51
|
Gage JL, Monier B, Giri A, Buckler ES. Ten Years of the Maize Nested Association Mapping Population: Impact, Limitations, and Future Directions. THE PLANT CELL 2020; 32:2083-2093. [PMID: 32398275 PMCID: PMC7346555 DOI: 10.1105/tpc.19.00951] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/02/2020] [Accepted: 05/11/2020] [Indexed: 05/21/2023]
Abstract
It has been just over a decade since the release of the maize (Zea mays) Nested Association Mapping (NAM) population. The NAM population has been and continues to be an invaluable resource for the maize genetics community and has yielded insights into the genetic architecture of complex traits. The parental lines have become some of the most well-characterized maize germplasm, and their de novo assemblies were recently made publicly available. As we enter an exciting new stage in maize genomics, this retrospective will summarize the design and intentions behind the NAM population; its application, the discoveries it has enabled, and its influence in other systems; and use the past decade of hindsight to consider whether and how it will remain useful in a new age of genomics.
Collapse
Affiliation(s)
- Joseph L Gage
- U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Brandon Monier
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Anju Giri
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Edward S Buckler
- U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
52
|
Karunanithi PS, Berrios DI, Wang S, Davis J, Shen T, Fiehn O, Maloof JN, Zerbe P. The foxtail millet (Setaria italica) terpene synthase gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:781-800. [PMID: 32282967 PMCID: PMC7497057 DOI: 10.1111/tpj.14771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 05/18/2023]
Abstract
Terpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S. italica genome contains 32 TPS genes, 17 of which were biochemically characterized in this study. Unlike other thus far investigated grasses, S. italica contains TPSs producing all three ent-, (+)- and syn-copalyl pyrophosphate stereoisomers that naturally occur as central building blocks in the biosynthesis of distinct monocot diterpenoids. Conversion of these intermediates by the promiscuous TPS SiTPS8 yielded different diterpenoid scaffolds. Additionally, a cytochrome P450 monooxygenase (CYP99A17), which genomically clustered with SiTPS8, catalyzes the C19 hydroxylation of SiTPS8 products to generate the corresponding diterpene alcohols. The presence of syntenic orthologs to about 19% of the S. italica TPSs in related grasses supports a common ancestry of selected pathway branches. Among the identified enzyme products, abietadien-19-ol, syn-pimara-7,15-dien-19-ol and germacrene-d-4-ol were detectable in planta, and gene expression analysis of the biosynthetic TPSs showed distinct and, albeit moderately, inducible expression patterns in response to biotic and abiotic stress. In vitro growth-inhibiting activity of abietadien-19-ol and syn-pimara-7,15-dien-19-ol against Fusarium verticillioides and Fusarium subglutinans may indicate pathogen defensive functions, whereas the low antifungal efficacy of tested sesquiterpenoids supports other bioactivities. Together, these findings expand the known chemical space of monocot terpenoid metabolism to enable further investigations of terpenoid-mediated stress resilience in these agriculturally important species.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - David I. Berrios
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Sadira Wang
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - John Davis
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Tong Shen
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Oliver Fiehn
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Philipp Zerbe
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| |
Collapse
|
53
|
Zhou F, Pichersky E. More is better: the diversity of terpene metabolism in plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:1-10. [PMID: 32088555 DOI: 10.1016/j.pbi.2020.01.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 05/18/2023]
Abstract
All plants synthesize a diverse array of terpenoid metabolites. Some are common to all, but many are synthesized only in specific taxa and presumably evolved as adaptations to specific ecological conditions. While the basic terpenoid biosynthetic pathways are common in all plants, recent discoveries have revealed many variations in the way plants synthesized specific terpenes. A major theme is the much greater number of substrates that can be used by enzymes belonging to the terpene synthase (TPS) family. Other recent discoveries include non-TPS enzymes that catalyze the formation of terpenes, and novel transport mechanisms.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
54
|
Nagegowda DA, Gupta P. Advances in biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110457. [PMID: 32234216 DOI: 10.1016/j.plantsci.2020.110457] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 05/28/2023]
Abstract
Plant specialized terpenoids are natural products that have no obvious role in growth and development, but play many important functional roles to improve the plant's overall fitness. Besides, plant specialized terpenoids have immense value to humans due to their applications in fragrance, flavor, cosmetic, and biofuel industries. Understanding the fundamental aspects involved in the biosynthesis and regulation of these high-value molecules in plants not only paves the path to enhance plant traits, but also facilitates homologous or heterologous engineering for overproduction of target molecules of importance. Recent developments in functional genomics and high-throughput analytical techniques have led to unraveling of several novel aspects involved in the biosynthesis and regulation of plant specialized terpenoids. The knowledge thus derived has been successfully utilized to produce target specialized terpenoids of plant origin in homologous or heterologous host systems by metabolic engineering and synthetic biology approaches. Here, we provide an overview and highlights on advances related to the biosynthetic steps, regulation, and metabolic engineering of plant specialized terpenoids.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, 560065, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
55
|
Rai K, Agrawal SB. Effect on essential oil components and wedelolactone content of a medicinal plant Eclipta alba due to modifications in the growth and morphology under different exposures of ultraviolet-B. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:773-792. [PMID: 32255939 PMCID: PMC7113363 DOI: 10.1007/s12298-020-00780-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 05/22/2023]
Abstract
In the present study sensitivity of a medicinal plant Eclipta alba L. (Hassk) (False daisy) was assessed under intermittent (IT) and continuous (CT) doses of elevated ultraviolet-B (eUV-B). Eclipta alba is rich in medicinally important phytochemical constituents, used against several diseases. The hypothesis of this study is that alterations in UV-B dose may modify the quantity and quality of medicinally valuable components with changes in the morphological and physiological parameters of test plant. To fulfill our hypothesis IT and CT of eUV-B (ambient ± 7.2 kJ m-2 day-2) was given for 130 and 240 h respectively to assess the impact of UV-B stress. Growth and physiological parameters were adversely affected under both the treatments with varying magnitude. The observation of leaf surfaces showed increase in stomatal and trichome densities suggesting the adaptive resilience of the plants against UV-B. Besides, biosynthesis of wedelolactone, a major medicinal compound of E. alba was observed to be stimulated under UV-B exposure. The essential oil content was reduced under IT while increased under CT. A total of 114 compounds were identified from oil extract of E. alba. n-Pentadecane (25.79%), n-Octadecane (12.98%), β-Farnesene (9.43%), α-Humulene (4.95%) (E)-Caryophyllene (4.87%), Phytol (4.25%), α-Copaene (2.26%), Humulene epoxide (1.46%), β-Pinene (1.07) and β-Caryophyllene oxide (1.06%) were identified as major components of oil. CT induced the synthesis of some medicinally important compounds such as α-terpineol, δ-cadinene, linolenic acid, methyl linoleate and myristic acid amide. Hence, the study revealed that continuous UV-B exposure of low intensity could be helpful for commercial exploitation of essential oil in E. alba.
Collapse
Affiliation(s)
- Kshama Rai
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
56
|
Hunter CT, Block AK, Christensen SA, Li QB, Rering C, Alborn HT. Setaria viridis as a model for translational genetic studies of jasmonic acid-related insect defenses in Zea mays. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110329. [PMID: 31928686 DOI: 10.1016/j.plantsci.2019.110329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Little is known regarding insect defense pathways in Setaria viridis (setaria), a model system for panicoid grasses, including Zea mays (maize). It is thus of interest to compare insect herbivory responses of setaria and maize. Here we use metabolic, phylogenetic, and gene expression analyses to measure a subset of jasmonic acid (JA)-related defense responses to leaf-chewing caterpillars. Phylogenetic comparisons of known defense-related maize genes were used to identify putative orthologs in setaria, and candidates were tested by quantitative PCR to determine transcriptional responses to insect challenge. Our findings show that while much of the core JA-related metabolic and genetic responses appear conserved between setaria and maize, production of downstream secondary metabolites such as benzoxazinoids and herbivore-induced plant volatiles are dissimilar. This diversity of chemical defenses and gene families involved in secondary metabolism among grasses presents new opportunities for cross species engineering. The high degree of genetic similarity and ease of orthologous gene identification between setaria and maize make setaria an excellent species for translational genetic studies, but the species specificity of downstream insect defense chemistry makes some pathways unamenable to cross-species comparisons.
Collapse
Affiliation(s)
- Charles T Hunter
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA.
| | - Anna K Block
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Shawn A Christensen
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Qin-Bao Li
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Caitlin Rering
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| | - Hans T Alborn
- Chemistry Research Unit, USDA Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA
| |
Collapse
|
57
|
Block AK, Hunter CT, Sattler SE, Rering C, McDonald S, Basset GJ, Christensen SA. Fighting on two fronts: Elevated insect resistance in flooded maize. PLANT, CELL & ENVIRONMENT 2020; 43:223-234. [PMID: 31411732 DOI: 10.1111/pce.13642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
To grow and thrive plants must be able to adapt to both adverse environmental conditions and attack by a variety of pests. Elucidating the sophisticated mechanisms plants have developed to achieve this has been the focus of many studies. What is less well understood is how plants respond when faced with multiple stressors simultaneously. In this study, we assess the response of Zea mays (maize) to the combinatorial stress of flooding and infestation with the insect pest Spodoptera frugiperda (fall armyworm). This combined stress leads to elevated production of the defence hormone salicylic acid, which does not occur in the individual stresses, and the resultant salicylic acid-dependent increase in S. frugiperda resistance. Remodelling of phenylpropanoid pathways also occurs in response to this combinatorial stress leading to increased production of the anti-insect C-glycosyl flavones (maysins) and the herbivore-induced volatile phenolics, benzyl acetate, and phenethyl acetate. Furthermore, changes in cellular redox status also occur, as indicated by reductions in peroxidase and polyphenol oxidase activity. These data suggest that metabolite changes important for flooding tolerance and anti-insect defence may act both additively and synergistically to provide extra protection to the plant.
Collapse
Affiliation(s)
- Anna K Block
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Charles T Hunter
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, 68583, USA
| | - Caitlin Rering
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Samantha McDonald
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Gilles J Basset
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Shawn A Christensen
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, Gainesville, FL, 32608, USA
| |
Collapse
|
58
|
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:892-907. [PMID: 31410886 PMCID: PMC6899487 DOI: 10.1111/tpj.14496] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 05/08/2023]
Abstract
Volatiles mediate the interaction of plants with pollinators, herbivores and their natural enemies, other plants and micro-organisms. With increasing knowledge about these interactions the underlying mechanisms turn out to be increasingly complex. The mechanisms of biosynthesis and perception of volatiles are slowly being uncovered. The increasing scientific knowledge can be used to design and apply volatile-based agricultural strategies.
Collapse
Affiliation(s)
- Harro Bouwmeester
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Robert C. Schuurink
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Petra M. Bleeker
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Florian Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 107CH‐8008ZürichSwitzerland
| |
Collapse
|
59
|
Xu G, Cao J, Wang X, Chen Q, Jin W, Li Z, Tian F. Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte. THE PLANT CELL 2019; 31:1990-2009. [PMID: 31227559 PMCID: PMC6751114 DOI: 10.1105/tpc.19.00111] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 05/04/2023]
Abstract
Maize (Zea mays subsp mays) was domesticated from its wild ancestor, teosinte (Zea mays subsp parviglumis). Maize's distinct morphology and adaptation to diverse environments required coordinated changes in various metabolic pathways. However, how the metabolome was reshaped since domestication remains poorly understood. Here, we report a comprehensive assessment of divergence in the seedling metabolome between maize and teosinte. In total, 461 metabolites exhibited significant divergence due to selection. Interestingly, teosinte and tropical and temperate maize, representing major stages of maize evolution, targeted distinct sets of metabolites. Alkaloids, terpenoids, and lipids were specifically targeted in the divergence between teosinte and tropical maize, while benzoxazinoids were specifically targeted in the divergence between tropical and temperate maize. To identify genetic factors controlling metabolic divergence, we assayed the seedling metabolome of a large maize-by-teosinte cross population. We show that the recent metabolic divergence between tropical and temperate maize tended to have simpler genetic architecture than the divergence between teosinte and tropical maize. Through integrating transcriptome data, we identified candidate genes contributing to metabolic divergence, many of which were under selection at the nucleotide and transcript levels. Through overexpression or mutant analysis, we verified the roles of Flavanone 3-hydroxylase1, Purple aleurone1, and maize terpene synthase1 in the divergence of their related biosynthesis pathways. Our findings not only provide important insights into domestication-associated changes in the metabolism but also highlight the power of combining omics data for trait dissection.
Collapse
Affiliation(s)
- Guanghui Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jingjing Cao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xufeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
60
|
Pott DM, Osorio S, Vallarino JG. From Central to Specialized Metabolism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Characteristics to Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:835. [PMID: 31316537 PMCID: PMC6609884 DOI: 10.3389/fpls.2019.00835] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 05/23/2023]
Abstract
Fruit flavor and nutritional characteristics are key quality traits and ones of the main factors influencing consumer preference. Central carbon metabolism, also known as primary metabolism, contributes to the synthesis of intermediate compounds that act as precursors for plant secondary metabolism. Specific and specialized metabolic pathways that evolved from primary metabolism play a key role in the plant's interaction with its environment. In particular, secondary metabolites present in the fruit serve to increase its attractiveness to seed dispersers and to protect it against biotic and abiotic stresses. As a consequence, several important organoleptic characteristics, such as aroma, color, and fruit nutritional value, rely upon secondary metabolite content. Phenolic and terpenoid compounds are large and diverse classes of secondary metabolites that contribute to fruit quality and have their origin in primary metabolic pathways, while the delicate aroma of ripe fruits is formed by a unique combination of hundreds of volatiles that are derived from primary metabolites. In this review, we show that the manipulation of primary metabolism is a powerful tool to engineer quality traits in fruits, such as the phenolic, terpenoid, and volatile content. The enzymatic reactions responsible for the accumulation of primary precursors are bottlenecks in the transfer of metabolic flux from central to specialized metabolism and should be taken into account to increase the yield of the final products of the biosynthetic pathways. In addition, understanding the connection and regulation of the carbon flow between primary and secondary metabolism is a key factor for the development of fruit cultivars with enhanced organoleptic and nutritional traits.
Collapse
Affiliation(s)
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
61
|
Tissue-Specific Transcriptome Analysis Reveals Candidate Genes for Terpenoid and Phenylpropanoid Metabolism in the Medicinal Plant Ferula assafoetida. G3-GENES GENOMES GENETICS 2019; 9:807-816. [PMID: 30679248 PMCID: PMC6404600 DOI: 10.1534/g3.118.200852] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ferula assafoetida is a medicinal plant of the Apiaceae family that has traditionally been used for its therapeutic value. Particularly, terpenoid and phenylpropanoid metabolites, major components of the root-derived oleo-gum-resin, exhibit anti-inflammatory and cytotoxic activities, thus offering a resource for potential therapeutic lead compounds. However, genes and enzymes for terpenoid and coumarin-type phenylpropanoid metabolism have thus far remained uncharacterized in F. assafoetida. Comparative de novo transcriptome analysis of roots, leaves, stems, and flowers was combined with computational annotation to identify candidate genes with probable roles in terpenoid and coumarin biosynthesis. Gene network analysis showed a high abundance of predicted terpenoid- and phenylpropanoid-metabolic pathway genes in flowers. These findings offer a deeper insight into natural product biosynthesis in F. assafoetida and provide genomic resources for exploiting the medicinal potential of this rare plant.
Collapse
|
62
|
Hu L, Ye M, Erb M. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. PLANT, CELL & ENVIRONMENT 2019; 42:959-971. [PMID: 30195252 PMCID: PMC6392123 DOI: 10.1111/pce.13443] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/25/2018] [Accepted: 09/02/2018] [Indexed: 05/03/2023]
Abstract
Plants can use induced volatiles to detect herbivore- and pathogen-attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress-related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore-induced volatile priming cues with complementary information content, the green leaf volatile (Z)-3-hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile-exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile-exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual-exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Meng Ye
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
63
|
Markovic D, Colzi I, Taiti C, Ray S, Scalone R, Gregory Ali J, Mancuso S, Ninkovic V. Airborne signals synchronize the defenses of neighboring plants in response to touch. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:691-700. [PMID: 30380091 PMCID: PMC6322579 DOI: 10.1093/jxb/ery375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/17/2018] [Indexed: 05/19/2023]
Abstract
Plants activate defense-related pathways in response to subtle abiotic or biotic disturbances, changing their volatile profile rapidly. How such perturbations reach and potentially affect neighboring plants is less understood. We evaluated whether brief and light touching had a cascade effect on the profile of volatiles and gene expression of the focal plant and a neighboring untouched plant. Within minutes after contact, Zea mays showed an up-regulation of certain defense genes and increased the emission of specific volatiles that primed neighboring plants, making them less attractive for aphids. Exposure to volatiles from touched plants activated many of the same defense-related genes in non-touched neighboring plants, demonstrating a transcriptional mirroring effect for expression of genes up-regulated by brief contact. Perception of so-far-overlooked touch-induced volatile organic compounds was of ecological significance as these volatiles are directly involved in plant-plant communication as an effective trigger for rapid defense synchronization among nearby plants. Our findings shed new light on mechanisms of plant responses to mechanical contact at the molecular level and on the ecological role of induced volatiles as airborne signals in plant-plant interactions.
Collapse
Affiliation(s)
- Dimitrije Markovic
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ilaria Colzi
- Department of Biology, University of Florence, Florence, Italy
| | - Cosimo Taiti
- Department of Biology, University of Florence, Florence, Italy
| | - Swayamjit Ray
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Romain Scalone
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jared Gregory Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Stefano Mancuso
- Department of Biology, University of Florence, Florence, Italy
| | - Velemir Ninkovic
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Correspondence:
| |
Collapse
|
64
|
Block AK, Vaughan MM, Schmelz EA, Christensen SA. Biosynthesis and function of terpenoid defense compounds in maize (Zea mays). PLANTA 2019; 249:21-30. [PMID: 30187155 DOI: 10.1007/s00425-018-2999-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/30/2018] [Indexed: 05/19/2023]
Abstract
Maize produces an array of herbivore-induced terpene volatiles that attract parasitoids to infested plants and a suite of pathogen-induced non-volatile terpenoids with antimicrobial activity to defend against pests. Plants rely on complex blends of constitutive and dynamically produced specialized metabolites to mediate beneficial ecological interactions and protect against biotic attack. One such class of metabolites are terpenoids, a large and structurally diverse class of molecules shown to play significant defensive and developmental roles in numerous plant species. Despite this, terpenoids have only recently been recognized as significant contributors to pest resistance in maize (Zea mays), a globally important agricultural crop. The current review details recent advances in our understanding of biochemical structures, pathways and functional roles of maize terpenoids. Dependent upon the lines examined, maize can harbor more than 30 terpene synthases, underlying the inherent diversity of maize terpene defense systems. Part of this defensive arsenal is the inducible production of volatile bouquets that include monoterpenes, homoterpenes and sesquiterpenes, which often function in indirect defense by enabling the attraction of parasitoids and predators. More recently discovered are a subset of sesquiterpene and diterpene hydrocarbon olefins modified by cytochrome P450s to produce non-volatile end-products such kauralexins, zealexins, dolabralexins and β-costic acid. These non-volatile terpenoid phytoalexins often provide effective defense against both microbial and insect pests via direct antimicrobial and anti-feedant activity. The diversity and promiscuity of maize terpene synthases, coupled with a variety of secondary modifications, results in elaborate defensive layers whose identities, regulation and precise functions are continuing to be elucidated.
Collapse
Affiliation(s)
- Anna K Block
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| | - Martha M Vaughan
- National Center for Agricultural Utilization Research, U.S. Department of Agriculture-Agricultural Research Service, 1815 N. University Street, Peoria, IL, 61604, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shawn A Christensen
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture-Agricultural Research Service, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| |
Collapse
|
65
|
|
66
|
Ignea C, Pontini M, Motawia MS, Maffei ME, Makris AM, Kampranis SC. Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering. Nat Chem Biol 2018; 14:1090-1098. [DOI: 10.1038/s41589-018-0166-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
|
67
|
Cofer TM, Seidl-Adams I, Tumlinson JH. From Acetoin to ( Z)-3-Hexen-1-ol: The Diversity of Volatile Organic Compounds that Induce Plant Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11197-11208. [PMID: 30293420 DOI: 10.1021/acs.jafc.8b03010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Evidence that plants can respond to volatile organic compounds (VOCs) was first presented 35 years ago. Since then, over 40 VOCs have been found to induce plant responses. These include VOCs that are produced not only by plants but also by microbes and insects. Here, we summarize what is known about how these VOCs are produced and how plants detect and respond to them. In doing so, we highlight notable observations we believe are worth greater consideration. For example, the VOCs that induce plant responses appear to have little in common. They are derived from many different biosynthetic pathways and have few distinguishing chemical or structural features. Likewise, plants appear to use several mechanisms to detect VOCs rather than a single dedicated "olfactory" system. Considering these observations, we advocate for more discovery-oriented experiments and propose that future research take a fresh look at the ways plants detect and respond to VOCs.
Collapse
Affiliation(s)
- Tristan M Cofer
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - James H Tumlinson
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
68
|
Bui H, Greenhalgh R, Ruckert A, Gill GS, Lee S, Ramirez RA, Clark RM. Generalist and Specialist Mite Herbivores Induce Similar Defense Responses in Maize and Barley but Differ in Susceptibility to Benzoxazinoids. FRONTIERS IN PLANT SCIENCE 2018; 9:1222. [PMID: 30186298 PMCID: PMC6110934 DOI: 10.3389/fpls.2018.01222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 05/20/2023]
Abstract
While substantial progress has been made in understanding defense responses of cereals to insect herbivores, comparatively little is known about responses to feeding by spider mites. Nevertheless, several spider mite species, including the generalist Tetranychus urticae and the grass specialist Oligonychus pratensis, cause damage on cereals such as maize and wheat, especially during drought stress. To understand defense responses of cereals to spider mites, we characterized the transcriptomic responses of maize and barley to herbivory by both mite species, and included a wounding control against which modulation of defenses could be tested. T. urticae and O. pratensis induced highly correlated changes in gene expression on both maize and barley. Within 2 h, hundreds of genes were upregulated, and thousands of genes were up- or downregulated after 24 h. In general, expression changes were similar to those induced by wounding, including for genes associated with jasmonic acid biosynthesis and signaling. Many genes encoding proteins involved in direct defenses, or those required for herbivore-induced plant volatiles, were strongly upregulated in response to mite herbivory. Further, biosynthesis genes for benzoxazinoids, which are specialized compounds of Poaceae with known roles in deterring insect herbivores, were induced in maize. Compared to chewing insects, spider mites are cell content feeders and cause grossly different patterns of tissue damage. Nonetheless, the gene expression responses of maize to both mite herbivores, including for phytohormone signaling pathways and for the synthesis of the benzoxazinoid 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside, a known defensive metabolite against caterpillars, resembled those reported for a generalist chewing insect, Spodoptera exigua. On maize plants harboring mutations in several benzoxazinoid biosynthesis genes, T. urticae performance dramatically increased compared to wild-type plants. In contrast, no difference in performance was observed between mutant and wild-type plants for the specialist O. pratensis. Collectively, our data provide little evidence that maize and barley defense responses differentiate herbivory between T. urticae and O. pratensis. Further, our work suggests that the likely route to specialization for O. pratensis involved the evolution of a robust mechanism to cope with the benzoxazinoid defenses of its cereal hosts.
Collapse
Affiliation(s)
- Huyen Bui
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Robert Greenhalgh
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Alice Ruckert
- Department of Biology, Utah State University, Logan, UT, United States
| | | | - Sarah Lee
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Richard M. Clark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
69
|
Block AK, Hunter CT, Rering C, Christensen SA, Meagher RL. Contrasting insect attraction and herbivore-induced plant volatile production in maize. PLANTA 2018; 248:105-116. [PMID: 29616394 DOI: 10.1007/s00425-018-2886-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The maize inbred line W22 has lower herbivore-induced volatile production than B73 but both fall armyworm larvae and the wasps that parasitize them prefer W22 over B73. Maize inbred line W22 is an important resource for genetic studies due to the availability of the UniformMu mutant population and a complete genome sequence. In this study, we assessed the suitability of W22 as a model for tritrophic interactions between maize, Spodoptera frugiperda (fall armyworm) and the parasitoid wasp Cotesia marginiventris. W22 was found to be a good model for studying the interaction as S. frugiperda prefers W22 over B73 and a higher parasitism rate by C. marginiventris was observed on W22 compared to the inbred line B73. W22 also produced lower amounts of many herbivore-induced volatile terpenes and indole emission upon treatment with S. frugiperda oral secretions. We propose that some of the major herbivore-induced terpene volatiles are perhaps impeding S. frugiperda and C. marginiventris preference and that as yet unidentified compounds are produced at low abundance may be positively impacting these interactions.
Collapse
Affiliation(s)
- Anna K Block
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA.
| | - Charles T Hunter
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Caitlin Rering
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Shawn A Christensen
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Robert L Meagher
- US Department of Agriculture-Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL, 32608, USA
| |
Collapse
|
70
|
Magnard JL, Bony AR, Bettini F, Campanaro A, Blerot B, Baudino S, Jullien F. Linalool and linalool nerolidol synthases in roses, several genes for little scent. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:74-87. [PMID: 29550664 DOI: 10.1016/j.plaphy.2018.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/08/2018] [Indexed: 05/12/2023]
Abstract
Roses are widely appreciated for the appearance of their flowers and for their fragrance. This latter character results from the combination of different odorant molecules among which monoterpenes are often prevalent constituents. In this study, we report the cloning and characterization of three rose monoterpene synthases. In vitro functional characterization of these enzymes showed that one is a (-)-(3R)-linalool synthase whereas the others have a dual (+)-(3S)-linalool nerolidol synthase activity. However, given that the characterized rose cultivars were only able to produce the (-)-(3R)-linalool stereoisomer, the linalool nerolidol synthases are probably not active in planta. Furthermore, these three enzymes were also characterized by a weak expression level as assessed by RT-qPCR and by the low abundance of the corresponding sequences in an EST library. This characteristic is likely to explain why linalool is generally a minor constituent in rose flowers' scents. On this basis, we propose that in roses the monoterpene biosynthesis effort is focused on the production of acyclic monoterpenes derived from geraniol through the recently characterized Nudix biosynthesis pathway, at the expense of conventional monoterpene biosynthesis via terpene synthases such as linalool or linalool nerolidol synthases.
Collapse
Affiliation(s)
- Jean-Louis Magnard
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, F-42023, Saint-Etienne, France.
| | - Aurélie Rius Bony
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, F-42023, Saint-Etienne, France
| | - Fabienne Bettini
- International Flavors and Fragrances - Laboratoire Monique Rémy (IFF-LMR Naturals), Parc Industriel des Bois de Grasse, 18/20 Avenue Joseph Honoré Isnard, F-06130, Grasse, France
| | - Ausilia Campanaro
- Università degli Studi di Torino, Dipartimento di Scienze Agrarie, Forestali e Alimentari, e Dipartimento di Scienze Della Vita e Biologia dei Sistemi, Torino, Italy
| | - Bernard Blerot
- International Flavors and Fragrances - Laboratoire Monique Rémy (IFF-LMR Naturals), Parc Industriel des Bois de Grasse, 18/20 Avenue Joseph Honoré Isnard, F-06130, Grasse, France
| | - Sylvie Baudino
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, F-42023, Saint-Etienne, France
| | - Frédéric Jullien
- Univ Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727, F-42023, Saint-Etienne, France
| |
Collapse
|
71
|
Falcke JM, Bose N, Artyukhin AB, Rödelsperger C, Markov GV, Yim JJ, Grimm D, Claassen MH, Panda O, Baccile JA, Zhang YK, Le HH, Jolic D, Schroeder FC, Sommer RJ. Linking Genomic and Metabolomic Natural Variation Uncovers Nematode Pheromone Biosynthesis. Cell Chem Biol 2018; 25:787-796.e12. [PMID: 29779955 DOI: 10.1016/j.chembiol.2018.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022]
Abstract
In the nematodes Caenorhabditis elegans and Pristionchus pacificus, a modular library of small molecules control behavior, lifespan, and development. However, little is known about the final steps of their biosynthesis, in which diverse building blocks from primary metabolism are attached to glycosides of the dideoxysugar ascarylose, the ascarosides. We combine metabolomic analysis of natural isolates of P. pacificus with genome-wide association mapping to identify a putative carboxylesterase, Ppa-uar-1, that is required for attachment of a pyrimidine-derived moiety in the biosynthesis of ubas#1, a major dauer pheromone component. Comparative metabolomic analysis of wild-type and Ppa-uar-1 mutants showed that Ppa-uar-1 is required specifically for the biosynthesis of ubas#1 and related metabolites. Heterologous expression of Ppa-UAR-1 in C. elegans yielded a non-endogenous ascaroside, whose structure confirmed that Ppa-uar-1 is involved in modification of a specific position in ascarosides. Our study demonstrates the utility of natural variation-based approaches for uncovering biosynthetic pathways.
Collapse
Affiliation(s)
- Jan M Falcke
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Neelanjan Bose
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alexander B Artyukhin
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gabriel V Markov
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Joshua J Yim
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dominik Grimm
- Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems, 72076 Tübingen, Germany
| | - Marc H Claassen
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joshua A Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ying K Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dino Jolic
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
72
|
Mafu S, Ding Y, Murphy KM, Yaacoobi O, Addison JB, Wang Q, Shen Z, Briggs SP, Bohlmann J, Castro-Falcon G, Hughes CC, Betsiashvili M, Huffaker A, Schmelz EA, Zerbe P. Discovery, Biosynthesis and Stress-Related Accumulation of Dolabradiene-Derived Defenses in Maize. PLANT PHYSIOLOGY 2018; 176:2677-2690. [PMID: 29475898 PMCID: PMC5884620 DOI: 10.1104/pp.17.01351] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/16/2018] [Indexed: 05/18/2023]
Abstract
Terpenoids are a major component of maize (Zea mays) chemical defenses that mediate responses to herbivores, pathogens, and other environmental challenges. Here, we describe the biosynthesis and elicited production of a class of maize diterpenoids, named dolabralexins. Dolabralexin biosynthesis involves the sequential activity of two diterpene synthases, ENT-COPALYL DIPHOSPHATE SYNTHASE (ZmAN2) and KAURENE SYNTHASE-LIKE4 (ZmKSL4). Together, ZmAN2 and ZmKSL4 form the diterpene hydrocarbon dolabradiene. In addition, we biochemically characterized a cytochrome P450 monooxygenase, ZmCYP71Z16, which catalyzes the oxygenation of dolabradiene to yield the epoxides 15,16-epoxydolabrene (epoxydolabrene) and 3β-hydroxy-15,16-epoxydolabrene (epoxydolabranol). The absence of dolabradiene and epoxydolabranol in Zman2 mutants under elicited conditions confirmed the in vivo biosynthetic requirement of ZmAN2. Combined mass spectrometry and NMR experiments demonstrated that much of the epoxydolabranol is further converted into 3β,15,16-trihydroxydolabrene (trihydroxydolabrene). Metabolite profiling of field-grown maize root tissues indicated that dolabralexin biosynthesis is widespread across common maize cultivars, with trihydroxydolabrene as the predominant diterpenoid. Oxidative stress induced dolabralexin accumulation and transcript expression of ZmAN2 and ZmKSL4 in root tissues, and metabolite and transcript accumulation were up-regulated in response to elicitation with the fungal pathogens Fusarium verticillioides and Fusarium graminearum Consistently, epoxydolabranol significantly inhibited the growth of both pathogens in vitro at 10 µg mL-1, while trihydroxydolabrene-mediated inhibition was specific to Fverticillioides These findings suggest that dolabralexins have defense-related roles in maize stress interactions and expand the known chemical space of diterpenoid defenses as genetic targets for understanding and ultimately improving maize resilience.
Collapse
Affiliation(s)
- Sibongile Mafu
- Department of Plant Biology, University of California, Davis, California
| | - Yezhang Ding
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Katherine M Murphy
- Department of Plant Biology, University of California, Davis, California
| | - Omar Yaacoobi
- Department of Plant Biology, University of California, Davis, California
| | - J Bennett Addison
- Department of Chemistry, San Diego State University, San Diego, California
| | - Qiang Wang
- College of Agronomy and Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Steven P Briggs
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Gabriel Castro-Falcon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, California
| | - Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, La Jolla, California
| | - Mariam Betsiashvili
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California, La Jolla, California
| | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, California
| |
Collapse
|
73
|
Liu D, Huang X, Jing W, An X, Zhang Q, Zhang H, Zhou J, Zhang Y, Guo Y. Identification and functional analysis of two P450 enzymes of Gossypium hirsutum involved in DMNT and TMTT biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:581-590. [PMID: 28710782 PMCID: PMC5787835 DOI: 10.1111/pbi.12797] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 05/24/2023]
Abstract
The homoterpenes (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) are major herbivore-induced plant volatiles that can attract predatory or parasitic arthropods to protect injured plants from herbivore attack. In this study, DMNT and TMTT were confirmed to be emitted from cotton (Gossypium hirsutum) plants infested with chewing caterpillars or sucking bugs. Two CYP genes (GhCYP82L1 and GhCYP82L2) involved in homoterpene biosynthesis in G. hirsutum were newly identified and characterized. Yeast recombinant expression and enzyme assays indicated that the two GhCYP82Ls are both responsible for the conversion of (E)-nerolidol to DMNT and (E,E)-geranyllinalool to TMTT. The two heterologously expressed proteins without cytochrome P450 reductase fail to convert the substrates to homoterpenes. Quantitative real-time PCR (qPCR) analysis suggested that the two GhCYP82L genes were significantly up-regulated in leaves and stems of G. hirsutum after herbivore attack. Subsequently, electroantennogram recordings showed that electroantennal responses of Microplitis mediator and Peristenus spretus to DMNT and TMTT were both dose dependent. Laboratory behavioural bioassays showed that females of both wasp species responded positively to DMNT and males and females of M. mediator could be attracted by TMTT. The results provide a better understanding of homoterpene biosynthesis in G. hirsutum and of the potential influence of homoterpenes on the behaviour of natural enemies, which lay a foundation to study genetically modified homoterpene biosynthesis and its possible application in agricultural pest control.
Collapse
Affiliation(s)
- Danfeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xinzheng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Weixia Jing
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- College of Plant ProtectionShandong Agricultural UniversityTai'anShandongChina
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Qiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Hong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jingjiang Zhou
- Department of Biological Chemistry and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yuyuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
74
|
Huang XZ, Xiao YT, Köllner TG, Jing WX, Kou JF, Chen JY, Liu DF, Gu SH, Wu JX, Zhang YJ, Guo YY. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores. PLANT, CELL & ENVIRONMENT 2018; 41:261-274. [PMID: 29044662 DOI: 10.1111/pce.13088] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 05/16/2023]
Abstract
Herbivore-induced terpenes have been reported to function as ecological signals in plant-insect interactions. Here, we showed that insect-induced cotton volatile blends contained 16 terpenoid compounds with a relatively high level of linalool. The high diversity of terpene production is derived from a large terpene synthase (TPS) gene family. The TPS gene family of Gossypium hirsutum and Gossypium raimondii consist of 46 and 41 members, respectively. Twelve TPS genes (GhTPS4-15) could be isolated, and protein expression in Escherichia coli revealed catalytic activity for eight GhTPS. The upregulation of the majority of these eight genes additionally supports the function of these genes in herbivore-induced volatile biosynthesis. Furthermore, transgenic Nicotiana tabacum plants overexpressing GhTPS12 were generated, which produced relatively large amounts of (3S)-linalool. In choice tests, female adults of Helicoverpa armigera laid fewer eggs on transgenic plants compared with non-transformed controls. Meanwhile, Myzus persicae preferred feeding on wild-type leaves over leaves of transgenic plants. Our findings demonstrate that transcript accumulation of multiple TPS genes is mainly responsible for the production and diversity of herbivore-induced volatile terpenes in cotton. Also, these genes might play roles in plant defence, in particular, direct defence responses against herbivores.
Collapse
Affiliation(s)
- Xin-Zheng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu-Tao Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | | | - Wei-Xia Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun-Feng Kou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie-Yin Chen
- Institute of Agro-food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | - Dan-Feng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shao-Hua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun-Xiang Wu
- College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yu-Yuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
75
|
Ding Y, Huffaker A, Köllner TG, Weckwerth P, Robert CAM, Spencer JL, Lipka AE, Schmelz EA. Selinene Volatiles Are Essential Precursors for Maize Defense Promoting Fungal Pathogen Resistance. PLANT PHYSIOLOGY 2017; 175:1455-1468. [PMID: 28931629 PMCID: PMC5664469 DOI: 10.1104/pp.17.00879] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 05/21/2023]
Abstract
To ensure food security, maize (Zea mays) is a model crop for understanding useful traits underlying stress resistance. In contrast to foliar biochemicals, root defenses limiting the spread of disease remain poorly described. To better understand belowground defenses in the field, we performed root metabolomic profiling and uncovered unexpectedly high levels of the sesquiterpene volatile β-selinene and the corresponding nonvolatile antibiotic derivative β-costic acid. The application of metabolite-based quantitative trait locus mapping using biparental populations, genome-wide association studies, and near-isogenic lines enabled the identification of terpene synthase21 (ZmTps21) on chromosome 9 as a β-costic acid pathway candidate gene. Numerous closely examined β-costic acid-deficient inbred lines were found to harbor Zmtps21 pseudogenes lacking conserved motifs required for farnesyl diphosphate cyclase activity. For biochemical validation, a full-length ZmTps21 was cloned, heterologously expressed in Escherichia coli, and demonstrated to cyclize farnesyl diphosphate, yielding β-selinene as the dominant product. Consistent with microbial defense pathways, ZmTps21 transcripts strongly accumulate following fungal elicitation. Challenged field roots containing functional ZmTps21 alleles displayed β-costic acid levels over 100 μg g-1 fresh weight, greatly exceeding in vitro concentrations required to inhibit the growth of five different fungal pathogens and rootworm larvae (Diabrotica balteata). In vivo disease resistance assays, using ZmTps21 and Zmtps21 near-isogenic lines, further support the endogenous antifungal role of selinene-derived metabolites. Involved in the biosynthesis of nonvolatile antibiotics, ZmTps21 exists as a useful gene for germplasm improvement programs targeting optimized biotic stress resistance.
Collapse
Affiliation(s)
- Yezhang Ding
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Philipp Weckwerth
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380
| | | | - Joseph L Spencer
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois 61820
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093-0380
| |
Collapse
|
76
|
Block A, Vaughan MM, Christensen SA, Alborn HT, Tumlinson JH. Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays. PLANT, CELL & ENVIRONMENT 2017; 40:1725-1734. [PMID: 28436049 DOI: 10.1111/pce.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO2 . Our data indicate that elevated CO2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO2 on stomatal conductance. These findings suggest that elevated CO2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses.
Collapse
Affiliation(s)
- Anna Block
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture - Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Martha M Vaughan
- National Center for Agricultural Utilization Research, U.S. Department of Agriculture - Agricultural Research Service, Peoria, IL, 61604, USA
| | - Shawn A Christensen
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture - Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Hans T Alborn
- Center for Medical, Agricultural and Veterinary Entomology, U.S. Department of Agriculture - Agricultural Research Service, Gainesville, FL, 32608, USA
| | - James H Tumlinson
- Center for Chemical Ecology, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
77
|
Otto LG, Mondal P, Brassac J, Preiss S, Degenhardt J, He S, Reif JC, Sharbel TF. Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping. BMC Genomics 2017; 18:599. [PMID: 28797221 PMCID: PMC5553732 DOI: 10.1186/s12864-017-3991-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/01/2017] [Indexed: 11/10/2022] Open
Abstract
Background Chamomile (Matricaria recutita L.) has a long history of use in herbal medicine with various applications, and the flower heads contain numerous secondary metabolites which are medicinally active. In the major crop plants, next generation sequencing (NGS) approaches are intensely applied to exploit genetic resources, to develop genomic resources and to enhance breeding. Here, genotyping-by-sequencing (GBS) has been used in the non-model medicinal plant chamomile to evaluate the genetic structure of the cultivated varieties/populations, and to perform genome wide association study (GWAS) focusing on genes with large effect on flowering time and the medicinally important alpha-bisabolol content. Results GBS analysis allowed the identification of 6495 high-quality SNP-markers in our panel of 91 M. recutita plants from 33 origins (2–4 genotypes each) and 4 M. discoidea plants as outgroup, grown in the greenhouse in Gatersleben, Germany. M. recutita proved to be clearly distinct from the outgroup, as was demonstrated by different cluster and principal coordinate analyses using the SNP-markers. Chamomile genotypes from the same origin were mostly genetically similar. Model-based cluster analysis revealed one large group of tetraploid genotypes with low genetic differentiation including 39 plants from 14 origins. Tetraploids tended to display lower genetic diversity than diploids, probably reflecting their origin by artificial polyploidisation from only a limited set of genetic backgrounds. Analyses of flowering time demonstrated that diploids generally flowered earlier than tetraploids, and the analysis of alpha-bisabolol identified several tetraploid genotypes with a high content. GWAS identified highly significant (P < 0.01) SNPs for flowering time (9) and alpha-bisabolol (71). One sequence harbouring SNPs associated with flowering time was described to play a role in self-pollination in Arabidopsis thaliana, whereas four sequences harbouring SNPs associated with alpha-bisabolol were identified to be involved in plant biotic and abiotic stress response in various plants species. Conclusions The first genomic resource for future applications to enhance breeding in chamomile was created, andanalyses of diversity will facilitate the exploitation of these genetic resources. The GWAS data pave the way for future research towards the genetics underlying important traits in chamomile, the identification of marker-trait associations, and development of reliable markers for practical breeding. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3991-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lars-Gernot Otto
- Apomixis Research Group, Department Plant Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Seeland OT Gatersleben, Germany.
| | - Prodyut Mondal
- Research Group of Pharmaceutical Biotechnology, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Jonathan Brassac
- Apomixis Research Group, Department Plant Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Seeland OT Gatersleben, Germany
| | - Susanne Preiss
- Research Group of Pharmaceutical Biotechnology, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Jörg Degenhardt
- Research Group of Pharmaceutical Biotechnology, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
| | - Sang He
- Quantitative Genetics Research Group, Department Plant Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Seeland OT Gatersleben, Germany
| | - Jochen Christoph Reif
- Quantitative Genetics Research Group, Department Plant Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Seeland OT Gatersleben, Germany
| | - Timothy Francis Sharbel
- Apomixis Research Group, Department Plant Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Seeland OT Gatersleben, Germany.,Global Institute for Food Security, University of Saskatchewan, 110 Gymnasium Place, Saskatoon, SK, S7N 4J8, Canada
| |
Collapse
|
78
|
Angelovici R, Batushansky A, Deason N, Gonzalez-Jorge S, Gore MA, Fait A, DellaPenna D. Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids. PLANT PHYSIOLOGY 2017; 173:872-886. [PMID: 27872244 PMCID: PMC5210728 DOI: 10.1104/pp.16.01287] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 05/18/2023]
Abstract
Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed's nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.);
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.);
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.);
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Albert Batushansky
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Nicholas Deason
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Sabrina Gonzalez-Jorge
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Michael A Gore
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Aaron Fait
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Dean DellaPenna
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| |
Collapse
|
79
|
Cui Z, Luo J, Qi C, Ruan Y, Li J, Zhang A, Yang X, He Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genomics 2016; 17:946. [PMID: 27871222 PMCID: PMC5117540 DOI: 10.1186/s12864-016-3229-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Background Maize (Zea mays) husk referring to the leafy outer enclosing the ear, plays an important role in grain production by directly contributing photosynthate and protecting ear from pathogen infection. Although the physiological functions related to husk have been extensively studied, little is known about its morphological variation and genetic basis in natural population. Results Here we utilized a maize association panel including 508 inbred lines with tropical, subtropical and temperate backgrounds to decipher the genetic architecture attributed to four husk traits, i.e. number of layers, length, width and thickness. Evaluating the phenotypic diversity at two different environments showed that four traits exhibit broadly natural variations and moderate levels of heritability with 0.64, 0.74, 0.49 and 0.75 for number, length, width and thickness, respectively. Diversity analysis indicated that different traits have dissimilar responses to subpopulation effects. A series of significantly positive or negative correlations between husk phenotypes and other agronomic traits were identified, indicating that husk growth is coordinated with other developmental processes. Combining husk traits with about half of a million of single nucleotide polymorphisms (SNPs) via genome-wide association study revealed a total of 9 variants significantly associated with traits at P < 1.04 × 10-5, which are implicated in multiple functional categories, such as cellular trafficking, transcriptional regulation and metabolism. Conclusions These results provide instrumental information for understanding the genetic basis of husk development, and further studies on identified candidate genes facilitate to illuminate molecular pathways regulating maize husk growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenhai Cui
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.,College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jinhong Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Chuangye Qi
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Yanye Ruan
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China
| | - Ao Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.
| | - Yan He
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|