51
|
Itabashi E, Osabe K, Fujimoto R, Kakizaki T. Epigenetic regulation of agronomical traits in Brassicaceae. PLANT CELL REPORTS 2018; 37:87-101. [PMID: 29058037 DOI: 10.1007/s00299-017-2223-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/05/2017] [Indexed: 05/08/2023]
Abstract
Epigenetic regulation, covalent modification of DNA and changes in histone proteins are closely linked to plant development and stress response through flexibly altering the chromatin structure to regulate gene expression. In this review, we will illustrate the importance of epigenetic influences by discussing three agriculturally important traits of Brassicaceae. (1) Vernalization, an acceleration of flowering by prolonged cold exposure regulated through epigenetic silencing of a central floral repressor, FLOWERING LOCUS C. This is associated with cold-dependent repressive histone mark accumulation, which confers competency of consequence vegetative-to-reproductive phase transition. (2) Hybrid vigor, in which an F1 hybrid shows superior performance to the parental lines. Combination of distinct epigenomes with different DNA methylation states between parental lines is important for increase in growth rate in a hybrid progeny. This is independent of siRNA-directed DNA methylation but dependent on the chromatin remodeler DDM1. (3) Self-incompatibility, a reproductive mating system to prevent self-fertilization. This is controlled by the S-locus consisting of SP11 and SRK which are responsible for self/non-self recognition. Because self-incompatibility in Brassicaceae is sporophytically controlled, there are dominance relationships between S haplotypes in the stigma and pollen. The dominance relationships in the pollen rely on de novo DNA methylation at the promoter region of a recessive allele, which is triggered by siRNA production from a flanking region of a dominant allele.
Collapse
Affiliation(s)
- Etsuko Itabashi
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie, 514-2392, Japan.
| | - Kenji Osabe
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami, Okinawa, 904-0495, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Tomohiro Kakizaki
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| |
Collapse
|
52
|
Chantha SC, Herman AC, Castric V, Vekemans X, Marande W, Schoen DJ. The unusual S locus of Leavenworthia is composed of two sets of paralogous loci. THE NEW PHYTOLOGIST 2017; 216:1247-1255. [PMID: 28906557 DOI: 10.1111/nph.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/25/2017] [Indexed: 05/28/2023]
Abstract
The Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences. An SRK-positive Bacterial Artificial Chromosome clone was found to contain complete SRK and SCR sequences located close by one another in the derived genomic position of the Leavenworthia S locus, and in place of the more typical Lal2 and SCRL sequences. These sequences are expressed in stigmas and anthers, respectively, and crossing data show that the SRK/SCR haplotype is functional in self-incompatibility. Population surveys indicate that < 5% of Leavenworthia S loci possess such alleles. An ancestral translocation or recombination event involving SRK/SCR and Lal2/SCRL likely occurred, together with neofunctionalization of Lal2/SCRL, and both haplotype groups now function as Leavenworthia S locus alleles. These findings suggest that S locus alleles can have distinctly different evolutionary origins.
Collapse
Affiliation(s)
- Sier-Ching Chantha
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
| | - Adam C Herman
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
- Department of Plant Biology, University of Minnesota, St Paul, MN, 55108, USA
| | - Vincent Castric
- Unité Evo-Eco-Paléo (EEP) - UMR 8198, CNRS/Université de Lille - Sciences et Technologies, Villeneuve d'Ascq Cedex, F-59655, France
| | - Xavier Vekemans
- Unité Evo-Eco-Paléo (EEP) - UMR 8198, CNRS/Université de Lille - Sciences et Technologies, Villeneuve d'Ascq Cedex, F-59655, France
| | - William Marande
- Institut National de la Recherche Agronomique, 31326, Castanet Tolosan Cedex, France
| | - Daniel J Schoen
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC, Canada, H3A1B1
| |
Collapse
|
53
|
Koseva B, Crawford DJ, Brown K, Mort ME, Kelly JK. The genetic breakdown of sporophytic self-incompatibility in Tolpis coronopifolia (Asteraceae). THE NEW PHYTOLOGIST 2017; 216:1256-1267. [PMID: 28892151 PMCID: PMC5675808 DOI: 10.1111/nph.14759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/14/2017] [Indexed: 05/31/2023]
Abstract
Angiosperm diversity has been shaped by mating system evolution, with the most common transition from outcrossing to self-fertilizing. To investigate the genetic basis of this transition, we performed crosses between two species endemic to the Canary Islands, the self-compatible (SC) species Tolpis coronopifolia and its self-incompatible (SI) relative Tolpis santosii. We scored self-compatibility as self-seed set of recombinant plants within two F2 populations. To map and genetically characterize the breakdown of SI, we built a draft genome sequence of T. coronopifolia, genotyped F2 plants using multiplexed shotgun genotyping (MSG), and located MSG markers to the genome sequence. We identified a single quantitative trait locus (QTL) that explains nearly all variation in self-seed set in both F2 populations. To identify putative causal genetic variants within the QTL, we performed transcriptome sequencing on mature floral tissue from both SI and SC species, constructed a transcriptome for each species, and then located each predicted transcript to the T. coronopifolia genome sequence. We annotated each predicted gene within the QTL and found two strong candidates for SI breakdown. Each gene has a coding sequence insertion/deletion mutation within the SC species that produces a truncated protein. Homologs of each gene have been implicated in pollen development, pollen germination, and pollen tube growth in other species.
Collapse
Affiliation(s)
- Boryana Koseva
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Daniel J. Crawford
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Keely Brown
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
| | - Mark E. Mort
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS 66045-7534, USA
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045-7534, USA
| |
Collapse
|
54
|
Furstenau TN, Cartwright RA. The impact of self-incompatibility systems on the prevention of biparental inbreeding. PeerJ 2017; 5:e4085. [PMID: 29188143 PMCID: PMC5703146 DOI: 10.7717/peerj.4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/02/2017] [Indexed: 12/05/2022] Open
Abstract
Inbreeding in hermaphroditic plants can occur through two different mechanisms: biparental inbreeding, when a plant mates with a related individual, or self-fertilization, when a plant mates with itself. To avoid inbreeding, many hermaphroditic plants have evolved self-incompatibility (SI) systems which prevent or limit self-fertilization. One particular SI system-homomorphic SI-can also reduce biparental inbreeding. Homomorphic SI is found in many angiosperm species, and it is often assumed that the additional benefit of reduced biparental inbreeding may be a factor in the success of this SI system. To test this assumption, we developed a spatially-explicit, individual-based simulation of plant populations that displayed three different types of homomorphic SI. We measured the total level of inbreeding avoidance by comparing each population to a self-compatible population (NSI), and we measured biparental inbreeding avoidance by comparing to a population of self-incompatible plants that were free to mate with any other individual (PSI). Because biparental inbreeding is more common when offspring dispersal is limited, we examined the levels of biparental inbreeding over a range of dispersal distances. We also tested whether the introduction of inbreeding depression affected the level of biparental inbreeding avoidance. We found that there was a statistically significant decrease in autozygosity in each of the homomorphic SI populations compared to the PSI population and, as expected, this was more pronounced when seed and pollen dispersal was limited. However, levels of homozygosity and inbreeding depression were not reduced. At low dispersal, homomorphic SI populations also suffered reduced female fecundity and had smaller census population sizes. Overall, our simulations showed that the homomorphic SI systems had little impact on the amount of biparental inbreeding in the population especially when compared to the overall reduction in inbreeding compared to the NSI population. With further study, this observation may have important consequences for research into the origin and evolution of homomorphic self-incompatibility systems.
Collapse
Affiliation(s)
- Tara N. Furstenau
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
- The School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, United States of America
| | - Reed A. Cartwright
- The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
55
|
Nasrallah JB. Plant mating systems: self-incompatibility and evolutionary transitions to self-fertility in the mustard family. Curr Opin Genet Dev 2017; 47:54-60. [PMID: 28915488 DOI: 10.1016/j.gde.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
Flowering plants have evolved diverse mechanisms that promote outcrossing. The most widespread of these outbreeding devices are self-incompatibility systems, the highly selective prefertilization mating barriers that prevent self-fertilization by disrupting pollen-pistil interactions. Despite the advantages of outcrossing, loss of self-incompatibility has occurred repeatedly in many plant families. In the mustard family, the highly polymorphic receptors and ligands that mediate the recognition and inhibition of self-pollen in self-incompatibility have been characterized and the 3D structure of the receptor-ligand complex has been solved. Sequence analyses and empirical studies in self-incompatible and self-compatible species are elucidating the genetic basis of switches from the outcrossing to selfing modes of mating and beginning to provide clues to the diversification of the self recognition repertoire.
Collapse
Affiliation(s)
- June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
56
|
Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside? Int J Mol Sci 2017; 18:ijms18061164. [PMID: 28561754 PMCID: PMC5485988 DOI: 10.3390/ijms18061164] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/17/2022] Open
Abstract
Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.
Collapse
|
57
|
Zafra A, Carmona R, Traverso JA, Hancock JT, Goldman MHS, Claros MG, Hiscock SJ, Alche JD. Identification and Functional Annotation of Genes Differentially Expressed in the Reproductive Tissues of the Olive Tree ( Olea europaea L.) through the Generation of Subtractive Libraries. FRONTIERS IN PLANT SCIENCE 2017; 8:1576. [PMID: 28955364 PMCID: PMC5601413 DOI: 10.3389/fpls.2017.01576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/28/2017] [Indexed: 05/07/2023]
Abstract
The olive tree is a crop of high socio-economical importance in the Mediterranean area. Sexual reproduction in this plant is an essential process, which determines the yield. Successful fertilization is mainly favored and sometimes needed of the presence of pollen grains from a different cultivar as the olive seizes a self-incompatibility system allegedly determined of the sporophytic type. The purpose of the present study was to identify key gene products involved in the function of olive pollen and pistil, in order to help elucidate the events and signaling processes, which happen during the courtship, pollen grain germination, and fertilization in olive. The use of subtractive SSH libraries constructed using, on the one hand one specific stage of the pistil development with germinating pollen grains, and on the other hand mature pollen grains may help to reveal the specific transcripts involved in the cited events. Such libraries have also been created by subtracting vegetative mRNAs (from leaves), in order to identify reproductive sequences only. A variety of transcripts have been identified in the mature pollen grains and in the pistil at the receptive stage. Among them, those related to defense, transport and oxidative metabolism are highlighted mainly in the pistil libraries where transcripts related to stress, and response to biotic and abiotic stimulus have a prominent position. Extensive lists containing information as regard to the specific transcripts determined for each stage and tissue are provided, as well as functional classifications of these gene products. Such lists were faced up to two recent datasets obtained in olive after transcriptomic and genomic approaches. The sequences and the differential expression level of the SSH-transcripts identified here, highly matched the transcriptomic information. Moreover, the unique presence of a representative number of these transcripts has been validated by means of qPCR approaches. The construction of SSH libraries using pistil and pollen, considering the high interaction between male-female counterparts, allowed the identification of transcripts with important roles in stigma physiology. The functions of many of the transcripts obtained are intimately related, and most of them are of pivotal importance in defense, pollen-stigma interaction and signaling.
Collapse
Affiliation(s)
- Adoración Zafra
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Rosario Carmona
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - José A. Traverso
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - John T. Hancock
- Faculty of Health and Life Sciences, University of the West of EnglandBristol, United Kingdom
| | - Maria H. S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São PauloSão Paulo, Brazil
| | - M. Gonzalo Claros
- Departamento de Biología Molecular y Bioquímica, Universidad de MálagaMálaga, Spain
| | - Simon J. Hiscock
- School of Biological Sciences, University of BristolBristol, United Kingdom
| | - Juan D. Alche
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
- *Correspondence: Juan D. Alche
| |
Collapse
|
58
|
What causes mating system shifts in plants? Arabidopsis lyrata as a case study. Heredity (Edinb) 2016; 118:52-63. [PMID: 27804968 PMCID: PMC5176122 DOI: 10.1038/hdy.2016.99] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/24/2023] Open
Abstract
The genetic breakdown of self-incompatibility (SI) and subsequent mating system shifts to inbreeding has intrigued evolutionary geneticists for decades. Most of our knowledge is derived from interspecific comparisons between inbreeding species and their outcrossing relatives, where inferences may be confounded by secondary mutations that arose after the initial loss of SI. Here, we study an intraspecific breakdown of SI and its consequences in North American Arabidopsis lyrata to test whether: (1) particular S-locus haplotypes are associated with the loss of SI and/or the shift to inbreeding; (2) a population bottleneck may have played a role in driving the transition to inbreeding; and (3) the mutation(s) underlying the loss of SI are likely to have occurred at the S-locus. Combining multiple approaches for genotyping, we found that outcrossing populations on average harbour 5 to 9 S-locus receptor kinase (SRK) alleles, but only two, S1 and S19, are shared by most inbreeding populations. Self-compatibility (SC) behaved genetically as a recessive trait, as expected from a loss-of-function mutation. Bulked segregant analysis in SC × SI F2 individuals using deep sequencing confirmed that all SC plants were S1 homozygotes but not all S1 homozygotes were SC. This was also revealed in population surveys, where only a few S1 homozygotes were SC. Together with crossing data, this suggests that there is a recessive factor that causes SC that is physically unlinked to the S-locus. Overall, our results emphasise the value of combining classical genetics with advanced sequencing approaches to resolve long outstanding questions in evolutionary biology.
Collapse
|
59
|
Abstract
The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.
Collapse
|
60
|
Indriolo E, Goring DR. Yeast two-hybrid interactions between Arabidopsis lyrata S Receptor Kinase and the ARC1 E3 ligase. PLANT SIGNALING & BEHAVIOR 2016; 11:e1188233. [PMID: 27175603 PMCID: PMC4973788 DOI: 10.1080/15592324.2016.1188233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Here we describe protein-protein interactions between signaling components in the conserved self-incompatibility pathway from Brassica spp. and Arabidopsis lyrata. Previously, we had demonstrated that ARC1 is necessary in A. lyrata for the rejection of self-pollen by the self-incompatibility pathway. The results described here demonstrate that A. lyrata ARC1 interacts with A. lyrata S Receptor Kinase (SRK1) in the yeast 2-hybrid system. A. lyrata ARC1 also interacted with B. napus SRK910 illustrating that interactions in this pathway are conserved across species. Finally, we discuss how the more widely occurring interactions between SRK and ARC1-related family members may be modulated in vivo by expression and subcellular localization patterns resulting in a particular response.
Collapse
Affiliation(s)
- Emily Indriolo
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- CONTACT Emily Indriolo ; Daphne Goring
| | - Daphne R. Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
- CONTACT Emily Indriolo ; Daphne Goring
| |
Collapse
|
61
|
Shumayla, Sharma S, Pandey AK, Singh K, Upadhyay SK. Molecular Characterization and Global Expression Analysis of Lectin Receptor Kinases in Bread Wheat (Triticum aestivum). PLoS One 2016; 11:e0153925. [PMID: 27111449 PMCID: PMC4844157 DOI: 10.1371/journal.pone.0153925] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/06/2016] [Indexed: 11/19/2022] Open
Abstract
Lectin receptor kinases (LRKs) play a critical role in plants during development and stress conditions, but a comprehensive analysis at genome level is still not carried out in Triticum aestivum. Herein, we performed the genome wide identification, characterization and expression analysis of these genes in T. aestivum (TaLRK). In-total 263 TaLRK genes were identified, which were further classified into three groups based on the nature of lectin domain. We identified, two TaLRKs consisted of calcium-dependent lectin (C-LRK), while 84 legume-lectin (L-LRK) and 177 bulb-lectin (B-LRK) domains. The L-LRK and B-LRK genes were distributed throughout the genome of T. aestivum. Most of the TaLRKs were clustered as homologs, which were distributed either in proximity on same chromosome or on homoeologous chromosomes of A, B and D sub-genomes. A total of 9 and 58 duplication events were also predicted in L-LRK and B-LRK, respectively. Phylogenetic analysis indicated conserved evolutionary relationship of homologous and orthologous genes from multiple plant species. Gene ontology analysis indicated TaLRKs role in binding, signaling and receptor activities. Most of the TaLRKs consisted of a trans-membrane domain and predicted to be localized in the plasma-membrane. A diverse expression pattern of TaLRK genes was found in various developmental stages and stress conditions. Some TaLRKs were found to be highly affected during a particular stress, which indicated a specialized role of each LRK gene in a specific stress condition. These results described various characteristic feature and expression pattern of TaLRK genes, which will pave the way for functional characterization in wheat.
Collapse
Affiliation(s)
- Shumayla
- Deparment of Botany, Panjab University, Chandigarh, India, 160014
- Deparment of Biotechnology, Panjab University, Chandigarh, India, 160014
| | - Shailesh Sharma
- National Agri-Food Biotechnology Institute, (Department of Biotechnology, Government of India), C-127, Industrial Area, S.A.S. Nagar, Phase 8, Mohali, Punjab, India, 160071l
| | - Ajay K. Pandey
- National Agri-Food Biotechnology Institute, (Department of Biotechnology, Government of India), C-127, Industrial Area, S.A.S. Nagar, Phase 8, Mohali, Punjab, India, 160071l
| | - Kashmir Singh
- Deparment of Biotechnology, Panjab University, Chandigarh, India, 160014
| | | |
Collapse
|
62
|
Fu L, Han B, Tan D, Wang M, Ding M, Zhang J. Identification and Evolution of Functional Alleles of the Previously Described Pollen Specific Myrosinase Pseudogene AtTGG6 in Arabidopsis thaliana. Int J Mol Sci 2016; 17:262. [PMID: 26907263 PMCID: PMC4783991 DOI: 10.3390/ijms17020262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/26/2016] [Accepted: 02/16/2016] [Indexed: 11/25/2022] Open
Abstract
Myrosinases are β-thioglucoside glucohydrolases and serve as defense mechanisms against insect pests and pathogens by producing toxic compounds. AtTGG6 in Arabidopsis thaliana was previously reported to be a myrosinase pseudogene but specifically expressed in pollen. However, we found that AlTGG6, an ortholog to AtTGG6 in A. lyrata (an outcrossing relative of A. thaliana) was functional, suggesting that functional AtTGG6 alleles may still exist in A. thaliana. AtTGG6 alleles in 29 A. thaliana ecotypes were cloned and sequenced. Results indicate that ten alleles were functional and encoded Myr II type myrosinase of 512 amino acids, and myrosinase activity was confirmed by overexpressing AtTGG6 in Pichia pastoris. However, the 19 other ecotypes had disabled alleles with highly polymorphic frame-shift mutations and diversified sequences. Thirteen frame-shift mutation types were identified, which occurred independently many times in the evolutionary history within a few thousand years. The functional allele was expressed specifically in pollen similar to the disabled alleles but at a higher expression level, suggesting its role in defense of pollen against insect pests such as pollen beetles. However, the defense function may have become less critical after A. thaliana evolved to self-fertilization, and thus resulted in loss of function in most ecotypes.
Collapse
Affiliation(s)
- Lili Fu
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Tropical Crops Biology and Genetic Resources, Ministry of Agriculture, CATAS, Haikou 571101, China.
| | - Bingying Han
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Tropical Crops Biology and Genetic Resources, Ministry of Agriculture, CATAS, Haikou 571101, China.
| | - Deguan Tan
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Tropical Crops Biology and Genetic Resources, Ministry of Agriculture, CATAS, Haikou 571101, China.
| | - Meng Wang
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Tropical Crops Biology and Genetic Resources, Ministry of Agriculture, CATAS, Haikou 571101, China.
| | - Mei Ding
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Tropical Crops Biology and Genetic Resources, Ministry of Agriculture, CATAS, Haikou 571101, China.
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, Key Laboratory of Tropical Crops Biology and Genetic Resources, Ministry of Agriculture, CATAS, Haikou 571101, China.
| |
Collapse
|
63
|
Shimizu KK, Tsuchimatsu T. Evolution of Selfing: Recurrent Patterns in Molecular Adaptation. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054249] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selfing has evolved in animals, fungi, and plants, and since Darwin's pioneering study, it is considered one of the most frequent evolutionary trends in flowering plants. Generally, the evolution of selfing is characterized by a loss of self-incompatibility, the selfing syndrome, and changes in genome-wide polymorphism patterns. Recent interdisciplinary studies involving molecular functional experiments, genome-wide data, experimental evolution, and evolutionary ecology using Arabidopsis thaliana, Caenorhabditis elegans, and other species show that the evolution of selfing is not merely a degradation of outcrossing traits but a model for studying the recurrent patterns underlying adaptive molecular evolution. For example, in wild Arabidopsis relatives, self-compatibility evolved from mutations in the male specificity gene, S-LOCUS CYSTEINE-RICH PROTEIN/S-LOCUS PROTEIN 11 (SCR/SP11), rather than the female specificity gene, S-LOCUS RECEPTOR KINASE (SRK), supporting the theoretical prediction of sexual asymmetry. Prevalence of dominant self-compatible mutations is consistent with Haldane's sieve, which acts against recessive adaptive mutations. Time estimates based on genome-wide polymorphisms and self-incompatibility genes generally support the recent origin of selfing.
Collapse
Affiliation(s)
- Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Takashi Tsuchimatsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
64
|
Tantikanjana T, Nasrallah JB. Ligand-Mediated cis-Inhibition of Receptor Signaling in the Self-Incompatibility Response of the Brassicaceae. PLANT PHYSIOLOGY 2015; 169:1141-54. [PMID: 26269543 PMCID: PMC4587449 DOI: 10.1104/pp.15.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/11/2015] [Indexed: 05/02/2023]
Abstract
The inhibition of self-pollination in self-incompatible Brassicaceae is based on allele-specific trans-activation of the highly polymorphic S-locus receptor kinase (SRK), which is displayed at the surface of stigma epidermal cells, by its even more polymorphic pollen coat-localized ligand, the S-locus cysteine-rich (SCR) protein. In an attempt to achieve constitutive activation of SRK and thus facilitate analysis of self-incompatibility (SI) signaling, we coexpressed an Arabidopsis lyrata SCR variant with its cognate SRK receptor in the stigma epidermal cells of Arabidopsis (Arabidopsis thaliana) plants belonging to the C24 accession, in which expression of SRK and SCR had been shown to exhibit a robust SI response. Contrary to expectation, however, coexpression of SRK and SCR was found to inhibit SRK-mediated signaling and to disrupt the SI response. This phenomenon, called cis-inhibition, is well documented in metazoans but has not as yet been reported for plant receptor kinases. We demonstrate that cis-inhibition of SRK, like its trans-activation, is based on allele-specific interaction between receptor and ligand. We also show that stigma-expressed SCR causes entrapment of its SRK receptor in the endoplasmic reticulum, thus disrupting the proper targeting of SRK to the plasma membrane, where the receptor would be available for productive interaction with its pollen coat-derived SCR ligand. Although based on an artificial cis-inhibition system, the results suggest novel strategies of pollination control for the generation of hybrid cultivars and large-scale seed production from hybrid plants in Brassicaceae seed crops and, more generally, for inhibiting cell surface receptor function and manipulating signaling pathways in plants.
Collapse
Affiliation(s)
- Titima Tantikanjana
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14953
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14953
| |
Collapse
|
65
|
Murase K, Hirano Y, Takayama S, Hakoshima T. Efficient expression of SRK intracellular domain by a modeling-based protein engineering. Protein Expr Purif 2015; 131:70-75. [PMID: 26390940 DOI: 10.1016/j.pep.2015.09.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
S-locus protein kinase (SRK) is a receptor kinase that plays a critical role in self-recognition in the Brassicaceae self-incompatibility (SI) response. SRK is activated by binding of its ligand S-locus protein 11 (SP11) and subsequently induced phosphorylation of the intracellular kinase domain. However, a detailed activation mechanism of SRK is still largely unknown because of the difficulty in stably expressing SRK recombinant proteins. Here, we performed modeling-based protein engineering of the SRK kinase domain for stable expression in Escherichia coli. The engineered SRK intracellular domain was expressed about 54-fold higher production than wild type SRK, without loss of the kinase activity, suggesting it could be useful for further biochemical and structural studies.
Collapse
Affiliation(s)
- Kohji Murase
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshinori Hirano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Toshio Hakoshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
66
|
Charlesworth D. The status of supergenes in the 21st century: recombination suppression in Batesian mimicry and sex chromosomes and other complex adaptations. Evol Appl 2015; 9:74-90. [PMID: 27087840 PMCID: PMC4780387 DOI: 10.1111/eva.12291] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
I review theoretical models for the evolution of supergenes in the cases of Batesian mimicry in butterflies, distylous plants and sex chromosomes. For each of these systems, I outline the genetic evidence that led to the proposal that they involve multiple genes that interact during ‘complex adaptations’, and at which the mutations involved are not unconditionally advantageous, but show advantages that trade‐off against some disadvantages. I describe recent molecular genetic studies of these systems and questions they raise about the evolution of suppressed recombination. Nonrecombining regions of sex chromosomes have long been known, but it is not yet fully understood why recombination suppression repeatedly evolved in systems in distantly related taxa, but does not always evolve. Recent studies of distylous plants are tending to support the existence of recombination‐suppressed genome regions, which may include modest numbers of genes and resemble recently evolved sex‐linked regions. For Batesian mimicry, however, molecular genetic work in two butterfly species suggests a new supergene scenario, with a single gene mutating to produce initial adaptive phenotypes, perhaps followed by modifiers specifically refining and perfecting the new phenotype.
Collapse
|
67
|
Abstract
SRK (S-locus receptor kinase) is the receptor that allows stigma epidermal cells to discriminate between genetically related ('self') and genetically unrelated ('non-self') pollen in the self-incompatibility response of the Brassicaceae. SRK and its ligand, the pollen coat-localized SCR (S-locus cysteine-rich protein), are highly polymorphic, and their allele-specific interaction explains specificity in the self-incompatibility response. The present article reviews current knowledge of the role of SRK in the recognition and response phases of self-incompatibility, and highlights the new insights provided by analysis of a transgenic self-incompatible Arabidopsis thaliana model.
Collapse
|
68
|
Nouri E, Reinhardt D. Flowers and mycorrhizal roots--closer than we think? TRENDS IN PLANT SCIENCE 2015; 20:344-50. [PMID: 25868653 DOI: 10.1016/j.tplants.2015.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/11/2015] [Accepted: 03/18/2015] [Indexed: 05/24/2023]
Abstract
Roots and flowers are formed at the extreme ends of plants and they differ in almost every aspect of their development and function; even so, they exhibit surprising molecular commonalities. For example, the calcium and calmodulin-dependent protein kinase (CCaMK) plays a central role in root symbioses with fungi and bacteria, but is also highly expressed in developing anthers. Moreover, independent evidence from transcriptomics, phylogenomics, and genetics reveals common developmental elements in root symbioses and reproductive development. We discuss the significance of these overlaps, and we argue that an integrated comparative view of the two phenomena will stimulate research and provide new insight, not only into shared components, but also into the specific aspects of anther development and root symbioses.
Collapse
Affiliation(s)
- Eva Nouri
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
69
|
Matsuda T, Matsushima M, Nabemoto M, Osaka M, Sakazono S, Masuko-Suzuki H, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu KK, Okumura K, Suzuki G, Watanabe M, Suwabe K. Transcriptional characteristics and differences in Arabidopsis stigmatic papilla cells pre- and post-pollination. PLANT & CELL PHYSIOLOGY 2015; 56:663-73. [PMID: 25527828 DOI: 10.1093/pcp/pcu209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/13/2014] [Indexed: 05/09/2023]
Abstract
Pollination is an important early step in sexual plant reproduction. In Arabidopsis thaliana, sequential pollination events, from pollen adhesion onto the stigma surface to pollen tube germination and elongation, occur on the stigmatic papilla cells. Following successful completion of these events, the pollen tube penetrates the stigma and finally fertilizes a female gametophyte. The pollination events are thought to be initiated and regulated by interactions between papilla cells and pollen. Here, we report the characterization of gene expression profiles of unpollinated (UP), compatible pollinated (CP) and incompatible pollinated (IP) papilla cells in A. thaliana. Based on cell type-specific transcriptome analysis from a combination of laser microdissection and RNA sequencing, 15,475, 17,360 and 16,918 genes were identified as expressed in UP, CP and IP papilla cells, respectively, and, of these, 14,392 genes were present in all three data sets. Differentially expressed gene (DEG) analyses identified 147 and 71 genes up-regulated in CP and IP papilla cells, respectively, and 115 and 46 genes down-regulated. Gene Ontology and metabolic pathway analyses revealed that papilla cells play an active role as the female reproductive component in pollination, particularly in information exchange, signal transduction, internal physiological changes and external morphological modification. This study provides fundamental information on the molecular mechanisms involved in pollination in papilla cells, furthering our understanding of the reproductive role of papilla cells.
Collapse
Affiliation(s)
- Tomoki Matsuda
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Mai Matsushima
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Moe Nabemoto
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Masaaki Osaka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Satomi Sakazono
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | | | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Kentaro K Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Katsuzumi Okumura
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, 582-8582 Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| |
Collapse
|
70
|
Rea AC, Nasrallah JB. In vivo imaging of the S-locus receptor kinase, the female specificity determinant of self-incompatibility, in transgenic self-incompatible Arabidopsis thaliana. ANNALS OF BOTANY 2015; 115:789-805. [PMID: 25714818 PMCID: PMC4373290 DOI: 10.1093/aob/mcv008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/25/2014] [Accepted: 01/09/2015] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The S-locus receptor kinase (SRK), which is expressed in stigma epidermal cells, is responsible for the recognition and inhibition of 'self' pollen in the self-incompatibility (SI) response of the Brassicaceae. The allele-specific interaction of SRK with its cognate pollen coat-localized ligand, the S-locus cysteine-rich (SCR) protein, is thought to trigger a signalling cascade within the stigma epidermal cell that leads to the arrest of 'self' pollen at the stigma surface. In addition to the full-length signalling SRK receptor, stigma epidermal cells express two other SRK protein species that lack the kinase domain and whose role in the SI response is not understood: a soluble version of the SRK ectodomain designated eSRK and a membrane-tethered form designated tSRK. The goal of this study was to describe the sub-cellular distribution of the various SRK protein species in stigma epidermal cells as a prelude to visualizing receptor dynamics in response to SCR binding. METHODS The Arabidopsis lyrata SRKb variant was tagged with the Citrine variant of yellow fluorescent protein (cYFP) and expressed in A. thaliana plants of the C24 accession, which had been shown to exhibit a robust SI response upon transformation with the SRKb-SCRb gene pair. The transgenes used in this study were designed for differential production and visualization of the three SRK protein species in stigma epidermal cells. Transgenic stigmas were analysed by pollination assays and confocal microscopy. KEY RESULTS AND CONCLUSIONS Pollination assays demonstrated that the cYFP-tagged SRK proteins are functional and that the eSRK is not required for SI. Confocal microscopic analysis of cYFP-tagged SRK proteins in live stigma epidermal cells revealed the differential sub-cellular localization of the three SRK protein species but showed no evidence for redistribution of these proteins subsequent to incompatible pollination.
Collapse
Affiliation(s)
- Anne C Rea
- Section of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14850, USA
| | - June B Nasrallah
- Section of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
71
|
Hofberger JA, Nsibo DL, Govers F, Bouwmeester K, Schranz ME. A complex interplay of tandem- and whole-genome duplication drives expansion of the L-type lectin receptor kinase gene family in the brassicaceae. Genome Biol Evol 2015; 7:720-34. [PMID: 25635042 PMCID: PMC5322546 DOI: 10.1093/gbe/evv020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 11/15/2022] Open
Abstract
The comparative analysis of plant gene families in a phylogenetic framework has greatly accelerated due to advances in next generation sequencing. In this study, we provide an evolutionary analysis of the L-type lectin receptor kinase and L-type lectin domain proteins (L-type LecRKs and LLPs) that are considered as components in plant immunity, in the plant family Brassicaceae and related outgroups. We combine several lines of evidence provided by sequence homology, HMM-driven protein domain annotation, phylogenetic analysis, and gene synteny for large-scale identification of L-type LecRK and LLP genes within nine core-eudicot genomes. We show that both polyploidy and local duplication events (tandem duplication and gene transposition duplication) have played a major role in L-type LecRK and LLP gene family expansion in the Brassicaceae. We also find significant differences in rates of molecular evolution based on the mode of duplication. Additionally, we show that LLPs share a common evolutionary origin with L-type LecRKs and provide a consistent gene family nomenclature. Finally, we demonstrate that the largest and most diverse L-type LecRK clades are lineage-specific. Our evolutionary analyses of these plant immune components provide a framework to support future plant resistance breeding.
Collapse
Affiliation(s)
- Johannes A Hofberger
- Biosystematics Group, Wageningen University, The Netherlands Chinese Academy of Sciences/Max Planck Partner Institute for Computational Biology, Shanghai, People's Republic of China
| | - David L Nsibo
- Biosystematics Group, Wageningen University, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, The Netherlands Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, The Netherlands
| |
Collapse
|
72
|
Wu T, Wang R, Xu X, He X, Sun B, Zhong Y, Liang Z, Luo S, Lin Y. Cucumis sativus L-type lectin receptor kinase (CsLecRK) gene family response to Phytophthora melonis, Phytophthora capsici and water immersion in disease resistant and susceptible cucumber cultivars. Gene 2014; 549:214-22. [PMID: 25065921 DOI: 10.1016/j.gene.2014.07.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 02/02/2023]
Abstract
L-type lectin receptor kinase (LecRK) proteins are an important family involved in diverse biological processes such as pollen development, senescence, wounding, salinity and especially in innate immunity in model plants such as Arabidopsis and tobacco. Till date, LecRK proteins or genes of cucumber have not been reported. In this study, a total of 25 LecRK genes were identified in the cucumber genome, unequally distributed across its seven chromosomes. According to similarity comparison of their encoded proteins, the Cucumis sativus LecRK (CsLecRK) genes were classified into six major clades (from Clade I to CladeVI). Expression of CsLecRK genes were tested using QRT-PCR method and the results showed that 25 CsLecRK genes exhibited different responses to abiotic (water immersion) and biotic (Phytophthora melonis and Phytophthora capsici inoculation) stresses, as well as that between disease resistant cultivar (JSH) and disease susceptible cultivar (B80). Among the 25 CsLecRK genes, we found CsLecRK6.1 was especially induced by P. melonis and P. capsici in JSH plants. All these results suggested that CsLecRK genes may play important roles in biotic and abiotic stresses.
Collapse
Affiliation(s)
- Tingquan Wu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Rui Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Xiaomei Xu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Baojuan Sun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Yujuan Zhong
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Zhaojuan Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China
| | - Shaobo Luo
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Yu'e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
73
|
Hee-Jeong J, Nasar Uddin A, Jong-In P, Senthil Kumar T, Hye-Ran K, Yong-Gu C, Ill-Sup N. Analysis of S-locus and expression of S-alleles of self-compatible rapid-cycling Brassica oleracea 'TO1000DH3'. Mol Biol Rep 2014; 41:6441-8. [PMID: 24969488 DOI: 10.1007/s11033-014-3526-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 06/19/2014] [Indexed: 11/30/2022]
Abstract
Brassica oleracea is a strictly self-incompatible (SI) plant, but rapid-cycling B. oleracea 'TO1000DH3' is self-compatible (SC). Self-incompatibility in Brassicaceae is controlled by multiple alleles of the S-locus. Three S-locus genes, S-locus glycoprotein (SLG), S-locus receptor kinase (SRK) and S-locus protein 11 or S-locus cysteine-rich (SP11/SCR), have been reported to date, all of which are classified into class I and II. In this study, we investigated the molecular mechanism behind alterations of SI to SC in rapid-cycling B. olerace 'TO1000DH3'. Class I SRK were identified by genomic DNA PCR and PCR-RFLP analysis using SRK specific markers and found to be homozygous. Cloning and sequencing of class I SRK revealed a normal kinase domain without any S-domain/transmembrane domain. Moreover, S-locus sequencing analysis revealed only an SLG sequence, but no SP11/SCR. Expression analysis showed no SRK expression in the stigma, although other genes involved in the SI recognition reaction (SLG, MLPK, ARC1, THL) were found to have normal expression in the stigma. Taken together, the above results suggest that structural aberrations such as deletion of the SI recognition genes may be responsible for the breakdown of SI in rapid-cycling B. oleracea 'TO1000DH3'.
Collapse
Affiliation(s)
- Jung Hee-Jeong
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
74
|
Self-incompatibility in Brassicaceae: identification and characterization of SRK-like sequences linked to the S-locus in the tribe Biscutelleae. G3-GENES GENOMES GENETICS 2014; 4:983-92. [PMID: 24939184 PMCID: PMC4065267 DOI: 10.1534/g3.114.010843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Self-incompatibility (SI) is a genetic system that prevents self-fertilization in many Angiosperms. Although plants from the Brassicaceae family present an apparently unique SI system that is ancestral to the family, investigations at the S-locus responsible for SI have been mostly limited to two distinct lineages (Brassica and Arabidopsis-Capsella, respectively). Here, we investigated SI in a third deep-branching lineage of Brassicaceae: the tribe Biscutelleae. By coupling sequencing of the SI gene responsible for pollen recognition (SRK) with phenotypic analyses based on controlled pollinations, we identified 20 SRK-like sequences functionally linked to 13 S-haplotypes in 21 individuals of Biscutella neustriaca and 220 seedlings. We found two genetic and phylogenetic features of SI in Biscutelleae that depart from patterns observed in the reference Arabidopsis clade: (1) SRK-like sequences cluster into two main phylogenetic lineages interspersed within the many SRK lineages of Arabidopsis; and (2) some SRK-like sequences are transmitted by linked pairs, suggesting local duplication within the S-locus. Strikingly, these features also were observed in the Brassica clade but probably evolved independently, as the two main SRK clusters in Biscutella are distinct from those in Brassica. In the light of our results and of what has been previously observed in other Brassicaceae, we discuss the ecological and evolutionary implications on SI plant populations of the high diversity and the complex dominance relationships we found at the S-locus in Biscutelleae.
Collapse
|
75
|
Kitashiba H, Nasrallah JB. Self-incompatibility in Brassicaceae crops: lessons for interspecific incompatibility. BREEDING SCIENCE 2014; 64:23-37. [PMID: 24987288 PMCID: PMC4031107 DOI: 10.1270/jsbbs.64.23] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/16/2013] [Indexed: 05/23/2023]
Abstract
Most wild plants and some crops of the Brassicaceae express self-incompatibility, which is a mechanism that allows stigmas to recognize and discriminate against "self" pollen, thus preventing self-fertilization and inbreeding. Self-incompatibility in this family is controlled by a single S locus containing two multiallelic genes that encode the stigma-expressed S-locus receptor kinase and its pollen coat-localized ligand, the S-locus cysteine-rich protein. Physical interaction between receptor and ligand encoded in the same S locus activates the receptor and triggers a signaling cascade that results in inhibition of "self" pollen. Sequence information for many S-locus haplotypes in Brassica species has spurred studies of dominance relationships between S haplotypes and of S-locus structure, as well as the development of methods for S genotyping. Furthermore, molecular genetic studies have begun to identify genes that encode putative components of the self-incompatibility signaling pathway. In parallel, standard genetic analysis and QTL analysis of the poorly understood interspecific incompatibility phenomenon have been initiated to identify genes responsible for the inhibition of pollen from other species by the stigma. Herewith, we review recent studies of self-incompatibility and interspecific incompatibility, and we propose a model in which a universal pollen-inhibition pathway is shared by these two incompatibility systems.
Collapse
Affiliation(s)
- Hiroyasu Kitashiba
- Graduate School of Agricultural Science, Tohoku University,
1-1 Tsutsumidori-Amamiyamachi, Aoba, Sendai, Miyagi 981-8555,
Japan
| | - June B. Nasrallah
- Department of Plant Biology, Cornell University,
Ithaca, NY 14853,
USA
| |
Collapse
|
76
|
Vekemans X, Poux C, Goubet PM, Castric V. The evolution of selfing from outcrossing ancestors in Brassicaceae: what have we learned from variation at the S-locus? J Evol Biol 2014; 27:1372-85. [PMID: 24725152 DOI: 10.1111/jeb.12372] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
Evolutionary transitions between mating systems have occurred repetitively and independently in flowering plants. One of the most spectacular advances of the recent empirical literature in the field was the discovery of the underlying genetic machinery, which provides the opportunity to retrospectively document the scenario of the outcrossing to selfing transitions in a phylogenetic perspective. In this review, we explore the literature describing patterns of polymorphism and molecular evolution of the locus controlling self-incompatibility (S-locus) in selfing species of the Brassicaceae family in order to document the transition from outcrossing to selfing, a retrospective approach that we describe as the 'mating system genes approach'. The data point to strikingly contrasted scenarios of transition from outcrossing to selfing. We also perform original analyses of the fully sequenced genomes of four species showing self-compatibility, to compare the orthologous S-locus region with that of functional S-locus haplotypes. Phylogenetic analyses suggest that all species we investigated evolved independently towards loss of self-incompatibility, and in most cases almost intact sequences of either of the two S-locus genes suggest that these transitions occurred relatively recently. The S-locus region in Aethionema arabicum, representing the most basal lineage of Brassicaceae, showed unusual patterns so that our analysis could not determine whether self-incompatibility was lost secondarily, or evolved in the core Brassicaceae after the split with this basal lineage. Although the approach we detail can only be used when mating system genes have been identified in a clade, we suggest that its integration with phylogenetic and population genetic approaches should help determine the main routes of this predominant mating system shift in plants.
Collapse
Affiliation(s)
- X Vekemans
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université Lille 1, Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
77
|
Indriolo E, Safavian D, Goring DR. The ARC1 E3 Ligase Promotes Two Different Self-Pollen Avoidance Traits in Arabidopsis. THE PLANT CELL 2014; 26:1525-1543. [PMID: 24748043 PMCID: PMC4036569 DOI: 10.1105/tpc.114.122879] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 05/20/2023]
Abstract
Flowering plants have evolved various strategies for avoiding self-pollen to drive genetic diversity. These strategies include spatially separated sexual organs (herkogamy), timing differences between male pollen release and female pistil receptivity (dichogamy), and self-pollen rejection. Within the Brassicaceae, these outcrossing systems are the evolutionary default state, and many species display these traits, including Arabidopsis lyrata. In contrast to A. lyrata, closely related Arabidopsis thaliana has lost these self-pollen traits and thus represents an excellent system to test genes for reconstructing these evolutionary traits. We previously demonstrated that the ARC1 E3 ligase is required for self-incompatibility in two diverse Brassicaceae species, Brassica napus and A. lyrata, and is frequently deleted in self-compatible species, including A. thaliana. In this study, we examined ARC1's requirement for reconstituting self-incompatibility in A. thaliana and uncovered an important role for ARC1 in promoting a strong and stable pollen rejection response when expressed with two other A. lyrata self-incompatibility factors. Furthermore, we discovered that ARC1 promoted an approach herkogamous phenotype in A. thaliana flowers. Thus, ARC1's expression resulted in two different A. lyrata traits for self-pollen avoidance and highlights the key role that ARC1 plays in the evolution and retention of outcrossing systems.
Collapse
Affiliation(s)
- Emily Indriolo
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Darya Safavian
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto M5S 3B2, Canada Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto M5S 3B2, Canada
| |
Collapse
|
78
|
Supergenes and their role in evolution. Heredity (Edinb) 2014; 113:1-8. [PMID: 24642887 DOI: 10.1038/hdy.2014.20] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/08/2013] [Accepted: 01/23/2014] [Indexed: 02/03/2023] Open
Abstract
Adaptation is commonly a multidimensional problem, with changes in multiple traits required to match a complex environment. This is epitomized by balanced polymorphisms in which multiple phenotypes co-exist and are maintained in a population by a balance of selective forces. Consideration of such polymorphisms led to the concept of the supergene, where alternative phenotypes in a balanced polymorphism segregate as if controlled by a single genetic locus, resulting from tight genetic linkage between multiple functional loci. Recently, the molecular basis for several supergenes has been resolved. Thus, major chromosomal inversions have been shown to be associated with polymorphisms in butterflies, ants and birds, offering a mechanism for localised reduction in recombination. In several examples of plant self-incompatibility, the functional role of multiple elements within the supergene architecture has been demonstrated, conclusively showing that balanced polymorphism can be maintained at multiple coadapted and tightly linked elements. Despite recent criticism, we argue that the supergene concept remains relevant and is more testable than ever with modern molecular methods.
Collapse
|
79
|
Indriolo E, Goring DR. A conserved role for the ARC1 E3 ligase in Brassicaceae self-incompatibility. FRONTIERS IN PLANT SCIENCE 2014; 5:181. [PMID: 24847339 PMCID: PMC4017152 DOI: 10.3389/fpls.2014.00181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/16/2014] [Indexed: 05/20/2023]
Abstract
Ubiquitination plays essential roles in the regulation of many processes in plants including pollen rejection in self-incompatible species. In the Brassicaceae (mustard family), self-incompatibility drives the rejection of self-pollen by preventing pollen hydration following pollen contact with the stigmatic surface. Self-pollen is recognized by a ligand-receptor pair: the pollen S-locus cysteine rich/S-locus protein 11 (SCR/SP11) ligand and the pistil S receptor kinase (SRK). Following self-pollen contact, the SCR/SP11 ligand on the pollen surface binds to SRK on the pistil surface, and the SRK-activated signaling pathway is initiated. This pathway includes the armadillo repeat containing 1 (ARC1) protein, a member of the plant U-box (PUB) family of E3 ubiquitin ligases. ARC1 is a functional E3 ligase and is required downstream of SRK for the self-incompatibility response. This mini review highlights our recent progress in establishing ARC1's conserved role in self-pollen rejection in Brassica and Arabidopsis species and discusses future research directions in this field.
Collapse
Affiliation(s)
- Emily Indriolo
- Department of Cell & Systems Biology, University of TorontoToronto, ON, Canada
| | - Daphne R. Goring
- Department of Cell & Systems Biology, University of TorontoToronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of TorontoToronto, ON, Canada
- *Correspondence: Daphne R. Goring, Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada e-mail:
| |
Collapse
|
80
|
Yamamoto M, Nishio T. Commonalities and differences between Brassica and Arabidopsis self-incompatibility. HORTICULTURE RESEARCH 2014; 1:14054. [PMID: 26504553 PMCID: PMC4596330 DOI: 10.1038/hortres.2014.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 05/12/2023]
Abstract
In higher plants, the self-incompatibility mechanism is important for inhibition of self-fertilization and facilitation of out-crossing. In Brassicaceae, the self-incompatibility response is mediated by allele-specific interaction of the stigma-localized S-locus receptor kinase (SRK) with the pollen coat-localized ligand (SCR/SP11). All self-incompatible Brassicaceae plants analyzed have been found to have the SRK and SCR/SP11 genes in the S-locus region. Although Arabidopsis thaliana is self-compatible, transformation with functional SRK-SCR genes from self-incompatible Arabidopsis species confers the self-incompatibility phenotype to A. thaliana. The allele-specific interaction between SRK and SCR activates the downstream signaling cascade of self-incompatibility. Yeast two-hybrid analysis with a kinase domain of SRK as bait and genetic analysis suggested several candidate components of self-incompatibility signaling in Brassica. Recently, A. thaliana genes orthologous to the identified genes for Brassica self-incompatibility signaling were evaluated by using a self-incompatible transgenic A. thaliana plant and these orthologous genes were found not to be involved in self-incompatibility signaling in the transgenic A. thaliana. In this review, we describe common and different aspects of S-locus genomic regions and self-incompatibility signaling between Brassica and Arabidopsis.
Collapse
Affiliation(s)
- Masaya Yamamoto
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Takeshi Nishio
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|
81
|
Yamamoto M, Nasrallah JB. In planta assessment of the role of thioredoxin h proteins in the regulation of S-locus receptor kinase signaling in transgenic Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1387-95. [PMID: 24077073 PMCID: PMC3813658 DOI: 10.1104/pp.113.225672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/26/2013] [Indexed: 05/22/2023]
Abstract
The self-incompatibility (SI) response of the Brassicaceae is mediated by allele-specific interaction between the stigma-localized S-locus receptor kinase (SRK) and its ligand, the pollen coat-localized S-locus cysteine-rich protein (SCR). Based on work in Brassica spp., the thioredoxin h-like proteins THL1 and THL2, which interact with SRK, have been proposed to function as oxidoreductases that negatively regulate SRK catalytic activity. By preventing the spontaneous activation of SRK in the absence of SCR ligand, these thioredoxins are thought to be essential for the success of cross pollinations in self-incompatible plants. However, the in planta role of thioredoxins in the regulation of SI signaling has not been conclusively demonstrated. Here, we addressed this issue using Arabidopsis thaliana plants transformed with the SRKb-SCRb gene pair isolated from self-incompatible Arabidopsis lyrata. These plants express an intense SI response, allowing us to exploit the extensive tools and resources available in A. thaliana for analysis of SI signaling. To test the hypothesis that SRK is redox regulated by thioredoxin h, we expressed a mutant form of SRKb lacking a transmembrane-localized cysteine residue thought to be essential for the SRK-thioredoxin h interaction. We also analyzed transfer DNA insertion mutants in the A. thaliana orthologs of THL1 and THL2. In neither case did we observe an effect on the pollination responses of SRKb-expressing stigmas toward incompatible or compatible pollen. Our results are consistent with the conclusion that, contrary to their proposed role, thioredoxin h proteins are not required to prevent the spontaneous activation of SRK in the A. thaliana stigma.
Collapse
|
82
|
Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLoS Biol 2013; 11:e1001560. [PMID: 23690750 PMCID: PMC3653793 DOI: 10.1371/journal.pbio.1001560] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.
Collapse
Affiliation(s)
| | - Adam C. Herman
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Adrian E. Platts
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Xavier Vekemans
- Laboratoire de Génétique et Évolution des Populations Végétale, Unité Mixte de Recherche 8198, Centre National de Recherches Scientifiques–Université Lille 1, Sciences et Technologies, Cité Scientifique, Villeneuve d'Ascq, France
| | - Daniel J. Schoen
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
83
|
Xing S, Li M, Liu P. Evolution of S-domain receptor-like kinases in land plants and origination of S-locus receptor kinases in Brassicaceae. BMC Evol Biol 2013; 13:69. [PMID: 23510165 PMCID: PMC3616866 DOI: 10.1186/1471-2148-13-69] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/12/2013] [Indexed: 01/31/2023] Open
Abstract
Background The S-domain serine/threonine receptor-like kinases (SRLKs) comprise one of the largest and most rapidly expanding subfamilies in the plant receptor-like/Pelle kinase (RLKs) family. The founding member of this subfamily, the S-locus receptor kinase (SRK), functions as the female determinant of specificity in the self-incompatibility (SI) responses of crucifers. Two classes of proteins resembling the extracellular S domain (designated S-domain receptor-like proteins, SRLPs) or the intracellular kinase domain (designated S-domain receptor-like cytoplasmic kinases, SRLCKs) of SRK are also ubiquitous in land plants, indicating that the SRLKs are composite molecules that originated by domain fusion of the two component proteins. Here, we explored the origin and diversification of SRLKs by phylogenomic methods. Results Based on the distribution patterns of SRLKs and SRLCKs in a reconciled species-domain tree, a maximum parsimony model was then established for simultaneously inferring and dating gene duplication/loss and fusion /fission events in SRLK evolution. Various SRK alleles from crucifer species were then included in our phylogenetic analyses to infer the origination of SRKs by identifying the proper outgroups. Conclusions Two gene fusion events were inferred and the major gene fusion event occurred in the common ancestor of land plants generated almost all of extant SRLKs. The functional diversification of duplicated SRLKs was illustrated by molecular evolution analyses of SRKs. Our findings support that SRKs originated as two ancient haplotypes derived from a pair of tandem duplicate genes through random regulatory neo-/sub- functionalization in the common ancestor of the Brassicaceae.
Collapse
Affiliation(s)
- Shilai Xing
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | |
Collapse
|
84
|
Regulation of the S-locus receptor kinase and self-incompatibility in Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2013; 3:315-22. [PMID: 23390607 PMCID: PMC3564991 DOI: 10.1534/g3.112.004879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022]
Abstract
Intraspecific mate selectivity often is enforced by self-incompatibility (SI), a barrier to self-pollination that inhibits productive pollen-pistil interactions. In the Brassicaceae, SI specificity is determined by two highly-polymorphic proteins: the stigmatic S-locus receptor kinase (SRK) and its pollen coat-localized ligand, the S-locus cysteine-rich protein (SCR). Arabidopsis thaliana is self fertile, but several of its accessions can be made to express SI, albeit to various degrees, by transformation with functional SRK-SCR gene pairs isolated from its close self-incompatible relative, Arabidopsis lyrata. Here, we use a newly identified induced mutation that suppresses the SI phenotype in stigmas of SRK-SCR transformants of the Col-0 accession to investigate the regulation of SI and the SRK transgene. This mutation disrupts NRPD1a, a gene that encodes a plant-specific nuclear RNA polymerase required for genomic methylation and production of some types of silencing RNAs. We show that NRPD1a, along with the RNA-dependent RNA polymerase RDR2, is required for SI in some A. thaliana accessions. We also show that Col-0 nrpd1a mutants exhibit decreased accumulation of SRK transcripts in stigmas, which is not, however, responsible for loss of SI in these plants. Together, our analysis of the nrpd1a mutation and of SRK promoter activity in various accessions reveals that the SRK transgene is subject to several levels of regulation, which vary substantially by tissue type and by accession. This study thus helps explain the well-documented differences in expression of SI exhibited by SRK-SCR transformants of different A. thaliana accessions.
Collapse
|
85
|
Molecular characterization and evolution of self-incompatibility genes in Arabidopsis thaliana: the case of the Sc haplotype. Genetics 2013; 193:985-94. [PMID: 23307897 DOI: 10.1534/genetics.112.146787] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The switch from an outcrossing mode of mating enforced by self-incompatibility to self-fertility in the Arabidopsis thaliana lineage was associated with mutations that inactivated one or both of the two genes that comprise the self-incompatibility (SI) specificity-determining S-locus haplotype, the S-locus receptor kinase (SRK) and the S-locus cysteine-rich (SCR) genes, as well as unlinked modifier loci required for SI. All analyzed A. thaliana S-locus haplotypes belong to the SA, SB, or SC haplotypic groups. Of these three, the SC haplotype is the least well characterized. Its SRKC gene can encode a complete open-reading frame, although no functional data are available, while its SCRC sequences have not been isolated. As a result, it is not known what mutations were associated with inactivation of this haplotype. Here, we report on our analysis of the Lz-0 accession and the characterization of its highly rearranged SC haplotype. We describe the isolation of its SCRC gene as well as the subsequent isolation of SCRC sequences from other SC-containing accessions and from the A. lyrata S36 haplotype, which is the functional equivalent of the A. thaliana SC haplotype. By performing transformation experiments using chimeric SRK and SCR genes constructed with SC- and S36-derived sequences, we show that the SRKC and SCRC genes of Lz-0 and at least a few other SC-containing accessions are nonfunctional, despite SCRC encoding a functional full-length protein. We identify the probable mutations that caused the inactivation of these genes and discuss our results in the context of mechanisms of S-locus inactivation in A. thaliana.
Collapse
|
86
|
Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLoS Biol 2013. [PMID: 23690750 DOI: 10.1371/journal.pbio.1001560pbiology-d-12-03507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.
Collapse
|
87
|
Chantha SC, Herman AC, Platts AE, Vekemans X, Schoen DJ. Secondary evolution of a self-incompatibility locus in the Brassicaceae genus Leavenworthia. PLoS Biol 2013. [PMID: 23690750 DOI: 10.5061/dryad.mq5ct] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as receptor in the initial step of the self pollen-rejection pathway, while that of the S-locus cysteine-rich (SCR) gene functions as ligand. Here we examine the hypothesis that the S locus in the Brassicaceae genus Leavenworthia is paralogous with the S locus previously characterized in other members of the family. We also test the hypothesis that self-compatibility in this group is based on disruption of the pollen ligand-producing gene. Sequence analysis of the S-locus genes in Leavenworthia, phylogeny of S alleles, gene expression patterns, and comparative genomics analyses provide support for both hypotheses. Of special interest are two genes located in a non-S locus genomic region of Arabidopsis lyrata that exhibit domain structures, sequences, and phylogenetic histories similar to those of the S-locus genes in Leavenworthia, and that also share synteny with these genes. These A. lyrata genes resemble those comprising the A. lyrata S locus, but they do not function in self-recognition. Moreover, they appear to belong to a lineage that diverged from the ancestral Brassicaceae S-locus genes before allelic diversification at the S locus. We hypothesize that there has been neo-functionalization of these S-locus-like genes in the Leavenworthia lineage, resulting in evolution of a separate ligand-receptor system of SI. Our results also provide support for theoretical models that predict that the least constrained pathway to the evolution of self-compatibility is one involving loss of pollen gene function.
Collapse
|
88
|
Roux C, Pauwels M, Ruggiero MV, Charlesworth D, Castric V, Vekemans X. Recent and ancient signature of balancing selection around the S-locus in Arabidopsis halleri and A. lyrata. Mol Biol Evol 2012; 30:435-47. [PMID: 23104079 PMCID: PMC3548311 DOI: 10.1093/molbev/mss246] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the strongest forms of balancing selection, and they show clear signatures of balancing selection. The genome region containing those genes (the S-locus) is generally described as nonrecombining, and the physical size of the region with low recombination has recently been established in a few species. However, the size of the region showing the indirect footprints of selection due to linkage to the S-locus is only roughly known. Here, we improved estimates of this region by surveying synonymous polymorphism and estimating recombination rates at 12 flanking region loci at known physical distances from the S-locus region boundary, in two closely related self-incompatible plants Arabidopsis halleri and A. lyrata. In addition to studying more loci than previous studies and using known physical distances, we simulated an explicit demographic scenario for the divergence between the two species, to evaluate the extent of the genomic region whose diversity departs significantly from neutral expectations. At the closest flanking loci, we detected signatures of both recent and ancient indirect effects of selection on the S-locus flanking genes, finding ancestral polymorphisms shared by both species, as well as an excess of derived mutations private to either species. However, these effects are detected only in a physically small region, suggesting that recombination in the flanking regions is sufficient to quickly break up linkage disequilibrium with the S-locus. Our approach may be useful for distinguishing cases of ancient versus recently evolved balancing selection in other systems.
Collapse
Affiliation(s)
- Camille Roux
- Laboratoire de Génétique et Evolution des Populations Végétales, UMR CNRS 8198, Université de Lille, Sciences et Technologies, Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
89
|
Tsuchimatsu T, Kaiser P, Yew CL, Bachelier JB, Shimizu KK. Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLoS Genet 2012; 8:e1002838. [PMID: 22844253 PMCID: PMC3405996 DOI: 10.1371/journal.pgen.1002838] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 06/04/2012] [Indexed: 01/01/2023] Open
Abstract
The evolutionary transition from outcrossing to self-fertilization (selfing) through the loss of self-incompatibility (SI) is one of the most prevalent events in flowering plants, and its genetic basis has been a major focus in evolutionary biology. In the Brassicaceae, the SI system consists of male and female specificity genes at the S-locus and of genes involved in the female downstream signaling pathway. During recent decades, much attention has been paid in particular to clarifying the genes responsible for the loss of SI. Here, we investigated the pattern of polymorphism and functionality of the female specificity gene, the S-locus receptor kinase (SRK), in allotetraploid Arabidopsis kamchatica. While its parental species, A. lyrata and A. halleri, are reported to be diploid and mainly self-incompatible, A. kamchatica is self-compatible. We identified five highly diverged SRK haplogroups, found their disomic inheritance and, for the first time in a wild allotetraploid species, surveyed the geographic distribution of SRK at the two homeologous S-loci across the species range. We found intact full-length SRK sequences in many accessions. Through interspecific crosses with the self-incompatible and diploid congener A. halleri, we found that the female components of the SI system, including SRK and the female downstream signaling pathway, are still functional in these accessions. Given the tight linkage and very rare recombination of the male and female components on the S-locus, this result suggests that the degradation of male components was responsible for the loss of SI in A. kamchatica. Recent extensive studies in multiple Brassicaceae species demonstrate that the loss of SI is often derived from mutations in the male component in wild populations, in contrast to cultivated populations. This is consistent with theoretical predictions that mutations disabling male specificity are expected to be more strongly selected than mutations disabling female specificity, or the female downstream signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, Institute of Plant Biology, and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| |
Collapse
|
90
|
Gioti A, Mushegian AA, Strandberg R, Stajich JE, Johannesson H. Unidirectional Evolutionary Transitions in Fungal Mating Systems and the Role of Transposable Elements. Mol Biol Evol 2012; 29:3215-26. [DOI: 10.1093/molbev/mss132] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
91
|
Takos AM, Rook F. Why biosynthetic genes for chemical defense compounds cluster. TRENDS IN PLANT SCIENCE 2012; 17:383-8. [PMID: 22609284 DOI: 10.1016/j.tplants.2012.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/13/2012] [Accepted: 04/15/2012] [Indexed: 05/20/2023]
Abstract
In plants, the genomic clustering of non-homologous genes for the biosynthesis of chemical defense compounds is an emerging theme. Gene clustering is also observed for polymorphic sexual traits under balancing selection, and examples in plants are self-incompatibility and floral dimorphy. The chemical defense pathways organized as gene clusters are self-contained biosynthetic modules under opposing selection pressures and adaptive polymorphisms, often the presence or absence of a functional pathway, are observed in nature. We propose that these antagonistic selection pressures favor closer physical linkage between beneficially interacting alleles as the resulting reduction in recombination maintains a larger fraction of the fitter genotypes. Gene clusters promote the stable inheritance of functional chemical defense pathways in the dynamic ecological context of natural populations.
Collapse
Affiliation(s)
- Adam M Takos
- Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | | |
Collapse
|
92
|
Suwabe K, Suzuki G, Nunome T, Hatakeyama K, Mukai Y, Fukuoka H, Matsumoto S. Microstructure of a Brassica rapa genome segment homoeologous to the resistance gene cluster on Arabidopsis chromosome 4. BREEDING SCIENCE 2012; 62:170-7. [PMID: 23136528 PMCID: PMC3405966 DOI: 10.1270/jsbbs.62.170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 03/28/2012] [Indexed: 05/23/2023]
Abstract
Genome evolution is a continuous process and genomic rearrangement occurs both within and between species. With the sequencing of the Arabidopsis thaliana genome, comparative genetics and genomics offer new insights into plant biology. The genus Brassica offers excellent opportunities with which to compare genomic synteny so as to reveal genome evolution. During a previous genetic analysis of clubroot resistance in Brassica rapa, we identified a genetic region that is highly collinear with Arabidopsis chromosome 4. This region corresponds to a disease resistance gene cluster in the A. thaliana genome. Relying on synteny with Arabidopsis, we fine-mapped the region and found that the location and order of the markers showed good correspondence with those in Arabidopsis. Microsynteny on a physical map indicated an almost parallel correspondence, with a few rearrangements such as inversions and insertions. The results show that this genomic region of Brassica is conserved extensively with that of Arabidopsis and has potential as a disease resistance gene cluster, although the genera diverged 20 million years ago.
Collapse
Affiliation(s)
- Keita Suwabe
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan
| | - Tsukasa Nunome
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Katsunori Hatakeyama
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Yasuhiko Mukai
- Division of Natural Science, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan
| | - Hiroyuki Fukuoka
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Satoru Matsumoto
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| |
Collapse
|
93
|
The S-LOCUS CYSTEINE-RICH PROTEIN (SCR): A Small Peptide with A High Impact on the Evolution of Flowering Plants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-3-642-27603-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
94
|
Goubet PM, Bergès H, Bellec A, Prat E, Helmstetter N, Mangenot S, Gallina S, Holl AC, Fobis-Loisy I, Vekemans X, Castric V. Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS Genet 2012; 8:e1002495. [PMID: 22457631 PMCID: PMC3310759 DOI: 10.1371/journal.pgen.1002495] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/08/2011] [Indexed: 11/22/2022] Open
Abstract
Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus) in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae. Self-incompatibility is a common genetic system preventing selfing through recognition and rejection of self-pollen in hermaphroditic flowering plants. In the Brassicaceae family, this system is controlled by a single genomic region, called the S-locus, where many distinct specificities segregate in natural populations. In this study, we obtained genomic sequences comprising the S-locus in two closely related Brassicaceae species, Arabidopsis lyrata and A. halleri, and analyzed their diversity and patterns of molecular evolution. We report compelling evidence that the S-locus presents many similar properties with other genomic regions involved in the determination of mating-types in mammals, insects, plants, or fungi. In particular, in spite of their diversity, these genomic regions all show absence of similarity in intergenic sequences, large depth of genealogies, highly divergent organization, and accumulation of transposable elements. Moreover, some of these features were found to vary according to dominance of the S-locus specificities, suggesting that dominance/recessivity interactions are key drivers of the evolution of this genomic region.
Collapse
Affiliation(s)
- Pauline M. Goubet
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Hélène Bergès
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Arnaud Bellec
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Elisa Prat
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Nicolas Helmstetter
- Centre National des Ressources Génomiques Végétales, INRA UPR 1258, Castanet-Tolosan, France
| | - Sophie Mangenot
- Genoscope, Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant, Institut de Génomique, Genoscope, Evry, France
| | - Sophie Gallina
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Anne-Catherine Holl
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Isabelle Fobis-Loisy
- Reproduction et Développement des Plantes, Institut Fédératif de Recherche 128, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Xavier Vekemans
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
| | - Vincent Castric
- Laboratoire GEPV, CNRS FRE 3268, Univ Lille 1 – Univ Lille Nord de France, Cité Scientifique, Villeneuve d'Ascq, France
- * E-mail:
| |
Collapse
|
95
|
de la Chaux N, Tsuchimatsu T, Shimizu KK, Wagner A. The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mob DNA 2012; 3:2. [PMID: 22313744 PMCID: PMC3292453 DOI: 10.1186/1759-8753-3-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 02/07/2012] [Indexed: 12/11/2022] Open
Abstract
Background Transposable elements (TEs) are major contributors to genome evolution. One factor that influences their evolutionary dynamics is whether their host reproduces through selfing or through outcrossing. According to the recombinational spreading hypothesis, for instance, TEs can spread more easily in outcrossing species through recombination, and should thus be less abundant in selfing species. We here studied the distribution and evolutionary dynamics of TE families in the predominantly selfing plant Arabidopsis thaliana and its close outcrossing relative Arabidopsis lyrata on a genome-wide scale. We characterized differences in TE abundance between them and asked which, if any, existing hypotheses about TE abundances may explain these differences. Results We identified 1,819 TE families representing all known classes of TEs in both species, and found three times more copies in the outcrossing A. lyrata than in the predominantly selfing A. thaliana, as well as ten times more TE families unique to A. lyrata. On average, elements in A. lyrata are younger than elements in A. thaliana. In particular, A. thaliana shows a marked decrease in element number that occurred during the most recent 10% of the time interval since A. thaliana split from A. lyrata. This most recent period in the evolution of A. thaliana started approximately 500,000 years ago, assuming a splitting time of 5 million years ago, and coincides with the time at which predominant selfing originated. Conclusions Our results indicate that the mating system may be important for determining TE copy number, and that selfing species are likely to have fewer TEs.
Collapse
Affiliation(s)
- Nicole de la Chaux
- Molecular Evolution and Evolutionary Systems Biology, Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
96
|
HAUDRY ANNABELLE, ZHA HONGGUANG, STIFT MARC, MABLE BARBARAK. Disentangling the effects of breakdown of self-incompatibility and transition to selfing in North AmericanArabidopsis lyrata. Mol Ecol 2012; 21:1130-42. [DOI: 10.1111/j.1365-294x.2011.05435.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
Functional test of Brassica self-incompatibility modifiers in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2011; 108:18173-8. [PMID: 22025723 DOI: 10.1073/pnas.1115283108] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The self-incompatibility (SI) system of the Brassicaceae is based on allele-specific interactions among haplotypes of the S locus. In all tested self-incompatible Brassicaceae, the S haplotype encompasses two linked genes, one encoding the S-locus receptor kinase (SRK), a transmembrane kinase displayed at the surface of stigma epidermal cells, and the other encoding its ligand, the S-locus cysteine-rich (SCR) protein, which is localized in the pollen coat. Transfer of the two genes to self-fertile Arabidopsis thaliana allowed the establishment of robust SI in several accessions, indicating that the signaling cascade triggered by this receptor-ligand interaction and the resulting inhibition of "self" pollen by the stigma have been maintained in extant A. thaliana. Based on studies in Brassica species, the membrane-tethered kinase MLPK, the ARM repeat-containing U-box protein ARC1, and the exocyst subunit Exo70A1 have been proposed to function as components of an SI signaling cascade. Here we tested the role of these molecules in the SI response of A. thaliana SRK-SCR plants. We show that the A. thaliana ARC1 ortholog is a highly decayed pseudogene. We also show that, unlike reports in Brassica, inactivation of the MLPK ortholog AtAPK1b and overexpression of Exo70A1 neither abolish nor weaken SI in A. thaliana SRK-SCR plants. These results do not support a role for these molecules in the SI response of A. thaliana.
Collapse
|
98
|
Guo YL, Zhao X, Lanz C, Weigel D. Evolution of the S-locus region in Arabidopsis relatives. PLANT PHYSIOLOGY 2011; 157:937-46. [PMID: 21810962 PMCID: PMC3192562 DOI: 10.1104/pp.111.174912] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/01/2011] [Indexed: 05/21/2023]
Abstract
The S locus, a single polymorphic locus, is responsible for self-incompatibility (SI) in the Brassicaceae family and many related plant families. Despite its importance, our knowledge of S-locus evolution is largely restricted to the causal genes encoding the S-locus receptor kinase (SRK) receptor and S-locus cysteine-rich protein (SCR) ligand of the SI system. Here, we present high-quality sequences of the genomic region of six S-locus haplotypes: Arabidopsis (Arabidopsis thaliana; one haplotype), Arabidopsis lyrata (four haplotypes), and Capsella rubella (one haplotype). We compared these with reference S-locus haplotypes of the self-compatible Arabidopsis and its SI congener A. lyrata. We subsequently reconstructed the likely genomic organization of the S locus in the most recent common ancestor of Arabidopsis and Capsella. As previously reported, the two SI-determining genes, SCR and SRK, showed a pattern of coevolution. In addition, consistent with previous studies, we found that duplication, gene conversion, and positive selection have been important factors in the evolution of these two genes and appear to contribute to the generation of new recognition specificities. Intriguingly, the inactive pseudo-S-locus haplotype in the self-compatible species C. rubella is likely to be an old S-locus haplotype that only very recently became fixed when C. rubella split off from its SI ancestor, Capsella grandiflora.
Collapse
Affiliation(s)
- Ya-Long Guo
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany.
| | | | | | | |
Collapse
|
99
|
Zhang X, Wang L, Yuan Y, Tian D, Yang S. Rapid copy number expansion and recent recruitment of domains in S-receptor kinase-like genes contribute to the origin of self-incompatibility. FEBS J 2011; 278:4323-37. [DOI: 10.1111/j.1742-4658.2011.08349.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
100
|
Shimizu KK, Kudoh H, Kobayashi MJ. Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. ANNALS OF BOTANY 2011; 108:777-87. [PMID: 21852275 PMCID: PMC3170158 DOI: 10.1093/aob/mcr180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/18/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND It is essential to understand and predict the effects of changing environments on plants. This review focuses on the sexual reproduction of plants, as previous studies have suggested that this trait is particularly vulnerable to climate change, and because a number of ecologically and evolutionarily relevant genes have been identified. SCOPE It is proposed that studying gene functions in naturally fluctuating conditions, or gene functions in natura, is important to predict responses to changing environments. First, we discuss flowering time, an extensively studied example of phenotypic plasticity. The quantitative approaches of ecological and evolutionary systems biology have been used to analyse the expression of a key flowering gene, FLC, of Arabidopsis halleri in naturally fluctuating environments. Modelling showed that FLC acts as a quantitative tracer of the temperature over the preceding 6 weeks. The predictions of this model were verified experimentally, confirming its applicability to future climate changes. Second, the evolution of self-compatibility as exemplifying an evolutionary response is discussed. Evolutionary genomic and functional analyses have indicated that A. thaliana became self-compatible via a loss-of-function mutation in the male specificity gene, SCR/SP11. Self-compatibility evolved during glacial-interglacial cycles, suggesting its association with mate limitation during migration. Although the evolution of self-compatibility may confer short-term advantages, it is predicted to increase the risk of extinction in the long term because loss-of-function mutations are virtually irreversible. CONCLUSIONS Recent studies of FLC and SCR have identified gene functions in natura that are unlikely to be found in laboratory experiments. The significance of epigenetic changes and the study of non-model species with next-generation DNA sequencers is also discussed.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Institute of Plant Biology, University Research Priority Program in Systems Biology/Functional Genomics & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.
| | | | | |
Collapse
|