51
|
Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, Poza-Carrión C, Miñambres M, Leyva A. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications. MOLECULAR PLANT 2022; 15:104-124. [PMID: 34954444 DOI: 10.1016/j.molp.2021.12.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 05/25/2023]
Abstract
Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.
Collapse
Affiliation(s)
- Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain.
| | - Maria Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Monica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Sergio Diaz
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Cesar Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Miguel Miñambres
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus Universidad Autónoma, 28049 Madrid, Spain
| |
Collapse
|
52
|
Wang Z, Kuo HF, Chiou TJ. Intracellular phosphate sensing and regulation of phosphate transport systems in plants. PLANT PHYSIOLOGY 2021; 187:2043-2055. [PMID: 35235674 PMCID: PMC8644344 DOI: 10.1093/plphys/kiab343] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
Recent research on the regulation of cellular phosphate (Pi) homeostasis in eukaryotes has collectively made substantial advances in elucidating inositol pyrophosphates (PP-InsP) as Pi signaling molecules that are perceived by the SPX (Syg1, Pho81, and Xpr1) domains residing in multiple proteins involved in Pi transport and signaling. The PP-InsP-SPX signaling module is evolutionarily conserved across eukaryotes and has been elaborately adopted in plant Pi transport and signaling systems. In this review, we have integrated these advances with prior established knowledge of Pi and PP-InsP metabolism, intracellular Pi sensing, and transcriptional responses according to the dynamics of cellular Pi status in plants. Anticipated challenges and pending questions as well as prospects are also discussed.
Collapse
Affiliation(s)
- Zhengrui Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
53
|
Konishi N, Ma JF. Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. THE NEW PHYTOLOGIST 2021; 232:1778-1792. [PMID: 34392543 DOI: 10.1111/nph.17679] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Ammonium is a preferential nitrogen form for rice (Oryza sativa) grown in paddy field, but the molecular mechanisms for ammonium uptake have not been well understood. We functionally characterized three members belonging to ammonium transporter 1 (AMT1) and investigated their contributions to ammonium uptake. Spatial expression analysis showed that the upregulated expression of OsAMT1;1 and OsAMT1;2 and downregulated expression of OsAMT1;3 by ammonium were higher in the root mature region than in the root tips. All OsAMT1 members were polarly localized at the distal side of exodermis in the mature region of crown roots and lateral roots. Upon exposure to ammonium, localization of OsAMT1;1 and OsAMT1;2 was also observed in the endoplasmic reticulum, but their abundance in the plasma membrane was not changed. Single knockout of either gene did not affect ammonium uptake, but knockout of all three genes resulted in 95% reduction of ammonium uptake. However, the nitrogen uptake did not differ between the wild-type rice and triple mutants at high ammonium and nitrate supply. Our results indicate that three OsAMT1 members are cooperatively required for uptake of low ammonium in rice roots and that they undergo a distinct regulatory mechanism in response to ammonium.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
54
|
Jiang W, He P, Zhou M, Lu X, Chen K, Liang C, Tian J. Soybean responds to phosphate starvation through reversible protein phosphorylation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:222-234. [PMID: 34371392 DOI: 10.1016/j.plaphy.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) deficiency is considered as a major constraint on crop production. Although a set of adaptative strategies are extensively suggested in soybean (Glycine max) to phosphate (Pi) deprivation, molecular mechanisms underlying reversible protein phosphorylation in soybean responses to P deficiency remains largely unclear. In this study, isobaric tags for relative and absolute quantitation, combined with liquid chromatography and tandem mass spectrometry analysis was performed to identify differential phosphoproteins in soybean roots under Pi sufficient and deficient conditions. A total of 427 phosphoproteins were found to exhibit differential accumulations, with 213 up-regulated and 214 down-regulated. Among them, a nitrate reductase, GmNR4 exhibiting increased phosphorylation levels under low Pi conditions, was further selected to evaluate the effects of phosphorylation on its nitrate reductase activity and subcellular localization. Mutations of GmNR4 phosphorylation levels significantly influenced its activity in vitro, but not for its subcellular localization. Taken together, identification of differential phosphoproteins reveled the complex regulatory pathways for soybean adaptation to Pi starvation through reversible protein phosphorylation.
Collapse
Affiliation(s)
- Weizhen Jiang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; School of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Panmin He
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Lu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kang Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
55
|
Wang Y, Wang F, Lu H, Liu Y, Mao C. Phosphate Uptake and Transport in Plants: An Elaborate Regulatory System. PLANT & CELL PHYSIOLOGY 2021; 62:564-572. [PMID: 33508131 DOI: 10.1093/pcp/pcab011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/12/2021] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Low inorganic phosphate (Pi) availability is a limiting factor for plant growth and yield. To cope with a complex and changing environment, plants have evolved elaborate mechanisms for regulating Pi uptake and use. Recently, the molecular mechanisms of plant Pi signaling have become clearer. Plants absorb Pi from the soil through their roots and transfer Pi to various organs or tissues through phosphate transporters, which are precisely controlled at the transcript and protein levels. Here, we summarize recent progress on the molecular regulatory mechanism of phosphate transporters in Arabidopsis and rice, including the characterization of functional transporters, regulation of transcript levels, protein localization and turnover of phosphate transporters. A more in-depth understanding of plant adaptation to a changing Pi environment will facilitate the genetic improvement of plant P efficiency.
Collapse
Affiliation(s)
- Yan Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China
| | - Hong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan, 572025, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
56
|
Navarro C, Mateo-Elizalde C, Mohan TC, Sánchez-Bermejo E, Urrutia O, Fernández-Muñiz MN, García-Mina JM, Muñoz R, Paz-Ares J, Castrillo G, Leyva A. Arsenite provides a selective signal that coordinates arsenate uptake and detoxification through the regulation of PHR1 stability in Arabidopsis. MOLECULAR PLANT 2021; 14:1489-1507. [PMID: 34048950 DOI: 10.1016/j.molp.2021.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
In nature, plants acquire nutrients from soils to sustain growth, and at the same time, they need to avoid the uptake of toxic compounds and/or possess tolerance systems to cope with them. This is particularly challenging when the toxic compound and the nutrient are chemically similar, as in the case of phosphate and arsenate. In this study, we demonstrated that regulatory elements of the phosphate starvation response (PSR) coordinate the arsenate detoxification machinery in the cell. We showed that arsenate repression of the phosphate transporter PHT1;1 is associated with the degradation of the PSR master regulator PHR1. Once arsenic is sequestered into the vacuole, PHR1 stability is restored and PHT1;1 expression is recovered. Furthermore, we identified an arsenite responsive SKP1-like protein and a PHR1 interactor F-box (PHIF1) as constituents of the SCF complex responsible for PHR1 degradation.We found that arsenite, the form to which arsenate is reduced for compartmentalization in vacuoles, represses PHT1;1 expression, providing a highly selective signal versus phosphate to control PHT1;1 expression in response to arsenate. Collectively, our results provide molecular insights into a sensing mechanism that regulates arsenate/phosphate uptake depending on the plant's detoxification capacity.
Collapse
Affiliation(s)
- Cristina Navarro
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Cristian Mateo-Elizalde
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Thotegowdanapalya C Mohan
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Eduardo Sánchez-Bermejo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Oscar Urrutia
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona 31008, Spain
| | - María Nieves Fernández-Muñiz
- Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - José M García-Mina
- Department of Environmental Biology, Sciences School, University of Navarra, Pamplona 31008, Spain
| | - Riansares Muñoz
- Department of Analytical Chemistry, School of Chemical Sciences, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain
| | - Gabriel Castrillo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain.
| |
Collapse
|
57
|
Li X, Yu B, Wu Q, Min Q, Zeng R, Xie Z, Huang J. OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLoS Genet 2021; 17:e1009699. [PMID: 34343171 PMCID: PMC8363014 DOI: 10.1371/journal.pgen.1009699] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/13/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Some of MADS-box transcription factors (TFs) have been shown to play essential roles in the adaptation of plant to abiotic stress. Still, the mechanisms that MADS-box proteins regulate plant stress response are not fully understood. Here, a stress-responsive MADS-box TF OsMADS23 from rice conferring the osmotic stress tolerance in plants is reported. Overexpression of OsMADS23 remarkably enhanced, but knockout of the gene greatly reduced the drought and salt tolerance in rice plants. Further, OsMADS23 was shown to promote the biosynthesis of endogenous ABA and proline by activating the transcription of target genes OsNCED2, OsNCED3, OsNCED4 and OsP5CR that are key components for ABA and proline biosynthesis, respectively. Then, the convincing evidence showed that the OsNCED2-knockout mutants had lower ABA levels and exhibited higher sensitivity to drought and oxidative stress than wild type, which is similar to osmads23 mutant. Interestingly, the SnRK2-type protein kinase SAPK9 was found to physically interact with and phosphorylate OsMADS23, and thus increase its stability and transcriptional activity. Furthermore, the activation of OsMADS23 by SAPK9-mediated phosphorylation is dependent on ABA in plants. Collectively, these findings establish a mechanism that OsMADS23 functions as a positive regulator in response to osmotic stress by regulating ABA biosynthesis, and provide a new strategy for improving drought and salt tolerance in rice.
Collapse
Affiliation(s)
- Xingxing Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Qi Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Qian Min
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Rongfeng Zeng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
- * E-mail:
| |
Collapse
|
58
|
Wei P, Demulder M, David P, Eekhout T, Yoshiyama KO, Nguyen L, Vercauteren I, Eeckhout D, Galle M, De Jaeger G, Larsen P, Audenaert D, Desnos T, Nussaume L, Loris R, De Veylder L. Arabidopsis casein kinase 2 triggers stem cell exhaustion under Al toxicity and phosphate deficiency through activating the DNA damage response pathway. THE PLANT CELL 2021; 33:1361-1380. [PMID: 33793856 DOI: 10.1093/plcell/koab005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Aluminum (Al) toxicity and inorganic phosphate (Pi) limitation are widespread chronic abiotic and mutually enhancing stresses that profoundly affect crop yield. Both stresses strongly inhibit root growth, resulting from a progressive exhaustion of the stem cell niche. Here, we report on a casein kinase 2 (CK2) inhibitor identified by its capability to maintain a functional root stem cell niche in Arabidopsis thaliana under Al toxic conditions. CK2 operates through phosphorylation of the cell cycle checkpoint activator SUPPRESSOR OF GAMMA RADIATION1 (SOG1), priming its activity under DNA-damaging conditions. In addition to yielding Al tolerance, CK2 and SOG1 inactivation prevents meristem exhaustion under Pi starvation, revealing the existence of a low Pi-induced cell cycle checkpoint that depends on the DNA damage activator ATAXIA-TELANGIECTASIA MUTATED (ATM). Overall, our data reveal an important physiological role for the plant DNA damage response pathway under agriculturally limiting growth conditions, opening new avenues to cope with Pi limitation.
Collapse
Affiliation(s)
- Pengliang Wei
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Manon Demulder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel B-1050, Belgium
- VIB Center for Structural Biology, Brussel B-1050, Belgium
| | - Pascale David
- CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des V�g�taux � leur Environnement), Aix Marseille Univ, F-13108, Saint-Paul lez Durance, France
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | | | - Long Nguyen
- VIB Screening Core, VIB, Ghent B-9052, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent 9000, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Margot Galle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel B-1050, Belgium
- VIB Center for Structural Biology, Brussel B-1050, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Paul Larsen
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Dominique Audenaert
- VIB Screening Core, VIB, Ghent B-9052, Belgium
- Expertise Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent 9000, Belgium
| | - Thierry Desnos
- CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des V�g�taux � leur Environnement), Aix Marseille Univ, F-13108, Saint-Paul lez Durance, France
| | - Laurent Nussaume
- CEA, CNRS, BIAM, UMR7265, SAVE (Signalisation pour l'Adaptation des V�g�taux � leur Environnement), Aix Marseille Univ, F-13108, Saint-Paul lez Durance, France
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussel B-1050, Belgium
- VIB Center for Structural Biology, Brussel B-1050, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| |
Collapse
|
59
|
Liu J, Liao W, Nie B, Zhang J, Xu W. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:706-719. [PMID: 33570751 DOI: 10.1111/tpj.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wencheng Liao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianhua Zhang
- College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
60
|
Dissanayaka DMSB, Ghahremani M, Siebers M, Wasaki J, Plaxton WC. Recent insights into the metabolic adaptations of phosphorus-deprived plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:199-223. [PMID: 33211873 DOI: 10.1093/jxb/eraa482] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.
Collapse
Affiliation(s)
- D M S B Dissanayaka
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Mina Ghahremani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Meike Siebers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
- Institute of Plant Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jun Wasaki
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
61
|
Zhang J, Gu M, Liang R, Shi X, Chen L, Hu X, Wang S, Dai X, Qu H, Li H, Xu G. OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through maintaining the constitutive expression of OsPHT1;1 under phosphate-replete conditions. THE NEW PHYTOLOGIST 2021; 229:1598-1614. [PMID: 32936937 PMCID: PMC7820984 DOI: 10.1111/nph.16931] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/03/2020] [Indexed: 05/20/2023]
Abstract
Plant Phosphate Transporter 1 (PHT1) proteins, probably the only influx transporters for phosphate (Pi) uptake, are partially degraded on sufficient Pi levels to prevent excessive Pi accumulation. Therefore, the basal/constitutive expression level of PHT1 genes is vital for maintaining Pi uptake under Pi-replete conditions. Rice (Oryza sativa) OsPHT1;1 is a unique gene as it is highly expressed and not responsive to Pi, however the mechanism for maintaining its basal/constitutive expression remains unknown. Using biochemical and genetic approaches, we identified and functionally characterised the transcription factors maintaining the basal/constitutive expression of OsPHT1;1. OsWRKY21 and OsWRKY108 interact within the nucleus and both bind to the W-box in the OsPHT1;1 promoter. Overexpression of OsWRKY21 or OsWRKY108 led to increased Pi accumulation, resulting from elevated expression of OsPHT1;1. By contrast, oswrky21 oswrky108 double mutants showed decreased Pi accumulation and OsPHT1;1 expression in a Pi-dependent manner. Moreover, similar to ospht1;1 mutants, plants expressing the OsWRKY21-SRDX fusion protein (a chimeric dominant suppressor) were impaired in Pi accumulation in Pi-replete roots, accompanied by downregulation of OsPHT1;1 expression. Our findings demonstrated that rice WRKY transcription factors function redundantly to promote Pi uptake by activating OsPHT1;1 expression under Pi-replete conditions, and represent a novel pathway independent of the central Pi signalling system.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- MOA Key Laboratory of Plant Nutrition and Fertilisation in Lower‐Middle Reaches of the Yangtze RiverNanjing210095China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilisationNanjing210095China
| | - Ruisuhua Liang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Xinyu Shi
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Lingling Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Xu Hu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Xiaoli Dai
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- MOA Key Laboratory of Plant Nutrition and Fertilisation in Lower‐Middle Reaches of the Yangtze RiverNanjing210095China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- MOA Key Laboratory of Plant Nutrition and Fertilisation in Lower‐Middle Reaches of the Yangtze RiverNanjing210095China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilisationNanjing210095China
| | - Huanhuan Li
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjing210095China
- MOA Key Laboratory of Plant Nutrition and Fertilisation in Lower‐Middle Reaches of the Yangtze RiverNanjing210095China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilisationNanjing210095China
| |
Collapse
|
62
|
Mehta D, Ghahremani M, Pérez-Fernández M, Tan M, Schläpfer P, Plaxton WC, Uhrig RG. Phosphate and phosphite have a differential impact on the proteome and phosphoproteome of Arabidopsis suspension cell cultures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:924-941. [PMID: 33184936 DOI: 10.1111/tpj.15078] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 05/21/2023]
Abstract
Phosphorus absorbed in the form of phosphate (H2 PO4- ) is an essential but limiting macronutrient for plant growth and agricultural productivity. A comprehensive understanding of how plants respond to phosphate starvation is essential for the development of more phosphate-efficient crops. Here we employed label-free proteomics and phosphoproteomics to quantify protein-level responses to 48 h of phosphate versus phosphite (H2 PO3- ) resupply to phosphate-deprived Arabidopsis thaliana suspension cells. Phosphite is similarly sensed, taken up and transported by plant cells as phosphate, but cannot be metabolized or used as a nutrient. Phosphite is thus a useful tool for differentiating between non-specific processes related to phosphate sensing and transport and specific responses to phosphorus nutrition. We found that responses to phosphate versus phosphite resupply occurred mainly at the level of protein phosphorylation, complemented by limited changes in protein abundance, primarily in protein translation, phosphate transport and scavenging, and central metabolism proteins. Altered phosphorylation of proteins involved in core processes such as translation, RNA splicing and kinase signaling was especially important. We also found differential phosphorylation in response to phosphate and phosphite in 69 proteins, including splicing factors, translation factors, the PHT1;4 phosphate transporter and the HAT1 histone acetyltransferase - potential phospho-switches signaling changes in phosphorus nutrition. Our study illuminates several new aspects of the phosphate starvation response and identifies important targets for further investigation and potential crop improvement.
Collapse
Affiliation(s)
- Devang Mehta
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Mina Ghahremani
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - Maria Pérez-Fernández
- Departamento de Sistemas Físicos Químicos y Naturales, Universidad Pablo de Olavide, Ecology Area. Faculty os Experimental Sciences. Carretera de Utrera Km 1, Sevilla, 41013, Spain
| | - Maryalle Tan
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| | - Pascal Schläpfer
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, Zurich, 8092, Switzerland
| | - William C Plaxton
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, K7L 3N6, Canada
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
63
|
Zheng L, Yang J, Chen Y, Ding L, Wei J, Wang H. An improved and efficient method of Agrobacterium syringe infiltration for transient transformation and its application in the elucidation of gene function in poplar. BMC PLANT BIOLOGY 2021; 21:54. [PMID: 33478390 PMCID: PMC7818742 DOI: 10.1186/s12870-021-02833-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/11/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Forest trees have important economic and ecological value. As a model tree, poplar has played a significant role in elucidating the molecular mechanisms underlying tree biology. However, a lack of mutant libraries and time-consuming stable genetic transformation processes severely limit progress into the functional characterization of poplar genes. A convenient and fast transient transformation method is therefore needed to enhance progress on functional genomics in poplar. METHODS A total of 11 poplar clones were screened for amenability to syringe infiltration. Syringe infiltration was performed on the lower side of the leaves of young soil-grown plants. Transient expression was evaluated by visualizing the reporters β-glucuronidase (GUS) and green fluorescent protein (GFP). The experimental parameters of the syringe agroinfiltration were optimized based on the expression levels of the reporter luciferase (LUC). Stably transformed plants were regenerated from transiently transformed leaf explants through callus-induced organogenesis. The functions of Populus genes in secondary cell wall-thickening were characterized by visualizing lignin deposition therein after staining with basic fuchsin. RESULTS We greatly improved the transient transformation efficiency of syringe Agrobacterium infiltration in poplar through screening for a suitable poplar clone from a variety of clones and optimizing the syringe infiltration procedure. The selected poplar clone, Populus davidiana × P. bolleana, is amenable to Agrobacterium syringe infiltration, as indicated by the easy diffusion of the bacterial suspension inside the leaf tissues. Using this technique, we localized a variety of poplar proteins in specific intracellular organelles and illustrated the protein-protein and protein-DNA interactions. The transiently transformed leaves could be used to generate stably transformed plants with high efficiency through callus induction and differentiation processes. Furthermore, transdifferentiation of the protoxylem-like vessel element and ectopic secondary wall thickening were induced in the agroinfiltrated leaves via the transient overexpression of genes associated with secondary wall formation. CONCLUSIONS The application of P. davidiana × P. bolleana in Agrobacterium syringe infiltration provides a foundation for the rapid and high-throughput functional characterization of Populus genes in intact poplar plants, including those involved in wood formation, and provides an effective alternative to Populus stable genetic transformation.
Collapse
Affiliation(s)
- Lin Zheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jixiu Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China
- College of Bioscience and Resources Environment, Beijing University of Agriculture, No. 7, Beinong Road, Huilongguan, Changping District, Beijing, 102206, People's Republic of China
| | - Yajuan Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Liping Ding
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China.
| | - Hongzhi Wang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agricultural and Forestry Sciences, No. 9, Shuguang Huayuan Middle Road, Haidian District, Beijing, 100097, People's Republic of China.
| |
Collapse
|
64
|
Wang Y, Chen YF, Wu WH. Potassium and phosphorus transport and signaling in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:34-52. [PMID: 33325114 DOI: 10.1111/jipb.13053] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 05/26/2023]
Abstract
Nitrogen (N), potassium (K), and phosphorus (P) are essential macronutrients for plant growth and development, and their availability affects crop yield. Compared with N, the relatively low availability of K and P in soils limits crop production and thus threatens food security and agricultural sustainability. Improvement of plant nutrient utilization efficiency provides a potential route to overcome the effects of K and P deficiencies. Investigation of the molecular mechanisms underlying how plants sense, absorb, transport, and use K and P is an important prerequisite to improve crop nutrient utilization efficiency. In this review, we summarize current understanding of K and P transport and signaling in plants, mainly taking Arabidopsis thaliana and rice (Oryza sativa) as examples. We also discuss the mechanisms coordinating transport of N and K, as well as P and N.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
65
|
Abstract
Plants are an important part of nature because as photoautotrophs, they provide a nutrient source for many other living organisms. Due to their sessile nature, to overcome both biotic and abiotic stresses, plants have developed intricate mechanisms for perception of and reaction to these stresses, both on an external level (perception) and on an internal level (reaction). Specific proteins found within cells play crucial roles in stress mitigation by enhancing cellular processes that facilitate the plants survival during the unfavorable conditions. Well before plants are able to synthesize nascent proteins in response to stress, proteins which already exist in the cell can be subjected to an array of posttranslation modifications (PTMs) that permit a rapid response. These activated proteins can, in turn, aid in further stress responses. Different PTMs have different functions in growth and development of plants. Protein phosphorylation, a reversible form of modification has been well elucidated, and its role in signaling cascades is well documented. In this mini-review, we discuss the integration of protein phosphorylation with other components of abiotic stress-responsive pathways including phytohormones and ion homeostasis. Overall, this review demonstrates the high interconnectivity of the stress response system in plants and how readily plants are able to toggle between various signaling pathways in order to survive harsh conditions. Most notably, fluctuations of the cytosolic calcium levels seem to be a linking component of the various signaling pathways.
Collapse
Affiliation(s)
- Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China.
| |
Collapse
|
66
|
Hu AY, Xu SN, Qin DN, Li W, Zhao XQ. Role of Silicon in Mediating Phosphorus Imbalance in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 10:E51. [PMID: 33383611 PMCID: PMC7824163 DOI: 10.3390/plants10010051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 11/16/2022]
Abstract
The soil bioavailability of phosphorus (P) is often low because of its poor solubility, strong sorption and slow diffusion in most soils; however, stress due to excess soil P can occur in greenhouse production systems subjected to high levels of P fertilizer. Silicon (Si) is a beneficial element that can alleviate multiple biotic and abiotic stresses. Although numerous studies have investigated the effects of Si on P nutrition, a comprehensive review has not been published. Accordingly, here we review: (1) the Si uptake, transport and accumulation in various plant species; (2) the roles of phosphate transporters in P acquisition, mobilization, re-utilization and homeostasis; (3) the beneficial role of Si in improving P nutrition under P deficiency; and (4) the regulatory function of Si in decreasing P uptake under excess P. The results of the reviewed studies suggest the important role of Si in mediating P imbalance in plants. We also present a schematic model to explain underlying mechanisms responsible for the beneficial impact of Si on plant adaption to P-imbalance stress. Finally, we highlight the importance of future investigations aimed at revealing the role of Si in regulating P imbalance in plants, both at deeper molecular and broader field levels.
Collapse
Affiliation(s)
- An Yong Hu
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Shu Nan Xu
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Dong Ni Qin
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Wen Li
- School of Geographical Science, Nantong University, Nantong 226019, China; (A.Y.H.); (S.N.X.); (D.N.Q.); (W.L.)
| | - Xue Qiang Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
67
|
Wang F, Cui P, Tian Y, Huang Y, Wang H, Liu F, Chen Y. Maize ZmPT7 regulates Pi uptake and redistribution which is modulated by phosphorylation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2406-2419. [PMID: 32431055 PMCID: PMC7680542 DOI: 10.1111/pbi.13414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/26/2020] [Accepted: 05/05/2020] [Indexed: 05/20/2023]
Abstract
Phosphorus, an essential mineral macronutrient, is a major constituent of fertilizers for maize (Zea mays L.) production. However, the molecular mechanisms of phosphate (Pi) acquisition in maize plants and its redistribution remain unclear. This study presents the functional characterization of ZmPT7 in Pi uptake and redistribution in maize. The ZmPT7 was expressed in roots and leaves, and induced during Pi starvation. The ZmPT7 complemented the Pi-uptake deficiency of yeast mutant phoΔnull and Arabidopsis mutant pht1;1Δ4Δ, indicating that ZmPT7 functioned as a Pi transporter. We generated zmpt7 mutants by CRISPR/Cas9 and ZmPT7-overexpressing lines. The zmpt7 mutants showed reduced, whereas the ZmPT7-overexpressing lines displayed increased Pi-uptake capacity and Pi redistribution from old to young leaves, demonstrating that ZmPT7 played central roles in Pi acquisition and Pi redistribution from old to young leaves. The ZmCK2 kinases phosphorylated ZmPT7 at Ser-521 in old maize leaves, which enhanced transport activity of ZmPT7. The Ser-520 of Arabidopsis AtPHT1;1, a conserved residue of ZmPT7 Ser-521, was also phosphorylated by AtCK2 kinase, and the mutation of Ser-520 to Glu (phosphorylation mimic) yielded enhanced transport activity of AtPHT1;1. Taken together, these results indicate that ZmPT7 plays important roles in Pi acquisition and redistribution, and its transport activity is modulated by phosphorylation.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Peng‐Juan Cui
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yan Tian
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yun Huang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Hai‐Feng Wang
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Fang Liu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yi‐Fang Chen
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesCenter for Maize Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
68
|
Barros VA, Chandnani R, de Sousa SM, Maciel LS, Tokizawa M, Guimaraes CT, Magalhaes JV, Kochian LV. Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. FRONTIERS IN PLANT SCIENCE 2020; 11:565339. [PMID: 33281841 PMCID: PMC7688899 DOI: 10.3389/fpls.2020.565339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/20/2020] [Indexed: 06/01/2023]
Abstract
Crop tolerance to multiple abiotic stresses has long been pursued as a Holy Grail in plant breeding efforts that target crop adaptation to tropical soils. On tropical, acidic soils, aluminum (Al) toxicity, low phosphorus (P) availability and drought stress are the major limitations to yield stability. Molecular breeding based on a small suite of pleiotropic genes, particularly those with moderate to major phenotypic effects, could help circumvent the need for complex breeding designs and large population sizes aimed at selecting transgressive progeny accumulating favorable alleles controlling polygenic traits. The underlying question is twofold: do common tolerance mechanisms to Al toxicity, P deficiency and drought exist? And if they do, will they be useful in a plant breeding program that targets stress-prone environments. The selective environments in tropical regions are such that multiple, co-existing regulatory networks may drive the fixation of either distinctly different or a smaller number of pleiotropic abiotic stress tolerance genes. Recent studies suggest that genes contributing to crop adaptation to acidic soils, such as the major Arabidopsis Al tolerance protein, AtALMT1, which encodes an aluminum-activated root malate transporter, may influence both Al tolerance and P acquisition via changes in root system morphology and architecture. However, trans-acting elements such as transcription factors (TFs) may be the best option for pleiotropic control of multiple abiotic stress genes, due to their small and often multiple binding sequences in the genome. One such example is the C2H2-type zinc finger, AtSTOP1, which is a transcriptional regulator of a number of Arabidopsis Al tolerance genes, including AtMATE and AtALMT1, and has been shown to activate AtALMT1, not only in response to Al but also low soil P. The large WRKY family of transcription factors are also known to affect a broad spectrum of phenotypes, some of which are related to acidic soil abiotic stress responses. Hence, we focus here on signaling proteins such as TFs and protein kinases to identify, from the literature, evidence for unifying regulatory networks controlling Al tolerance, P efficiency and, also possibly drought tolerance. Particular emphasis will be given to modification of root system morphology and architecture, which could be an important physiological "hub" leading to crop adaptation to multiple soil-based abiotic stress factors.
Collapse
Affiliation(s)
- Vanessa A. Barros
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rahul Chandnani
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Laiane S. Maciel
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mutsutomo Tokizawa
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Jurandir V. Magalhaes
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
69
|
Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa). THE NEW PHYTOLOGIST 2020; 228:1336-1353. [PMID: 32583457 PMCID: PMC7689938 DOI: 10.1111/nph.16774] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/15/2020] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) and jasmonic acid (JA) both inhibit seed germination, but their interactions during this process remain elusive. Here, we report the identification of a 'SAPK10-bZIP72-AOC' pathway, through which ABA promotes JA biosynthesis to synergistically inhibit rice seed germination. Using biochemical interaction and phosphorylation assays, we show that SAPK10 exhibits autophosphorylation activity on the 177th serine, which enables it to phosphorylate bZIP72 majorly on 71st serine. The SAPK10-dependent phosphorylation enhances bZIP72 protein stability as well as the DNA-binding ability to the G-box cis-element of AOC promoter, thereby elevating the AOC transcription and the endogenous concentration of JA. Blocking of JA biosynthesis significantly alleviated the ABA sensitivity on seed germination, suggesting that ABA-imposed inhibition partially relied on the elevated concentration of JA. Our findings shed a novel insight into the molecular networks of ABA-JA synergistic interaction during rice seed germination.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Yuxuan Hou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Jiehua Qiu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Huimei Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Shuang Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
- College of Life ScienceYangtze UniversityJingzhou434025China
| | - Liqun Tang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Xiaohong Tong
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| | - Jian Zhang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou311400China
| |
Collapse
|
70
|
Du W, Ning L, Liu Y, Zhang S, Yang Y, Wang Q, Chao S, Yang H, Huang F, Cheng H, Yu D. Identification of loci and candidate gene GmSPX-RING1 responsible for phosphorus efficiency in soybean via genome-wide association analysis. BMC Genomics 2020; 21:725. [PMID: 33076835 PMCID: PMC7574279 DOI: 10.1186/s12864-020-07143-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/11/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Phosphorus (P) is an essential element in maintaining high biomass and yield in crops. Soybean [Glycine max (L.) Merr.] requires a large amount of P during growth and development. Improvement of P efficiency and identification of P efficiency genes are important strategies for increasing soybean yield. RESULTS Genome-wide association analysis (GWAS) with NJAU 355 K SoySNP array was performed to identify single nucleotide polymorphisms (SNPs) significantly associated with three shoot P efficiency-related traits of a natural population of 211 cultivated soybeans and relative values of these traits under normal P (+P) condition and P deficiency (-P) condition. A total of 155 SNPs were identified significantly associated with P efficiency-related traits. SNPs that were significantly associated with shoot dry weight formed a SNP cluster on chromosome 11, while SNPs that were significantly associated with shoot P concentration formed a SNP cluster on chromosome 10. Thirteen haplotypes were identified based on 12 SNPs, and Hap9 was considered as the optimal haplotype. Four SNPs (AX-93636685, AX-93636692, AX-93932863, and AX-93932874) located on chromosome 10 were identified to be significantly associated with shoot P concentration under +P condition in two hydroponic experiments. Among these four SNPs, two of them (AX-93636685 and AX-93932874) were also significantly associated with the relative values of shoot P concentration under two P conditions. One SNP AX-93932874 was detected within 5'-untranslated region of Glyma.10 g018800, which contained SPX and RING domains and was named as GmSPX-RING1. Furthermore, the function research of GmSPX-RING1 was carried out in soybean hairy root transformation. Compared with their respective controls, P concentration in GmSPX-RING1 overexpressing transgenic hairy roots was significantly reduced by 32.75% under +P condition; In contrast, P concentration in RNA interference of GmSPX-RING1 transgenic hairy roots was increased by 38.90 and 14.51% under +P and -P conditions, respectively. CONCLUSIONS This study shows that the candidate gene GmSPX-RING1 affects soybean phosphorus efficiency by negatively regulating soybean phosphorus concentration in soybean hairy roots. The SNPs and candidate genes identified should be potential for improvement of P efficiency in future soybean breeding programs.
Collapse
Affiliation(s)
- Wenkai Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lihua Ning
- Institute of Crop Germplasm and Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yongshun Liu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shixi Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qing Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shengqian Chao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hui Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
71
|
Systemic induction of phosphatidylinositol-based signaling in leaves of arbuscular mycorrhizal rice plants. Sci Rep 2020; 10:15896. [PMID: 32985595 PMCID: PMC7522983 DOI: 10.1038/s41598-020-72985-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022] Open
Abstract
Most land plants form beneficial associations with arbuscular mycorrhizal (AM) fungi which improves mineral nutrition, mainly phosphorus, in the host plant in exchange for photosynthetically fixed carbon. Most of our knowledge on the AM symbiosis derives from dicotyledonous species. We show that inoculation with the AM fungus Funneliformis mosseae stimulates growth and increases Pi content in leaves of rice plants (O. sativa, cv Loto, ssp japonica). Although rice is a host for AM fungi, the systemic transcriptional responses to AM inoculation, and molecular mechanisms underlying AM symbiosis in rice remain largely elusive. Transcriptomic analysis identified genes systemically regulated in leaves of mycorrhizal rice plants, including genes with functions associated with the biosynthesis of phospholipids and non-phosphorus lipids (up-regulated and down-regulated, respectively). A coordinated regulation of genes involved in the biosynthesis of phospholipids and inositol polyphosphates, and genes involved in hormone biosynthesis and signaling (jasmonic acid, ethylene) occurs in leaves of mycorrhizal rice. Members of gene families playing a role in phosphate starvation responses and remobilization of Pi were down-regulated in leaves of mycorrhizal rice. These results demonstrated that the AM symbiosis is accompanied by systemic transcriptional responses, which are potentially important to maintain a stable symbiotic relationship in rice plants.
Collapse
|
72
|
Wang F, Deng M, Chen J, He Q, Jia X, Guo H, Xu J, Liu Y, Zhang S, Shou H, Mao C. CASEIN KINASE2-Dependent Phosphorylation of PHOSPHATE2 Fine-tunes Phosphate Homeostasis in Rice. PLANT PHYSIOLOGY 2020; 183:250-262. [PMID: 32161109 PMCID: PMC7210639 DOI: 10.1104/pp.20.00078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 05/21/2023]
Abstract
Plants have evolved complex physiological and biochemical mechanisms to adapt to a heterogeneous soil phosphorus environment. PHOSPHATE2 (PHO2) is a phosphate (Pi) starvation-signaling regulator involved in maintaining Pi homeostasis in plants. Arabidopsis (Arabidopsis thaliana) PHO2 targets PHOSPHATE TRANSPORTER1 (PHT1) and PHO1 for degradation, whereas rice (Oryza sativa) PHO2 is thought to mediate PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 degradation. However, it is unclear whether and how PHO2 is post-translationally regulated. Here, we show that in rice, the CASEIN KINASE2 (OsCK2) catalytic subunit OsCK2α3 interacts with OsPHO2 in vitro and in vivo in vascular tissues cells, and phosphorylates OsPHO2 at Ser-841. Phosphorylated OsPHO2 is degraded more rapidly than native OsPHO2 in cell-free degradation assays. OsPHO2 interacts with OsPHO1 and targets it for degradation through a multivesicular body-mediated pathway. PHO1 mutation partially rescued the pho2 mutant phenotype. Further genetic analysis showed that a nonphosphorylatable version of OsPHO2 rescued the Ospho2 phenotype of high Pi accumulation in leaves better than native OsPHO2. In addition to the previously established role of OsCK2 in negatively regulating endoplasmic reticulum exit of PHT1 phosphate transporters, this work uncovers a role for OsCK2α3 in modulating Pi homeostasis through regulating the phosphorylation status and abundance of OsPHO2 in rice.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meiju Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jieyu Chen
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada
| | - Qiuju He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinye Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huaxing Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yidong Liu
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Shuqun Zhang
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
73
|
Allahham A, Kanno S, Zhang L, Maruyama-Nakashita A. Sulfur Deficiency Increases Phosphate Accumulation, Uptake, and Transport in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21082971. [PMID: 32340187 PMCID: PMC7215917 DOI: 10.3390/ijms21082971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
Recent studies have shown various metabolic and transcriptomic interactions between sulfur (S) and phosphorus (P) in plants. However, most studies have focused on the effects of phosphate (Pi) availability and P signaling pathways on S homeostasis, whereas the effects of S availability on P homeostasis remain largely unknown. In this study, we investigated the interactions between S and P from the perspective of S availability. We investigated the effects of S availability on Pi uptake, transport, and accumulation in Arabidopsis thaliana grown under sulfur sufficiency (+S) and deficiency (-S). Total P in shoots was significantly increased under -S owing to higher Pi accumulation. This accumulation was facilitated by increased Pi uptake under -S. In addition, -S increased root-to-shoot Pi transport, which was indicated by the increased Pi levels in xylem sap under -S. The -S-increased Pi level in the xylem sap was diminished in the disruption lines of PHT1;9 and PHO1, which are involved in root-to-shoot Pi transport. Our findings indicate a new aspect of the interaction between S and P by listing the increased Pi accumulation as part of -S responses and by highlighting the effects of -S on Pi uptake, transport, and homeostasis.
Collapse
Affiliation(s)
- Alaa Allahham
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.A.); (L.Z.)
| | - Satomi Kanno
- Institute for Advanced Research, NAIAS, Nagoya University, Frocho, Chikusa, Nagoya 464-8601, Japan;
| | - Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.A.); (L.Z.)
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.A.); (L.Z.)
- Correspondence: ; Tel.: +81-92-802-4712
| |
Collapse
|
74
|
Demulder M, De Veylder L, Loris R. Crystal structure of Arabidopsis thaliana casein kinase 2 α1. Acta Crystallogr F Struct Biol Commun 2020; 76:182-191. [PMID: 32254052 PMCID: PMC7137383 DOI: 10.1107/s2053230x20004537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 11/11/2022] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous pleiotropic enzyme that is highly conserved across eukaryotic kingdoms. CK2 is singular amongst kinases as it is highly rigid and constitutively active. Arabidopsis thaliana is widely used as a model system in molecular plant research; the biological functions of A. thaliana CK2 are well studied in vivo and many of its substrates have been identified. Here, crystal structures of the α subunit of A. thaliana CK2 in three crystal forms and of its complex with the nonhydrolyzable ATP analog AMppNHp are presented. While the C-lobe of the enzyme is highly rigid, structural plasticity is observed for the N-lobe. Small but significant displacements within the active cleft are necessary in order to avoid steric clashes with the AMppNHp molecule. Binding of AMppNHp is influenced by a rigid-body motion of the N-lobe that was not previously recognized in maize CK2.
Collapse
Affiliation(s)
- Manon Demulder
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
75
|
Yang Z, Yang J, Wang Y, Wang F, Mao W, He Q, Xu J, Wu Z, Mao C. PROTEIN PHOSPHATASE95 Regulates Phosphate Homeostasis by Affecting Phosphate Transporter Trafficking in Rice. THE PLANT CELL 2020; 32:740-757. [PMID: 31919298 PMCID: PMC7054036 DOI: 10.1105/tpc.19.00685] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) uptake in plants depends on plasma membrane (PM)-localized phosphate transporters (PTs). OsCK2 phosphorylates PTs and inhibits their trafficking from the endoplasmic reticulum (ER) to the PM in rice (Oryza sativa), but how PTs are dephosphorylated is unknown. We demonstrate that the protein phosphatase type 2C (PP2C) protein phosphatase OsPP95 interacts with OsPT2 and OsPT8 and dephosphorylates OsPT8 at Ser-517. Rice plants overexpressing OsPP95 reduced OsPT8 phosphorylation and promoted OsPT2 and OsPT8 trafficking from the ER to the PM, resulting in Pi accumulation. Under Pi-sufficient conditions, Pi levels were lower in young leaves and higher in old leaves in ospp95 mutants than in those of the wild type, even though the overall shoot Pi levels were the same in the mutant and the wild type. In the wild type, OsPP95 accumulated under Pi starvation but was rapidly degraded under Pi-sufficient conditions. We show that OsPHO2 interacts with and induces the degradation of OsPP95. We conclude that OsPP95, a protein phosphatase negatively regulated by OsPHO2, positively regulates Pi homeostasis and remobilization by dephosphorylating PTs and affecting their trafficking to the PM, a reversible process required for adaptation to variable Pi conditions.
Collapse
Affiliation(s)
- Zhili Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxuan Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiuju He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
76
|
Tcherkez G, Carroll A, Abadie C, Mainguet S, Davanture M, Zivy M. Protein synthesis increases with photosynthesis via the stimulation of translation initiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110352. [PMID: 31928674 DOI: 10.1016/j.plantsci.2019.110352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/09/2023]
Abstract
Leaf protein synthesis is an essential process at the heart of plant nitrogen (N) homeostasis and turnover that preferentially takes place in the light, that is, when N and CO2 fixation occur. The carbon allocation to protein synthesis in illuminated leaves generally accounts for ca. 1 % of net photosynthesis. It is likely that protein synthesis activity varies with photosynthetic conditions (CO2/O2 atmosphere composition) since changes in photorespiration and carbon provision should in principle impact on amino acid supply as well as metabolic regulation via leaf sugar content. However, possible changes in protein synthesis and translation activity when gaseous conditions vary are virtually unknown. Here, we address this question using metabolomics, isotopic techniques, phosphoproteomics and polysome quantitation, under different photosynthetic conditions that were varied with atmospheric CO2 and O2 mole fraction, using illuminated Arabidopsis rosettes under controlled gas exchange conditions. We show that carbon allocation to proteins is within 1-2.5 % of net photosynthesis, increases with photosynthesis rate and is unrelated to total amino acid content. In addition, photosynthesis correlates to polysome abundance and phosphorylation of ribosomal proteins and translation initiation factors. Our results demonstrate that translation activity follows photosynthetic activity, showing the considerable impact of metabolism (carboxylation-oxygenation balance) on protein synthesis.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601, Canberra, ACT, Australia(1); Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2).
| | - Adam Carroll
- Joint Mass Spectrometry Facility, Research School of Chemistry, Australian National University, 2601, Canberra, ACT, Australia
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2)
| | - Samuel Mainguet
- Institute of Plant Sciences of Saclay, INRA, University Paris-Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Marlène Davanture
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Michel Zivy
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
77
|
Tang RJ, Luan M, Wang C, Lhamo D, Yang Y, Zhao FG, Lan WZ, Fu AG, Luan S. Plant Membrane Transport Research in the Post-genomic Era. PLANT COMMUNICATIONS 2020; 1:100013. [PMID: 33404541 PMCID: PMC7747983 DOI: 10.1016/j.xplc.2019.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 05/17/2023]
Abstract
Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition, solute storage, cell metabolism, cell signaling, osmoregulation, cell growth, and stress responses. Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level. Genes coding for a galaxy of pumps, channels, and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems. Furthermore, signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms. Here, we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools. We also provide our perspectives for future studies in the field.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingda Luan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yang Yang
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Fu-Geng Zhao
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wen-Zhi Lan
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ai-Gen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
78
|
Yang SY, Lu WC, Ko SS, Sun CM, Hung JC, Chiou TJ. Upstream Open Reading Frame and Phosphate-Regulated Expression of Rice OsNLA1 Controls Phosphate Transport and Reproduction. PLANT PHYSIOLOGY 2020; 182:393-407. [PMID: 31659125 PMCID: PMC6945825 DOI: 10.1104/pp.19.01101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/17/2019] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa) OsNLA1 has been proposed to play a crucial role in regulating phosphate (Pi) acquisition in roots, similar to that of Arabidopsis (Arabidopsis thaliana) AtNLA. However, unlike AtNLA, OsNLA1 is not a target of miR827, a Pi starvation-induced microRNA. It is, therefore, of interest to know whether the expression of OsNLA1 depends on Pi supply and how it is regulated. In this study, we provide evidence that OsNLA1 controls Pi acquisition by directing the degradation of several OsPHT1 Pi transporters (i.e. OsPT1/2/4/7/8/12). We further show that OsNLA1 has an additional function in reproduction and uncover the mechanism of its expression regulation. Analysis of mRNA levels, promoter-GUS activity, and protoplast transient expression showed that the expression of OsNLA1.1, the most abundant transcript variant, is up-regulated in response to increasing Pi supply. The OsNLA1 promoter region was found to contain an upstream open reading frame that is required for Pi-responsive expression regulation. OsNLA1 promoter activity was observed in roots, ligules, leaves, sheaths, pollen grains, and surrounding the vascular tissues of anthers, suggesting that OsNLA1 is important throughout the development of rice. Disruption of OsNLA1 resulted in increased Pi uptake from roots as well as impaired pollen development and reduced grain production. In summary, our study reveals that Pi-induced OsNLA1 expression regulated by a unique mechanism functions in Pi acquisition, Pi translocation, and reproductive success.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Chien Lu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 741, Taiwan
| | - Ching-Mei Sun
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jo-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
79
|
Yang J, Xie MY, Yang XL, Liu BH, Lin HH. Phosphoproteomic Profiling Reveals the Importance of CK2, MAPKs and CDPKs in Response to Phosphate Starvation in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2785-2796. [PMID: 31424513 DOI: 10.1093/pcp/pcz167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus is one of the most important macronutrients required for plant growth and development. The importance of phosphorylation modification in regulating phosphate (Pi) homeostasis in plants is emerging. We performed phosphoproteomic profiling to characterize proteins whose degree of phosphorylation is altered in response to Pi starvation in rice root. A subset of 554 proteins, including 546 down-phosphorylated and eight up-phosphorylated proteins, exhibited differential phosphorylation in response to Pi starvation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the differentially phosphorylated proteins indicated that RNA processing, transport, splicing and translation and carbon metabolism played critical roles in response to Pi starvation in rice. Levels of phosphorylation of four mitogen-activated protein kinases (MAPKs), including OsMAPK6, five calcium-dependent protein kinases (CDPKs) and OsCK2β3 decreased in response to Pi starvation. The decreased phosphorylation level of OsMAPK6 was confirmed by Western blotting. Mutation of OsMAPK6 led to Pi accumulation under Pi-sufficient conditions. Motif analysis indicated that the putative MAPK, casein kinase 2 (CK2) and CDPK substrates represented about 54.4%, 21.5% and 4.7%, respectively, of the proteins exhibiting differential phosphorylation. Based on the motif analysis, 191, 151 and 46 candidate substrates for MAPK, CK2 and CDPK were identified. These results indicate that modification of phosphorylation profiles provides complementary information on Pi-starvation-induced processes, with CK2, MAPK and CDPK protein kinase families playing key roles in these processes in rice.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Meng-Yang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Xiao-Li Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Bao-Hui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| |
Collapse
|
80
|
Huang L, Li X, Zhang C. Progress in using chemical biology as a tool to uncover novel regulators of plant endomembrane trafficking. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:106-113. [PMID: 31546132 DOI: 10.1016/j.pbi.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 05/20/2023]
Abstract
The regulated dynamic transport of materials among organelles through endomembrane trafficking pathways is essential for plant growth, development, and environmental adaptation, and thus is a major topic of plant biology research. Large-scale chemical library screens have identified small molecules that could potentially inhibit different plant endomembrane trafficking steps. Further characterization of these molecules has provided valuable tools for understanding plant endomembrane trafficking and uncovered novel regulators of trafficking processes.
Collapse
Affiliation(s)
- Lei Huang
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, United States; Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States
| | - Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, United States; Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, United States; Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States.
| |
Collapse
|
81
|
Park S, Song B, Shen W, Ding SY. A mutation in the catalytic domain of cellulose synthase 6 halts its transport to the Golgi apparatus. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6071-6083. [PMID: 31559423 DOI: 10.1093/jxb/erz369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/20/2019] [Indexed: 05/20/2023]
Abstract
Cellulose microfibrils, which form the mechanical framework of the plant cell wall, are synthesized by the cellulose synthase complex in the plasma membrane. Here, we introduced point mutations into the catalytic domain of cellulose synthase 6 (CESA6) in Arabidopsis to produce enhanced yellow fluorescent protein (EYFP)-tagged CESA6D395N, CESA6Q823E, and CESA6D395N+Q823E, which were exogenously produced in a cesa6 null mutant, prc1-1. Comparison of these mutants in terms of plant phenotype, cellulose content, cellulose synthase complex dynamics, and organization of cellulose microfibrils showed that prc1-1 expressing EYFP:CESA6D395N or CESA6D395N+Q823E was nearly the same as prc1-1, whereas prc1-1 expressing EYFP:CESA6Q823E was almost identical to wild type and prc1-1 expressing EYFP:WT CESA6, indicating that CESA6D395N and CESA6D395N+Q823E do not function in cellulose synthesis, while CESA6Q823E is still functionally active. Total internal reflection fluorescence microscopy and confocal microscopy were used to monitor the subcellular localization of these proteins. We found that EYFP:CESA6D395N and EYFP:CESA6D395N+Q823E were absent from subcellular regions containing the Golgi and the plasma membrane, and they appeared to be retained in the endoplasmic reticulum. By contrast, EYFP:CESA6Q823E had a normal localization pattern, like that of wild-type EYFP:CESA6. Our results demonstrate that the D395N mutation in CESA6 interrupts its normal transport to the Golgi and its eventual participation in cellulose synthase complex assembly.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
- Great Lakes Bioenergy Center, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
| | - Bo Song
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
| | - Wei Shen
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
- Great Lakes Bioenergy Center, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
- Great Lakes Bioenergy Center, Michigan State University, 612 Wilson Road, East Lansing, MI, USA
| |
Collapse
|
82
|
Salizzato V, Zanin S, Borgo C, Lidron E, Salvi M, Rizzuto R, Pallafacchina G, Donella-Deana A. Protein kinase CK2 subunits exert specific and coordinated functions in skeletal muscle differentiation and fusogenic activity. FASEB J 2019; 33:10648-10667. [PMID: 31268746 PMCID: PMC6766657 DOI: 10.1096/fj.201801833rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Casein kinase 2 (CK2) is a tetrameric protein kinase composed of 2 catalytic (α and α') and 2 regulatory β subunits. Our study provides the first molecular and cellular characterization of the different CK2 subunits, highlighting their individual roles in skeletal muscle specification and differentiation. Analysis of C2C12 cell knockout for each CK2 subunit reveals that: 1) CK2β is mandatory for the expression of the muscle master regulator myogenic differentiation 1 in proliferating myoblasts, thus controlling both myogenic commitment and subsequent muscle-specific gene expression and myotube formation; 2) CK2α is involved in the activation of the muscle-specific gene program; and 3) CK2α' activity regulates myoblast fusion by mediating plasma membrane translocation of fusogenic proteins essential for membrane coalescence, like myomixer. Accordingly, CK2α' overexpression in C2C12 cells and in mouse regenerating muscle is sufficient to increase myofiber size and myonuclei content via enhanced satellite cell fusion. Consistent with these results, pharmacological inhibition of CK2 activity substantially blocks the expression of myogenic markers and muscle cell fusion both in vitro in C2C12 and primary myoblasts and in vivo in mouse regenerating muscle and zebrafish development. Overall, our work describes the specific and coordinated functions of CK2 subunits in orchestrating muscle differentiation and fusogenic activity, highlighting CK2 relevance in the physiopathology of skeletal muscle tissue.-Salizzato, V., Zanin, S., Borgo, C., Lidron, E., Salvi, M., Rizzuto, R., Pallafacchina, G., Donella-Deana, A. Protein kinase CK2 subunits exert specific and coordinated functions in skeletal muscle differentiation and fusogenic activity.
Collapse
Affiliation(s)
- Valentina Salizzato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Italian National Research Council (CNR) Neuroscience Institute, Padua, Italy
| | - Sofia Zanin
- Department of Medicine, University of Padua, Padua, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Elisa Lidron
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Giorgia Pallafacchina
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Italian National Research Council (CNR) Neuroscience Institute, Padua, Italy
| | | |
Collapse
|
83
|
Xie X, Hu W, Fan X, Chen H, Tang M. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1172. [PMID: 31616454 PMCID: PMC6775243 DOI: 10.3389/fpls.2019.01172] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/27/2019] [Indexed: 05/16/2023]
Abstract
Phosphorus (P), zinc (Zn), and iron (Fe) are three essential elements for plant survival, and severe deficiencies in these nutrients lead to growth retardation and crop yield reduction. This review synthesizes recent progress on how plants coordinate the acquisition and signaling of Pi, Zn, and Fe from surrounding environments and which genes are involved in these Pi-Zn-Fe interactions with the aim of better understanding of the cross-talk between these macronutrient and micronutrient homeostasis in plants. In addition, identification of genes important for interactions between Pi, Zn, and/or Fe transport and signaling is a useful target for breeders for improvement in plant nutrient acquisition. Furthermore, to understand these processes in arbuscular mycorrhizal plants, the preliminary examination of interactions between Pi, Zn, and Fe homeostasis in some relevant crop species has been performed at the physiological level and is summarized in this article. In conclusion, the development of integrative study of cross-talks between Pi, Zn, and Fe signaling pathway in mycorrhizal plants will be essential for sustainable agriculture all around the world.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoning Fan
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
84
|
Pan W, Wu Y, Xie Q. Regulation of Ubiquitination Is Central to the Phosphate Starvation Response. TRENDS IN PLANT SCIENCE 2019; 24:755-769. [PMID: 31176527 DOI: 10.1016/j.tplants.2019.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 05/22/2023]
Abstract
As sessile organisms, plants have developed numerous strategies to overcome the limiting availability of the essential nutrient phosphate in nature. Recent studies reveal that post-translational modification (PTM) by ubiquitination is an important and central regulation mechanism in the plant phosphate starvation response (PSR). Ubiquitination precisely modulates the stability and trafficking of proteins in response to the heterogeneous phosphate supplement. Induction of autophagy provides novel insights into the molecular mechanisms under phosphate starvation. In this review, we present and discuss novel findings on the regulation of diverse PSRs through ubiquitination. Resolving these regulation mechanisms will pave the way to improve phosphate acquisition and utilization efficiency in crops.
Collapse
Affiliation(s)
- Wenbo Pan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
85
|
Xie MY, Tian ZH, Yang XL, Liu BH, Yang J, Lin HH. The role of OsNLA1 in regulating arsenate uptake and tolerance in rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 236:15-22. [PMID: 30849693 DOI: 10.1016/j.jplph.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) contamination in agricultural soil can cause phytotoxicity and lead to As accumulation in crops. Rice (Oryza sativa) feeds half of the world's population, but the molecular mechanism of As detoxification is not well understood in rice. In this study, the role of OsNLA1 in arsenate uptake and tolerance in rice was analyzed. OsNLA1 expression was induced in response to As(V) stress. The osnla1 mutant was more sensitive to As(V) stress than those of the wild type (WT). When exposed to As(V), mutation of OsNLA1 resulted in 30% greater As accumulation in roots and shoots of the WT. Although OsPT8 expression was induced after As(V) exposure, the amount of its protein was reduced. Unexpectedly, the osnla1 mutant showed a significant increase in punctate structures of OsPT8-GFP in response to As(V) stress, while the amount of the OsPT8-GFP protein in the osnla1 mutant was greater than in the WT. Combining OsNLA1 mutation with OsPT8 overexpression resulted in As(V) hypersensitivity, As hyperaccumulation, and higher shoot to root ratio of As in rice. These results indicated that OsNLA1 plays an important role in arsenate uptake and tolerance, mainly via regulating the amount of Pi transporters.
Collapse
Affiliation(s)
- Meng-Yang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zhi-Hui Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiao-Li Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Bao-Hui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
86
|
Chang MX, Gu M, Xia YW, Dai XL, Dai CR, Zhang J, Wang SC, Qu HY, Yamaji N, Feng Ma J, Xu GH. OsPHT1;3 Mediates Uptake, Translocation, and Remobilization of Phosphate under Extremely Low Phosphate Regimes. PLANT PHYSIOLOGY 2019; 179:656-670. [PMID: 30567970 PMCID: PMC6426419 DOI: 10.1104/pp.18.01097] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/10/2018] [Indexed: 05/19/2023]
Abstract
Plant roots rely on inorganic orthophosphate (Pi) transporters to acquire soluble Pi from soil solutions that exists at micromolar levels in natural ecosystems. Here, we functionally characterized a rice (Oryza sativa) Pi transporter, Os Phosphate Transporter-1;3 (OsPHT1;3), that mediates Pi uptake, translocation, and remobilization. OsPHT1;3 was directly regulated by Os Phosphate Starvation Response-2 and, in response to Pi starvation, showed enhanced expression in young leaf blades and shoot basal regions and even more so in roots and old leaf blades. OsPHT1;3 was able to complement a yeast mutant strain defective in five Pi transporters and mediate Pi influx in Xenopus laevis oocytes. Overexpression of OsPHT1;3 led to increased Pi concentration both in roots and shoots. However, unlike that reported for other known OsPHT1 members that facilitate Pi uptake at relatively higher Pi levels, mutation of OsPHT1;3 impaired Pi uptake and root-to-shoot Pi translocation only when external Pi concentration was below 5 μm Moreover, in basal nodes, the expression of OsPHT1;3 was restricted to the phloem of regular vascular bundles and enlarged vascular bundles. An isotope labeling experiment with 32P showed that ospht1;3 mutant lines were impaired in remobilization of Pi from source to sink leaves. Furthermore, overexpression and mutation of OsPHT1;3 led to reciprocal alteration in the expression of OsPHT1;2 and several other OsPHT1 genes. Yeast-two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays all demonstrated a physical interaction between OsPHT1;3 and OsPHT1;2. Taken together, our results indicate that OsPHT1;3 acts as a crucial factor for Pi acquisition, root-to-shoot Pi translocation, and redistribution of phosphorus in plants growing in environments with extremely low Pi levels.
Collapse
Affiliation(s)
- Ming Xing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Yu Wei Xia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Xiao Li Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Chang Rong Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Shi Chao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Hong Ye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Guo Hua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing 210095, China
| |
Collapse
|
87
|
Zeng H, Zhang X, Zhang X, Pi E, Xiao L, Zhu Y. Early Transcriptomic Response to Phosphate Deprivation in Soybean Leaves as Revealed by RNA-Sequencing. Int J Mol Sci 2018; 19:E2145. [PMID: 30041471 PMCID: PMC6073939 DOI: 10.3390/ijms19072145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/15/2023] Open
Abstract
Low phosphate (Pi) availability is an important limiting factor affecting soybean production. However, the underlying molecular mechanisms responsible for low Pi stress response and tolerance remain largely unknown, especially for the early signaling events under low Pi stress. Here, a genome-wide transcriptomic analysis in soybean leaves treated with a short-term Pi-deprivation (24 h) was performed through high-throughput RNA sequencing (RNA-seq) technology. A total of 533 loci were found to be differentially expressed in response to Pi deprivation, including 36 mis-annotated loci and 32 novel loci. Among the differentially expressed genes (DEGs), 303 were induced and 230 were repressed by Pi deprivation. To validate the reliability of the RNA-seq data, 18 DEGs were randomly selected and analyzed by quantitative RT-PCR (reverse transcription polymerase chain reaction), which exhibited similar fold changes with RNA-seq. Enrichment analyses showed that 29 GO (Gene Ontology) terms and 8 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were significantly enriched in the up-regulated DEGs and 25 GO terms and 16 KEGG pathways were significantly enriched in the down-regulated DEGs. Some DEGs potentially involved in Pi sensing and signaling were up-regulated by short-term Pi deprivation, including five SPX-containing genes. Some DEGs possibly associated with water and nutrient uptake, hormonal and calcium signaling, protein phosphorylation and dephosphorylation and cell wall modification were affected at the early stage of Pi deprivation. The cis-elements of PHO (phosphatase) element, PHO-like element and P responsive element were present more frequently in promoter regions of up-regulated DEGs compared to that of randomly-selected genes in the soybean genome. Our transcriptomic data showed an intricate network containing transporters, transcription factors, kinases and phosphatases, hormone and calcium signaling components is involved in plant responses to early Pi deprivation.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Xiajun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Xin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Liang Xiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
88
|
Srivastava S, Upadhyay MK, Srivastava AK, Abdelrahman M, Suprasanna P, Tran LSP. Cellular and Subcellular Phosphate Transport Machinery in Plants. Int J Mol Sci 2018; 19:ijms19071914. [PMID: 29966288 PMCID: PMC6073359 DOI: 10.3390/ijms19071914] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
Phosphorus (P) is an essential element required for incorporation into several biomolecules and for various biological functions; it is, therefore, vital for optimal growth and development of plants. The extensive research on identifying the processes underlying the uptake, transport, and homeostasis of phosphate (Pi) in various plant organs yielded valuable information. The transport of Pi occurs from the soil into root epidermal cells, followed by loading into the root xylem vessels for distribution into other plant organs. Under conditions of Pi deficiency, Pi is also translocated from the shoot to the root via the phloem. Vacuoles act as a storage pool for extra Pi, enabling its delivery to the cytosol, a process which plays an important role in the homeostatic control of cytoplasmic Pi levels. In mitochondria and chloroplasts, Pi homeostasis regulates ATP synthase activity to maintain optimal ATP levels. Additionally, the endoplasmic reticulum functions to direct Pi transporters and Pi toward various locations. The intracellular membrane potential and pH in the subcellular organelles could also play an important role in the kinetics of Pi transport. The presented review provides an overview of Pi transport mechanisms in subcellular organelles, and also discusses how they affect Pi balancing at cellular, tissue, and whole-plant levels.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Munish Kumar Upadhyay
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, 1390 Hamaska, Tottori 680-0001, Japan.
- Botany Department, Faculty of Sciences, Aswan University, Aswan 81528, Egypt.
| | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Lam-Son Phan Tran
- Plant Stress Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Kanagawa, Japan.
| |
Collapse
|
89
|
Kopriva S, Chu C. Are we ready to improve phosphorus homeostasis in rice? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3515-3522. [PMID: 29788117 DOI: 10.1093/jxb/ery163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/24/2018] [Indexed: 05/21/2023]
Abstract
Phosphorus (P) is an essential macronutrient which often limits plant growth, but the phosphate rock used for fertilizer production is a finite resource. On the other hand, large amounts of P compounds are entering surface waters, leading to eutrophication. Therefore, improvement of phosphate use efficiency of crop plants is a major task for plant science. Rice as a staple crop has recently been a focus of such efforts with several major discoveries. New transporters controlling phosphate homeostasis in rice have been discovered. Manipulation of expression of the corresponding genes improves different components of phosphate use efficiency, such as delivery of phosphate to the developing seeds and synthesis of phytic acid. Here these new findings are discussed in the context of general P nutrition and with the aim of finding out how far we can optimize P homeostasis in rice.
Collapse
Affiliation(s)
- Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, Cologne, Germany
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
90
|
Ye Q, Wang H, Su T, Wu WH, Chen YF. The Ubiquitin E3 Ligase PRU1 Regulates WRKY6 Degradation to Modulate Phosphate Homeostasis in Response to Low-Pi Stress in Arabidopsis. THE PLANT CELL 2018; 30:1062-1076. [PMID: 29567663 PMCID: PMC6002188 DOI: 10.1105/tpc.17.00845] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/27/2018] [Accepted: 03/13/2018] [Indexed: 05/19/2023]
Abstract
Since phosphorus is an essential nutrient for plants, plants have evolved a number of adaptive mechanisms to respond to changes in phosphate (Pi) supply. Previously, we reported that the transcription factor WRKY6 modulates Pi homeostasis by downregulating PHOSPHATE1 (PHO1) expression and that WRKY6 is degraded during Pi starvation in Arabidopsis thaliana However, the molecular mechanism underlying low-Pi-induced WRKY6 degradation was unknown. Here, we report that a ubiquitin E3 ligase, PHOSPHATE RESPONSE UBIQUITIN E3 LIGASE1 (PRU1), modulates WRKY6 protein levels in response to low-Pi stress. A pru1 mutant was more sensitive than the wild type to Pi-deficient conditions, exhibiting a reduced Pi contents in the shoot, similar to the pho1-2 mutant and WRKY6-overexpressing line. PRU1 interacted with WRKY6 in vitro and in vivo. Under low-Pi stress, the ubiquitination and subsequent degradation of WRKY6, as well as the consequential enhancement of PHO1 expression, were impaired in pru1 PRU1 complementation lines displayed no obvious differences compared with wild-type plants. Further genetic analysis showed that disruption of WRKY6 abolished the low-Pi sensitivity of pru1, indicating that WRKY6 functioned downstream of PRU1. Taken together, this study uncovers a mechanism by which PRU1 modulates Pi homeostasis, through regulating the abundance of WRKY6 in response to low-Pi stress in Arabidopsis.
Collapse
Affiliation(s)
- Qing Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tong Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
91
|
Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, Zhang Q, Wu C. Rice Functional Genomics Research: Past Decade and Future. MOLECULAR PLANT 2018; 11:359-380. [PMID: 29409893 DOI: 10.1016/j.molp.2018.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/15/2018] [Accepted: 01/23/2018] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa) is a major staple food crop for more than 3.5 billion people worldwide. Understanding the regulatory mechanisms of complex agronomic traits in rice is critical for global food security. Rice is also a model plant for genomics research of monocotyledons. Thanks to the rapid development of functional genomic technologies, over 2000 genes controlling important agronomic traits have been cloned, and their molecular biological mechanisms have also been partially characterized. Here, we briefly review the advances in rice functional genomics research during the past 10 years, including a summary of functional genomics platforms, genes and molecular regulatory networks that regulate important agronomic traits, and newly developed tools for gene identification. These achievements made in functional genomics research will greatly facilitate the development of green super rice. We also discuss future challenges and prospects of rice functional genomics research.
Collapse
Affiliation(s)
- Yan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lingling Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xuehui Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhukuan Cheng
- National Center for Plant Gene Research, State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Han
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
92
|
Yang J, Wang L, Mao C, Lin H. Characterization of the rice NLA family reveals a key role for OsNLA1 in phosphate homeostasis. RICE (NEW YORK, N.Y.) 2017; 10:52. [PMID: 29282559 PMCID: PMC5745205 DOI: 10.1186/s12284-017-0193-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/12/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Phosphate (Pi), an essential mineral nutrient for plant development and reproduction, is one of the main components of fertilizers in modern agriculture. Previous research demonstrated that AtNLA1 mediates ubiquitination of Pi transporters in the plasma membrane and triggers their endocytosis and degradation in Arabidopsis. In this study, we researched the function of NLA homologous proteins in Pi homeostasis in rice. FINDINGS Two OsNLA homologs from rice (Oryza sativa L.) were identified by bioinformatics and phylogenetic analysis and designated OsNLA1 and OsNLA2. The OsNLA1 clustered with Arabidopsis AtNLA1, was expressed higher than OsNLA2 and was transcriptionally repressed under Pi-deficient condition. Loss-of-function of OsNLA1 caused P overaccumulation and growth inhibitions in both root and shoot under Pi-sufficient condition. Furthermore, mutation of OsNLA1 affected expression of Pi tranporters and root hair development under Pi-sufficient and/or Pi-deficient conditions. CONCLUSIONS OsNLA1 plays a key role in maintaining phosphate homeostasis in rice.
Collapse
Affiliation(s)
- Jian Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064 China
| | - Lan Wang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064 China
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041 China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, 610064 China
| |
Collapse
|
93
|
Puga MI, Rojas-Triana M, de Lorenzo L, Leyva A, Rubio V, Paz-Ares J. Novel signals in the regulation of Pi starvation responses in plants: facts and promises. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:40-49. [PMID: 28587933 DOI: 10.1016/j.pbi.2017.05.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/19/2017] [Indexed: 05/10/2023]
Abstract
Plants have evolved numerous adaptive developmental and metabolic responses to cope with growth in conditions of limited phosphate (Pi). Regulation of these Pi starvation responses (PSR) at the organism level involves not only cellular Pi perception in different organs, but also inter-organ communication of Pi levels via systemic signaling. Here we summarize recent discoveries on Pi starvation sensing and signaling, with special emphasis on structure-function studies that showed a role for inositol polyphosphates (InsP) as intracellular Pi signals, and on genomic studies that identified a large number of mRNAs with inter-organ mobility, which provide an immense source of potential systemic signals in the control of PSR and other responses.
Collapse
Affiliation(s)
- María Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Mónica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Vicente Rubio
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
94
|
Chen L, Liao H. Engineering crop nutrient efficiency for sustainable agriculture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:710-735. [PMID: 28600834 DOI: 10.1111/jipb.12559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/21/2023]
Abstract
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency.
Collapse
Affiliation(s)
- Liyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
95
|
Ham BK, Chen J, Yan Y, Lucas WJ. Insights into plant phosphate sensing and signaling. Curr Opin Biotechnol 2017; 49:1-9. [PMID: 28732264 DOI: 10.1016/j.copbio.2017.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022]
Abstract
Phosphorus (P) is a macronutrient essential for plant growth, therefore, soil P level is critical to crop yield potential in agriculture. As Pi levels limit crop yield under many soil conditions, it is crucial to understand the mechanisms by which plants adapt to low-phosphate (Pi) soil conditions and interact with their soil microbiome to improve crop P use efficiency, in order to ensure global food security. Recent advances have been made towards achieving this goal through advancing our understanding of the plant's response to limiting Pi conditions to maintain P homeostasis. In this review, we assess advances made in local and systemic Pi sensing and signaling, and in the molecular events for Pi absorption, redistribution and plant-symbiont interactions. These findings offer important avenues for bio-engineering of agricultural crops with traits for enhanced Pi acquisition and utilization.
Collapse
Affiliation(s)
- Byung-Kook Ham
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | - Jieyu Chen
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yan Yan
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
96
|
Wang F, Deng M, Xu J, Zhu X, Mao C. Molecular mechanisms of phosphate transport and signaling in higher plants. Semin Cell Dev Biol 2017. [PMID: 28648582 DOI: 10.1016/j.semcdb.2017.06.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. To adapt to low inorganic-phosphate (Pi) environments, plants have evolved complex mechanisms and pathways that regulate the acquisition and remobilization of Pi and maintain P homeostasis. These mechanisms are regulated by complex gene regulatory networks through the functions of Pi transporters (PTs) and Pi starvation-induced (PSI) genes. This review summarizes recent progress in determining the molecular regulatory mechanisms of phosphate transporters and the Pi signaling network in the dicot Arabidopsis (Arabidopsis thaliana) and the monocot rice (Oryza sativa L.). Recent advances in this field provide a reference for understanding plant Pi signaling and specific mechanisms that mediate plant adaptation to environments with limited Pi availability. We propose potential biotechnological applications of known genes to develop plant cultivars with improved Pi uptake and use efficiency.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Meiju Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinlu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
97
|
Gu M, Zhang J, Li H, Meng D, Li R, Dai X, Wang S, Liu W, Qu H, xu G. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3603-3615. [PMID: 28549191 PMCID: PMC5853628 DOI: 10.1093/jxb/erx174] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
The adaptive responses of plants to phosphate (Pi) starvation stress are fine-tuned by an elaborate regulatory network. In this study, we identified and characterized a novel Pi starvation-responsive gene, MYB1, encoding an R2R3-type transcription factor in rice. MYB1 was transcriptionally induced in leaf sheaths and old leaf blades. It was localized to the nucleus and expressed mainly in vascular tissues. Mutation of MYB1 led to an increase in Pi uptake and accumulation, accompanied by altered expression of a subset of Pi transporters and several genes involved in Pi starvation signaling. Furthermore, MYB1 affected the elongation of the primary root in a Pi-dependent manner and lateral roots in a Pi-independent manner. Moreover, gibberellic acid (GA)-triggered lateral root elongation was largely suppressed in wild-type plants under Pi starvation conditions, whereas this suppression was partially rescued in myb1 mutant lines, correlating with the up-regulation of a GA biosynthetic gene upon MYB1 mutation. Taken together, the findings of this study highlight the role of MYB1 as a regulator involved in both Pi starvation signaling and GA biosynthesis. Such a co-regulator might have broad implications for the study of cross-talk between nutrient stress and other signaling pathways.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Huanhuan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Daqian Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ran Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaoli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
- Correspondence:
| |
Collapse
|
98
|
Luan M, Tang RJ, Tang Y, Tian W, Hou C, Zhao F, Lan W, Luan S. Transport and homeostasis of potassium and phosphate: limiting factors for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3091-3105. [PMID: 27965362 DOI: 10.1093/jxb/erw444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Potassium (K) and phosphate (Pi) are both macronutrients essential for plant growth and crop production, but the unrenewable resources of phosphorus rock and potash have become limiting factors for food security. One critical measure to help solve this problem is to improve nutrient use efficiency (NUE) in plants by understanding and engineering genetic networks for ion uptake, translocation, and storage. Plants have evolved multiple systems to adapt to various nutrient conditions for growth and production. Within the NUE networks, transport proteins and their regulators are the primary players for maintaining nutrient homeostasis and could be utilized to engineer high NUE traits in crop plants. A large number of publications have detailed K+ and Pi transport proteins in plants over the past three decades. Meanwhile, the discovery and validation of their regulatory mechanisms are fast-track topics for research. Here, we provide an overview of K+ and Pi transport proteins and their regulatory mechanisms, which participate in the uptake, translocation, storage, and recycling of these nutrients in plants.
Collapse
Affiliation(s)
- Mingda Luan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yumei Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Wang Tian
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Congong Hou
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Fugeng Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Wenzhi Lan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
99
|
Yue W, Ying Y, Wang C, Zhao Y, Dong C, Whelan J, Shou H. OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1040-1051. [PMID: 28229491 DOI: 10.1111/tpj.13516] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 05/20/2023]
Abstract
Inorganic phosphate (Pi) transporters (PTs) play vital roles in Pi uptake and translocation in plants. Under Pi sufficient conditions, PTs are degraded to prevent excess Pi accumulation. The mechanisms targeting PTs for degradation are not fully elucidated. In this study, we found that the Oryza sativa (rice) ortholog of Arabidopsis thaliana nitrogen limitation adaptation (NLA), OsNLA1 protein, a RING-type E3 ubiquitin-ligase, was predominantly localized in the plasma membrane, and could interact with rice phosphate transporters OsPT2 and OsPT8. Mutation of the 265th cysteine residue in OsNLA1 that was required for ubiquitination prevented breakdown of OsPT2/PT8, suggesting OsNLA1 targeted OsPT2/PT8 for degradation. Mutation in OsNLA1 (osnla1) led to a significant increase of Pi concentration in leaves in a nitrate-independent manner. Overexpression of OsNLA1 or repression of OsPT2/PT8 restored the high leaf Pi concentration in osnla1 mutants to a level similar to that of wild-type plants. In contrast to what has been observed in Arabidopsis, the transcript abundance of OsNLA1 did not decrease under Pi limited conditions or in OsmiR827 (microRNA827)- or OsPHR2 (PHOSPHATE STARVATION RESPONSE 2)-overexpressing transgenic lines. Moreover, there was no interaction of OsNLA1 and OsPHO2, an E2 ubiquitin-conjugase, suggesting that OsPHO2 was not the partner of OsNLA1 involved in ubiquitin-mediated PT degradation. Our results show that OsNLA1 is involved in maintaining phosphate homeostasis in rice by mediating the degradation of OsPT2 and OsPT8, and OsNLA1 differs from the ortholog in Arabidopsis in several aspects.
Collapse
Affiliation(s)
- Wenhao Yue
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yinghui Ying
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Chuang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Changhe Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Victoria, 3086, Australia
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| |
Collapse
|
100
|
Gao W, Lu L, Qiu W, Wang C, Shou H. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice. PLANT & CELL PHYSIOLOGY 2017; 58:885-892. [PMID: 28371895 DOI: 10.1093/pcp/pcx041] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/14/2017] [Indexed: 05/21/2023]
Abstract
During phosphate (Pi) starvation or leaf senescence, the accumulation of intracellular and extracellular purple acid phosphatases (PAPs) increases in plants in order to scavenge organic phosphorus (P). In this study, we demonstrated that a PAP-encoding gene in rice, OsPAP26, is constitutively expressed in all tissues. While the abundance of OsPAP26 transcript is not affected by Pi supply, it is up-regulated during leaf senescence. Furthermore, Pi deprivation and leaf senescence greatly increased the abundance of OsPAP26 protein. Overexpression or RNA interference (RNAi) of OsPAP26 in transgenic rice significantly increased or reduced APase activities, respectively, in leaves, roots and growth medium. Compared with wild-type (WT) plants, Pi concentrations of OsPAP26-overexpressing plants increased in the non-senescing leaves and decreased in the senescing leaves. The increased remobilization of Pi from the senescing leaves to non-senescing leaves in the OsPAP26-overexpressing plants resulted in better growth performance when plants were grown in Pi-depleted condition. In contrast, OsPAP26-RNAi plants retained more Pi in the senescing leaves, and were more sensitive to Pi starvation stress. OsPAP26 was found to localize to the apoplast of rice cells. Western blot analysis of protein extracts from callus growth medium confirmed that OsPAP26 is a secreted PAP. OsPAP26-overexpressing plants were capable of converting more ATP into inorganic Pi in the growth medium, which further supported the potential role of OsPAP26 in utilizing organic P in the rhizosphere. In summary, we concluded that OsPAP26 performs dual functions in plants: Pi remobilization from senescing to non-senescing leaves; and organic P utilization.
Collapse
Affiliation(s)
- Wenwen Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | - Linghong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | - Wenmin Qiu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, PR China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang, PR China
| | - Chuang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, PR China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|