51
|
Zhao B, Liu Q, Wang B, Yuan F. Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3566-3584. [PMID: 33739096 DOI: 10.1021/acs.jafc.0c07908] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phytohormones participate in various processes over the course of a plant's lifecycle. In addition to the five classical phytohormones (auxins, cytokinins, gibberellins, abscisic acid, and ethylene), phytohormones such as brassinosteroids, jasmonic acid, salicylic acid, strigolactones, and peptides also play important roles in plant growth and stress responses. Given the highly interconnected nature of phytohormones during plant development and stress responses, it is challenging to study the biological function of a single phytohormone in isolation. In the current Review, we describe the combined functions and signaling cascades (especially the shared points and pathways) of various phytohormones in leaf development, in particular, during leaf primordium initiation and the establishment of leaf polarity and leaf morphology as well as leaf development under various stress conditions. We propose a model incorporating the roles of multiple phytohormones in leaf development and stress responses to illustrate the underlying combinatorial signaling pathways. This model provides a reference for breeding stress-resistant crops.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Qingyun Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| |
Collapse
|
52
|
Prerostova S, Dobrev PI, Knirsch V, Jarosova J, Gaudinova A, Zupkova B, Prášil IT, Janda T, Brzobohatý B, Skalák J, Vankova R. Light Quality and Intensity Modulate Cold Acclimation in Arabidopsis. Int J Mol Sci 2021; 22:ijms22052736. [PMID: 33800491 PMCID: PMC7962961 DOI: 10.3390/ijms22052736] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Plant survival in temperate zones requires efficient cold acclimation, which is strongly affected by light and temperature signal crosstalk, which converge in modulation of hormonal responses. Cold under low light conditions affected Arabidopsis responses predominantly in apices, possibly because energy supplies were too limited for requirements of these meristematic tissues, despite a relatively high steady-state quantum yield. Comparing cold responses at optimal light intensity and low light, we found activation of similar defence mechanisms—apart from CBF1–3 and CRF3–4 pathways, also transient stimulation of cytokinin type-A response regulators, accompanied by fast transient increase of trans-zeatin in roots. Upregulated expression of components of strigolactone (and karrikin) signalling pathway indicated involvement of these phytohormones in cold responses. Impaired response of phyA, phyB, cry1 and cry2 mutants reflected participation of these photoreceptors in acquiring freezing tolerance (especially cryptochrome CRY1 at optimal light intensity and phytochrome PHYA at low light). Efficient cold acclimation at optimal light was associated with upregulation of trans-zeatin in leaves and roots, while at low light, cytokinin (except cis-zeatin) content remained diminished. Cold stresses induced elevation of jasmonic acid and salicylic acid (in roots). Low light at optimal conditions resulted in strong suppression of cytokinins, jasmonic and salicylic acid.
Collapse
Affiliation(s)
- Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
- Correspondence:
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Jana Jarosova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Barbara Zupkova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| | - Ilja T. Prášil
- Division of Genetics and Crop Breeding, Crop Research Institute, Drnovska 507, 16100 Prague, Czech Republic;
| | - Tibor Janda
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, 2462 Martonvásár, Hungary;
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; (B.B.); (J.S.)
| | - Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; (B.B.); (J.S.)
- CEITEC—Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic; (P.I.D.); (V.K.); (J.J.); (A.G.); (B.Z.); (R.V.)
| |
Collapse
|
53
|
Accumulation of the Auxin Precursor Indole-3-Acetamide Curtails Growth through the Repression of Ribosome-Biogenesis and Development-Related Transcriptional Networks. Int J Mol Sci 2021; 22:ijms22042040. [PMID: 33670805 PMCID: PMC7923163 DOI: 10.3390/ijms22042040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The major auxin, indole-3-acetic acid (IAA), is associated with a plethora of growth and developmental processes including embryo development, expansion growth, cambial activity, and the induction of lateral root growth. Accumulation of the auxin precursor indole-3-acetamide (IAM) induces stress related processes by stimulating abscisic acid (ABA) biosynthesis. How IAM signaling is controlled is, at present, unclear. Here, we characterize the ami1rooty double mutant, that we initially generated to study the metabolic and phenotypic consequences of a simultaneous genetic blockade of the indole glucosinolate and IAM pathways in Arabidopsisthaliana. Our mass spectrometric analyses of the mutant revealed that the combination of the two mutations is not sufficient to fully prevent the conversion of IAM to IAA. The detected strong accumulation of IAM was, however, recognized to substantially impair seed development. We further show by genome-wide expression studies that the double mutant is broadly affected in its translational capacity, and that a small number of plant growth regulating transcriptional circuits are repressed by the high IAM content in the seed. In accordance with the previously described growth reduction in response to elevated IAM levels, our data support the hypothesis that IAM is a growth repressing counterpart to IAA.
Collapse
|
54
|
The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules 2021; 11:biom11020209. [PMID: 33546210 PMCID: PMC7913349 DOI: 10.3390/biom11020209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
Collapse
|
55
|
Li SM, Zheng HX, Zhang XS, Sui N. Cytokinins as central regulators during plant growth and stress response. PLANT CELL REPORTS 2021; 40:271-282. [PMID: 33025178 DOI: 10.1007/s00299-020-02612-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Cytokinins are a class of phytohormone that participate in the regulation of the plant growth, development, and stress response. In this review, the potential regulating mechanism during plant growth and stress response are discussed. Cytokinins are a class of phytohormone that participate in the regulation of plant growth, physiological activities, and yield. Cytokinins also play a key role in response to abiotic stresses, such as drought, salt and high or low temperature. Through the signal transduction pathway, cytokinins interact with various transcription factors via a series of phosphorylation cascades to regulate cytokinin-target gene expression. In this review, we systematically summarize the biosynthesis and metabolism of cytokinins, cytokinin signaling, and associated gene regulation, and highlight the function of cytokinins during plant development and resistance to abiotic stress. We also focus on the importance of crosstalk between cytokinins and other classes of phytohormones, including auxin, ethylene, strigolactone, and gibberellin. Our aim is to provide a comprehensive overview of recent findings on the mechanisms by which cytokinins act as central regulators of plant development and stress reactions, and highlight topics for future research.
Collapse
Affiliation(s)
- Si-Min Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
56
|
Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. Int J Mol Sci 2021; 22:ijms22031282. [PMID: 33525430 PMCID: PMC7865218 DOI: 10.3390/ijms22031282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.
Collapse
|
57
|
Xu D, Lu Z, Qiao G, Qiu W, Wu L, Han X, Zhuo R. Auxin-Induced SaARF4 Downregulates SaACO4 to Inhibit Lateral Root Formation in Sedum alfredii Hance. Int J Mol Sci 2021; 22:1297. [PMID: 33525549 PMCID: PMC7865351 DOI: 10.3390/ijms22031297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Lateral root (LR) formation promotes plant resistance, whereas high-level ethylene induced by abiotic stress will inhibit LR emergence. Considering that local auxin accumulation is a precondition for LR generation, auxin-induced genes inhibiting ethylene synthesis may thus be important for LR development. Here, we found that auxin response factor 4 (SaARF4) in Sedum alfredii Hance could be induced by auxin. The overexpression of SaARF4 decreased the LR number and reduced the vessel diameters. Meanwhile, the auxin distribution mode was altered in the root tips and PIN expression was also decreased in the overexpressed lines compared with the wild-type (WT) plants. The overexpression of SaARF4 could reduce ethylene synthesis, and thus, the repression of ethylene production decreased the LR number of WT and reduced PIN expression in the roots. Furthermore, the quantitative real-time PCR, chromatin immunoprecipitation sequencing, yeast one-hybrid, and dual-luciferase assay results showed that SaARF4 could bind the promoter of 1-aminocyclopropane-1-carboxylate oxidase 4 (SaACO4), associated with ethylene biosynthesis, and could downregulate its expression. Therefore, we concluded that SaARF4 induced by auxin can inhibit ethylene biosynthesis by repressing SaACO4 expression, and this process may affect auxin transport to delay LR development.
Collapse
Affiliation(s)
- Dong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Forestry Faculty, Nanjing Forestry University, Nanjing 210037, China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Longhua Wu
- National Engineering Laboratory of Soil Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (D.X.); (Z.L.); (G.Q.); (W.Q.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
58
|
Nenadić M, Vermeer JEM. Dynamic cytokinin signalling landscapes during lateral root formation in Arabidopsis. QUANTITATIVE PLANT BIOLOGY 2021; 2:e13. [PMID: 37077210 PMCID: PMC10095801 DOI: 10.1017/qpb.2021.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/04/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023]
Abstract
By forming lateral roots, plants expand their root systems to improve anchorage and absorb more water and nutrients from the soil. Each phase of this developmental process in Arabidopsis is tightly regulated by dynamic and continuous signalling of the phytohormones cytokinin and auxin. While the roles of auxin in lateral root organogenesis and spatial accommodation by overlying cell layers have been well studied, insights on the importance of cytokinin is still somewhat limited. Cytokinin is a negative regulator of lateral root formation with versatile modes of action being activated at different root developmental zones. Here, we review the latest progress made towards our understanding of these spatially separated mechanisms of cytokinin-mediated signalling that shape lateral root initiation, outgrowth and emergence and highlight some of the enticing open questions.
Collapse
Affiliation(s)
- Milica Nenadić
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| | - Joop E. M. Vermeer
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
- Laboratory of Cell and Molecular Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Author for correspondence: Joop E. M. Vermeer, E-mail:
| |
Collapse
|
59
|
Skalak J, Nicolas KL, Vankova R, Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:644823. [PMID: 33679861 PMCID: PMC7925916 DOI: 10.3389/fpls.2021.644823] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.
Collapse
Affiliation(s)
- Jan Skalak
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Katrina Leslie Nicolas
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|
60
|
Wang J, Sun W, Kong X, Zhao C, Li J, Chen Y, Gao Z, Zuo K. The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively affect lateral root development by repressing the vacuolar invertase VIN2 in Arabidopsis. PLANTA 2020; 252:52. [PMID: 32945964 DOI: 10.1007/s00425-020-03459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The peptidyl-prolyl isomerases FKBP15-1 and FKBP15-2 negatively modulate lateral root development by repressing vacuolar invertase VIN2 activity. Lateral root (LR) architecture greatly affects the efficiency of nutrient absorption and the anchorage of plants. Although the internal phytohormone regulatory mechanisms that control LR development are well known, how external nutrients influence lateral root development remains elusive. Here, we characterized the function of two FK506-binding proteins, namely, FKBP15-1 and FKBP15-2, in Arabidopsis. FKBP15-1/15-2 genes were expressed prominently in the vascular bundles of the root basal meristem region, and the FKBP15-1/15-2 proteins were localized to the endoplasmic reticulum of the cells. Using IP-MS, Co-IP, and BiFC assays, we demonstrated that FKBP15-1 and FKBP15-2 interacted with vacuolar invertase 2 (VIN2). Compared to Col-0 and the single mutants, the fkbp15-1fkbp15-2 double mutant had more LRs, and presented higher sucrose catalytic activity. Moreover, genetic analysis showed genetic epistasis of VIN2 over FKBP15-1/FKBP15-2 in controlling LR development. Our results indicate that FKBP15-1 and FKBP15-2 participate in the control of LR number by inhibiting the catalytic activity of VIN2. Owing to the conserved peptidylprolyl cis-trans isomerase activity of FKBP family proteins, our results provide a clue for further analysis of the interplay between lateral root development and protein modification by FKBPs.
Collapse
Affiliation(s)
- Jun Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuzhen Kong
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyan Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianfu Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yun Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengyin Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaijing Zuo
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
61
|
Research Progress on the Roles of Cytokinin in Plant Response to Stress. Int J Mol Sci 2020; 21:ijms21186574. [PMID: 32911801 PMCID: PMC7555750 DOI: 10.3390/ijms21186574] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
Cytokinins promote plant growth and development under normal plant growth conditions and also play an important role in plant resistance to stress. Understanding the working mechanisms of cytokinins under adverse conditions will help to make full use of cytokinins in agriculture to increase production and efficiency of land use. In this article, we review the progress that has been made in cytokinin research in plant response to stress and propose its future application prospects.
Collapse
|
62
|
Huo R, Liu Z, Yu X, Li Z. The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. Int J Mol Sci 2020; 21:ijms21144898. [PMID: 32664520 PMCID: PMC7402358 DOI: 10.3390/ijms21144898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023] Open
Abstract
Two-component systems (TCS) in plants have evolved into a more complicated multi-step phosphorelay (MSP) pathway, which employs histidine kinases (HKs), histidine-containing phosphotransfer proteins (HPts), and response regulators (RRs) to regulate various aspects of plant growth and development. How plants perceive the external signals, then integrate and transduce the secondary signals specifically to the desired destination, is a fundamental characteristic of the MSP signaling network. The TCS elements involved in the MSP pathway and molecular mechanisms of signal transduction have been best understood in the model plant Arabidopsis thaliana. In this review, we focus on updated knowledge on TCS signal transduction in Arabidopsis. We first present a brief description of the TCS elements; then, the protein–protein interaction network is established. Finally, we discuss the possible molecular mechanisms involved in the specificity of the MSP signaling at the mRNA and protein levels.
Collapse
Affiliation(s)
- Ruxue Huo
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
| | - Zhenning Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China
- Correspondence: (Z.L.); (Z.L.)
| | - Xiaolin Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China;
- Correspondence: (Z.L.); (Z.L.)
| |
Collapse
|
63
|
Lian S, Zhou Y, Liu Z, Gong A, Cheng L. The differential expression patterns of paralogs in response to stresses indicate expression and sequence divergences. BMC PLANT BIOLOGY 2020; 20:277. [PMID: 32546126 PMCID: PMC7298774 DOI: 10.1186/s12870-020-02460-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/24/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Theoretically, paralogous genes generated through whole genome duplications should share identical expression levels due to their identical sequences and chromatin environments. However, functional divergences and expression differences have arisen due to selective pressures throughout evolution. A comprehensive investigation of the expression patterns of paralogous gene pairs in response to various stresses and a study of correlations between the expression levels and sequence divergences of the paralogs are needed. RESULTS In this study, we analyzed the expression patterns of paralogous genes under different types of stress and investigated the correlations between the expression levels and sequence divergences of the paralogs. We analyzed the differential expression patterns of the paralogs under four different types of stress (drought, cold, infection, and herbivory) and classified them into three main types according to their expression patterns. We then further analyzed the differential expression patterns under various degrees of stress and constructed corresponding co-expression networks of differentially expressed paralogs and transcription factors. Finally, we investigated the correlations between the expression levels and sequence divergences of the paralogs and identified positive correlations between expression level and sequence divergence. With regard to sequence divergence, we identified correlations between selective pressures and phylogenetic relationships. CONCLUSIONS These results shed light on differential expression patterns of paralogs in response to environmental stresses and are helpful for understanding the relationships between expression levels and sequences divergences.
Collapse
Affiliation(s)
- Shuaibin Lian
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Yongjie Zhou
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Zixiao Liu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, China
| | - Andong Gong
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
64
|
Illgen S, Zintl S, Zuther E, Hincha DK, Schmülling T. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress. PLANT MOLECULAR BIOLOGY 2020; 103:303-320. [PMID: 32185689 PMCID: PMC7220888 DOI: 10.1007/s11103-020-00993-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/04/2020] [Indexed: 05/19/2023]
Abstract
The four phylogenetically closely related ERF102 to ERF105 transcription factors of Arabidopsis thaliana are regulated by different stresses and are involved in the response to cold stress. The ETHYLENE RESPONSE FACTOR (ERF) genes of Arabidopsis thaliana form a large family encoding plant-specific transcription factors. Here, we characterise the four phylogenetically closely related ERF102/ERF5, ERF103/ERF6, ERF104 and ERF105 genes. Expression analyses revealed that these four genes are similarly regulated by different hormones and abiotic stresses. Analyses of tissue-specific expression using promoter:GUS reporter lines revealed their predominant expression in root tissues including the root meristem (ERF103), the quiescent center (ERF104) and the root vasculature (all). All GFP-ERF fusion proteins were nuclear-localised. The analysis of insertional mutants, amiRNA lines and 35S:ERF overexpressing transgenic lines indicated that ERF102 to ERF105 have only a limited impact on regulating shoot and root growth. Previous work had shown a role for ERF105 in the cold stress response. Here, measurement of electrolyte leakage to determine leaf freezing tolerance and expression analyses of cold-responsive genes revealed that the combined activity of ERF102 and ERF103 is also required for a full cold acclimation response likely involving the CBF regulon. These results suggest a common function of these ERF genes in the response to cold stress.
Collapse
Affiliation(s)
- Sylvia Illgen
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Stefanie Zintl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany.
| |
Collapse
|
65
|
Wang S, Zhang H, Shi L, Xu F, Ding G. Genome-Wide Dissection of the CRF Gene Family in Brassica napus Indicates that BnaCRF8s Specifically Regulate Root Architecture and Phosphate Homeostasis against Phosphate Fluctuation in Plants. Int J Mol Sci 2020; 21:E3660. [PMID: 32455955 PMCID: PMC7279159 DOI: 10.3390/ijms21103660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 02/04/2023] Open
Abstract
Phosphorus (P) is an essential macronutrient required for plant growth and development. The involvement of cytokinin response factors (CRFs) in phosphate (Pi) homeostasis and lateral root (LR) initiation in Arabidopsis has been revealed. However, little is known in oil crops. Here, we performed genome-wide dissection of the CRF family in Brassica napus to identify 44 members, which were evolutionally classified into 6 subgroups. Among them, four BnaCRF8 genes were strongly upregulated by P deprivation, and were selected to be further investigated. Time course qRT-PCR analyses showed that four BnaCRF8 genes were enhanced dramatically after 12 h of P stress. Analyses of the subcellular localization in tobacco leaves indicated that BnaA7.CRF8 and BnaC2.CRF8 were localized in the nucleus. The expression of BnaCRF8 genes had constant negative effects on primary root growth and LR initiation and growth, and it reduced Pi acquisition and plant growth in Arabidopsis. Moreover, the expression of Pi homeostasis-related genes was modulated in BnaA7.CRF8 overexpression plants. These results suggest that BnaCRF8 genes might negatively regulate root architecture and plant growth through transcriptional modification of Pi homeostasis-related components. Overall, this study suggests that upregulation of BnaCRF8 genes might be a smart adaptive strategy to cope with continuous Pi deficiency in the environment.
Collapse
Affiliation(s)
| | | | | | | | - Guangda Ding
- Microelement Research Centre, National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural affairs, Huazhong Agricultural University, Wuhan 430070, China; (S.W.); (H.Z.); (L.S.); (F.X.)
| |
Collapse
|
66
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|
67
|
Yu J, Conrad AO, Decroocq V, Zhebentyayeva T, Williams DE, Bennett D, Roch G, Audergon JM, Dardick C, Liu Z, Abbott AG, Staton ME. Distinctive Gene Expression Patterns Define Endodormancy to Ecodormancy Transition in Apricot and Peach. FRONTIERS IN PLANT SCIENCE 2020; 11:180. [PMID: 32180783 PMCID: PMC7059448 DOI: 10.3389/fpls.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Dormancy is a physiological state that plants enter for winter hardiness. Environmental-induced dormancy onset and release in temperate perennials coordinate growth cessation and resumption, but how the entire process, especially chilling-dependent dormancy release and flowering, is regulated remains largely unclear. We utilized the transcriptome profiles of floral buds from fall to spring in apricot (Prunus armeniaca) genotypes with contrasting bloom dates and peach (Prunus persica) genotypes with contrasting chilling requirements (CR) to explore the genetic regulation of bud dormancy. We identified distinct gene expression programming patterns in endodormancy and ecodormancy that reproducibly occur between different genotypes and species. During the transition from endo- to eco-dormancy, 1,367 and 2,102 genes changed in expression in apricot and peach, respectively. Over 600 differentially expressed genes were shared in peach and apricot, including three DORMANCY ASSOCIATED MADS-box (DAM) genes (DAM4, DAM5, and DAM6). Of the shared genes, 99 are located within peach CR quantitative trait loci, suggesting these genes as candidates for dormancy regulation. Co-expression and functional analyses revealed that distinctive metabolic processes distinguish dormancy stages, with genes expressed during endodormancy involved in chromatin remodeling and reproduction, while the genes induced at ecodormancy were mainly related to pollen development and cell wall biosynthesis. Gene expression analyses between two Prunus species highlighted the conserved transcriptional control of physiological activities in endodormancy and ecodormancy and revealed genes that may be involved in the transition between the two stages.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Anna O. Conrad
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Universite de Bordeaux, Villenave d'Ornon, France
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, the Pennsylvania State University, University Park, PA, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Guillaume Roch
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Jean-Marc Audergon
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Albert G. Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Margaret E. Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Margaret E. Staton,
| |
Collapse
|
68
|
Hallmark HT, Rashotte AM. Review - Cytokinin Response Factors: Responding to more than cytokinin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110251. [PMID: 31623789 DOI: 10.1016/j.plantsci.2019.110251] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 05/12/2023]
Abstract
Cytokinin Response Factors (CRFs) are a family of transcription factors which make up a side branch of the classical cytokinin two-component signaling pathway. CRFs were originally identified and have been primarily studied in Arabidopsis thaliana, although orthologs have be found throughout all land plants. Research into the evolution of CRFs as sub-group members of the larger APETALA2/Ethylene Response Factor (AP2/ERF) family has yielded interesting and useful insights related to the functional roles of CRFs in plants. Recent studies of CRFs suggest that these transcription factors are a lot more than just a group of cytokinin related genes and play important roles in both plant development and environmental stress response. This review focuses on recent advances in understanding the roles of CRFs beyond cytokinin, in reproductive development and abiotic stress response, as well as to other environmental cues.
Collapse
Affiliation(s)
- H Tucker Hallmark
- 101 Rouse Life Sciences, Department of Biological Sciences, Auburn University, USA
| | - Aaron M Rashotte
- 101 Rouse Life Sciences, Department of Biological Sciences, Auburn University, USA.
| |
Collapse
|
69
|
Lineage specific conservation of cis-regulatory elements in Cytokinin Response Factors. Sci Rep 2019; 9:13387. [PMID: 31527685 PMCID: PMC6746799 DOI: 10.1038/s41598-019-49741-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/31/2019] [Indexed: 01/17/2023] Open
Abstract
Expression patterns of genes are controlled by short regions of DNA in promoter regions known as cis-regulatory elements. How expression patterns change due to alterations in cis-regulatory elements in the context of gene duplication are not well studied in plants. Over 300 promoter sequences from a small, well-conserved family of plant transcription factors known as Cytokinin Response Factors (CRFs) were examined for conserved motifs across several known clades present in Angiosperms. General CRF and lineage specific motifs were identified. Once identified, significantly enriched motifs were then compared to known transcription factor binding sites to elucidate potential functional roles. Additionally, presence of similar motifs shows that levels of conservation exist between different CRFs across land plants, likely occurring through processes of neo- or sub-functionalization. Furthermore, significant patterns of motif conservation are seen within and between CRF clades suggesting cis-regulatory regions have been conserved throughout CRF evolution.
Collapse
|
70
|
Waidmann S, Ruiz Rosquete M, Schöller M, Sarkel E, Lindner H, LaRue T, Petřík I, Dünser K, Martopawiro S, Sasidharan R, Novak O, Wabnik K, Dinneny JR, Kleine-Vehn J. Cytokinin functions as an asymmetric and anti-gravitropic signal in lateral roots. Nat Commun 2019; 10:3540. [PMID: 31387989 PMCID: PMC6684572 DOI: 10.1038/s41467-019-11483-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 11/09/2022] Open
Abstract
Directional organ growth allows the plant root system to strategically cover its surroundings. Intercellular auxin transport is aligned with the gravity vector in the primary root tips, facilitating downward organ bending at the lower root flank. Here we show that cytokinin signaling functions as a lateral root specific anti-gravitropic component, promoting the radial distribution of the root system. We performed a genome-wide association study and reveal that signal peptide processing of Cytokinin Oxidase 2 (CKX2) affects its enzymatic activity and, thereby, determines the degradation of cytokinins in natural Arabidopsis thaliana accessions. Cytokinin signaling interferes with growth at the upper lateral root flank and thereby prevents downward bending. Our interdisciplinary approach proposes that two phytohormonal cues at opposite organ flanks counterbalance each other's negative impact on growth, suppressing organ growth towards gravity and allow for radial expansion of the root system.
Collapse
Affiliation(s)
- Sascha Waidmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Michel Ruiz Rosquete
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Maria Schöller
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Elizabeth Sarkel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Heike Lindner
- Department of Biology, Stanford University, 260 Panama Street, Stanford, CA, 94305, USA
| | - Therese LaRue
- Department of Biology, Stanford University, 260 Panama Street, Stanford, CA, 94305, USA.,Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Ivan Petřík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Shanice Martopawiro
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), Autopista M-40, Km 38-Pozuelo de Alarcón, 28223, Madrid, Spain
| | - José R Dinneny
- Department of Biology, Stanford University, 260 Panama Street, Stanford, CA, 94305, USA.,Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
71
|
Cho C, Jeon E, Pandey SK, Ha SH, Kim J. LBD13 positively regulates lateral root formation in Arabidopsis. PLANTA 2019; 249:1251-1258. [PMID: 30627888 DOI: 10.1007/s00425-018-03087-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/29/2018] [Indexed: 05/26/2023]
Abstract
Lateral Organ Boundaries Domain 13 (LBD13), which is expressed in emerged lateral roots and encodes a transcriptional activator, plays an important role in lateral root formation in Arabidopsis. Lateral roots (LRs) are major determinants of root system architecture, contributing to the survival strategies of plants. Members of the LBD gene family encode plant-specific transcription factors that play key roles in plant organ development. Several LBD genes, such as LBD14, 16, 18, 29, and 33, have been shown to play important roles in regulating LR development in Arabidopsis. In the present study, we show that LBD13 is expressed in emerged LRs and LR meristems of elongated LRs and regulates LR formation in Arabidopsis. Transient gene expression assays with Arabidopsis protoplasts showed that LBD13 is localized to the nucleus and harbors transcription-activating potential. Knock-down of LBD13 expression by RNA interference resulted in reduced LR formation, whereas overexpression of LBD13 enhanced LR formation in transgenic Arabidopsis. Analysis of β-glucuronidase (GUS) expression under the control of the LBD13 promoter showed that GUS staining was detected in LRs emerged from the primary root, but not in LR primordia. Moreover, both the distribution of LR primordium number and developmental kinetics of LR primordia were not affected either by knock-down or by overexpression of LBD13. Taken together, these results suggest that LBD13 is a nuclear-localized transcriptional activator and controls LR formation during or after LR emergence.
Collapse
Affiliation(s)
- Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Eunkyeong Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Se Hoon Ha
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 500-757, South Korea.
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 500-757, South Korea.
| |
Collapse
|
72
|
Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T. Cytokinin action in response to abiotic and biotic stresses in plants. PLANT, CELL & ENVIRONMENT 2019; 42:998-1018. [PMID: 30488464 DOI: 10.1111/pce.13494] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 05/20/2023]
Abstract
The phytohormone cytokinin was originally discovered as a regulator of cell division. Later, it was described to be involved in regulating numerous processes in plant growth and development including meristem activity, tissue patterning, and organ size. More recently, diverse functions for cytokinin in the response to abiotic and biotic stresses have been reported. Cytokinin is required for the defence against high light stress and to protect plants from a novel type of abiotic stress caused by an altered photoperiod. Additionally, cytokinin has a role in the response to temperature, drought, osmotic, salt, and nutrient stress. Similarly, the full response to certain plant pathogens and herbivores requires a functional cytokinin signalling pathway. Conversely, different types of stress impact cytokinin homeostasis. The diverse functions of cytokinin in responses to stress and crosstalk with other hormones are described. Its emerging roles as a priming agent and as a regulator of growth-defence trade-offs are discussed.
Collapse
Affiliation(s)
- Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Jan Erik Leuendorf
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Daniela Pezzetta
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Sylvia Bolt
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| |
Collapse
|
73
|
Wang L, Ma H, Lin J. Angiosperm-Wide and Family-Level Analyses of AP2/ ERF Genes Reveal Differential Retention and Sequence Divergence After Whole-Genome Duplication. FRONTIERS IN PLANT SCIENCE 2019; 10:196. [PMID: 30863419 PMCID: PMC6399210 DOI: 10.3389/fpls.2019.00196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
Plants are immobile and often face stressful environmental conditions, prompting the evolution of genes regulating environmental responses. Such evolution is achieved largely through gene duplication and subsequent divergence. One of the most important gene families involved in regulating plant environmental responses and development is the AP2/ERF superfamily; however, the evolutionary history of these genes is unclear across angiosperms and in major angiosperm families adapted to various ecological niches. Specifically, the impact on gene copy number of whole-genome duplication events occurring around the time of the origins of several plant families is unknown. Here, we present the first angiosperm-wide comparative study of AP2/ERF genes, identifying 75 Angiosperm OrthoGroups (AOGs), each derived from an ancestral angiosperm gene copy. Among these AOGs, 21 retain duplicates with increased copy number in many angiosperm lineages, while the remaining 54 AOGs tend to maintain low copy number. Further analyses of multiple species in the Brassicaceae family indicated that family-specific duplicates experienced differential selective pressures in coding regions, with some paralogs showing signs of positive selection. Further, cis regulatory elements also exhibit extensive divergence between duplicates in Arabidopsis. Moreover, comparison of expression levels suggested that AP2/ERF genes with frequently retained duplicates are enriched for broad expression patterns, offering increased opportunities for functional diversification via changes in expression patterns, and providing a mechanism for repeated duplicate retention in some AOGs. Our results represent the most comprehensive evolutionary history of the AP2/ERF gene family, and support the hypothesis that AP2/ERF genes with broader expression patterns are more likely to be retained as duplicates than those with narrower expression profiles, which could lead to a higher chance of duplicate gene subfunctionalization. The greater tendency of some AOGs to retain duplicates, allowing expression and functional divergence, may facilitate the evolution of complex signaling networks in response to new environmental conditions.
Collapse
Affiliation(s)
- Linbo Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Juan Lin
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
74
|
Lee HW, Cho C, Pandey SK, Park Y, Kim MJ, Kim J. LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:46. [PMID: 30704405 PMCID: PMC6357364 DOI: 10.1186/s12870-019-1659-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/24/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Adventitious root (AR) formation is a complex genetic trait, which is controlled by various endogenous and environmental cues. Auxin is known to play a central role in AR formation; however, the mechanisms underlying this role are not well understood. RESULTS In this study, we showed that a previously identified auxin signaling module, AUXIN RESPONSE FACTOR(ARF)7/ARF19-LATERAL ORGAN BOUNDARIES DOMAIN(LBD)16/LBD18 via AUXIN1(AUX1)/LIKE-AUXIN3 (LAX3) auxin influx carriers, which plays important roles in lateral root formation, is involved in AR formation in Arabidopsis. In aux1, lax3, arf7, arf19, lbd16 and lbd18 single mutants, we observed reduced numbers of ARs than in the wild type. Double and triple mutants exhibited an additional decrease in AR numbers compared with the corresponding single or double mutants, respectively, and the aux1 lax3 lbd16 lbd18 quadruple mutant was devoid of ARs. Expression of LBD16 or LBD18 under their own promoters in lbd16 or lbd18 mutants rescued the reduced number of ARs to wild-type levels. LBD16 or LBD18 fused to a dominant SRDX repressor suppressed promoter activity of the cell cycle gene, Cyclin-Dependent Kinase(CDK)A1;1, to some extent. Expression of LBD16 or LBD18 was significantly reduced in arf7 and arf19 mutants during AR formation in a light-dependent manner, but not in arf6 and arf8. GUS expression analysis of promoter-GUS reporter transgenic lines revealed overlapping expression patterns for LBD16, LBD18, ARF7, ARF19 and LAX3 in AR primordia. CONCLUSION These results suggest that the ARF7/ARF19-LBD16/LBD18 transcriptional module via the AUX1/LAX3 auxin influx carriers plays an important role in AR formation in Arabidopsis.
Collapse
Affiliation(s)
- Han Woo Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Shashank K. Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Yoona Park
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Yongbongro 77, Buk-gu, Gwangju, 61186 South Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186 South Korea
| |
Collapse
|
75
|
Chao Q, Gao Z, Zhang D, Zhao B, Dong F, Fu C, Liu L, Wang B. The developmental dynamics of the Populus stem transcriptome. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:206-219. [PMID: 29851301 PMCID: PMC6330540 DOI: 10.1111/pbi.12958] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 05/20/2023]
Abstract
The Populus shoot undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. We adopted joint PacBio Iso-Seq and RNA-seq analysis to identify differentially expressed transcripts along a developmental gradient from the shoot apex to the fifth internode of Populus Nanlin895. We obtained 87 150 full-length transcripts, including 2081 new isoforms and 62 058 new alternatively spliced isoforms, most of which were produced by intron retention, that were used to update the Populus annotation. Among these novel isoforms, there are 1187 long non-coding RNAs and 356 fusion genes. Using this annotation, we found 15 838 differentially expressed transcripts along the shoot developmental gradient, of which 1216 were transcription factors (TFs). Only a few of these genes were reported previously. The differential expression of these TFs suggests that they may play important roles in primary and secondary growth. AP2, ARF, YABBY and GRF TFs are highly expressed in the apex, whereas NAC, bZIP, PLATZ and HSF TFs are likely to be important for secondary growth. Overall, our findings provide evidence that long-read sequencing can complement short-read sequencing for cataloguing and quantifying eukaryotic transcripts and increase our understanding of the vital and dynamic process of shoot development.
Collapse
Affiliation(s)
- Qing Chao
- Key Laboratory of PhotobiologyPhotosynthesis Research CenterInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Zhi‐Fang Gao
- Key Laboratory of PhotobiologyPhotosynthesis Research CenterInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dong Zhang
- Biomarker Technologies CorporationBeijingChina
| | - Biligen‐Gaowa Zhao
- Key Laboratory of PhotobiologyPhotosynthesis Research CenterInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Feng‐Qin Dong
- The Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Chun‐Xiang Fu
- Key Laboratory of BiofuelsQingdao Engineering Research Center of Biomass Resources and EnvironmentQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoShandongChina
| | - Li‐Jun Liu
- College of ForestryShandong Agricultural UniversityTai‐AnShandongChina
| | - Bai‐Chen Wang
- Key Laboratory of PhotobiologyPhotosynthesis Research CenterInstitute of BotanyChinese Academy of SciencesBeijingChina
| |
Collapse
|
76
|
Guo X, Liu D, Chong K. Cold signaling in plants: Insights into mechanisms and regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:745-756. [PMID: 30094919 DOI: 10.1111/jipb.12706] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 05/18/2023]
Abstract
To survive under cold temperatures plants must be able to perceive a cold signal and transduce it into downstream components that induce appropriate defense mechanisms. In addition to inducing adaptive defenses, such as the production of osmotic factors to prevent freezing and the reprogramming of transcriptional pathways, cold temperatures induce changes in plant growth and development which can affect the plant life cycle. In this review, we summarize recent progress in characterizing cold-related genes and the pathways that allow transduction of the cold signal in plants, focusing primarily on studies in Arabidopsis thaliana and rice (Oryza sativa). We summarize cold perception and signal transduction from the plasma membrane to the nucleus, which involves cold sensors, calcium signals, calcium-binding proteins, mitogen-activated protein kinase cascades, and the C-repeat binding factor/dehydration-responsive element binding pathways, as well as trehalose metabolism. Finally, we describe the balance between plant organogenesis and cold tolerance mechanisms in rice. This review encapsulates the known cold signaling factors in plants and provides perspectives for ongoing cold signaling research.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongfeng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
77
|
Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int J Mol Sci 2018; 19:ijms19082450. [PMID: 30126242 PMCID: PMC6121657 DOI: 10.3390/ijms19082450] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinin is a multifaceted plant hormone that plays major roles not only in diverse plant growth and development processes, but also stress responses. We summarize knowledge of the roles of its metabolism, transport, and signalling in responses to changes in levels of both macronutrients (nitrogen, phosphorus, potassium, sulphur) and micronutrients (boron, iron, silicon, selenium). We comment on cytokinin's effects on plants' xenobiotic resistance, and its interactions with light, temperature, drought, and salinity signals. Further, we have compiled a list of abiotic stress-related genes and demonstrate that their expression patterns overlap with those of cytokinin metabolism and signalling genes.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Vladěna Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 612 00 Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| |
Collapse
|
78
|
Pandey SK, Lee HW, Kim MJ, Cho C, Oh E, Kim J. LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:233-251. [PMID: 29681137 DOI: 10.1111/tpj.13945] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
A hierarchy of transcriptional regulators controlling lateral root formation in Arabidopsis thaliana has been identified, including the AUXIN RESPONSE FACTOR 7 (ARF7)/ARF19-LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16)/LBD18 transcriptional network; however, their feedback regulation mechanisms are not known. Here we show that LBD18 controls ARF activity using the dual mode of a positive feedback loop. We showed that ARF7 and ARF19 directly bind AuxRE in the LBD18 promoter. A variety of molecular and biochemical experiments demonstrated that LBD18 binds a specific DNA motif in the ARF19 promoter to regulate its expression in vivo as well as in vitro. LBD18 interacts with ARFs including ARF7 and ARF19 via the Phox and Bem1 domain of ARF to enhance the transcriptional activity of ARF7 on AuxRE, and competes with auxin/indole-3-acetic acid (IAA) repressors for ARF binding, overriding the negative feedback loop exerted by Aux/IAA repressors. Taken together, these results show that LBD18 and ARFs form a double positive feedback loop, and that LBD18 uses the dual mode of a positive feedback loop by binding directly to the ARF19 promoter and through the protein-protein interactions with ARF7 and ARF19. This novel mechanism of feedback loops may constitute a robust feedback mechanism that ensures continued lateral root growth in response to auxin in Arabidopsis.
Collapse
Affiliation(s)
- Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Han Woo Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju, 500-757, Korea
| |
Collapse
|
79
|
Kazemi-Shahandashti SS, Maali-Amiri R. Global insights of protein responses to cold stress in plants: Signaling, defence, and degradation. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:123-135. [PMID: 29758377 DOI: 10.1016/j.jplph.2018.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 05/20/2023]
Abstract
Cold stress (CS) as one of the unfavorable abiotic tensions proceeds different aspects of plant responses. These responses are generated through CS effects on crucial processes such as photosynthesis, energy metabolism, ROS homeostasis, membrane fluidity and cell wall architecture. As a tolerance response, plants apply proteins in various strategies such as transferring the message of cold entrance named as signaling, producing defensive and protective molecules against the stress and degrading some unfavorable or unnecessary proteins to produce other required ones. A change in one part of these networks can irritate alternations in others. These strategies as acclimation mechanisms are conducted through gene expression reprogramming to provide a new adjusted metabolic homeostasis dependent on the stress severity and duration and plant species. Investigating protein alterations in metabolic pathways and their role in adjusting cellular components from upstream to downstream levels can provide a profound knowledge of plants tolerance mechanism against the damaging effects of CS. In this review, we summarized the activity of some cold-responsive proteins from the perception phase to tolerance response against CS.
Collapse
Affiliation(s)
- Seyyedeh-Sanam Kazemi-Shahandashti
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| |
Collapse
|
80
|
Jeon E, Young Kang N, Cho C, Joon Seo P, Chung Suh M, Kim J. LBD14/ASL17 Positively Regulates Lateral Root Formation and is Involved in ABA Response for Root Architecture in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:2190-2201. [PMID: 29040694 DOI: 10.1093/pcp/pcx153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family members play key roles in diverse aspects of plant development. Previous studies have shown that LBD16, 18, 29 and 33 are critical for integrating the plant hormone auxin to control lateral root development in Arabidopsis thaliana. In the present study, we show that LBD14 is expressed exclusively in the root where it promotes lateral root (LR) emergence. Repression of LBD14 expression by ABA correlates with the inhibitory effects of ABA on LR emergence. Transient gene expression assays with Arabidopsis protoplasts demonstrated that LBD14 is a nuclear-localized transcriptional activator. The knock-down of LBD14 expression by RNA interference (RNAi) resulted in reduced LR formation by delaying both LR primordium development and LR emergence, whereas overexpression of LBD14 in Arabidopsis enhances LR formation. We show that ABA (but not other plant hormones such as auxin, brassinosteroids and cytokinin) specifically down-regulated β-glucuronidase (GUS) expression under the control of the LBD14 promoter in transgenic Arabidopsis during LR development from initiation to emergence and endogenous LBD14 transcript levels in the root. Moreover, RNAi of LBD14 enhanced the LR suppression in response to ABA, whereas LBD14 overexpression did not alter the ABA-mediated suppression of LR formation. Taken together, these results suggest that LBD14 promoting LR formation is one of the critical factors regulated by ABA to inhibit LR growth, contributing to the regulation of the Arabidopsis root system architecture in response to ABA.
Collapse
Affiliation(s)
- Eunkyeong Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Na Young Kang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
81
|
Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci U S A 2017; 114:E10018-E10027. [PMID: 29087317 PMCID: PMC5699049 DOI: 10.1073/pnas.1708433114] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Noncoding RNAs are an underexplored reservoir of regulatory molecules in eukaryotes. We analyzed the environmental response of roots to phosphorus (Pi) nutrition to understand how a change in availability of an essential element is managed. Pi availability influenced translational regulation mediated by small upstream ORFs on protein-coding mRNAs. Discovery, classification, and evaluation of long noncoding RNAs (lncRNAs) associated with translating ribosomes uncovered diverse new examples of translational regulation. These included Pi-regulated small peptide synthesis, ribosome-coupled phased small interfering RNA production, and the translational regulation of natural antisense RNAs and other regulatory RNAs. This study demonstrates that translational control contributes to the stability and activity of regulatory RNAs, providing an avenue for manipulation of traits. Eukaryotic transcriptomes contain a major non–protein-coding component that includes precursors of small RNAs as well as long noncoding RNA (lncRNAs). Here, we utilized the mapping of ribosome footprints on RNAs to explore translational regulation of coding and noncoding RNAs in roots of Arabidopsis thaliana shifted from replete to deficient phosphorous (Pi) nutrition. Homodirectional changes in steady-state mRNA abundance and translation were observed for all but 265 annotated protein-coding genes. Of the translationally regulated mRNAs, 30% had one or more upstream ORF (uORF) that influenced the number of ribosomes on the principal protein-coding region. Nearly one-half of the 2,382 lncRNAs detected had ribosome footprints, including 56 with significantly altered translation under Pi-limited nutrition. The prediction of translated small ORFs (sORFs) by quantitation of translation termination and peptidic analysis identified lncRNAs that produce peptides, including several deeply evolutionarily conserved and significantly Pi-regulated lncRNAs. Furthermore, we discovered that natural antisense transcripts (NATs) frequently have actively translated sORFs, including five with low-Pi up-regulation that correlated with enhanced translation of the sense protein-coding mRNA. The data also confirmed translation of miRNA target mimics and lncRNAs that produce trans-acting or phased small-interfering RNA (tasiRNA/phasiRNAs). Mutational analyses of the positionally conserved sORF of TAS3a linked its translation with tasiRNA biogenesis. Altogether, this systematic analysis of ribosome-associated mRNAs and lncRNAs demonstrates that nutrient availability and translational regulation controls protein and small peptide-encoding mRNAs as well as a diverse cadre of regulatory RNAs.
Collapse
|
82
|
Daudu D, Allion E, Liesecke F, Papon N, Courdavault V, Dugé de Bernonville T, Mélin C, Oudin A, Clastre M, Lanoue A, Courtois M, Pichon O, Giron D, Carpin S, Giglioli-Guivarc’h N, Crèche J, Besseau S, Glévarec G. CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:1614. [PMID: 28979279 PMCID: PMC5611679 DOI: 10.3389/fpls.2017.01614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 05/07/2023]
Abstract
Cytokinin signaling is a key regulatory pathway of many aspects in plant development and environmental stresses. Herein, we initiated the identification and functional characterization of the five CHASE-containing histidine kinases (CHK) in the economically important Malus domestica species. These cytokinin receptors named MdCHK2, MdCHK3a/MdCHK3b, and MdCHK4a/MdCHK4b by homology with Arabidopsis AHK clearly displayed three distinct profiles. The three groups exhibited architectural variations, especially in the N-terminal part including the cytokinin sensing domain. Using a yeast complementation assay, we showed that MdCHK2 perceives a broad spectrum of cytokinins with a substantial sensitivity whereas both MdCHK4 homologs exhibit a narrow spectrum. Both MdCHK3 homologs perceived some cytokinins but surprisingly they exhibited a basal constitutive activity. Interaction studies revealed that MdCHK2, MdCHK4a, and MdCHK4b homodimerized whereas MdCHK3a and MdCHK3b did not. Finally, qPCR analysis and bioinformatics approach pointed out contrasted expression patterns among the three MdCHK groups as well as distinct sets of co-expressed genes. Our study characterized for the first time the five cytokinin receptors in apple tree and provided a framework for their further functional studies.
Collapse
Affiliation(s)
- Dimitri Daudu
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Elsa Allion
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Franziska Liesecke
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Nicolas Papon
- EA 3142 Groupe d’Etude des Interactions Hôte-Pathogène, Université AngersAngers, France
| | - Vincent Courdavault
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | | | - Céline Mélin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Audrey Oudin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Marc Clastre
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Martine Courtois
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Olivier Pichon
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - David Giron
- UMR 7261 Institut de Recherche sur la Biologie de l’Insecte, Centre National de la Recherche Scientifique (CNRS), Université François-RabelaisTours, France
| | - Sabine Carpin
- EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’OrléansOrléans, France
| | | | - Joël Crèche
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Sébastien Besseau
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Gaëlle Glévarec
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| |
Collapse
|
83
|
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S. Multilevel Regulation of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1564. [PMID: 29033955 PMCID: PMC5627039 DOI: 10.3389/fpls.2017.01564] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/28/2017] [Indexed: 05/18/2023]
Abstract
The sessile lifestyle of plants requires them to cope with stresses in situ. Plants overcome abiotic stresses by altering structure/morphology, and in some extreme conditions, by compressing the life cycle to survive the stresses in the form of seeds. Genetic and molecular studies have uncovered complex regulatory processes that coordinate stress adaptation and tolerance in plants, which are integrated at various levels. Investigating natural variation in stress responses has provided important insights into the evolutionary processes that shape the integrated regulation of adaptation and tolerance. This review primarily focuses on the current understanding of how transcriptional, post-transcriptional, post-translational, and epigenetic processes along with genetic variation orchestrate stress responses in plants. We also discuss the current and future development of computational tools to identify biologically meaningful factors from high dimensional, genome-scale data and construct the signaling networks consisting of these components.
Collapse
Affiliation(s)
- David C. Haak
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, AthensOH, United States
| | - Rumen Ivanov
- Institut für Botanik, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, United Kingdom
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| |
Collapse
|
84
|
Ötvös K, Benková E. Spatiotemporal mechanisms of root branching. Curr Opin Genet Dev 2017; 45:82-89. [DOI: 10.1016/j.gde.2017.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
|
85
|
Li H, Wang Y, Wu M, Li L, Li C, Han Z, Yuan J, Chen C, Song W, Wang C. Genome-Wide Identification of AP2/ERF Transcription Factors in Cauliflower and Expression Profiling of the ERF Family under Salt and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:946. [PMID: 28642765 PMCID: PMC5462956 DOI: 10.3389/fpls.2017.00946] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
The AP2/ERF transcription factors (TFs) comprise one of the largest gene superfamilies in plants. These TFs perform vital roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, 171 AP2/ERF TFs were identified in cauliflower (Brassica oleracea L. var. botrytis), one of the most important horticultural crops in Brassica. Among these TFs, 15, 9, and 1 TFs were classified into the AP2, RAV, and Soloist family, respectively. The other 146 TFs belong to ERF family, which were further divided into the ERF and DREB subfamilies. The ERF subfamily contained 91 TFs, while the DREB subfamily contained 55 TFs. Phylogenetic analysis results indicated that the AP2/ERF TFs can be classified into 13 groups, in which 25 conserved motifs were confirmed. Some motifs were group- or subgroup- specific, implying that they are significant to the functions of the AP2/ERF TFs of these clades. In addition, 35 AP2/ERF TFs from the 13 groups were selected randomly and then used for expression pattern analysis under salt and drought stresses. The majority of these AP2/ERF TFs exhibited positive responses to these stress conditions. In specific, Bra-botrytis-ERF054a, Bra-botrytis-ERF056, and Bra-botrytis-CRF2a demonstrated rapid responses. By contrast, six AP2/ERF TFs were showed to delay responses to both stresses. The AP2/ERF TFs exhibiting specific expression patterns under salt or drought stresses were also confirmed. Further functional analysis indicated that ectopic overexpression of Bra-botrytis-ERF056 could increase tolerance to both salt and drought treatments. These findings provide new insights into the AP2/ERF TFs present in cauliflower, and offer candidate AP2/ERF TFs for further studies on their roles in salt and drought stress tolerance.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, Nankai UniversityTianjin, China
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Yu Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Mei Wu
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Lihong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Cong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhanpin Han
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Jiye Yuan
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Wenqin Song
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai UniversityTianjin, China
- *Correspondence: Chunguo Wang
| |
Collapse
|
86
|
Kim J. CYTOKININ RESPONSE FACTORs Gating Environmental Signals and Hormones. TRENDS IN PLANT SCIENCE 2016; 21:993-996. [PMID: 27773669 DOI: 10.1016/j.tplants.2016.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
CYTOKININ RESPONSE FACTORs (CRFs) encode transcription factors belonging to a small family within the APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) superfamily. Recent studies have revealed the biological functions of some arabidopsis CRFs, providing insight into the role of these plant transcription factors in integrating environmental and hormonal signals for plant adaptation.
Collapse
Affiliation(s)
- Jungmook Kim
- Chonnam National University, Bioenergy Science and Technology, 77 Yongbongro, Buk-gu, Gwangju 500-757, Republic of Korea.
| |
Collapse
|