51
|
Beemster GTS. Cellular Dynamics, a Systems Biology Bottleneck. TRENDS IN PLANT SCIENCE 2019; 24:386-388. [PMID: 30905523 DOI: 10.1016/j.tplants.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Developing a mechanistic understanding of plant growth regulation requires studying cell division and cell expansion in addition to molecular studies. A recent time-lapse confocal microscopy study (Fox, S. et al. PLoS Biol. 2018:16;e2005952) quantifying these processes in individual cells in growing organs in combination with multiscale modeling provides profound new insights into the regulatory mechanisms involved.
Collapse
Affiliation(s)
- Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp 2020, Belgium.
| |
Collapse
|
52
|
Abstract
The size of seeds affects not only evolutionary fitness but also grain yield of crops. Understanding the mechanisms controlling seed size has become an important research field in plant science. Seed size is determined by the integrated signals of maternal and zygotic tissues, which control the coordinated growth of the embryo, endosperm, and seed coat. Recent advances have identified several signaling pathways that control seed size through maternal tissues, including or involving the ubiquitin-proteasome pathway, G-protein signaling, mitogen-activated protein kinase (MAPK) signaling, phytohormone perception and homeostasis, and some transcriptional regulators. Meanwhile, growth of the zygotic tissues is regulated in part by the HAIKU (IKU) pathway and phytohormones. This review provides a general overview of current findings in seed size control and discusses the emerging molecular mechanisms and regulatory networks found to be involved.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
53
|
Cantú-Iris M, Pastor-Palacios G, Mauricio-Castillo JA, Bañuelos-Hernández B, Avalos-Calleros JA, Juárez-Reyes A, Rivera-Bustamante R, Argüello-Astorga GR. Analysis of a new begomovirus unveils a composite element conserved in the CP gene promoters of several Geminiviridae genera: Clues to comprehend the complex regulation of late genes. PLoS One 2019; 14:e0210485. [PMID: 30673741 PMCID: PMC6344024 DOI: 10.1371/journal.pone.0210485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/25/2018] [Indexed: 12/01/2022] Open
Abstract
A novel bipartite begomovirus, Blechum interveinal chlorosis virus (BleICV), was characterized at the genome level. Comparative analyses revealed that BleICV coat protein (CP) gene promoter is highly divergent from the equivalent region of other begomoviruses (BGVs), with the single exception of Tomato chino La Paz virus (ToChLPV) with which it shares a 23-bp phylogenetic footprint exhibiting dyad symmetry. Systematic examination of the homologous CP promoter segment of 132 New World BGVs revealed the existence of a quasi-palindromic DNA segment displaying a strongly conserved ACTT-(N7)-AAGT core. The spacer sequence between the palindromic motifs is constant in length, but its sequence is highly variable among viral species, presenting a relaxed consensus (TT)GGKCCCY, which is similar to the Conserved Late Element or CLE (GTGGTCCC), a putative TrAP-responsive element. The homologous CP promoter region of Old World BGVs exhibited a distinct organization, with the putative TATA-box overlapping the left half of the ACTT-N7 composite element. Similar CP promoter sequences, dubbed "TATA-associated composite element" or TACE, were found in viruses belonging to different Geminiviridae genera, hence hinting unsuspected evolutionary relationships among those lineages. To get cues about the TACE function, the regulatory function of the CLE was explored in distinct experimental systems. Transgenic tobacco plants harboring a GUS reporter gene driven by a promoter composed by CLE multimers expressed high beta-glucuronidase activity in absence of viral factors, and that expression was increased by begomovirus infection. On the other hand, the TrAP-responsiveness of a truncated CP promoter of Tomato golden mosaic virus (TGMV) was abolished by site-directed mutation of the only CLE present in it, whereas the artificial addition of one CLE to the -125 truncated promoter strongly enhanced the transactivation level in tobacco protoplasts. These results indicate that the CLE is a TrAP-responsive element, hence providing valuable clues to interpret the recurrent association of the CLE with the TACE. On the basis of the aforesaid direct evidences and the insights afforded by the extensive comparative analysis of BleICV CP promoter, we propose that the TACE might be involved in the TrAP-mediated derepression of CP gene in vascular tissues.
Collapse
Affiliation(s)
- Mariana Cantú-Iris
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, México
| | - Guillermo Pastor-Palacios
- CONACYT–CIIDZA–Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, México
| | | | - Bernardo Bañuelos-Hernández
- Facultad de Agronomía y Veterinaria, Universidad De La Salle Bajio, Avenida Universidad 602, Lomas del campestre, León Guanajuato, México
| | - Jesús Aarón Avalos-Calleros
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, México
| | - Alejandro Juárez-Reyes
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, México
| | - Rafael Rivera-Bustamante
- Departamento de Ingeniería Genética de Plantas, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Gto., México
| | - Gerardo R. Argüello-Astorga
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, México
| |
Collapse
|
54
|
Forero MG, Perdomo SA, Quimbaya MA, Perez GF. Image Processing Method for Epidermal Cells Detection and Measurement in Arabidopsis Thaliana Leaves. PATTERN RECOGNITION AND IMAGE ANALYSIS 2019. [DOI: 10.1007/978-3-030-31321-0_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
A user-friendly platform for yeast two-hybrid library screening using next generation sequencing. PLoS One 2018; 13:e0201270. [PMID: 30576311 PMCID: PMC6303091 DOI: 10.1371/journal.pone.0201270] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/26/2018] [Indexed: 01/19/2023] Open
Abstract
Yeast two-hybrid (Y2H) is a well-established genetics-based system that uses yeast to selectively display binary protein-protein interactions (PPIs). To meet the current need to unravel complex PPI networks, several adaptations have been made to establish medium- to high-throughput Y2H screening platforms, with several having successfully incorporated the use of the next-generation sequencing (NGS) technology to increase the scale and sensitivity of the method. However, these have been to date mainly restricted to the use of fully annotated custom-made open reading frame (ORF) libraries and subject to complex downstream data processing. Here, a streamlined Y2H library screening strategy, based on integration of Y2H with NGS, called Y2H-seq, was developed, which allows efficient and reliable screening of Y2H cDNA libraries. To generate proof of concept, the method was applied to screen for interaction partners of two key components of the jasmonate signaling machinery in the model plant Arabidopsis thaliana, resulting in the identification of several previously reported as well as hitherto unknown interactors. Our Y2H-seq method offers a user-friendly, specific and sensitive screening method that allows identification of PPIs without prior knowledge of the organism’s ORFs, thereby extending the method to organisms of which the genome has not entirely been annotated yet. The quantitative NGS readout allows to increase genome coverage, thereby overcoming some of the bottlenecks of current Y2H technologies, which will further strengthen the value of the Y2H technology as a discovery platform.
Collapse
|
56
|
Yang J, Liu Y, Yan H, Tian T, You Q, Zhang L, Xu W, Su Z. PlantEAR: Functional Analysis Platform for Plant EAR Motif-Containing Proteins. Front Genet 2018; 9:590. [PMID: 30555515 PMCID: PMC6283911 DOI: 10.3389/fgene.2018.00590] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motifs, which were initially identified in members of the Arabidopsis ethylene response factor (ERF) family, are transcriptional repression motifs in plants and are defined by the consensus sequence patterns of either LxLxL or DLNxxP. EAR motif-containing proteins can function as transcription repressors, thus interacting with co-repressors, such as TOPLESS and AtSAP18, affecting the structure of chromatin by histone modifications and thereby repressing gene transcription. EAR motif-containing proteins are highly conserved across diverse plant species and play important roles in hormone signal transduction, stress responses and development, but they have not been identified in most plants. In this study, we identified 20,542 EAR motif-containing proteins from 71 plant species based on a Hidden Markov Model and orthologous gene search, and then we constructed a functional analysis platform for plant EAR motif-containing proteins (PlantEAR, http://structuralbiology.cau.edu.cn/plantEAR) by integrating a variety of functional annotations and processed data. Several tools were provided as functional support for EAR motif-containing proteins, such as browse, search, co-expression and protein-protein interaction (PPI) network analysis as well as cis-element analysis and gene set enrichment analysis (GSEA). In addition, basing on the identified EAR motif-containing proteins, we also explored their distribution in various species and found that the numbers of EAR motif-containing proteins showed an increasing trend in evolution from algae to angiosperms.
Collapse
Affiliation(s)
- Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tian Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi You
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
57
|
Vatén A, Soyars CL, Tarr PT, Nimchuk ZL, Bergmann DC. Modulation of Asymmetric Division Diversity through Cytokinin and SPEECHLESS Regulatory Interactions in the Arabidopsis Stomatal Lineage. Dev Cell 2018; 47:53-66.e5. [PMID: 30197241 PMCID: PMC6177308 DOI: 10.1016/j.devcel.2018.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/06/2018] [Accepted: 08/08/2018] [Indexed: 11/18/2022]
Abstract
Coordinated growth of organs requires communication among cells within and between tissues. In plants, leaf growth is largely dictated by the epidermis; here, asymmetric and self-renewing divisions of the stomatal lineage create two essential cell types-pavement cells and guard cells-in proportions reflecting inputs from local, systemic, and environmental cues. The transcription factor SPEECHLESS (SPCH) is the prime regulator of divisions, but whether and how it is influenced by external cues to provide flexible development is enigmatic. Here, we show that the phytohormone cytokinin (CK) can act as an endogenous signal to affect the extent and types of stomatal lineage divisions and forms a regulatory circuit with SPCH. Local domains of low CK signaling are created by SPCH-dependent cell-type-specific activity of two repressive type-A ARABIDOPSIS RESPONSE REGULATORs (ARRs), ARR16 and ARR17, and two secreted peptides, CLE9 and CLE10, which, together with SPCH, can customize epidermal cell-type composition.
Collapse
Affiliation(s)
- Anne Vatén
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Cara L Soyars
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Paul T Tarr
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
58
|
Du F, Guan C, Jiao Y. Molecular Mechanisms of Leaf Morphogenesis. MOLECULAR PLANT 2018; 11:1117-1134. [PMID: 29960106 DOI: 10.1016/j.molp.2018.06.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 05/17/2023]
Abstract
Plants maintain the ability to form lateral appendages throughout their life cycle and form leaves as the principal lateral appendages of the stem. Leaves initiate at the peripheral zone of the shoot apical meristem and then develop into flattened structures. In most plants, the leaf functions as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and oxygen. To produce structures that can optimally fulfill this function, plants precisely control the initiation, shape, and polarity of leaves. Moreover, leaf development is highly flexible but follows common themes with conserved regulatory mechanisms. Leaves may have evolved from lateral branches that are converted into determinate, flattened structures. Many other plant parts, such as floral organs, are considered specialized leaves, and thus leaf development underlies their morphogenesis. Here, we review recent advances in the understanding of how three-dimensional leaf forms are established. We focus on how genes, phytohormones, and mechanical properties modulate leaf development, and discuss these factors in the context of leaf initiation, polarity establishment and maintenance, leaf flattening, and intercalary growth.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
59
|
Baekelandt A, Pauwels L, Wang Z, Li N, De Milde L, Natran A, Vermeersch M, Li Y, Goossens A, Inzé D, Gonzalez N. Arabidopsis Leaf Flatness Is Regulated by PPD2 and NINJA through Repression of CYCLIN D3 Genes. PLANT PHYSIOLOGY 2018; 178:217-232. [PMID: 29991485 PMCID: PMC6130026 DOI: 10.1104/pp.18.00327] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), reduced expression of the transcriptional regulator PEAPOD2 (PPD2) results in propeller-like rosettes with enlarged and dome-shaped leaves. However, the molecular and cellular processes underlying this peculiar phenotype remain elusive. Here, we studied the interaction between PPD2 and NOVEL INTERACTOR OF JAZ (NINJA) and demonstrated that ninja loss-of-function plants produce rosettes with dome-shaped leaves similar to those of ppd mutants but without the increase in size. We showed that ninja mutants have a convex-shaped primary cell cycle arrest front, putatively leading to excessive cell division in the central leaf blade region. Furthermore, ppd and ninja mutants have a similar increase in the expression of CYCLIN D3;2 (CYCD3;2), and ectopic overexpression of CYCD3;2 phenocopies the ppd and ninja rosette and leaf shape phenotypes without affecting the size. Our results reveal a pivotal contribution of NINJA in leaf development, in addition to its well-studied function in jasmonate signaling, and imply a new function for D3-type cyclins in, at least partially, uncoupling the size and shape phenotypes of ppd leaves.
Collapse
Affiliation(s)
- Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Laurens Pauwels
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Zhibiao Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liesbeth De Milde
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Annelore Natran
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Mattias Vermeersch
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Nathalie Gonzalez
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| |
Collapse
|
60
|
Ebel C, BenFeki A, Hanin M, Solano R, Chini A. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance. PLoS One 2018; 13:e0200566. [PMID: 30021005 PMCID: PMC6051620 DOI: 10.1371/journal.pone.0200566] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/28/2018] [Indexed: 11/25/2022] Open
Abstract
The TIFY proteins constitute a plant-specific super-family and they are involved in regulating many plant processes, such as development, defences and stress responses. The Jasmonate-ZIM-Domain (JAZ) proteins, the best-characterized sub-group of the TIFY family are key regulator of the jasmonic acid (JA) signalling pathway. Jasmonates regulate several aspects of plant development, and play a primary role in defence mechanisms as well as in plant responses to abiotic stresses. The TIFY family is well studied in dicots but poorly investigated in monocots. The present study reports an extensive genomic identification of TIFY proteins from Triticum aestivum. We identified 49 TIFY genes, which were annotated according to three sub-genomes (AABBDD) of T. aestivum. Following their clustering with Oryza sativa and Brachypodium distachyon, the 49 genes were grouped in 18 different TIFY homeologous subsets. Expression analyses of 6 representative TIFY genes on Tunisian durum wheat seedlings revealed their differential regulation by various stress treatment, including JA, ABA and salt stress. TIFY11a was specifically induced after salt treatment. Transgenic lines over-expressing TdTIFY11a showed higher germination and growth rates under high salinity conditions, compared to wild type plants. In summary, our results outline a relevant role of wheat TIFY proteins in promoting germination under salt stress.
Collapse
Affiliation(s)
- Chantal Ebel
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, BP Sfax, Tunisia
| | - Asma BenFeki
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, BP Sfax, Tunisia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, BP Sfax, Tunisia
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Andrea Chini
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
61
|
Maugarny-Calès A, Laufs P. Getting leaves into shape: a molecular, cellular, environmental and evolutionary view. Development 2018; 145:145/13/dev161646. [PMID: 29991476 DOI: 10.1242/dev.161646] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Leaves arise from groups of undifferentiated cells as small primordia that go through overlapping phases of morphogenesis, growth and differentiation. These phases are genetically controlled and modulated by environmental cues to generate a stereotyped, yet plastic, mature organ. Over the past couple of decades, studies have revealed that hormonal signals, transcription factors and miRNAs play major roles during leaf development, and more recent findings have highlighted the contribution of mechanical signals to leaf growth. In this Review, we discuss how modulating the activity of some of these regulators can generate diverse leaf shapes during development, in response to a varying environment, or between species during evolution.
Collapse
Affiliation(s)
- Aude Maugarny-Calès
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.,Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Patrick Laufs
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
62
|
Tsukaya H. Leaf shape diversity with an emphasis on leaf contour variation, developmental background, and adaptation. Semin Cell Dev Biol 2018; 79:48-57. [DOI: 10.1016/j.semcdb.2017.11.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/25/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
|
63
|
Yang L, Liu H, Zhao J, Pan Y, Cheng S, Lietzow CD, Wen C, Zhang X, Weng Y. LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:834-847. [PMID: 29901823 DOI: 10.1111/tpj.13991] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 05/03/2023]
Abstract
Plants employ tight genetic control to integrate intrinsic growth signals and environmental cues to enable organs to grow to a defined size. Many genes contributing to cell proliferation and/or cell expansion, and consequently organ size control, have been identified, but the regulatory pathways are poorly understood. Here we have characterized a cucumber littleleaf (ll) mutant which exhibits smaller organ sizes but more lateral branches than the wild type. The small organ size in ll was due to a reduction of both cell number and cell size. Quantitative trait locus (QTL) analyses revealed co-localization of major-effect QTLs for fruit size, fruit and seed weight, as well as number of lateral branches, with the LL locus indicating pleiotropic effects of the ll mutation. We demonstrate that LL is an ortholog of Arabidopsis STERILE APETALA (SAP) encoding a WD40 repeat domain-containing protein; the mutant protein differed from the wild type by a single amino acid substitution (W264G) in the second WD40 repeat. W264 was conserved in 34 vascular plant genomes examined. Phylogenetic analysis suggested that LL originated before the emergence of flowering plants but was lost in the grass genome lineage. The function of LL in organ size control was confirmed by its overexpression in transgenic cucumbers and ectopic expression in Arabidopsis. Transcriptome profiling in LL and ll bulks revealed a complex regulatory network for LL-mediated organ size variation that involves several known organ size regulators and associated pathways. The data support LL as an important player in organ size control and lateral branch development in cucumber.
Collapse
Affiliation(s)
- Luming Yang
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanqiang Liu
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Siyuan Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Calvin D Lietzow
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Changlong Wen
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Beijing Vegetable Research Center and National Engineering Research Center for Vegetables, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
64
|
Besbrugge N, Van Leene J, Eeckhout D, Cannoot B, Kulkarni SR, De Winne N, Persiau G, Van De Slijke E, Bontinck M, Aesaert S, Impens F, Gevaert K, Van Damme D, Van Lijsebettens M, Inzé D, Vandepoele K, Nelissen H, De Jaeger G. GS yellow, a Multifaceted Tag for Functional Protein Analysis in Monocot and Dicot Plants. PLANT PHYSIOLOGY 2018; 177:447-464. [PMID: 29678859 PMCID: PMC6001315 DOI: 10.1104/pp.18.00175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/01/2018] [Indexed: 05/04/2023]
Abstract
The ability to tag proteins has boosted the emergence of generic molecular methods for protein functional analysis. Fluorescent protein tags are used to visualize protein localization, and affinity tags enable the mapping of molecular interactions by, for example, tandem affinity purification or chromatin immunoprecipitation. To apply these widely used molecular techniques on a single transgenic plant line, we developed a multifunctional tandem affinity purification tag, named GSyellow, which combines the streptavidin-binding peptide tag with citrine yellow fluorescent protein. We demonstrated the versatility of the GSyellow tag in the dicot Arabidopsis (Arabidopsis thaliana) using a set of benchmark proteins. For proof of concept in monocots, we assessed the localization and dynamic interaction profile of the leaf growth regulator ANGUSTIFOLIA3 (AN3), fused to the GSyellow tag, along the growth zone of the maize (Zea mays) leaf. To further explore the function of ZmAN3, we mapped its DNA-binding landscape in the growth zone of the maize leaf through chromatin immunoprecipitation sequencing. Comparison with AN3 target genes mapped in the developing maize tassel or in Arabidopsis cell cultures revealed strong conservation of AN3 target genes between different maize tissues and across monocots and dicots, respectively. In conclusion, the GSyellow tag offers a powerful molecular tool for distinct types of protein functional analyses in dicots and monocots. As this approach involves transforming a single construct, it is likely to accelerate both basic and translational plant research.
Collapse
Affiliation(s)
- Nienke Besbrugge
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bernard Cannoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Shubhada R Kulkarni
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel Bontinck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Francis Impens
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
- VIB Proteomics Core, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
65
|
Hong L, Dumond M, Zhu M, Tsugawa S, Li CB, Boudaoud A, Hamant O, Roeder AHK. Heterogeneity and Robustness in Plant Morphogenesis: From Cells to Organs. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:469-495. [PMID: 29505739 DOI: 10.1146/annurev-arplant-042817-040517] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Development is remarkably reproducible, producing organs with the same size, shape, and function repeatedly from individual to individual. For example, every flower on the Antirrhinum stalk has the same snapping dragon mouth. This reproducibility has allowed taxonomists to classify plants and animals according to their morphology. Yet these reproducible organs are composed of highly variable cells. For example, neighboring cells grow at different rates in Arabidopsis leaves, sepals, and shoot apical meristems. This cellular variability occurs in normal, wild-type organisms, indicating that cellular heterogeneity (or diversity in a characteristic such as growth rate) is either actively maintained or, at a minimum, not entirely suppressed. In fact, cellular heterogeneity can contribute to producing invariant organs. Here, we focus on how plant organs are reproducibly created during development from these highly variable cells.
Collapse
Affiliation(s)
- Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Mathilde Dumond
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
- Current affiliation: Department for Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Satoru Tsugawa
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan;
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Olivier Hamant
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
66
|
Kanazashi Y, Hirose A, Takahashi I, Mikami M, Endo M, Hirose S, Toki S, Kaga A, Naito K, Ishimoto M, Abe J, Yamada T. Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. PLANT CELL REPORTS 2018; 37:553-563. [PMID: 29333573 DOI: 10.1007/s00299-018-2251-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/05/2018] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Using a gRNA and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean. Mutations in GmPPD loci were confirmed in at least 33% of T2 seeds. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two homoeologous loci in soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of Arabidopsis thaliana PEAPOD (PPD). Most of the T1 plants had heterozygous and/or chimeric mutations for the targeted loci. The sequencing analysis of T1 and T2 generations indicates that putative mutation induced in the T0 plant is transmitted to the T1 generation. The inheritable mutation induced in the T1 plant was also detected. This result indicates that continuous induction of mutations during T1 plant development increases the occurrence of mutations in germ cells, which ensures the transmission of mutations to the next generation. Simultaneous site-directed mutagenesis in both GmPPD loci was confirmed in at least 33% of T2 seeds examined. Approximately 19% of double mutants did not contain the Cas9/gRNA expression construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2 had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds. Taken together, our data indicate that continuous induction of mutations in the whole plant and advancing generations of transgenic plants enable efficient simultaneous site-directed mutagenesis in duplicated loci in soybean.
Collapse
Affiliation(s)
- Yuhei Kanazashi
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Aya Hirose
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Ippei Takahashi
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Masafumi Mikami
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agricultural and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agricultural and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Sakiko Hirose
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agricultural and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agricultural and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, Kanagawa, 244-0813, Japan
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agricultural and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Ken Naito
- Plant Diversity Research Team, Genetic Resources Center, National Agricultural and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Masao Ishimoto
- Division of Basic Research, Institute of Crop Science, National Agricultural and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Jun Abe
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Tetsuya Yamada
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
67
|
STERILE APETALA modulates the stability of a repressor protein complex to control organ size in Arabidopsis thaliana. PLoS Genet 2018; 14:e1007218. [PMID: 29401459 PMCID: PMC5814100 DOI: 10.1371/journal.pgen.1007218] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/15/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
Organ size control is of particular importance for developmental biology and agriculture, but the mechanisms underlying organ size regulation remain elusive in plants. Meristemoids, which possess stem cell-like properties, have been recognized to play important roles in leaf growth. We have recently reported that the Arabidopsis F-box protein STERILE APETALA (SAP)/SUPPRESSOR OF DA1 (SOD3) promotes meristemoid proliferation and regulates organ size by influencing the stability of the transcriptional regulators PEAPODs (PPDs). Here we demonstrate that KIX8 and KIX9, which function as adaptors for the corepressor TOPLESS and PPD, are novel substrates of SAP. SAP interacts with KIX8/9 and modulates their protein stability. Further results show that SAP acts in a common pathway with KIX8/9 and PPD to control organ growth by regulating meristemoid cell proliferation. Thus, these findings reveal a molecular mechanism by which SAP targets the KIX-PPD repressor complex for degradation to regulate meristemoid cell proliferation and organ size. Organ size is coordinately regulated by cell proliferation and cell expansion; however, the mechanisms of organ size control are still poorly understood. We have previously demonstrated that the Arabidopsis F-box protein STERILE APETALA (SAP)/SUPPRESSOR OF DA1 (SOD3) controls organ size by promoting meristemoid proliferation. SAP functions as part of a SKP1/Cullin/F-box (SCF) E3 ubiquitin ligase complex and modulates the stability of the transcriptional regulators PEAPODs (PPDs) to control organ growth. Here we show that KIX8 and KIX9 are novel substrates of SAP. KIX8 and KIX9 have been shown to form a transcriptional repressor complex with PPD and TOPLESS (TPL) to regulate leaf growth. We found that SAP interacts with KIX8/9 in vitro and in vivo, and modulates their protein stability. Further analyses indicate that SAP acts in a common pathway with KIX8/9 and PPD to control meristemoid proliferation and organ growth. These findings reveal that SAP regulates organ size by targeting the KIX-PPD repressor complex for degradation.
Collapse
|
68
|
Struk S, Braem L, Walton A, De Keyser A, Boyer FD, Persiau G, De Jaeger G, Gevaert K, Goormachtig S. Quantitative Tandem Affinity Purification, an Effective Tool to Investigate Protein Complex Composition in Plant Hormone Signaling: Strigolactones in the Spotlight. FRONTIERS IN PLANT SCIENCE 2018; 9:528. [PMID: 29755490 PMCID: PMC5932160 DOI: 10.3389/fpls.2018.00528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/04/2018] [Indexed: 05/13/2023]
Abstract
Phytohormones tightly regulate plant growth by integrating changing environmental and developmental cues. Although the key players have been identified in many plant hormonal pathways, the molecular mechanisms and mode of action of perception and signaling remain incompletely resolved. Characterization of protein partners of known signaling components provides insight into the formed protein complexes, but, unless quantification is involved, does not deliver much, if any, information about the dynamics of the induced or disrupted protein complexes. Therefore, in proteomics research, the discovery of what actually triggers, regulates or interrupts the composition of protein complexes is gaining importance. Here, tandem affinity purification coupled to mass spectrometry (TAP-MS) is combined with label-free quantification (LFQ) to a highly valuable tool to detect physiologically relevant, dynamic protein-protein interactions in Arabidopsis thaliana cell cultures. To demonstrate its potential, we focus on the signaling pathway of one of the most recently discovered phytohormones, strigolactones.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lukas Braem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Alan Walton
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - François-Didier Boyer
- UMR 1318, Institut National de la Recherche Agronomique – Institut Jean-Pierre Bourgin, Versailles, France
- Institut de Chimie des Substances Naturelles – UPR 2301, Centre de Recherche de Gif, Centre National de la Recherche Scientifique, Paris, France
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- *Correspondence: Sofie Goormachtig,
| |
Collapse
|
69
|
Suzuki M, Shinozuka N, Hirakata T, Nakata MT, Demura T, Tsukaya H, Horiguchi G. OLIGOCELLULA1/ HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:580. [PMID: 29774040 PMCID: PMC5943563 DOI: 10.3389/fpls.2018.00580] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/13/2018] [Indexed: 05/18/2023]
Abstract
Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin β-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size.
Collapse
Affiliation(s)
- Marina Suzuki
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Nanae Shinozuka
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Tomohiro Hirakata
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Miyuki T. Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
- *Correspondence: Gorou Horiguchi,
| |
Collapse
|
70
|
Van den Broeck L, Dubois M, Vermeersch M, Storme V, Matsui M, Inzé D. From network to phenotype: the dynamic wiring of an Arabidopsis transcriptional network induced by osmotic stress. Mol Syst Biol 2017; 13:961. [PMID: 29269383 PMCID: PMC5740496 DOI: 10.15252/msb.20177840] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plants have established different mechanisms to cope with environmental fluctuations and accordingly fine-tune their growth and development through the regulation of complex molecular networks. It is largely unknown how the network architectures change and what the key regulators in stress responses and plant growth are. Here, we investigated a complex, highly interconnected network of 20 Arabidopsis transcription factors (TFs) at the basis of leaf growth inhibition upon mild osmotic stress. We tracked the dynamic behavior of the stress-responsive TFs over time, showing the rapid induction following stress treatment, specifically in growing leaves. The connections between the TFs were uncovered using inducible overexpression lines and were validated with transient expression assays. This study resulted in the identification of a core network, composed of ERF6, ERF8, ERF9, ERF59, and ERF98, which is responsible for most transcriptional connections. The analyses highlight the biological function of this core network in environmental adaptation and its redundancy. Finally, a phenotypic analysis of loss-of-function and gain-of-function lines of the transcription factors established multiple connections between the stress-responsive network and leaf growth.
Collapse
Affiliation(s)
- Lisa Van den Broeck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium .,VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
71
|
Yordanov YS, Ma C, Yordanova E, Meilan R, Strauss SH, Busov VB. BIG LEAF is a regulator of organ size and adventitious root formation in poplar. PLoS One 2017; 12:e0180527. [PMID: 28686626 PMCID: PMC5501567 DOI: 10.1371/journal.pone.0180527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/17/2017] [Indexed: 01/08/2023] Open
Abstract
Here we report the discovery through activation tagging and subsequent characterization of the BIG LEAF (BL) gene from poplar. In poplar, BL regulates leaf size via positively affecting cell proliferation. Up and downregulation of the gene led to increased and decreased leaf size, respectively, and these phenotypes corresponded to increased and decreased cell numbers. BL function encompasses the early stages of leaf development as native BL expression was specific to the shoot apical meristem and leaf primordia and was absent from the later stages of leaf development and other organs. Consistently, BL downregulation reduced leaf size at the earliest stages of leaf development. Ectopic expression in mature leaves resulted in continued growth most probably via sustained cell proliferation and thus the increased leaf size. In contrast to the positive effect on leaf growth, ectopic BL expression in stems interfered with and significantly reduced stem thickening, suggesting that BL is a highly specific activator of growth. In addition, stem cuttings from BL overexpressing plants developed roots, whereas the wild type was difficult to root, demonstrating that BL is a positive regulator of adventitious rooting. Large transcriptomic changes in plants that overexpressed BL indicated that BL may have a broad integrative role, encompassing many genes linked to organ growth. We conclude that BL plays a fundamental role in control of leaf size and thus may be a useful tool for modifying plant biomass productivity and adventitious rooting.
Collapse
Affiliation(s)
- Yordan S. Yordanov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, United States of America
| | - Cathleen Ma
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America
| | - Elena Yordanova
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
- Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois, United States of America
| | - Richard Meilan
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Steven H. Strauss
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America
| | - Victor B. Busov
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
| |
Collapse
|
72
|
Chini A, Ben-Romdhane W, Hassairi A, Aboul-Soud MAM. Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses. PLoS One 2017; 12:e0177381. [PMID: 28570564 PMCID: PMC5453414 DOI: 10.1371/journal.pone.0177381] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
Plant phenotypic plasticity determines plant adaptation to changing environments and agricultural productivity. Phytohormones are essential plant signalling molecules regulating this plasticity through complex signalling networks. Jasmonates (JAs) are key phytohormones regulating many aspects of growth, development and defence responses. An important role of JAs in tolerance to abiotic stresses is also emerging. The expression of JAZ (JASMONATE-ZIM-DOMAIN PROTEIN) genes, encoding for the key repressors in the JA-pathway, is regulated by multiple abiotic stresses, suggesting a role for the JAZ proteins in response to these stresses. The JAZ proteins belong to the TIFY family, well described in many plant species. However, only the role of few tomato JAZ proteins in response to microbial infection has been analysed so far. Here, we identify the members of the tomato TIFY family, and characterize them phylogenetically. In addition, we analyse the transcriptional regulation of several SlJAZ in response to abiotic stresses and hormone treatments both in root and leaves to assess their specific expression in response to stresses. Most SlJAZ are JA-induced and responsive to one or more abiotic stresses, providing clues for functional analysis of JAZ genes in abiotic responses in tomato.
Collapse
Affiliation(s)
- Andrea Chini
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC (CNB-CSIC), Madrid, Spain
- * E-mail: (AC); (MAMA-S)
| | - Walid Ben-Romdhane
- Department of Plant Production, College of Food and Agricultural sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Centre of Biotechnology of Sfax (CBS), University of Sfax, LPAP, Sfax, Tunisia
| | - Afif Hassairi
- Department of Plant Production, College of Food and Agricultural sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Centre of Biotechnology of Sfax (CBS), University of Sfax, LPAP, Sfax, Tunisia
| | - Mourad A. M. Aboul-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Biochemistry and Molecular Biology Department, Cairo University Research Park, Cairo University, Giza, Egypt
- * E-mail: (AC); (MAMA-S)
| |
Collapse
|
73
|
Adaptor proteins GIR1 and GIR2. II. Interaction with the co-repressor TOPLESS and promotion of histone deacetylation of target chromatin. Biochem Biophys Res Commun 2017; 488:609-613. [PMID: 28526412 DOI: 10.1016/j.bbrc.2017.05.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
Understanding how root hair development is controlled is important for understanding of many fundamental aspects of plant biology. Previously, we identified two plant-specific adaptor proteins GIR1 and GIR2 that interact with the major regulator of root hair development GL2 and suppress formation of root hair. Here, we show that GIR1 and GIR2 also interact with the co-repressor TOPLESS (TPL). This interaction required the GIR1 protein EAR motif, and was essential for the transcriptional repressor activity of GIR1. Both GIR1 and GIR2 promoted histone hypoacetylation of their target chromatin. Potentially, GIR1 and GIR2 might may link TPL to and participate in epigenetic regulation of root hair development.
Collapse
|
74
|
Baute J, Polyn S, De Block J, Blomme J, Van Lijsebettens M, Inz� D. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:962-975. [PMID: 28340173 PMCID: PMC5429023 DOI: 10.1093/pcp/pcx035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/03/2017] [Indexed: 05/18/2023]
Abstract
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Jolien De Block
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Jonas Blomme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
| | - Dirk Inz�
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, B-9052 Ghent, Belgium
- Corresponding author: E-mail, ; Fax, +32-9-3313809
| |
Collapse
|
75
|
Sun X, Cahill J, Van Hautegem T, Feys K, Whipple C, Novák O, Delbare S, Versteele C, Demuynck K, De Block J, Storme V, Claeys H, Van Lijsebettens M, Coussens G, Ljung K, De Vliegher A, Muszynski M, Inzé D, Nelissen H. Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nat Commun 2017; 8:14752. [PMID: 28300078 PMCID: PMC5356070 DOI: 10.1038/ncomms14752] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Abstract
Maize is the highest yielding cereal crop grown worldwide for grain or silage. Here, we show that modulating the expression of the maize PLASTOCHRON1 (ZmPLA1) gene, encoding a cytochrome P450 (CYP78A1), results in increased organ growth, seedling vigour, stover biomass and seed yield. The engineered trait is robust as it improves yield in an inbred as well as in a panel of hybrids, at several locations and over multiple seasons in the field. Transcriptome studies, hormone measurements and the expression of the auxin responsive DR5rev:mRFPer marker suggest that PLA1 may function through an increase in auxin. Detailed analysis of growth over time demonstrates that PLA1 stimulates the duration of leaf elongation by maintaining dividing cells in a proliferative, undifferentiated state for a longer period of time. The prolonged duration of growth also compensates for growth rate reduction caused by abiotic stresses.
Collapse
Affiliation(s)
- Xiaohuan Sun
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - James Cahill
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, 50011 Iowa, USA
| | - Tom Van Hautegem
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Kim Feys
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Clinton Whipple
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Department of Biology, Brigham Young University, Provo 84602, Utah, USA
| | - Ondrej Novák
- Laboratory of Growth Regulators and Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 771 47 Olomouc, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 771 47 Olomouc, Czech Republic
| | - Sofie Delbare
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Charlot Versteele
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Kirin Demuynck
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Jolien De Block
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Veronique Storme
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Hannes Claeys
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Griet Coussens
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 907 36 Umeå, Sweden
| | - Alex De Vliegher
- Institute for Agricultural and Fisheries Research (ILVO), 9820 Merelbeke, Belgium
| | - Michael Muszynski
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, 50011 Iowa, USA
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Hilde Nelissen
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
76
|
Genome-wide identification of the TIFY gene family in three cultivated Gossypium species and the expression of JAZ genes. Sci Rep 2017; 7:42418. [PMID: 28186193 PMCID: PMC5301204 DOI: 10.1038/srep42418] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/09/2017] [Indexed: 02/02/2023] Open
Abstract
TIFY proteins are plant-specific proteins containing TIFY, JAZ, PPD and ZML subfamilies. A total of 50, 54 and 28 members of the TIFY gene family in three cultivated cotton species—Gossypium hirsutum, Gossypium barbadense and Gossypium arboretum—were identified, respectively. The results of phylogenetic analysis showed that these TIFY genes were divided into eight clusters. The different clusters of gene family members often have similar gene structures, including the number of exons. The results of quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that different JAZ genes displayed distinct expression patterns in the leaves of upland cotton under treatment with Gibberellin (GA), methyl jasmonate (MeJA), Jasmonic acid (JA) and abscisic acid (ABA). Different groups of JAZ genes exhibited different expression patterns in cotton leaves infected with Verticillium dahliae. The results of the comparative analysis of TIFY genes in the three cultivated species will be useful for understanding the involvement of these genes in development and stress resistance in cotton.
Collapse
|
77
|
Vanhaeren H, Nam YJ, De Milde L, Chae E, Storme V, Weigel D, Gonzalez N, Inzé D. Forever Young: The Role of Ubiquitin Receptor DA1 and E3 Ligase BIG BROTHER in Controlling Leaf Growth and Development. PLANT PHYSIOLOGY 2017; 173:1269-1282. [PMID: 28003326 PMCID: PMC5291030 DOI: 10.1104/pp.16.01410] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/16/2016] [Indexed: 05/18/2023]
Abstract
The final size of plant organs is determined by a combination of cell proliferation and cell expansion. Leaves account for a large part of above-ground biomass and provide energy to complete the plant's life cycle. Although the final size of leaves is remarkably constant under fixed environmental conditions, several genes have been described to enhance leaf growth when their expression is modulated. In Arabidopsis (Arabidopsis thaliana), mutations in DA1 and BB increase leaf size, an effect that is synergistically enhanced in the double mutant. Here, we show that overexpression of a dominant-negative version of DA1 enhances leaf size in a broad range of natural accessions of this species, indicating a highly conserved role of this protein in controlling organ size. We also found that during early stages of development, leaves of da1-1 and bb/eod1-2 mutants were already larger than the isogenic Col-0 wild type, but this phenotype was triggered by different cellular mechanisms. Later during development, da1-1 and bb/eod1-2 leaves showed a prolonged longevity, which was enhanced in the double mutant. Conversely, ectopic expression of DA1 or BB restricted growth and promoted leaf senescence. In concert, shortly upon induction of DA1 and BB expression, several marker genes for the transition from proliferation to expansion were highly up-regulated. Additionally, multiple genes involved in maintaining the mitotic cell cycle were rapidly down-regulated and senescence genes were strongly up-regulated, particularly upon BB induction. With these results, we demonstrate that DA1 and BB restrict leaf size and promote senescence through converging and different mechanisms.
Collapse
Affiliation(s)
- Hannes Vanhaeren
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); INRA Bordeaux-Aquitaine, 33140 Villenave d'Ornon, France (N.G.); and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany (E.C., D.W.)
| | - Youn-Jeong Nam
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); INRA Bordeaux-Aquitaine, 33140 Villenave d'Ornon, France (N.G.); and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany (E.C., D.W.)
| | - Liesbeth De Milde
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); INRA Bordeaux-Aquitaine, 33140 Villenave d'Ornon, France (N.G.); and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany (E.C., D.W.)
| | - Eunyoung Chae
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); INRA Bordeaux-Aquitaine, 33140 Villenave d'Ornon, France (N.G.); and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany (E.C., D.W.)
| | - Veronique Storme
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); INRA Bordeaux-Aquitaine, 33140 Villenave d'Ornon, France (N.G.); and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany (E.C., D.W.)
| | - Detlef Weigel
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); INRA Bordeaux-Aquitaine, 33140 Villenave d'Ornon, France (N.G.); and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany (E.C., D.W.)
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); INRA Bordeaux-Aquitaine, 33140 Villenave d'Ornon, France (N.G.); and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany (E.C., D.W.)
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium (H.V., Y.-J.N., L.D.M., V.S., N.G., D.I.); INRA Bordeaux-Aquitaine, 33140 Villenave d'Ornon, France (N.G.); and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany (E.C., D.W.)
| |
Collapse
|
78
|
Ge L, Yu J, Wang H, Luth D, Bai G, Wang K, Chen R. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci U S A 2016; 113:12414-12419. [PMID: 27791139 PMCID: PMC5098654 DOI: 10.1073/pnas.1611763113] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plant organs, such as seeds, are primary sources of food for both humans and animals. Seed size is one of the major agronomic traits that have been selected in crop plants during their domestication. Legume seeds are a major source of dietary proteins and oils. Here, we report a conserved role for the BIG SEEDS1 (BS1) gene in the control of seed size and weight in the model legume Medicago truncatula and the grain legume soybean (Glycine max). BS1 encodes a plant-specific transcription regulator and plays a key role in the control of the size of plant organs, including seeds, seed pods, and leaves, through a regulatory module that targets primary cell proliferation. Importantly, down-regulation of BS1 orthologs in soybean by an artificial microRNA significantly increased soybean seed size, weight, and amino acid content. Our results provide a strategy for the increase in yield and seed quality in legumes.
Collapse
Affiliation(s)
- Liangfa Ge
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Jianbin Yu
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Hongliang Wang
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401
| | - Diane Luth
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA 50011
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
- Hard Winter Wheat Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66506
| | - Kan Wang
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA 50011
- Department of Agronomy, Iowa State University, Ames, IA 50011
| | - Rujin Chen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401;
| |
Collapse
|
79
|
Van Leene J, Blomme J, Kulkarni SR, Cannoot B, De Winne N, Eeckhout D, Persiau G, Van De Slijke E, Vercruysse L, Vanden Bossche R, Heyndrickx KS, Vanneste S, Goossens A, Gevaert K, Vandepoele K, Gonzalez N, Inzé D, De Jaeger G. Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5825-5840. [PMID: 27660483 PMCID: PMC5066499 DOI: 10.1093/jxb/erw347] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant bZIP group I transcription factors have been reported mainly for their role during vascular development and osmosensory responses. Interestingly, bZIP29 has been identified in a cell cycle interactome, indicating additional functions of bZIP29 in plant development. Here, bZIP29 was functionally characterized to study its role during plant development. It is not present in vascular tissue but is specifically expressed in proliferative tissues. Genome-wide mapping of bZIP29 target genes confirmed its role in stress and osmosensory responses, but also identified specific binding to several core cell cycle genes and to genes involved in cell wall organization. bZIP29 protein complex analyses validated interaction with other bZIP group I members and provided insight into regulatory mechanisms acting on bZIP dimers. In agreement with bZIP29 expression in proliferative tissues and with its binding to promoters of cell cycle regulators, dominant-negative repression of bZIP29 altered the cell number in leaves and in the root meristem. A transcriptome analysis on the root meristem, however, indicated that bZIP29 might regulate cell number through control of cell wall organization. Finally, ectopic dominant-negative repression of bZIP29 and redundant factors led to a seedling-lethal phenotype, pointing to essential roles for bZIP group I factors early in plant development.
Collapse
Affiliation(s)
- Jelle Van Leene
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Jonas Blomme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Shubhada R Kulkarni
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Bernard Cannoot
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nancy De Winne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dominique Eeckhout
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Leen Vercruysse
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ken S Heyndrickx
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, B-9000 Gent, Belgium Department of Biochemistry, Ghent University, B-9000 Gent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
80
|
Biot E, Cortizo M, Burguet J, Kiss A, Oughou M, Maugarny-Calès A, Gonçalves B, Adroher B, Andrey P, Boudaoud A, Laufs P. Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis. Development 2016; 143:3417-28. [PMID: 27387872 DOI: 10.1242/dev.134619] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/13/2016] [Indexed: 01/27/2023]
Abstract
A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics.
Collapse
Affiliation(s)
- Eric Biot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Millán Cortizo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Jasmine Burguet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Annamaria Kiss
- Laboratoire de Reproduction et de Développement des Plantes, INRA, CNRS, ENS de Lyon, UCB Lyon 1, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France
| | - Mohamed Oughou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Aude Maugarny-Calès
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Beatriz Gonçalves
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Bernard Adroher
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| | - Philippe Andrey
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France Sorbonne Universités, UPMC Univ. Paris 06 UFR 927, 75252 Paris, France
| | - Arezki Boudaoud
- Laboratoire de Reproduction et de Développement des Plantes, INRA, CNRS, ENS de Lyon, UCB Lyon 1, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France Laboratoire Joliot-Curie, CNRS, ENS de Lyon, Université de Lyon, 46 Allée d'Italie, Lyon Cedex 07 69364, France
| | - Patrick Laufs
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles Cedex 78026, France
| |
Collapse
|
81
|
de Marcos A, Triviño M, Fenoll C, Mena M. Too many faces for TOO MANY MOUTHS? THE NEW PHYTOLOGIST 2016; 210:779-785. [PMID: 26742543 DOI: 10.1111/nph.13827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Alberto de Marcos
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la Mancha, 45071, Toledo, Spain
| | - Magdalena Triviño
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la Mancha, 45071, Toledo, Spain
| | - Carmen Fenoll
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la Mancha, 45071, Toledo, Spain
| | - Montaña Mena
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-la Mancha, 45071, Toledo, Spain
| |
Collapse
|
82
|
SCF(SAP) controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana. Nat Commun 2016; 7:11192. [PMID: 27048938 PMCID: PMC4823829 DOI: 10.1038/ncomms11192] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 02/29/2016] [Indexed: 11/20/2022] Open
Abstract
Control of organ size by cell proliferation and growth is a fundamental process, but the mechanisms that determine the final size of organs are largely elusive in plants. We have previously revealed that the ubiquitin receptor DA1 regulates organ size by repressing cell proliferation in Arabidopsis. Here we report that a mutant allele of STERILE APETALA (SAP) suppresses the da1-1 mutant phenotype. We show that SAP is an F-box protein that forms part of a SKP1/Cullin/F-box E3 ubiquitin ligase complex and controls organ size by promoting the proliferation of meristemoid cells. Genetic analyses suggest that SAP may act in the same pathway with PEAPOD1 and PEAPOD2, which are negative regulators of meristemoid proliferation, to control organ size, but does so independently of DA1. Further results reveal that SAP physically associates with PEAPOD1 and PEAPOD2, and targets them for degradation. These findings define a molecular mechanism by which SAP and PEAPOD control organ size. Organ size in plants is regulated by cell proliferation and cell expansion. Here, Wang et al. show that STERILE APETALA participates in the regulation of organ size as a component of an E3 ligase complex that promotes the degradation of negative regulators of meristemoid proliferation
Collapse
|
83
|
Simmons AR, Bergmann DC. Transcriptional control of cell fate in the stomatal lineage. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:1-8. [PMID: 26550955 PMCID: PMC4753106 DOI: 10.1016/j.pbi.2015.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 05/04/2023]
Abstract
The Arabidopsis stomatal lineage is a microcosm of development; it undergoes selection of precursor cells, asymmetric and stem cell-like divisions, cell commitment and finally, acquisition of terminal cell fates. Recent transcriptomic approaches revealed major shifts in gene expression accompanying each fate transition, and mechanistic analysis of key bHLH transcription factors, along with mathematical modeling, has begun to unravel how these major shifts are coordinated. In addition, stomatal initiation is proving to be a tractable model for defining the genetic and epigenetic basis of stable cell identities and for understanding the integration of environmental responses into developmental programs.
Collapse
Affiliation(s)
- Abigail R Simmons
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; HHMI, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|