plant central carbon allocation and lipid metabolism. The resulting further step changes in oil accumulation in the entire plant biomass offers the possibility of delivering yields that outperform current oilseed crops.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia.
| | - Uday K Divi
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Anna El Tahchy
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Qing Liu
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Madeline Mitchell
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Matthew C Taylor
- CSIRO Land and Water, PO Box 1700, Canberra, ACT 2601, Australia
| | - Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdomna Scholarship Council (CSC
| | - Fiona Bryant
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdomna Scholarship Council (CSC
| | - Anna Mechanicos
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Cheryl Blundell
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Yao Zhi
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Srinivas Belide
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Pushkar Shrestha
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Xue-Rong Zhou
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Jean-Philippe Ral
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Rosemary G White
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Allan Green
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - Surinder P Singh
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| | - James R Petrie
- CSIRO Agriculture and Food, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
97
|
Manan S, Chen B, She G, Wan X, Zhao J. Transport and transcriptional regulation of oil production in plants. Crit Rev Biotechnol 2016; 37:641-655. [DOI: 10.1080/07388551.2016.1212185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sehrish Manan
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Beibei Chen
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
98
|
Cui S, Hayashi Y, Otomo M, Mano S, Oikawa K, Hayashi M, Nishimura M. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana. J Biol Chem 2016; 291:19734-45. [PMID: 27466365 DOI: 10.1074/jbc.m116.748814] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Indexed: 02/02/2023] Open
Abstract
Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis.
Collapse
Affiliation(s)
- Songkui Cui
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the RIKEN Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan, the Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan, and
| | - Yasuko Hayashi
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Masayoshi Otomo
- the Graduate School of Science and Technology, Niigata University, 8050 Ikarashi, Ninotyou, Niigata 950-2181, Japan
| | - Shoji Mano
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan, the Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Myodaiji-cho, Okazaki 444-8585, Japan, the Laboratory of Biological Diversity, Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan
| | - Kazusato Oikawa
- the Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Makoto Hayashi
- the Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama 526-0829, Japan
| | - Mikio Nishimura
- From the Department of Cell Biology, National Institute for Basic Biology, Myodaiji-cho, Okazaki 444-8585, Japan,
| |
Collapse
|
99
|
Shih PM, Liang Y, Loqué D. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:103-17. [PMID: 27030440 DOI: 10.1111/tpj.13176] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 05/26/2023]
Abstract
The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs.
Collapse
Affiliation(s)
- Patrick M Shih
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yan Liang
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Emery Station East, 5885 Hollis St, 4th Floor, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Université Lyon 1, INSA de Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 rue Raphaël Dubois, F-69622, Villeurbanne, France
| |
Collapse
|
100
|
Kelly AA, Feussner I. Oil is on the agenda: Lipid turnover in higher plants. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1253-1268. [PMID: 27155216 DOI: 10.1016/j.bbalip.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Lipases hydrolyze ester bonds within lipids. This process is called lipolysis. They are key players in lipid turnover and involved in numerous metabolic pathways, many of which are shared between organisms like the mobilization of neutral or storage lipids or lipase-mediated membrane lipid homeostasis. Some reactions though are predominantly present in certain organisms, such as the production of signaling molecules (endocannabinoids) by diacylglycerol (DAG) and monoacylglycerol (MAG) lipases in mammals and plants or the jasmonate production in flowering plants. This review aims at giving an overview of the different functional classes of lipases and respective well-known activities, with a focus on the most recent findings in plant biology for selected classes. Here we will put an emphasis on the physiological role and contribution of lipases to the turnover of neutral lipids found in seed oil and other vegetative tissue as candidates for increasing the economical values of crop plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Amélie A Kelly
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany; Georg-August-University, International Center for Advanced Studies of Energy Conversion (ICASEC), Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| |
Collapse
|