51
|
Momo J, Rawoof A, Kumar A, Islam K, Ahmad I, Ramchiary N. Proteomics of Reproductive Development, Fruit Ripening, and Stress Responses in Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:65-95. [PMID: 36584279 DOI: 10.1021/acs.jafc.2c06564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fruits of the tomato crop (Solanum lycopersicum L.) are increasingly consumed by humans worldwide. Due to their rich nutritional quality, pharmaceutical properties, and flavor, tomato crops have gained a salient role as standout crops among other plants. Traditional breeding and applied functional research have made progress in varying tomato germplasms to subdue biotic and abiotic stresses. Proteomic investigations within a span of few decades have assisted in consolidating the functional genomics and transcriptomic research. However, due to the volatility and dynamicity of proteins in the regulation of various biosynthetic pathways, there is a need for continuing research in the field of proteomics to establish a network that could enable a more comprehensive understanding of tomato growth and development. With this view, we provide a comprehensive review of proteomic studies conducted on the tomato plant in past years, which will be useful for future breeders and researchers working to improve the tomato crop.
Collapse
Affiliation(s)
- John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ajay Kumar
- Department of Plant Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| |
Collapse
|
52
|
Álvarez-Urdiola R, Borràs E, Valverde F, Matus JT, Sabidó E, Riechmann JL. Peptidomics Methods Applied to the Study of Flower Development. Methods Mol Biol 2023; 2686:509-536. [PMID: 37540375 DOI: 10.1007/978-1-0716-3299-4_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6-7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.
Collapse
Affiliation(s)
- Raquel Álvarez-Urdiola
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | - Eva Borràs
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Federico Valverde
- Institute for Plant Biochemistry and Photosynthesis CSIC - University of Seville, Seville, Spain
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
53
|
Ma W, Zhang C, Zhang W, Sheng P, Xu M, Ni Y, Chen M, Cheng B, Zhang X. TMT-Based Comparative Peptidomics Analysis of Rice Seedlings under Salt Stress: An Accessible Method to Explore Plant Stress-Tolerance Processing. J Proteome Res 2022; 21:2905-2919. [PMID: 36351196 DOI: 10.1021/acs.jproteome.2c00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rice (Oryza sativa L.) is an important staple crop, particularly in Asia, and abiotic stress conditions easily reduce its yields. Salt stress is one of the critical factors affecting rice growth and yield. In this study, a tandem mass tag (TMT)-based comparative peptidomics analysis of rice seedlings under salt stress was conducted. Rice seedlings were exposed to 50 and 150 mM NaCl for 24 and 72 h, respectively, and the root and shoot tissues of different treatment groups were collected separately for peptidomics analysis. A total of 911 and 1263 nonredundant peptides were identified in two pooled shoot tissue samples, while there were 770 and 672 nonredundant peptides in two pooled root tissue samples, respectively. Compared with the control groups, dozens to hundreds of differentially expressed peptides (DEPs) were characterized in all treatment groups. To explore the potential functions of these DEPs, we analyzed the basic characteristics of DEPs and further analyzed the annotated Gene Ontology terms according to their precursor proteins. Several DEP precursor proteins were closely related to the response to salt stress, and some were derived from the functional domains of their corresponding precursors. The germination rate and cotyledon greening rate of transgenic Arabidopsis expressing two DEPs, OsSTPE2 and OsSTPE3, were significantly enhanced under salt stress. The described workflow enables the discovery of a functional pipeline for the characterization of the plant peptidome and reveals two new plant peptides that confer salinity tolerance to plants. Data are available via ProteomeXchange with identifier PXD037574.
Collapse
Affiliation(s)
- Wanlu Ma
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Chenchen Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Wei Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Pijie Sheng
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Minyan Xu
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Ying Ni
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Meng Chen
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Beijiu Cheng
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China.,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| | - Xin Zhang
- The National Engineering Laboratory of Crop Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China.,Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, P. R. China
| |
Collapse
|
54
|
AlHudaib KA, Alanazi NA, Ghorbel M, El-Ganainy SM, Brini F. Isolation and Characterization of a Novel Pathogenesis-Related Protein-1 Gene ( AvPR-1) with Induced Expression in Oat ( Avena sativa L.) during Abiotic and Hormonal Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11172284. [PMID: 36079666 PMCID: PMC9460936 DOI: 10.3390/plants11172284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 05/04/2023]
Abstract
Pathogenesis-related protein-1 (PR-1) plays crucial roles in regulating plant responses to biotic and abiotic stresses. This study aimed to isolate and characterize the first PR-1 (AvPR-1) gene in oat (Avena sativa L.). AvPR-1 presented conserved signal peptide motifs and core amino acid composition in the functional protein domains as the protein sequence of AvPR-1 presented 98.28%, 97.7%, and 95.4% identity with known PR1 proteins isolated from Triticum aestivum PRB1-2-like, Triticum dicoccoides PRB1-2-like, and Aegilops tauschii subsp. tauschii, respectively. Bioinformatic analysis showed that the AvPR-1 protein belongs to the CAP superfamily (PF00188). Secondary and 3D structure analyses of the AvPR-1 protein were also conducted, confirming sequence conservation of PR-1 among studied species. The AvPR-1 protein harbors a calmodulin-binding domain located in its C-terminal part as previously shown for its wheat homolog TdPR1.2. Moreover, gene expression analysis showed that AvPR-1 was induced in response to many abiotic and hormonal stresses especially in leaves after treatment for 48 h. This is the first study exhibiting the expression profiles of the AvPR-1 gene under different stresses in oat.
Collapse
Affiliation(s)
- Khalid A. AlHudaib
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Correspondence:
| | - Naimah Asid Alanazi
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia
| | - Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia
| | - Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
| |
Collapse
|
55
|
Backer R, Engelbrecht J, van den Berg N. Differing Responses to Phytophthora cinnamomi Infection in Susceptible and Partially Resistant Persea americana (Mill.) Rootstocks: A Case for the Role of Receptor-Like Kinases and Apoplastic Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:928176. [PMID: 35837458 PMCID: PMC9274290 DOI: 10.3389/fpls.2022.928176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The hemibiotrophic plant pathogen Phytophthora cinnamomi Rands is the most devastating pathogen of avocado (Persea americana Mill.) and, as such, causes significant annual losses in the industry. Although the molecular basis of P. cinnamomi resistance in avocado and P. cinnamomi virulence determinants have been the subject of recent research, none have yet attempted to compare the transcriptomic responses of both pathogen and host during their interaction. In the current study, the transcriptomes of both avocado and P. cinnamomi were explored by dual RNA sequencing. The basis for partial resistance was sought by the inclusion of both susceptible (R0.12) and partially resistant (Dusa®) rootstocks sampled at early (6, 12 and 24 hours post-inoculation, hpi) and late time-points (120 hpi). Substantial differences were noted in the number of differentially expressed genes found in Dusa® and R0.12, specifically at 12 and 24 hpi. Here, the partially resistant rootstock perpetuated defense responses initiated at 6 hpi, while the susceptible rootstock abruptly reversed course. Instead, gene ontology enrichment confirmed that R0.12 activated pathways related to growth and development, essentially rendering its response at 12 and 24 hpi no different from that of the mock-inoculated controls. As expected, several classes of P. cinnamomi effector genes were differentially expressed in both Dusa® and R0.12. However, their expression differed between rootstocks, indicating that P. cinnamomi might alter the expression of its effector arsenal based on the rootstock. Based on some of the observed differences, several P. cinnamomi effectors were highlighted as potential candidates for further research. Similarly, the receptor-like kinase (RLK) and apoplastic protease coding genes in avocado were investigated, focusing on their potential role in differing rootstock responses. This study suggests that the basis of partial resistance in Dusa® is predicated on its ability to respond appropriately during the early stages following P. cinnamomi inoculation, and that important components of the first line of inducible defense, apoplastic proteases and RLKs, are likely to be important to the observed outcome.
Collapse
Affiliation(s)
- Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Engelbrecht
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
56
|
Wang F, Shen S, Zhao C, Cui Z, Meng L, Wu W, Liu D, Wang H. TaPR1 Interacts With TaTLP1 via the αIV Helix to Be Involved in Wheat Defense to Puccinia triticina Through the CAPE1 Motif. FRONTIERS IN PLANT SCIENCE 2022; 13:874654. [PMID: 35720612 PMCID: PMC9199852 DOI: 10.3389/fpls.2022.874654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 05/29/2023]
Abstract
Pathogenesis-related (PR) proteins play important roles in plant defense response and systemic acquired resistance (SAR). PR1 has antifungal activity against many plant pathogens. In our previous study, RNA sequencing (RNA-seq) was conducted on resistant wheat line TcLr19 and sensitive wheat cultivar Chinese Spring inoculated with Puccinia triticina (Pt) race PHNT. In this study, seven salicylic acid (SA)-induced TaPR1 genes involved in plant disease resistance were found in the RNA-seq library. Quantitative PCR (qPCR) results showed that TaPR1-4 was most induced by Pt among these seven TaPR1 genes in the incompatible interaction. Yeast two-hybrid (Y2H) results showed that TaPR1-4 interacted with TaTLP1 via the αIV helix. Protein-mediated phenotyping assays in vivo and antifungal activity in vitro demonstrated that wheat leaves infiltrated with pure TaPR1-4 protein developed significantly less disease compared to control leaves. This effect was correlated with a strong increase in defense gene expression, and resistance activity was dependent on the CAPE1 motif located in the C-terminal region of TaPR1-4. These findings increase current knowledge regarding the interaction of TaPR1 and TaTLP1 and provide new insights on the role of TaPR1 protein in the resistance of wheat to Pt.
Collapse
Affiliation(s)
- Fei Wang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Songsong Shen
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Cunpeng Zhao
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhongchi Cui
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Linshuo Meng
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Wenyue Wu
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Daqun Liu
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Haiyan Wang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| |
Collapse
|
57
|
Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp. and its role in defense response during stresses. Gene X 2022; 821:146334. [PMID: 35181501 DOI: 10.1016/j.gene.2022.146334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Pathogenesis related protein-1 (PR-1) is the most abundantly produced protein during defense response against many biotic and abiotic stresses. However, knowledge on PR-1 gene family and its evolutionary relationship in banana is very limited. In order to study the potential role of PR-1 genes in banana, genome wide identification, structure analysis and expressions were performed. A total of 15 and 11 PR-1 genes were identified from A and B genomes of banana and the proteins encoded by this gene family are of varying lengths and harbor conserved domains and motifs. PR-1 genes are unevenly dispersed on 11 chromosomes with segmental duplication in both A and B genome, suggesting an important contribution of duplication in expansion of PR-1 gene family in banana. qRT-PCR analysis of PR-1 gene showed positive correlation with the RNAseq data under various stresses and examination of expression pattern of selected MaPR-1 genes in banana revealed its role in biotic and abiotic stresses in general and fusarium wilt in particular. This study provides significant insight into the functions of PR-1 genes which can be further exploited as a promising candidate for developing multiple stress tolerant banana varieties.
Collapse
|
58
|
Pečenková T, Pejchar P, Moravec T, Drs M, Haluška S, Šantrůček J, Potocká A, Žárský V, Potocký M. Immunity functions of Arabidopsis pathogenesis-related 1 are coupled but not confined to its C-terminus processing and trafficking. MOLECULAR PLANT PATHOLOGY 2022; 23:664-678. [PMID: 35122385 PMCID: PMC8995067 DOI: 10.1111/mpp.13187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 05/11/2023]
Abstract
The pathogenesis-related 1 (PR1) proteins are members of the cross-kingdom conserved CAP superfamily (from Cysteine-rich secretory protein, Antigen 5, and PR1 proteins). PR1 mRNA expression is frequently used for biotic stress monitoring in plants; however, the molecular mechanisms of its cellular processing, localization, and function are still unknown. To analyse the localization and immunity features of Arabidopsis thaliana PR1, we employed transient expression in Nicotiana benthamiana of the tagged full-length PR1 construct, and also disrupted variants with C-terminal truncations or mutations. We found that en route from the endoplasmic reticulum, the PR1 protein transits via the multivesicular body and undergoes partial proteolytic processing, dependent on an intact C-terminal motif. Importantly, only nonmutated or processing-mimicking variants of PR1 are secreted to the apoplast. The C-terminal proteolytic cleavage releases a protein fragment that acts as a modulator of plant defence responses, including localized cell death control. However, other parts of PR1 also have immunity potential unrelated to cell death. The described modes of the PR1 contribution to immunity were found to be tissue-localized and host plant ontogenesis dependent.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Moravec
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Matěj Drs
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jiří Šantrůček
- Department of Biochemistry and MicrobiologyFaculty of Food and Biochemical TechnologyUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Andrea Potocká
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of SciencesPragueCzech Republic
- Department of Experimental Plant BiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
59
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
60
|
Lin CS, Hsu CT, Yuan YH, Zheng PX, Wu FH, Cheng QW, Wu YL, Wu TL, Lin S, Yue JJ, Cheng YH, Lin SI, Shih MC, Sheen J, Lin YC. DNA-free CRISPR-Cas9 gene editing of wild tetraploid tomato Solanum peruvianum using protoplast regeneration. PLANT PHYSIOLOGY 2022; 188:1917-1930. [PMID: 35088855 PMCID: PMC8968427 DOI: 10.1093/plphys/kiac022] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/10/2021] [Indexed: 05/24/2023]
Abstract
Wild tomatoes (Solanum peruvianum) are important genomic resources for tomato research and breeding. Development of a foreign DNA-free clustered regularly interspaced short palindromic repeat (CRISPR)-Cas delivery system has potential to mitigate public concern about genetically modified organisms. Here, we established a DNA-free CRISPR-Cas9 genome editing system based on an optimized protoplast regeneration protocol of S. peruvianum, an important resource for tomato introgression breeding. We generated mutants for genes involved in small interfering RNAs biogenesis, RNA-DEPENDENT RNA POLYMERASE 6 (SpRDR6), and SUPPRESSOR OF GENE SILENCING 3 (SpSGS3); pathogen-related peptide precursors, PATHOGENESIS-RELATED PROTEIN-1 (SpPR-1) and PROSYSTEMIN (SpProSys); and fungal resistance (MILDEW RESISTANT LOCUS O, SpMlo1) using diploid or tetraploid protoplasts derived from in vitro-grown shoots. The ploidy level of these regenerants was not affected by PEG-Ca2+-mediated transfection, CRISPR reagents, or the target genes. By karyotyping and whole genome sequencing analysis, we confirmed that CRISPR-Cas9 editing did not introduce chromosomal changes or unintended genome editing sites. All mutated genes in both diploid and tetraploid regenerants were heritable in the next generation. spsgs3 null T0 regenerants and sprdr6 null T1 progeny had wiry, sterile phenotypes in both diploid and tetraploid lines. The sterility of the spsgs3 null mutant was partially rescued, and fruits were obtained by grafting to wild-type (WT) stock and pollination with WT pollen. The resulting seeds contained the mutated alleles. Tomato yellow leaf curl virus proliferated at higher levels in spsgs3 and sprdr6 mutants than in the WT. Therefore, this protoplast regeneration technique should greatly facilitate tomato polyploidization and enable the use of CRISPR-Cas for S. peruvianum domestication and tomato breeding.
Collapse
Affiliation(s)
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Hsuan Yuan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Po-Xing Zheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Fu-Hui Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Qiao-Wei Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Lin Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Ting-Li Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Research Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan
| | - Steven Lin
- Institute of Biochemistry, Academia Sinica, Taipei 115, Taiwan
| | - Jin-Jun Yue
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311, China
| | - Ying-Huey Cheng
- Plant Pathology Division, Taiwan Agricultural Research Institute, Taichung 413, Taiwan
| | - Shu-I Lin
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
61
|
Xie H, Zhao W, Li W, Zhang Y, Hajný J, Han H. Small signaling peptides mediate plant adaptions to abiotic environmental stress. PLANTA 2022; 255:72. [PMID: 35218440 DOI: 10.1007/s00425-022-03859-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Peptide-receptor complexes activate distinct downstream regulatory networks to mediate plant adaptions to abiotic environmental stress. Plants are constantly exposed to various adverse environmental factors; thus they must adjust their growth accordingly. Plants recruit small secretory peptides to adapt to these detrimental environments. These small peptides, which are perceived by their corresponding receptors and/or co-receptors, act as local- or long-distance mobile signaling molecules to establish cell-to-cell regulatory networks, resulting in optimal cellular and physiological outputs. In this review, we highlight recent advances on the regulatory role of small peptides in plant abiotic responses and nutrients signaling.
Collapse
Affiliation(s)
- Heping Xie
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Wen Zhao
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Weilin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Yuzhou Zhang
- College of Life Science, Northwest A&F University, Shaanxi, 712100, Yangling, China
| | - Jakub Hajný
- Laboratory of Growth Regulators, Institute of Experimental Botany and Palacký University, The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China.
| |
Collapse
|
62
|
Luo X, Tian T, Feng L, Yang X, Li L, Tan X, Wu W, Li Z, Treves H, Serneels F, Ng IS, Tanaka K, Ren M. Pathogenesis-related protein 1 suppresses oomycete pathogen by targeting against AMPK kinase complex. J Adv Res 2022; 43:13-26. [PMID: 36585103 PMCID: PMC9811325 DOI: 10.1016/j.jare.2022.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION During the arms race between plants and pathogens, pathogenesis-related proteins (PR) in host plants play a crucial role in disease resistance, especially PR1. PR1 constitute a secretory peptide family, and their role in plant defense has been widely demonstrated in both hosts and in vitro. However, the mechanisms by which they control host-pathogen interactions and the nature of their targets within the pathogen remain poorly understood. OBJECTIVES The present study was aimed to investigate the anti-oomycete activity of secretory PR1 proteins and elaborate their underlying mechanisms. METHODS This study was conducted in the potato-Phytophthora infestans pathosystem. After being induced by the pathogen infection, the cross-kingdom translocation of secretory PR1 was demonstrated by histochemical assays and western blot, and their targets in P. infestans were identified by yeast-two-hybrid assays, bimolecular fluorescence complementation assays, and co-immunoprecipitation assay. RESULTS The results showed that the expression of secretory PR1-encoding genes was induced during pathogen infection, and the host could deliver PR1 into P. infestans to inhibit its vegetative growth and pathogenicity. The translocated secretory PR1 targeted the subunits of the AMPK kinase complex in P. infestans, thus affecting the AMPK-driven phosphorylation of downstream target proteins, preventing ROS homeostasis, and down-regulating the expression of RxLR effectors. CONCLUSION The results provide novel insights into the molecular function of PR1 in protecting plants against pathogen infection, and uncover a potential target for preventing pre- and post-harvest late blight.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China; Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Tian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China
| | - Xingyong Yang
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China
| | - Xue Tan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Francois Serneels
- Centre for agriculture and agro-industry of Hainaut Province, Ath 7800, Belgium
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Taiwan 701, China
| | - Kan Tanaka
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China.
| |
Collapse
|
63
|
Pavlicevic M, Marmiroli N, Maestri E. Immunomodulatory peptides-A promising source for novel functional food production and drug discovery. Peptides 2022; 148:170696. [PMID: 34856531 DOI: 10.1016/j.peptides.2021.170696] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 12/12/2022]
Abstract
Immunomodulatory peptides are a complex class of bioactive peptides that encompasses substances with different mechanisms of action. Immunomodulatory peptides could also be used in vaccines as adjuvants which would be extremely desirable, especially in response to pandemics. Thus, immunomodulatory peptides in food of plant origin could be regarded both as valuable suplements of novel functional food preparation and/or as precursors or possible active ingredients for drugs design for treatment variety of conditions arising from impaired function of immune system. Given variety of mechanisms, different tests are required to assess effects of immunomodulatory peptides. Some of those effects show good correlation with in vivo results but others, less so. Certain plant peptides, such as defensins, show both immunomodulatory and antimicrobial effect, which makes them interesting candidates for preparation of functional food and feed, as well as templates for design of synthetic peptides.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Serbia
| | - Nelson Marmiroli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Elena Maestri
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, and Interdepartmental Center SITEIA.PARMA, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
64
|
Almeida-Silva F, Venancio TM. Pathogenesis-related protein 1 (PR-1) genes in soybean: Genome-wide identification, structural analysis and expression profiling under multiple biotic and abiotic stresses. Gene 2022; 809:146013. [PMID: 34655718 DOI: 10.1016/j.gene.2021.146013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023]
Abstract
Plant pathogenesis-related (PR) proteins are a large group of proteins, classified in 17 families, that are induced by pathological conditions. Here, we characterized the soybean PR-1 (GmPR-1) gene repertoire at the sequence, structural and expression levels. We found 24 GmPR-1 genes, clustered in two phylogenetic groups. GmPR-1 genes are under strong purifying selection, particularly those that emerged by tandem duplications. GmPR-1 promoter regions are abundant in cis-regulatory elements associated with major stress-related transcription factor families, namely WRKY, ERF, HD-Zip, C2H2, NAC, and GATA. We observed that 23 GmPR-1 genes are induced by stress conditions or exclusively expressed upon stress. We explored 1972 transcriptome samples, including 26 stress conditions, revealing that most GmPR-1 genes are differentially expressed in a plethora of biotic and abiotic stresses. Our findings highlight stress-responsive GmPR-1 genes with potential biotechnological applications, such as the development of transgenic lines with increased resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
65
|
Almeida-Silva F, Venancio TM. Pathogenesis-related protein 1 (PR-1) genes in soybean: Genome-wide identification, structural analysis and expression profiling under multiple biotic and abiotic stresses. Gene 2022; 809:146013. [PMID: 34655718 DOI: 10.1101/2021.03.27.437342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 05/20/2023]
Abstract
Plant pathogenesis-related (PR) proteins are a large group of proteins, classified in 17 families, that are induced by pathological conditions. Here, we characterized the soybean PR-1 (GmPR-1) gene repertoire at the sequence, structural and expression levels. We found 24 GmPR-1 genes, clustered in two phylogenetic groups. GmPR-1 genes are under strong purifying selection, particularly those that emerged by tandem duplications. GmPR-1 promoter regions are abundant in cis-regulatory elements associated with major stress-related transcription factor families, namely WRKY, ERF, HD-Zip, C2H2, NAC, and GATA. We observed that 23 GmPR-1 genes are induced by stress conditions or exclusively expressed upon stress. We explored 1972 transcriptome samples, including 26 stress conditions, revealing that most GmPR-1 genes are differentially expressed in a plethora of biotic and abiotic stresses. Our findings highlight stress-responsive GmPR-1 genes with potential biotechnological applications, such as the development of transgenic lines with increased resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
66
|
Zhang Q, Guo N, Zhang Y, Yu Y, Liu S. Genome-Wide Characterization and Expression Analysis of Pathogenesis-Related 1 ( PR-1) Gene Family in Tea Plant ( Camellia sinensis (L.) O. Kuntze) in Response to Blister-Blight Disease Stress. Int J Mol Sci 2022; 23:ijms23031292. [PMID: 35163217 PMCID: PMC8836084 DOI: 10.3390/ijms23031292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/13/2023] Open
Abstract
Pathogenesis-related 1 (PR-1) proteins, which are defense proteins in plant–pathogen interactions, play an important role in the resistance and defense of plants against diseases. Blister blight disease is caused by Exobasidium vexans Massee and a major leaf disease of tea plants (Camellia sinensis (L.) O. Kuntze). However, the systematic characterization and analysis of the PR-1 gene family in tea plants is still lacking, and the defense mechanism of this family remains unknown. In this study, 17 CsPR-1 genes were identified from the tea plant genome and classified into five groups based on their signal peptide, isoelectric point, and C-terminus extension. Most of the CsPR-1 proteins contained an N-terminal signal peptide and a conserved PR-1 like domain. CsPR-1 genes comprised multiple cis-acting elements and were closely related to the signal-transduction pathways involving TCA, NPR1, EDS16, BGL2, PR4, and HCHIB. These characteristics imply an important role of the genes in the defense of the tea plant. In addition, the RNA-seq data and real-time PCR analysis demonstrated that the CsPR-1-2, -4, -6, -7, -8, -9, -10, -14, -15, and -17 genes were significantly upregulated under tea blister-blight stress. This study could help to increase understanding of CsPR-1 genes and their defense mechanism in response to tea blister blight.
Collapse
|
67
|
Liu Y, Liu S, Shi H, Ma J, Jing M, Han Y. The TSN1 Binding Protein RH31 Is a Component of Stress Granules and Participates in Regulation of Salt-Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:804356. [PMID: 35003193 PMCID: PMC8733394 DOI: 10.3389/fpls.2021.804356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 05/29/2023]
Abstract
Tudor staphylococcal nucleases (TSNs) are evolutionarily conserved RNA binding proteins, which include redundant TSN1 and TSN2 in Arabidopsis. It has been showed TSNs are the components of stress granules (SGs) and regulate plant growth under salt stress. In this study, we find a binding protein of TSN1, RH31, which is a DEAD-box RNA helicase (RH). Subcellular localization studies show that RH31 is mainly located in the nucleus, but under salinity, it translocates to the cytoplasm where it accumulates in cytoplasmic granules. After cycloheximide (CHX) treatment which can block the formation of SGs by interfering with mRNP homeostasis, these cytoplasmic granules disappeared. More importantly, RH31 co-localizes with SGs marker protein RBP47. RH31 deletion results in salt-hypersensitive phenotype, while RH31 overexpression causes more resistant to salt stress. In summary, we demonstrate that RH31, the TSN1 binding protein, is a component of plant SGs and participates in regulation of salt-stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang, China
| | - Shijie Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiying Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | - Meng Jing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuzhen Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
68
|
Lyapina I, Ivanov V, Fesenko I. Peptidome: Chaos or Inevitability. Int J Mol Sci 2021; 22:13128. [PMID: 34884929 PMCID: PMC8658490 DOI: 10.3390/ijms222313128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Thousands of naturally occurring peptides differing in their origin, abundance and possible functions have been identified in the tissue and biological fluids of vertebrates, insects, fungi, plants and bacteria. These peptide pools are referred to as intracellular or extracellular peptidomes, and besides a small proportion of well-characterized peptide hormones and defense peptides, are poorly characterized. However, a growing body of evidence suggests that unknown bioactive peptides are hidden in the peptidomes of different organisms. In this review, we present a comprehensive overview of the mechanisms of generation and properties of peptidomes across different organisms. Based on their origin, we propose three large peptide groups-functional protein "degradome", small open reading frame (smORF)-encoded peptides (smORFome) and specific precursor-derived peptides. The composition of peptide pools identified by mass-spectrometry analysis in human cells, plants, yeast and bacteria is compared and discussed. The functions of different peptide groups, for example the role of the "degradome" in promoting defense signaling, are also considered.
Collapse
Affiliation(s)
| | | | - Igor Fesenko
- Department of Functional Genomics and Proteomics of Plants, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (I.L.); (V.I.)
| |
Collapse
|
69
|
Zhao J, Bi W, Zhao S, Su J, Li M, Ma L, Yu X, Wang X. Wheat Apoplast-Localized Lipid Transfer Protein TaLTP3 Enhances Defense Responses Against Puccinia triticina. FRONTIERS IN PLANT SCIENCE 2021; 12:771806. [PMID: 34899796 PMCID: PMC8657149 DOI: 10.3389/fpls.2021.771806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 05/29/2023]
Abstract
Plant apoplast serves as the frontier battlefield of plant defense in response to different types of pathogens. Many pathogenesis-related (PR) proteins are accumulated in apoplastic space during the onset of plant-pathogen interaction, where they act to suppress pathogen infection. In this study, we found the expression of Triticum aestivum lipid transfer protein 3 (TaLTP3) gene was unregulated during incompatible interaction mediated by leaf rust resistance genes Lr39/41 at the early infection stage. Stable transgenic wheat lines overexpressing TaLTP3 exhibited enhanced resistance to leaf rust pathogen Puccinia triticina. Transcriptome analysis revealed that overexpression of TaLTP3 specifically activated the transcription of pathogenesis-related protein 1a (TaPR1a) and multiple plant hormone pathways, including salicylic acid (SA), jasmonic acid (JA), and auxin, in response to the infection of the model bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Further investigation indicated that TaLTP3 physically associated with wheat TaPR1a protein in the apoplast. Transgenic wheat lines overexpressing TaLTP3 and TaPR1a showed higher accumulations of reactive oxygen species (ROS) during plant defense responses. All these findings suggested that TaLTP3 is involved in wheat resistance against leaf rust pathogen infection and forming a TaLTP3-TaPR1a complex in apoplast against this pathogen, which provides new insights into the functional roles of PR proteins.
Collapse
Affiliation(s)
- Jiaojie Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Weishuai Bi
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jun Su
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
70
|
Zaynab M, Peng J, Sharif Y, Al-Yahyai R, Jamil A, Hussain A, Khan KA, Alotaibi SS, Li S. Expression profiling of pathogenesis-related Protein-1 (PR-1) genes from Solanum tuberosum reveals its critical role in phytophthora infestans infection. Microb Pathog 2021; 161:105290. [PMID: 34808276 DOI: 10.1016/j.micpath.2021.105290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022]
Abstract
Pathogen-related (PR) proteins are an integral part of plants' defense mechanisms against various types of biotic and abiotic stresses. A little is known about the importance of these PR proteins in potato defense mechanisms. In the current study, a total of 22 pathogenesis-related 1 genes were identified in the potato genome. All identified proteins possessed the CAP superfamily domain with some other motifs. The cis-acting elements analysis identified several stress-responsive elements, including MYB, ABRE, and MeJRE. The gene duplication events demonstrated purifying and positive selection pressure. Expression profiling showed high transcripts level in root compared to other tissues; however, some genes have tissue-specific expression. Furthermore, the PR-1-5 gene is transcriptionally induced under Phytophthora infestans stress and hormonal (ABA and IAA) treatments. The Real-Time qPCR analysis also validated the RNA-seq data results of genes with maximum expression in roots compared to leaves and stems. The current study results provided basic data for functional characterization and can also use as a reference study for other important crops.
Collapse
Affiliation(s)
- Madiha Zaynab
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 51807, China
| | - Jiaofeng Peng
- Instrument Analysis Center, Shenzhen University, Shenzhen, Guangdong, 51807, China
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Oman
| | - Atka Jamil
- National Institute of Genomics and Advanced Biotechnology, National Agriculture Research Center, Islamabad, Pakistan
| | - Athar Hussain
- Genomics Lab, Department of Life Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science(RCAMS), King Khalid University, P.O. Box9004, Abha61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box9004, Abha61413, Saudi Arabia; Department, Faculty of Science, King Khalid University, P.O. Box9004, Abha61413, Saudi Arabia
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O.BOX 11099, Taif, 21944, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 51807, China.
| |
Collapse
|
71
|
Luo X, Wu W, Feng L, Treves H, Ren M. Short Peptides Make a Big Difference: The Role of Botany-Derived AMPs in Disease Control and Protection of Human Health. Int J Mol Sci 2021; 22:11363. [PMID: 34768793 PMCID: PMC8583512 DOI: 10.3390/ijms222111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
72
|
Yamaguchi K, Kawasaki T. Pathogen- and plant-derived peptides trigger plant immunity. Peptides 2021; 144:170611. [PMID: 34303752 DOI: 10.1016/j.peptides.2021.170611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.
Collapse
Affiliation(s)
- Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
73
|
Kang JN, Lee WH, Won SY, Chang S, Hong JP, Oh TJ, Lee SM, Kang SH. Systemic Expression of Genes Involved in the Plant Defense Response Induced by Wounding in Senna tora. Int J Mol Sci 2021; 22:ijms221810073. [PMID: 34576236 PMCID: PMC8469979 DOI: 10.3390/ijms221810073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Wounds in tissues provide a pathway of entry for pathogenic fungi and bacteria in plants. Plants respond to wounding by regulating the expression of genes involved in their defense mechanisms. To analyze this response, we investigated the defense-related genes induced by wounding in the leaves of Senna tora using RNA sequencing. The genes involved in jasmonate and ethylene biosynthesis were strongly induced by wounding, as were a large number of genes encoding transcription factors such as ERFs, WRKYs, MYBs, bHLHs, and NACs. Wounding induced the expression of genes encoding pathogenesis-related (PR) proteins, such as PR-1, chitinase, thaumatin-like protein, cysteine proteinase inhibitor, PR-10, and plant defensin. Furthermore, wounding led to the induction of genes involved in flavonoid biosynthesis and the accumulation of kaempferol and quercetin in S. tora leaves. All these genes were expressed systemically in leaves distant from the wound site. These results demonstrate that mechanical wounding can lead to a systemic defense response in the Caesalpinioideae, a subfamily of the Leguminosae. In addition, a co-expression analysis of genes induced by wounding provides important information about the interactions between genes involved in plant defense responses.
Collapse
Affiliation(s)
- Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Korea; (W.-H.L.); (T.-J.O.)
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Saemin Chang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Jong-Pil Hong
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Korea; (W.-H.L.); (T.-J.O.)
| | - Si Myung Lee
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
- Correspondence: (S.M.L.); (S.-H.K.)
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
- Correspondence: (S.M.L.); (S.-H.K.)
| |
Collapse
|
74
|
Tanaka K, Heil M. Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:53-75. [PMID: 33900789 DOI: 10.1146/annurev-phyto-082718-100146] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Danger signals trigger immune responses upon perception by a complex surveillance system. Such signals can originate from the infectious nonself or the damaged self, the latter termed damage-associated molecular patterns (DAMPs). Here, we apply Matzinger's danger model to plant innate immunity to discuss the adaptive advantages of DAMPs and their integration into preexisting signaling pathways. Constitutive DAMPs (cDAMPs), e.g., extracellular ATP, histones, and self-DNA, fulfill primary, conserved functions and adopt a signaling role only when cellular damage causes their fragmentation or localization to aberrant compartments. By contrast, immunomodulatory peptides (also known as phytocytokines) exclusively function as signals and, upon damage, are activated as inducible DAMPs (iDAMPs). Dynamic coevolutionary processes between the signals and their emerging receptors and shared co-receptors have likely linked danger recognition to preexisting, conserved downstream pathways.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99163, USA;
| | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV, 36821 Irapuato, Guanajuato, México
| |
Collapse
|
75
|
Dutt M, Mahmoud LM, Chamusco K, Stanton D, Chase CD, Nielsen E, Quirico M, Yu Q, Gmitter FG, Grosser JW. Utilization of somatic fusion techniques for the development of HLB tolerant breeding resources employing the Australian finger lime (Citrus australasica). PLoS One 2021; 16:e0255842. [PMID: 34375348 PMCID: PMC8354479 DOI: 10.1371/journal.pone.0255842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
The Australian finger lime is a unique citrus species that has gained importance due to its unique fruit characteristics and perceived tolerance to Huanglongbing (HLB), an often-fatal disease of citrus trees. In this study, we developed allotetraploid finger lime hybrids and cybrids by utilizing somatic cell fusion techniques to fuse diploid ‘OLL8’ sweet orange or ‘Page’ tangelo callus-derived protoplasts with finger lime (FL) mesophyll-derived protoplasts. Six somatic fusions were regenerated from the ‘OLL8’ + FL fusion, while three putative cybrids were regenerated from the ‘Page’ + FL fusion. Ploidy levels and nuclear-expressed sequence tag derived simple sequence repeat (EST-SSR) markers confirmed the somatic hybrid production, and mitochondrial DNA primer sets confirmed the cybrid nature. Several trees produced by the somatic fusion remained HLB negative even after 6 years of growth in an HLB-endemic environment. Pathogenesis related (PR) and other genes that are often upregulated in HLB-tolerant trees were also upregulated in our somatic fusions. These newly developed somatic fusions and cybrids could potentially be used as breeding parents to develop the next generation of improved HLB-tolerant rootstocks and scions.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
- * E-mail:
| | - Lamiaa M. Mahmoud
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
- Faculty of Agriculture, Pomology Department, Mansoura University, Mansoura, Egypt
| | - Karen Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States of America
| | - Daniel Stanton
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Christine D. Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States of America
| | - Ethan Nielsen
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Maria Quirico
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| |
Collapse
|
76
|
Kim JS, Jeon BW, Kim J. Signaling Peptides Regulating Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:704490. [PMID: 34349774 PMCID: PMC8326967 DOI: 10.3389/fpls.2021.704490] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 05/23/2023]
Abstract
As sessile organisms, plants are exposed to constantly changing environments that are often stressful for their growth and development. To cope with these stresses, plants have evolved complex and sophisticated stress-responsive signaling pathways regulating the expression of transcription factors and biosynthesis of osmolytes that confer tolerance to plants. Signaling peptides acting like phytohormones control various aspects of plant growth and development via cell-cell communication networks. These peptides are typically recognized by membrane-embedded receptor-like kinases, inducing activation of cellular signaling to control plant growth and development. Recent studies have revealed that several signaling peptides play important roles in plant responses to abiotic stress. In this mini review, we provide recent findings on the roles and signaling pathways of peptides that are involved in coordinating plant responses to abiotic stresses, such as dehydration, high salinity, reactive oxygen species, and heat. We also discuss recent developments in signaling peptides that play a role in plant adaptation responses to nutrient deficiency stress, focusing on nitrogen and phosphate deficiency responses.
Collapse
Affiliation(s)
- Jin Sun Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Technology, Chonnam National University, Gwangju, South Korea
| | - Byeong Wook Jeon
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Technology, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
77
|
Ha CM, Rao X, Saxena G, Dixon RA. Growth-defense trade-offs and yield loss in plants with engineered cell walls. THE NEW PHYTOLOGIST 2021; 231:60-74. [PMID: 33811329 DOI: 10.1111/nph.17383] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 05/18/2023]
Abstract
As a major component of plant secondary cell walls, lignin provides structural integrity and rigidity, and contributes to primary defense by providing a physical barrier to pathogen ingress. Genetic modification of lignin biosynthesis has been adopted to reduce the recalcitrance of lignified cell walls to improve biofuel production, tree pulping properties and forage digestibility. However, lignin-modification is often, but unpredictably, associated with dwarf phenotypes. Hypotheses suggested to explain this include: collapsed vessels leading to defects in water and solute transport; accumulation of molecule(s) that are inhibitory to plant growth or deficiency of metabolites that are critical for plant growth; activation of defense pathways linked to cell wall integrity sensing. However, there is still no commonly accepted underlying mechanism for the growth defects. Here, we discuss recent data on transcriptional reprogramming in plants with modified lignin content and their corresponding suppressor mutants, and evaluate growth-defense trade-offs as a factor underlying the growth phenotypes. New approaches will be necessary to estimate how gross changes in transcriptional reprogramming may quantitatively affect growth. Better understanding of the basis for yield drag following cell wall engineering is important for the biotechnological exploitation of plants as factories for fuels and chemicals.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xiaolan Rao
- College of Life Sciences, Hubei University, No. 28 Nanli Road, Hong-shan District, Wuchang, Wuhan, Hubei Province, 430068, China
| | - Garima Saxena
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
78
|
Kattupalli D, Srinivasan A, Soniya EV. A Genome-Wide Analysis of Pathogenesis-Related Protein-1 ( PR-1) Genes from Piper nigrum Reveals Its Critical Role during Phytophthora capsici Infection. Genes (Basel) 2021; 12:1007. [PMID: 34208836 PMCID: PMC8303604 DOI: 10.3390/genes12071007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.
Collapse
Affiliation(s)
| | | | - Eppurath Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (D.K.); (A.S.)
| |
Collapse
|
79
|
Hu XL, Lu H, Hassan MM, Zhang J, Yuan G, Abraham PE, Shrestha HK, Villalobos Solis MI, Chen JG, Tschaplinski TJ, Doktycz MJ, Tuskan GA, Cheng ZMM, Yang X. Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. HORTICULTURE RESEARCH 2021; 8:130. [PMID: 34059650 PMCID: PMC8167165 DOI: 10.1038/s41438-021-00570-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 05/02/2023]
Abstract
Small secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been found to play important roles in various processes, including plant growth and development, plant response to abiotic and biotic stresses, and beneficial plant-microbe interactions. Over the past 10 years, substantial progress has been made in the identification and functional characterization of SSPs in several plant species relevant to agriculture, bioenergy, and horticulture. Yet, there are potentially a lot of SSPs that have not been discovered in plant genomes, which is largely due to limitations of existing computational algorithms. Recent advances in genomics, transcriptomics, and proteomics research, as well as the development of new computational algorithms based on machine learning, provide unprecedented capabilities for genome-wide discovery of novel SSPs in plants. In this review, we summarize known SSPs and their functions in various plant species. Then we provide an update on the computational and experimental approaches that can be used to discover new SSPs. Finally, we discuss strategies for elucidating the biological functions of SSPs in plants.
Collapse
Affiliation(s)
- Xiao-Li Hu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Paul E Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Him K Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | | | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Gerald A Tuskan
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zong-Ming Max Cheng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Xiaohan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
80
|
Slezina MP, Istomina EA, Korostyleva TV, Kovtun AS, Kasianov AS, Konopkin AA, Shcherbakova LA, Odintsova TI. Molecular Insights into the Role of Cysteine-Rich Peptides in Induced Resistance to Fusarium oxysporum Infection in Tomato Based on Transcriptome Profiling. Int J Mol Sci 2021; 22:ijms22115741. [PMID: 34072144 PMCID: PMC8198727 DOI: 10.3390/ijms22115741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cysteine-rich peptides (CRPs) play an important role in plant physiology. However, their role in resistance induced by biogenic elicitors remains poorly understood. Using whole-genome transcriptome sequencing and our CRP search algorithm, we analyzed the repertoire of CRPs in tomato Solanum lycopersicum L. in response to Fusarium oxysporum infection and elicitors from F. sambucinum. We revealed 106 putative CRP transcripts belonging to different families of antimicrobial peptides (AMPs), signaling peptides (RALFs), and peptides with non-defense functions (Major pollen allergen of Olea europaea (Ole e 1 and 6), Maternally Expressed Gene (MEG), Epidermal Patterning Factor (EPF)), as well as pathogenesis-related proteins of families 1 and 4 (PR-1 and 4). We discovered a novel type of 10-Cys-containing hevein-like AMPs named SlHev1, which was up-regulated both by infection and elicitors. Transcript profiling showed that F. oxysporum infection and F. sambucinum elicitors changed the expression levels of different overlapping sets of CRP genes, suggesting the diversification of functions in CRP families. We showed that non-specific lipid transfer proteins (nsLTPs) and snakins mostly contribute to the response of tomato plants to the infection and the elicitors. The involvement of CRPs with non-defense function in stress reactions was also demonstrated. The results obtained shed light on the mode of action of F. sambucinum elicitors and the role of CRP families in the immune response in tomato.
Collapse
Affiliation(s)
- Marina P. Slezina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
| | - Ekaterina A. Istomina
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
| | - Tatyana V. Korostyleva
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
| | - Alexey S. Kovtun
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia;
| | - Artem S. Kasianov
- Laboratory of Plant Genomics, Institute for Information Transmission Problems RAS, 127051 Moscow, Russia;
| | - Alexey A. Konopkin
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
| | - Larisa A. Shcherbakova
- Laboratory of Physiological Plant Pathology, All-Russian Research Institute of Phytopathology, B. Vyazyomy, 143050 Moscow, Russia;
| | - Tatyana I. Odintsova
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.); (A.A.K.)
- Correspondence:
| |
Collapse
|
81
|
Vasconcelos AA, José J, Tokimatu PM, Camargo AP, Teixeira PJPL, Thomazella DPT, do Prado PFV, Fiorin GL, Costa JL, Figueira A, Carazzolle MF, Pereira GAG, Baroni RM. Adaptive evolution of Moniliophthora PR-1 proteins towards its pathogenic lifestyle. BMC Ecol Evol 2021; 21:84. [PMID: 33990179 PMCID: PMC8120714 DOI: 10.1186/s12862-021-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant pathogenesis related-1 (PR-1) proteins belong to the CAP superfamily and have been characterized as markers of induced defense against pathogens. Moniliophthora perniciosa and Moniliophthora roreri are hemibiotrophic fungi that respectively cause the witches' broom disease and frosty pod rot in Theobroma cacao. Interestingly, a large number of plant PR-1-like genes are present in the genomes of both species and many are up-regulated during the biotrophic interaction. In this study, we investigated the evolution of PR-1 proteins from 22 genomes of Moniliophthora isolates and 16 other Agaricales species, performing genomic investigation, phylogenetic reconstruction, positive selection search and gene expression analysis. RESULTS Phylogenetic analysis revealed conserved PR-1 genes (PR-1a, b, d, j), shared by many Agaricales saprotrophic species, that have diversified in new PR-1 genes putatively related to pathogenicity in Moniliophthora (PR-1f, g, h, i), as well as in recent specialization cases within M. perniciosa biotypes (PR-1c, k, l) and M. roreri (PR-1n). PR-1 families in Moniliophthora with higher evolutionary rates exhibit induced expression in the biotrophic interaction and positive selection clues, supporting the hypothesis that these proteins accumulated adaptive changes in response to host-pathogen arms race. Furthermore, although previous work showed that MpPR-1 can detoxify plant antifungal compounds in yeast, we found that in the presence of eugenol M. perniciosa differentially expresses only MpPR-1e, k, d, of which two are not linked to pathogenicity, suggesting that detoxification might not be the main function of most MpPR-1. CONCLUSIONS Based on analyses of genomic and expression data, we provided evidence that the evolution of PR-1 in Moniliophthora was adaptive and potentially related to the emergence of the parasitic lifestyle in this genus. Additionally, we also discuss how fungal PR-1 proteins could have adapted from basal conserved functions to possible roles in fungal pathogenesis.
Collapse
Affiliation(s)
- Adrielle A Vasconcelos
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana José
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo M Tokimatu
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Antonio P Camargo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paulo J P L Teixeira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ), Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Daniela P T Thomazella
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Paula F V do Prado
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Gabriel L Fiorin
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Juliana L Costa
- Centro de Energia Nuclear Na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear Na Agricultura, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcelo F Carazzolle
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Gonçalo A G Pereira
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | - Renata M Baroni
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
82
|
Lyapina I, Filippova A, Kovalchuk S, Ziganshin R, Mamaeva A, Lazarev V, Latsis I, Mikhalchik E, Panasenko O, Ivanov O, Ivanov V, Fesenko I. Possible role of small secreted peptides (SSPs) in immune signaling in bryophytes. PLANT MOLECULAR BIOLOGY 2021; 106:123-143. [PMID: 33713297 DOI: 10.1007/s11103-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Plants utilize a plethora of peptide signals to regulate their immune response. Peptide ligands and their cognate receptors involved in immune signaling share common motifs among many species of vascular plants. However, the origin and evolution of immune peptides is still poorly understood. Here, we searched for genes encoding small secreted peptides in the genomes of three bryophyte lineages-mosses, liverworts and hornworts-that occupy a critical position in the study of land plant evolution. We found that bryophytes shared common predicted small secreted peptides (SSPs) with vascular plants. The number of SSPs is higher in the genomes of mosses than in both the liverwort Marchantia polymorpha and the hornwort Anthoceros sp. The synthetic peptide elicitors-AtPEP and StPEP-specific for vascular plants, triggered ROS production in the protonema of the moss Physcomitrella patens, suggesting the possibility of recognizing peptide ligands from angiosperms by moss receptors. Mass spectrometry analysis of the moss Physcomitrella patens, both the wild type and the Δcerk mutant secretomes, revealed peptides that specifically responded to chitosan treatment, suggesting their role in immune signaling.
Collapse
Affiliation(s)
- Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Filippova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Kovalchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rustam Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Mamaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Ivan Latsis
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Oleg Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Oleg Ivanov
- V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
83
|
Fan KT, Hsu Y, Yeh CF, Chang CH, Chang WH, Chen YR. Quantitative Proteomics Reveals the Dynamic Regulation of the Tomato Proteome in Response to Phytophthora infestans. Int J Mol Sci 2021; 22:ijms22084174. [PMID: 33920680 PMCID: PMC8073981 DOI: 10.3390/ijms22084174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Late blight (LB) disease is a major threat to potato and tomato production. It is caused by the hemibiotrophic pathogen, Phytophthora infestans. P. infestans can destroy all of the major organs in plants of susceptible crops and result in a total loss of productivity. At the early pathogenesis stage, this hemibiotrophic oomycete pathogen causes an asymptomatic biotrophic infection in hosts, which then progresses to a necrotrophic phase at the later infection stage. In this study, to examine how the tomato proteome is regulated by P. infestans at different stages of pathogenesis, a data-independent acquisition (DIA) proteomics approach was used to trace the dynamics of the protein regulation. A comprehensive picture of the regulation of tomato proteins functioning in the immunity, signaling, defense, and metabolism pathways at different stages of P. infestans infection is revealed. Among the regulated proteins, several involved in mediating plant defense responses were found to be differentially regulated at the transcriptional or translational levels across different pathogenesis phases. This study increases understanding of the pathogenesis of P. infestans in tomato and also identifies key transcriptional and translational events possibly targeted by the pathogen during different phases of its life cycle, thus providing novel insights for developing a new strategy towards better control of LB disease in tomato.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
| | - Yang Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
| | - Ching-Fang Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
| | - Chi-Hsin Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; (K.-T.F.); (Y.H.); (C.-F.Y.); (C.-H.C.); (W.-H.C.)
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-02-2787-2050
| |
Collapse
|
84
|
Santos RB, Figueiredo A. Two sides of the same story in grapevine-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3367-3380. [PMID: 33631010 DOI: 10.1093/jxb/erab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Proteases are an integral part of plant defence systems, and their role in plant-pathogen interactions is unequivocal. Emerging evidence suggests that different protease families contribute to the establishment not only of hypersensitive response, priming, and signalling, but also of recognition events through complex proteolytic cascades. Moreover, they play a crucial role in pathogen/microbe-associated molecular pattern (PAMP/MAMP)-triggered immunity as well as in effector-triggered immunity. However, despite important advances in our understanding of the role of proteases in plant defence, the contribution of proteases to pathogen defence in grapevine remains poorly understood. In this review, we summarize current knowledge of the main grapevine pathosystems and explore the role of serine, cysteine, and aspartic proteases from both the host and pathogen point of views.
Collapse
Affiliation(s)
- Rita B Santos
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
85
|
Stührwohldt N, Bühler E, Sauter M, Schaller A. Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3427-3440. [PMID: 33471900 DOI: 10.1093/jxb/erab017] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/17/2021] [Indexed: 05/06/2023]
Abstract
Increasing drought stress poses a severe threat to agricultural productivity. Plants, however, have evolved numerous mechanisms to cope with such environmental stress. Here we report that the stress-induced production of a peptide signal contributes to stress tolerance. The expression of phytosulfokine (PSK) peptide precursor genes, and transcripts of three subtilisin-like serine proteases, SBT1.4, SBT3.7, and SBT3.8, were found to be up-regulated in response to osmotic stress. Stress symptoms were more pronounced in sbt3.8 loss-of-function mutants and could be alleviated by PSK treatment. Osmotic stress tolerance was improved in plants overexpressing the PSK1 precursor (proPSK1) or SBT3.8, resulting in higher fresh weight and improved lateral root development in transgenic plants compared with wild-type plants. We further showed that SBT3.8 is involved in the biogenesis of the bioactive PSK peptide. ProPSK1 was cleaved by SBT3.8 at the C-terminus of the PSK pentapeptide. Processing by SBT3.8 depended on the aspartic acid residue directly following the cleavage site. ProPSK1 processing was impaired in the sbt3.8 mutant. The data suggest that increased expression of proPSK1 in response to osmotic stress followed by the post-translational processing of proPSK1 by SBT3.8 leads to the production of PSK as a peptide signal for stress mitigation.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Eric Bühler
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Kiel, Germany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
86
|
Ngaki MN, Sahoo DK, Wang B, Bhattacharyya MK. Overexpression of a plasma membrane protein generated broad-spectrum immunity in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:502-516. [PMID: 32954627 PMCID: PMC7957895 DOI: 10.1111/pbi.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 05/10/2023]
Abstract
Plants fight-off pathogens and pests by manifesting an array of defence responses using their innate immunity mechanisms. Here we report the identification of a novel soybean gene encoding a plasma membrane protein, transcription of which is suppressed following infection with the fungal pathogen, Fusarium virguliforme. Overexpression of the protein led to enhanced resistance against not only against F. virguliforme, but also against spider mites (Tetranychus urticae, Koch), soybean aphids (Aphis glycines, Matsumura) and soybean cyst nematode (Heterodera glycines). We, therefore, name this protein as Glycine max disease resistance 1 (GmDR1; Glyma.10g094800). The homologues of GmDR1 have been detected only in legumes, cocoa, jute and cotton. The deduced GmDR1 protein contains 73 amino acids. GmDR1 is predicted to contain an ecto- and two transmembrane domains. Transient expression of the green fluorescent protein fused GmDR1 protein in soybean leaves showed that it is a plasma membrane protein. We investigated if chitin, a pathogen-associated molecular pattern (PAMP), common to all pathogen and pests considered in this study, can significantly enhance defence pathways among the GmDR1-overexpressed transgenic soybean lines. Chitin induces marker genes of the salicylic- and jasmonic acid-mediated defence pathways, but suppresses the defence pathway regulated by ethylene. Chitin induced SA- and JA-regulated defence pathways may be one of the mechanisms involved in generating broad-spectrum resistance among the GmDR1-overexpressed transgenic soybean lines against two serious pathogens and two pests including spider mites, against which no known resistance genes have been identified in soybean and among the most other crop species.
Collapse
Affiliation(s)
| | | | - Bing Wang
- Department of AgronomyIowa State UniversityAmesIAUSA
- Present address:
Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | | |
Collapse
|
87
|
Sung YC, Outram MA, Breen S, Wang C, Dagvadorj B, Winterberg B, Kobe B, Williams SJ, Solomon PS. PR1-mediated defence via C-terminal peptide release is targeted by a fungal pathogen effector. THE NEW PHYTOLOGIST 2021; 229:3467-3480. [PMID: 33277705 DOI: 10.1111/nph.17128] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/24/2020] [Indexed: 05/22/2023]
Abstract
The effector SnTox3 from Parastagonospora nodorum elicits a strong necrotic response in susceptible wheat and also interacts with wheat pathogenesis-related protein 1 (TaPR-1), although the function of this interaction in disease is unclear. Here, we dissect TaPR1 function by studying SnTox3-TaPR1 interaction and demonstrate the dual functionality of SnTox3. We utilized site-directed mutagenesis to identify an SnTox3 variant, SnTox3P173S , that was unable to interact with TaPR1 in yeast-two-hybrid assays. Additionally, using recombinant proteins we established a novel protein-mediated phenotyping assay allowing functional studies to be undertaken in wheat. Wheat leaves infiltrated with TaPR1 proteins showed significantly less disease compared to control leaves, correlating with a strong increase in defence gene expression. This activity was dependent on release of the TaCAPE1 peptide embedded within TaPR1 by an unidentified serine protease. The priming activity of TaPR1 was compromised by SnTox3 but not the noninteracting variant SnTox3P173S , and we demonstrate that SnTox3 prevents TaCAPE1 release from TaPR1 in vitro. SnTox3 independently functions to induce necrosis through recognition by Snn3 and also suppresses host defence through a direct interaction with TaPR1 proteins. Importantly, this study also advances our understanding of the role of PR1 proteins in host-microbe interactions as inducers of host defence signalling.
Collapse
Affiliation(s)
- Yi-Chang Sung
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Susan Breen
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Chen Wang
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bayantes Dagvadorj
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Britta Winterberg
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
88
|
Figueiredo L, Santos RB, Figueiredo A. Defense and Offense Strategies: The Role of Aspartic Proteases in Plant-Pathogen Interactions. BIOLOGY 2021; 10:75. [PMID: 33494266 PMCID: PMC7909840 DOI: 10.3390/biology10020075] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Plant aspartic proteases (APs; E.C.3.4.23) are a group of proteolytic enzymes widely distributed among different species characterized by the conserved sequence Asp-Gly-Thr at the active site. With a broad spectrum of biological roles, plant APs are suggested to undergo functional specialization and to be crucial in developmental processes, such as in both biotic and abiotic stress responses. Over the last decade, an increasing number of publications highlighted the APs' involvement in plant defense responses against a diversity of stresses. In contrast, few studies regarding pathogen-secreted APs and AP inhibitors have been published so far. In this review, we provide a comprehensive picture of aspartic proteases from plant and pathogenic origins, focusing on their relevance and participation in defense and offense strategies in plant-pathogen interactions.
Collapse
|
89
|
Montesinos L, Gascón B, Ruz L, Badosa E, Planas M, Feliu L, Montesinos E. A Bifunctional Synthetic Peptide With Antimicrobial and Plant Elicitation Properties That Protect Tomato Plants From Bacterial and Fungal Infections. FRONTIERS IN PLANT SCIENCE 2021; 12:756357. [PMID: 34733307 PMCID: PMC8558481 DOI: 10.3389/fpls.2021.756357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
The hybrid peptide BP178 (KKLFKKILKYLAGPAGIGKFLHSAKKDEL-OH), derived from BP100 (KKLFKKILKYL) and magainin (1-10), and engineered for plant expression, had a strong bactericidal activity but not fungicidal. Moreover, the preventive spray of tomato plants with BP178 controlled infections by the plant pathogenic bacteria Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, as well as the fungus Botrytis cinerea. The treatment of tomato plants with BP178 induced the expression of several genes according to microarray and RT-qPCR analysis. Upregulated genes coded for several pathogenesis-related proteins, including PR1, PR2, PR3, PR4, PR5, PR6, PR7, PR9, PR10, and PR14, as well as transcription factors like ethylene transcription factors, WRKY, NAC and MYB, involved in the salicylic acid, jasmonic acid, and ethylene-signaling pathways. BP178 induced a similar gene expression pattern to flg15 according to RT-qPCR analysis, whereas the parent peptide BP100 did not trigger such as a strong plant defense response. It was concluded that BP178 was a bifunctional peptide protecting the plant against pathogen infection through a dual mechanism of action consisting of antimicrobial activity against bacterial pathogens and plant defense elicitation on plant host.
Collapse
Affiliation(s)
- Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Beatriz Gascón
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Lidia Ruz
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
- *Correspondence: Emilio Montesinos
| |
Collapse
|
90
|
Vega-Muñoz I, Duran-Flores D, Fernández-Fernández ÁD, Heyman J, Ritter A, Stael S. Breaking Bad News: Dynamic Molecular Mechanisms of Wound Response in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:610445. [PMID: 33363562 PMCID: PMC7752953 DOI: 10.3389/fpls.2020.610445] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 05/08/2023]
Abstract
Recognition and repair of damaged tissue are an integral part of life. The failure of cells and tissues to appropriately respond to damage can lead to severe dysfunction and disease. Therefore, it is essential that we understand the molecular pathways of wound recognition and response. In this review, we aim to provide a broad overview of the molecular mechanisms underlying the fate of damaged cells and damage recognition in plants. Damaged cells release the so-called damage associated molecular patterns to warn the surrounding tissue. Local signaling through calcium (Ca2+), reactive oxygen species (ROS), and hormones, such as jasmonic acid, activates defense gene expression and local reinforcement of cell walls to seal off the wound and prevent evaporation and pathogen colonization. Depending on the severity of damage, Ca2+, ROS, and electrical signals can also spread throughout the plant to elicit a systemic defense response. Special emphasis is placed on the spatiotemporal dimension in order to obtain a mechanistic understanding of wound signaling in plants.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Dalia Duran-Flores
- Laboratorio de Ecología de Plantas, CINVESTAV-Irapuato, Departamento de Ingeniería Genética, Irapuato, Mexico
| | - Álvaro Daniel Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
91
|
He X, Xu M, Wei Q, Tang M, Guan L, Lou L, Xu X, Hu Z, Chen Y, Shen Z, Xia Y. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111333. [PMID: 32979802 DOI: 10.1016/j.ecoenv.2020.111333] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/15/2020] [Accepted: 09/10/2020] [Indexed: 05/27/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are a specific category of microbes that improve plant growth and promote greater tolerance to metal stress through their interactions with plant roots. We evaluated the effects of phytoremediation combining the cadmium accumulator Solanum nigrum L. and two Cd- and Pb-resistant bacteria isolates. To understand the interaction between PGPR and their host plant, we conducted greenhouse experiments with inoculation treatments at Nanjing Agricultural University (Jiangsu Province, China), in June 2018. Two Cd- and Pb-resistant PGPR with various growth-promoting properties were isolated from heavy metal-contaminated soil. 16S rRNA analyses indicated that the two isolates were Bacillus genus, and they were named QX8 and QX13. Pot experiments demonstrated that inoculation may improve the rhizosphere soil environment and promote absorption of Fe and P by plants. Inoculation with QX8 and QX13 also enhanced the dry weight of shoots (1.36- and 1.7-fold, respectively) and roots (1.42- and 1.96-fold) of plants growing in Cd- and Pb-contaminated soil, and significantly increased total Cd (1.28-1.81 fold) and Pb (1.08-1.55 fold) content in aerial organs, compared to non-inoculated controls. We also detected increases of 23% and 22% in the acid phosphatase activity of rhizosphere soils inoculated with QX8 and QX13, respectively. However, we did not detect significant differences between inoculated and non-inoculated treatments in Cd and Pb concentrations in plants and available Cd and Pb content in rhizosphere soils. We demonstrated that PGPR-assisted phytoremediation is a promising technique for remediating heavy metal-contaminated soils, with the potential to enhance phytoremediation efficiency and improve soil quality.
Collapse
Affiliation(s)
- Xiaoman He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingjing Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingpeng Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyu Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likang Guan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhubing Hu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 475001, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing, 210095, China.
| |
Collapse
|
92
|
TaTLP1 interacts with TaPR1 to contribute to wheat defense responses to leaf rust fungus. PLoS Genet 2020; 16:e1008713. [PMID: 32658889 PMCID: PMC7357741 DOI: 10.1371/journal.pgen.1008713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/11/2020] [Indexed: 11/19/2022] Open
Abstract
Thaumatin-like proteins (TLPs), which are defined as pathogenesis-related protein family 5 (PR5) members, are common plant proteins involved in defense responses and confer antifungal activity against many plant pathogens. Our earlier studies have reported that the TaTLP1 gene was isolated from wheat and proved to be involved in wheat defense in response to leaf rust attack. The present study aims to identify the interacting proteins of TaTLP1 and characterize the role of the interaction between wheat and Puccinia triticina (Pt). Pull-down experiments designed to isolate the molecular target of TaTLP1 in tobacco resulted in the identification of TaPR1, a pathogenesis-related protein of family 1, and the interaction between TaTLP1 and TaPR1 was confirmed by yeast two-hybrid experiments (Y2H), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP). In vitro, TaTLP1 and TaPR1 together increased antifungal activity against Pt. In vivo, the disease resistance phenotype, histological observations of fungal growth and host responses, and accumulation of H2O2 in TaTLP1-TaPR1 in co-silenced plants indicated that co-silencing significantly enhanced wheat susceptibility compared to single knockdown TaTLP1 or TaPR1 plants. The accumulation of reactive oxygen species (ROS) was significantly reduced in co-silenced plants compared to controls during Pt infection, which suggested that the TaTLP1-TaPR1 interaction positively modulates wheat resistance to Pt in an ROS-dependent manner. Our findings provide new insights for understanding the roles of two different PRs, TaTLP1 and TaPR1, in wheat resistance to leaf rust.
Collapse
|
93
|
Akbudak MA, Yildiz S, Filiz E. Pathogenesis related protein-1 (PR-1) genes in tomato (Solanum lycopersicum L.): Bioinformatics analyses and expression profiles in response to drought stress. Genomics 2020; 112:4089-4099. [PMID: 32650094 DOI: 10.1016/j.ygeno.2020.07.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/17/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
The pathogenesis-related protein 1 (PR-1) gene family play important roles in the plant metabolism in response to biotic and abiotic stresses. The present study aimed genome-wide identification and bioinformatics analyses of PR-1 genes in tomato (Solanum lycopersicum L.). The analyses resulted in the identification of 13 novel SlPR-1 genes, each of which produce a protein belonging to the CAP superfamily (PF00188). The KEGG annotation analyses revealed that the SlPR-1 proteins functioned in the environmental information processing (09130). The expression patterns of the PR-1 genes and some stress-related physiological parameters were investigated in Fusarium oxysporum sensitive and tolerant tomato varieties under drought stress. The drought stress leaded upregulation of all SlPR-1 genes, reaching up to 50 folds. The results indicate that the SlPR-1 genes play active roles in response to drought. This is the first study exhibiting the expression profiles of SlPR-1 genes under an abiotic stress, drought, in tomato.
Collapse
Affiliation(s)
- M Aydın Akbudak
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey.
| | - Sukran Yildiz
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| | - Ertugrul Filiz
- Duzce University, Department of Crop and Animal Production, Cilimli Vocational School, 81750 Cilimli, Duzce, Turkey.
| |
Collapse
|
94
|
Wang S, Tian L, Liu H, Li X, Zhang J, Chen X, Jia X, Zheng X, Wu S, Chen Y, Yan J, Wu L. Large-Scale Discovery of Non-conventional Peptides in Maize and Arabidopsis through an Integrated Peptidogenomic Pipeline. MOLECULAR PLANT 2020; 13:1078-1093. [PMID: 32445888 DOI: 10.1016/j.molp.2020.05.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 05/10/2023]
Abstract
Non-conventional peptides (NCPs), which include small open reading frame-encoded peptides, play critical roles in fundamental biological processes. In this study, we developed an integrated peptidogenomic pipeline using high-throughput mass spectra to probe a customized six-frame translation database and applied it to large-scale identification of NCPs in plants.A total of 1993 and 1860 NCPs were unambiguously identified in maize and Arabidopsis, respectively. These NCPs showed distinct characteristics compared with conventional peptides and were derived from introns, 3' UTRs, 5' UTRs, junctions, and intergenic regions. Furthermore, our results showed that translation events in unannotated transcripts occur more broadly than previously thought. In addition, we found that dozens of maize NCPs are enriched within regions associated with phenotypic variations and domestication selection, indicating that they potentially are involved in genetic regulation of complex traits and domestication in maize. Taken together, our study developed an integrated peptidogenomic pipeline for large-scale identification of NCPs in plants, which would facilitate global characterization of NCPs from other plants. The identification of large-scale NCPs in both monocot (maize) and dicot (Arabidopsis) plants indicates that a large portion of plant genome can be translated into biologically functional molecules, which has important implications for functional genomic studies.
Collapse
Affiliation(s)
- Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Tian
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueyan Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xingmeng Jia
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xu Zheng
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shubiao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Yanhui Chen
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
95
|
Yoshiyama KO, Aoshima N, Takahashi N, Sakamoto T, Hiruma K, Saijo Y, Hidema J, Umeda M, Kimura S. SUPPRESSOR OF GAMMA RESPONSE 1 acts as a regulator coordinating crosstalk between DNA damage response and immune response in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2020; 103:321-340. [PMID: 32277429 DOI: 10.1007/s11103-020-00994-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/04/2020] [Indexed: 05/19/2023]
Abstract
Plants live in constantly changing and often unfavorable or stressful environments. Environmental changes induce biotic and abiotic stress, which, in turn, may cause genomic DNA damage. Hence, plants simultaneously suffer abiotic/biotic stress and DNA damage. However, little information is available on the signaling crosstalk that occurs between DNA damage and abiotic/biotic stresses. Arabidopsis thaliana SUPPRESSOR OF GAMMA RESPONSE1 (SOG1) is a pivotal transcription factor that regulates thousands of genes in response to DNA double-strand break (DSB), and we recently reported that SOG1 has a role in immune responses. In the present study, the effects of SOG1 overexpression on the DNA damage and immune responses were examined. Results found that SOG1 overexpression enhances the regulation of numerous downstream genes. Relative to the wild type plants, then, DNA damage responses were observed to be strongly induced. SOG1 overexpression also upregulates chitin (a major components of fungal cell walls) responsive genes in the presence of DSBs, implying that pathogen defense response is activated by DNA damage via SOG1. Further, SOG1 overexpression enhances fungal resistance. These results suggest that SOG1 regulates crosstalk between DNA damage response and the immune response and that plants have evolved a sophisticated defense network to contend with environmental stress.
Collapse
Affiliation(s)
- Kaoru Okamoto Yoshiyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Naoki Aoshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Naoki Takahashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tomoaki Sakamoto
- Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama Kitaku, Kyoto, 603-8555, Japan
| | - Kei Hiruma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Seisuke Kimura
- Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama Kitaku, Kyoto, 603-8555, Japan.
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kamigamo Motoyama Kitaku, Kyoto, 603-8555, Japan.
| |
Collapse
|
96
|
Chen QJ, Deng BH, Gao J, Zhao ZY, Chen ZL, Song SR, Wang L, Zhao LP, Xu WP, Zhang CX, Ma C, Wang SP. A miRNA-Encoded Small Peptide, vvi-miPEP171d1, Regulates Adventitious Root Formation. PLANT PHYSIOLOGY 2020; 183:656-670. [PMID: 32241877 PMCID: PMC7271809 DOI: 10.1104/pp.20.00197] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 05/07/2023]
Abstract
One of the biggest challenges in clonal propagation of grapevine (Vitis vinifera) is difficulty of rooting. Adventitious root initiation and development are the critical steps in the cutting and layering process of grapevine, but the molecular mechanism of these processes remains unclear. Previous reports have found that microRNA (miRNA)-encoded peptides (miPEPs) can regulate plant root development by increasing the transcription of their corresponding primary miRNA. Here, we report the role of a miPEP in increasing adventitious root formation in grapevine. In this study, we performed a global analysis of miPEPs in grapevine and characterized the function of vvi-miPEP171d1, a functional, small peptide encoded by primary-miR171d. There were three small open reading frames in the 500-bp upstream sequence of pre-miR171d. One of them encoded a small peptide, vvi-miPEP171d1, which could increase the transcription of vvi-MIR171d Exogenous application of vvi-miPEP171d1 to grape tissue culture plantlets promoted adventitious root development by activating the expression of vvi-MIR171d Interestingly, neither exogenous application of the vvi-miPEP171d1 peptide nor overexpression of the vvi-miPEP171d1 coding sequence resulted in phenotypic changes in Arabidopsis (Arabidopsis thaliana). Similarly, application of synthetic ath-miPEP171c, the small peptide encoded by the Arabidopsis ortholog of vvi-MIR171d, inhibited the growth of primary roots and induced the early initiation of lateral and adventitious roots in Arabidopsis, while it had no effect on grape root development. Our findings reveal that miPEP171d1 regulates root development by promoting vvi-MIR171d expression in a species-specific manner, further enriching the theoretical research into miPEPs.
Collapse
Affiliation(s)
- Qiu-Ju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo-Han Deng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhong-Yang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Li Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Ren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Ping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cai-Xi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Ping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Agro-food Science and Technology/Key Laboratory of Agro-products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
97
|
Boschiero C, Dai X, Lundquist PK, Roy S, Christian de Bang T, Zhang S, Zhuang Z, Torres-Jerez I, Udvardi MK, Scheible WR, Zhao PX. MtSSPdb: The Medicago truncatula Small Secreted Peptide Database. PLANT PHYSIOLOGY 2020; 183:399-413. [PMID: 32079733 PMCID: PMC7210635 DOI: 10.1104/pp.19.01088] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/11/2020] [Indexed: 05/04/2023]
Abstract
A growing number of small secreted peptides (SSPs) in plants are recognized as important regulatory molecules with roles in processes such as growth, development, reproduction, stress tolerance, and pathogen defense. Recent discoveries further implicate SSPs in regulating root nodule development, which is of particular significance for legumes. SSP-coding genes are frequently overlooked, because genome annotation pipelines generally ignore small open reading frames, which are those most likely to encode SSPs. Also, SSP-coding small open reading frames are often expressed at low levels or only under specific conditions, and thus are underrepresented in non-tissue-targeted or non-condition-optimized RNA-sequencing projects. We previously identified 4,439 SSP-encoding genes in the model legume Medicago truncatula To support systematic characterization and annotation of these putative SSP-encoding genes, we developed the M. truncatula Small Secreted Peptide Database (MtSSPdb; https://mtsspdb.noble.org/). MtSSPdb currently hosts (1) a compendium of M. truncatula SSP candidates with putative function and family annotations; (2) a large-scale M. truncatula RNA-sequencing-based gene expression atlas integrated with various analytical tools, including differential expression, coexpression, and pathway enrichment analyses; (3) an online plant SSP prediction tool capable of analyzing protein sequences at the genome scale using the same protocol as for the identification of SSP genes; and (4) information about a library of synthetic peptides and root and nodule phenotyping data from synthetic peptide screens in planta. These datasets and analytical tools make MtSSPdb a unique and valuable resource for the plant research community. MtSSPdb also has the potential to become the most complete database of SSPs in plants.
Collapse
Affiliation(s)
| | - Xinbin Dai
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Peter Knut Lundquist
- Noble Research Institute, Ardmore, Oklahoma 73401
- Department of Biochemistry and Molecular Biology, Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Sonali Roy
- Noble Research Institute, Ardmore, Oklahoma 73401
| | - Thomas Christian de Bang
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Shulan Zhang
- Noble Research Institute, Ardmore, Oklahoma 73401
| | | | | | | | | | | |
Collapse
|
98
|
Li Q, Wang C, Mou Z. Perception of Damaged Self in Plants. PLANT PHYSIOLOGY 2020; 182:1545-1565. [PMID: 31907298 PMCID: PMC7140957 DOI: 10.1104/pp.19.01242] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/16/2019] [Indexed: 05/04/2023]
Abstract
Plants use specific receptor proteins on the cell surface to detect host-derived danger signals released in response to attacks by pathogens or herbivores and activate immune responses against them.
Collapse
Affiliation(s)
- Qi Li
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
99
|
Boschiero C, Lundquist PK, Roy S, Dai X, Zhao PX, Scheible WR. Identification and Functional Investigation of Genome-Encoded, Small, Secreted Peptides in Plants. ACTA ACUST UNITED AC 2020; 4:e20098. [PMID: 31479208 DOI: 10.1002/cppb.20098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hundreds to thousands of small secreted peptides (SSPs) are encoded in plant genomes but have been overlooked, and most remain unannotated and unstudied. Despite their low profile, they have been found to confer dramatic effects on growth and development of plants. With the growing appreciation of their significance, the development of appropriate methods to identify and functionally assess the myriad SSPs encoded in plant genomes has become critical. Here, we provide protocols for the computational and physiological analysis of SSPs in plant genomes. We first describe our methodology successfully used for genome-wide identification and annotation of SSP-coding genes in the model legume Medicago truncatula, which can be readily adapted for other plant species. We then provide protocols for the functional analysis of SSPs using various synthetic peptide screens. Considerations for the design and handling of peptides are included. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Plant Resilience Institute, Michigan State University, East Lansing, Michigan
| | - Sonali Roy
- Noble Research Institute, LLC, Ardmore, Oklahoma
| | - Xinbin Dai
- Noble Research Institute, LLC, Ardmore, Oklahoma
| | | | | |
Collapse
|
100
|
Chen YL, Fan KT, Hung SC, Chen YR. The role of peptides cleaved from protein precursors in eliciting plant stress reactions. THE NEW PHYTOLOGIST 2020; 225:2267-2282. [PMID: 31595506 DOI: 10.1111/nph.16241] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/17/2019] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to diverse abiotic and biotic stresses, and thus have developed complex signaling mechanisms that orchestrate multiple stress responses. Plant peptides have recently emerged as key signaling molecules of stress responses, not only to mechanical wounding and pathogen infection but also to nutrient imbalance, drought and high salinity. The currently identified stress-related signaling peptides in plants are derived from proteolytic processing of protein precursors. Here, we review these protein-derived peptides and the evidence for their functions in stress signaling. We recommend potential research directions that could clarify their roles in stress biology, and propose possible crosstalk with regard to the physiological outcome. The stress-centric perspective allows us to highlight the crucial roles of peptides in regulating the dynamics of stress physiology. Inspired by historic and recent findings, we review how peptides initiate complex molecular interactions to coordinate biotic and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|