51
|
Wang Y, Fuentes RR, van Rengs WMJ, Effgen S, Zaidan MWAM, Franzen R, Susanto T, Fernandes JB, Mercier R, Underwood CJ. Harnessing clonal gametes in hybrid crops to engineer polyploid genomes. Nat Genet 2024; 56:1075-1079. [PMID: 38741016 PMCID: PMC11176054 DOI: 10.1038/s41588-024-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Heterosis boosts crop yield; however, harnessing additional progressive heterosis in polyploids is challenging for breeders. We bioengineered a 'mitosis instead of meiosis' (MiMe) system that generates unreduced, clonal gametes in three hybrid tomato genotypes and used it to establish polyploid genome design. Through the hybridization of MiMe hybrids, we generated '4-haplotype' plants that encompassed the complete genetics of their four inbred grandparents, providing a blueprint for exploiting polyploidy in crops.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Roven Rommel Fuentes
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sieglinde Effgen
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Rainer Franzen
- Central Microscopy (CeMic), Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Tamara Susanto
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
52
|
Masani MYA, Norfaezah J, Bahariah B, Fizree MDPMAA, Sulaiman WNSW, Shaharuddin NA, Rasid OA, Parveez GKA. Towards DNA-free CRISPR/Cas9 genome editing for sustainable oil palm improvement. 3 Biotech 2024; 14:166. [PMID: 38817736 PMCID: PMC11133284 DOI: 10.1007/s13205-024-04010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024] Open
Abstract
The CRISPR/Cas9 genome editing system has been in the spotlight compared to programmable nucleases such as ZFNs and TALENs due to its simplicity, versatility, and high efficiency. CRISPR/Cas9 has revolutionized plant genetic engineering and is broadly used to edit various plants' genomes, including those transformation-recalcitrant species such as oil palm. This review will comprehensively present the CRISPR-Cas9 system's brief history and underlying mechanisms. We then highlighted the establishment of the CRISPR/Cas9 system in plants with an emphasis on the strategies of highly efficient guide RNA design, the establishment of various CRISPR/Cas9 vector systems, approaches of multiplex editing, methods of transformation for stable and transient techniques, available methods for detecting and analyzing mutations, which have been applied and could be adopted for CRISPR/Cas9 genome editing in oil palm. In addition, we also provide insight into the strategy of DNA-free genome editing and its potential application in oil palm.
Collapse
Affiliation(s)
- Mat Yunus Abdul Masani
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Jamaludin Norfaezah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Bohari Bahariah
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | | | | | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400 Serdang, Malaysia
| | - Omar Abdul Rasid
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Ghulam Kadir Ahmad Parveez
- Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
53
|
Ma M, Yang L, Hu Z, Mo C, Geng S, Zhao X, He Q, Xiao L, Lu L, Wang D, Li S, Kong Q, Li D, Bie Z. Multiplex gene editing reveals cucumber MILDEW RESISTANCE LOCUS O family roles in powdery mildew resistance. PLANT PHYSIOLOGY 2024; 195:1069-1088. [PMID: 38330431 DOI: 10.1093/plphys/kiae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Powdery mildew (PM) is one of the most widespread and prevalent diseases that affects a wide range of crops. In cucumber (Cucumis sativus L.), previous forward genetic studies have identified MILDEW RESISTANCE LOCUS O 8 (CsMLO8) as necessary but alone insufficient for cucumber PM resistance (PMR) and suggested the involvement of other members of the CsMLO family. However, the function of other CsMLO family members in cucumber remains largely unknown. Here, we developed a highly efficient multiplex gene editing system in cucumber to generate a series of Csmlo mutants from all the 13 family members. Systematic analysis of these mutants revealed growth effects of these CsMLO family members on development and PMR. Importantly, we obtained the Csmlo1/8/11 triple mutant with complete resistance to PM. Transcriptome and proteome analysis of PM-resistant Csmlo mutants suggested that the kinesin-like calmodulin-binding protein (KCBP)-interacting Ca2+-binding protein (CsKIC), calmodulin-like protein 28 (CsCML28), and Ca2+-dependent protein kinase 11 (CsCPK11)-mediated calcium signaling pathway is involved in PMR. CsMLO8 interacted directly with CsKIC, and the simultaneous silencing of both genes resulted in a phenotype that resembled the silencing of CsKIC alone. Silencing CsCML28 and CsCPK11 increased susceptibility to PM, whereas overexpressing CsCPK11 through genetic transformation enhanced cucumber's PMR, demonstrating their positive regulatory roles in PMR. Given the importance of PMR for cucurbit crops, this research provides unprecedented insights into the function of the proteins encoded by the CsMLO gene family as well as the plant defense response to PM pathogen.
Collapse
Affiliation(s)
- Mingru Ma
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenzhu Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Changjuan Mo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shouyu Geng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuyu He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liurong Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanggui Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dawei Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Department of Science and Technology of Hubei Province, Wuhan 430070, China
| |
Collapse
|
54
|
Selma S. You don't win friends with bad salad! A gene editing approach to enhance the powdery mildew resistance in cucumber. PLANT PHYSIOLOGY 2024; 195:908-910. [PMID: 38482927 PMCID: PMC11142331 DOI: 10.1093/plphys/kiae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 06/02/2024]
Affiliation(s)
- Sara Selma
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
55
|
Kim WS, Gillman JD, Kim S, Liu J, Janga MR, Stupar RM, Krishnan HB. Bowman-Birk Inhibitor Mutants of Soybean Generated by CRISPR-Cas9 Reveal Drastic Reductions in Trypsin and Chymotrypsin Inhibitor Activities. Int J Mol Sci 2024; 25:5578. [PMID: 38891766 PMCID: PMC11171862 DOI: 10.3390/ijms25115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman-Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and chymotrypsin inhibitors (BBis), but such treatment is energy-intensive, adds expense, and negatively impacts the quality of seed proteins. As an alternative approach, we have employed CRISPR/Cas9 gene editing to create mutations in BBi genes to drastically lower the protease inhibitor content in soybean seed. Agrobacterium-mediated transformation was used to generate several stable transgenic soybean events. These independent CRISPR/Cas9 events were examined in comparison to wild-type plants using Sanger sequencing, proteomic analysis, trypsin/chymotrypsin inhibitor activity assays, and qRT-PCR. Collectively, our results demonstrate the creation of an allelic series of loss-of-function mutations affecting the major BBi gene in soybean. Mutations in two of the highly expressed seed-specific BBi genes lead to substantial reductions in both trypsin and chymotrypsin inhibitor activities.
Collapse
Affiliation(s)
- Won-Seok Kim
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (W.-S.K.); (S.K.)
| | - Jason D. Gillman
- Plant Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Columbia, MO 65211, USA;
| | - Sunhyung Kim
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (W.-S.K.); (S.K.)
| | - Junqi Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA; (J.L.); (R.M.S.)
| | - Madhusudhana R. Janga
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA;
| | - Robert M. Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA; (J.L.); (R.M.S.)
| | - Hari B. Krishnan
- Plant Genetics Research Unit, US Department of Agriculture-Agricultural Research Service, Columbia, MO 65211, USA;
| |
Collapse
|
56
|
Zhu X, Chen A, Butler NM, Zeng Z, Xin H, Wang L, Lv Z, Eshel D, Douches DS, Jiang J. Molecular dissection of an intronic enhancer governing cold-induced expression of the vacuolar invertase gene in potato. THE PLANT CELL 2024; 36:1985-1999. [PMID: 38374801 PMCID: PMC11062429 DOI: 10.1093/plcell/koae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to minimize sprouting and losses due to disease. However, cold temperatures strongly induce the expression of the potato vacuolar invertase gene (VInv) and cause reducing sugar accumulation. This process, referred to as "cold-induced sweetening," is a major postharvest problem for the potato industry. We discovered that the cold-induced expression of VInv is controlled by a 200 bp enhancer, VInvIn2En, located in its second intron. We identified several DNA motifs in VInvIn2En that bind transcription factors involved in the plant cold stress response. Mutation of these DNA motifs abolished VInvIn2En function as a transcriptional enhancer. We developed VInvIn2En deletion lines in both diploid and tetraploid potato using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. VInv transcription in cold-stored tubers was significantly reduced in the deletion lines. Interestingly, the VInvIn2En sequence is highly conserved among distantly related Solanum species, including tomato (Solanum lycopersicum) and other non-tuber-bearing species. We conclude that the VInv gene and the VInvIn2En enhancer have adopted distinct roles in the cold stress response in tubers of tuber-bearing Solanum species.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Airu Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Nathaniel M Butler
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Vegetable Crops Research Unit, United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, USA
| | - Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan Province, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu 610101, Sichuan Province, China
| | - Haoyang Xin
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lixia Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Zhaoyan Lv
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Institute, ARO, Rishon LeZion 50250, Israel
| | - David S Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
57
|
Capdeville N, Schindele P, Puchta H. Increasing deletion sizes and the efficiency of CRISPR/Cas9-mediated mutagenesis by SunTag-mediated TREX1 recruitment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:277-287. [PMID: 38113345 DOI: 10.1111/tpj.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Previously, it has been shown that mutagenesis frequencies can be improved by directly fusing the human exonuclease TREX2 to Cas9, resulting in a strong increase in the frequency of smaller deletions at the cut site. Here, we demonstrate that, by using the SunTag system for recruitment of TREX2, the mutagenesis efficiency can be doubled in comparison to the direct fusion in Arabidopsis thaliana. Therefore, we also tested the efficiency of the system for targeted deletion formation by recruiting two other 3'-5' exonucleases, namely the human TREX1 and E. coli ExoI. It turns out that SunTag-mediated recruitment of TREX1 not only improved the general mutation induction efficiency slightly in comparison to TREX2, but that, more importantly, the mean size of the induced deletions was also enhanced, mainly via an increase of deletions of 25 bp or more. EcExoI also yielded a higher amount of larger deletions. However, only in the case of TREX1 and TREX2, the effect was predominately SunTag-dependent, indicating efficient target-specific recruitment. Using SunTag-mediated TREX1 recruitment at other genomic sites, we were able to obtain similar deletion patterns. Thus, we were able to develop an attractive novel editing tool that is especially useful for obtaining deletions in the range from 20 to 40 bp around the cut site. Such sizes are often required for the manipulation of cis-regulatory elements. This feature is closing an existing gap as previous approaches, based on single nucleases or paired nickases or nucleases, resulted in either shorter or longer deletions, respectively.
Collapse
Affiliation(s)
- Niklas Capdeville
- Department of Molecular Biology, Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Patrick Schindele
- Department of Molecular Biology, Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Holger Puchta
- Department of Molecular Biology, Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| |
Collapse
|
58
|
Liu D, Myers EA, Xuan S, Prichard LE, Donahue LI, Ellison EE, Starker CG, Voytas DF. Heritable, multinucleotide deletions in plants using viral delivery of a repair exonuclease and guide RNAs. PLANT PHYSIOLOGY 2024; 194:2229-2239. [PMID: 38243587 DOI: 10.1093/plphys/kiae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
CRISPR/Cas9-mediated mutagenesis typically results in short insertion/deletion mutations, which are often too small to disrupt the function of cis-acting regulatory elements. Here, we describe a highly efficient in planta gene editing approach called VirTREX2-HLDel that achieves heritable multinucleotide deletions in both protein-coding genes and noncoding DNA regulatory elements. VirTREX2-HLDel uses RNA viruses to deliver both the 3 prime repair exonuclease 2 (TREX2) and single-guide RNAs. Our method enables recovery of multiplexed heritable deletions and increases the heritable gene editing frequency at poorly edited sites. We identified functional conservation and divergence of MICRORNA164 (miR164) in Nicotiana benthamiana and tomato (Solanum lycopersicum) using VirTREX2-HLDel and observed previously uncharacterized phenotypes in plants with large deletions at this locus. Our viral delivery method reduces the need for tissue culture and will accelerate the understanding of protein-coding and regulatory regions in plants.
Collapse
Affiliation(s)
- Degao Liu
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Erik A Myers
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Shuya Xuan
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Lynn E Prichard
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Lilee I Donahue
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Evan E Ellison
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Colby G Starker
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
59
|
Hu H, Zhang Y, Yu F. A CRISPR/Cas9-based vector system enables the fast breeding of selection-marker-free canola with Rcr1-rendered clubroot resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1347-1363. [PMID: 37991105 PMCID: PMC10901203 DOI: 10.1093/jxb/erad471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Breeding for disease resistance in major crops is of crucial importance for global food security and sustainability. However, common biotechnologies such as traditional transgenesis or genome editing do not provide an ideal solution, whereas transgenic crops free of selection markers such as cisgenic/intragenic crops might be suitable. In this study, after cloning and functional verification of the Rcr1 gene for resistance to clubroot (Plasmodiophora brassicae), we confirmed that the genes Rcr1, Rcr2, Rcr4, and CRa from Brassica rapa crops and the resistance gene from B. napus oilseed rape cv. 'Mendel' on chromosome A03 were identical in their coding regions. We also determined that Rcr1 has a wide distribution in Brassica breeding materials and renders potent resistance against multiple representative clubroot strains in Canada. We then modified a CRISPR/Cas9-based cisgenic vector system and found that it enabled the fast breeding of selection-marker-free transgenic crops with add-on traits, with selection-marker-free canola (B. napus) germplasms with Rcr1-rendered stable resistance to clubroot disease being successfully developed within 2 years. In the B. napus background, the intragenic vector system was able to remove unwanted residue sequences from the final product with high editing efficiency, and off-target mutations were not detected. Our study demonstrates the potential of applying this breeding strategy to other crops that can be transformed by Agrobacterium. Following the streamlined working procedure, intragenic germplasms can be developed within two generations, which could significantly reduce the breeding time and labor compared to traditional introgression whilst still achieving comparable or even better breeding results.
Collapse
Affiliation(s)
- Hao Hu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yan Zhang
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| |
Collapse
|
60
|
Miroshnichenko D, Timerbaev V, Divashuk M, Pushin A, Alekseeva V, Kroupin P, Bazhenov M, Samarina M, Ermolaev A, Karlov G, Dolgov S. CRISPR/Cas9-mediated мultiplexed multi-allelic mutagenesis of genes located on A, B and R subgenomes of hexaploid triticale. PLANT CELL REPORTS 2024; 43:59. [PMID: 38329578 DOI: 10.1007/s00299-023-03139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
KEY MESSAGE The first-time generation of hexaploid triticale plants harbouring variable panels of novel mutations in gene families involved in starch biosynthesis has been achieved by the subgenome-independent multiplexed CRISPR/Cas9-mediated editing.
Collapse
Affiliation(s)
- Dmitry Miroshnichenko
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia.
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia.
| | - Vadim Timerbaev
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
| | - Mikhail Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Alexander Pushin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
| | - Valeria Alekseeva
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
| | - Pavel Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Mikhail Bazhenov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Mariya Samarina
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Aleksey Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Gennady Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Sergey Dolgov
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
| |
Collapse
|
61
|
Holme IB, Ingvardsen CR, Dionisio G, Podzimska‐Sroka D, Kristiansen K, Feilberg A, Brinch‐Pedersen H. CRISPR/Cas9-mediated mutation of Eil1 transcription factor genes affects exogenous ethylene tolerance and early flower senescence in Campanula portenschlagiana. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:484-496. [PMID: 37823527 PMCID: PMC10826993 DOI: 10.1111/pbi.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
Improving tolerance to ethylene-induced early senescence of flowers and fruits is of major economic importance for the ornamental and food industry. Genetic modifications of genes in the ethylene-signalling pathway have frequently resulted in increased tolerance but often with unwanted side effects. Here, we used CRISPR/Cas9 to knockout the function of two CpEil1 genes expressed in flowers of the diploid ornamental plant Campanula portenschlagiana. The ethylene tolerance in flowers of the primary mutants with knockout of only one or all four alleles clearly showed increased tolerance to exogenous ethylene, although lower tolerance was obtained with one compared to four mutated alleles. The allele dosage effect was confirmed in progenies where flowers of plants with zero, one, two, three and four mutated alleles showed increasing ethylene tolerance. Mutation of the Cpeil1 alleles had no significant effect on flower longevity and endogenous flower ethylene level, indicating that CpEil1 is not involved in age-dependent senescence of flowers. The study suggests focus on EIN3/Eils expressed in the organs subjected to early senescence for obtaining tolerance towards exogenous ethylene. Furthermore, the observed allelic dosage effect constitutes a key handle for a gradual regulation of sensitivity towards exogenous ethylene, simultaneously monitoring possibly unwanted side effects.
Collapse
Affiliation(s)
- Inger B. Holme
- Department of Agroecology, Faculty of Technical SciencesAarhus UniversitySlagelseDenmark
| | | | - Giuseppe Dionisio
- Department of Agroecology, Faculty of Technical SciencesAarhus UniversitySlagelseDenmark
| | | | | | - Anders Feilberg
- Department of Biological and Chemical Engineering, Faculty of Technical SciencesAarhus UniversityAarhusDenmark
| | - Henrik Brinch‐Pedersen
- Department of Agroecology, Faculty of Technical SciencesAarhus UniversitySlagelseDenmark
| |
Collapse
|
62
|
Wang Y, Li X, Liu M, Zhou Y, Li F. Guide RNA scaffold variants enabled easy cloning of large gRNA cluster for multiplexed gene editing. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:460-471. [PMID: 37816147 PMCID: PMC10826992 DOI: 10.1111/pbi.14198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/20/2023] [Accepted: 09/23/2023] [Indexed: 10/12/2023]
Abstract
Cas9 protein-mediated gene editing has revolutionized genetic manipulation in most organisms. There are many cases where multiplexed gene editing is needed. Cas9 is capable of multiplex gene editing when expressed with multiple guide RNAs. Conventional cloning methods for multiplexed gene editing vector is not efficient due to repeated use of a single-guide RNA scaffold and inefficient ligation. In this study, we conducted structure-guided mutagenesis and random mutagenesis on the original sgRNA scaffold and identified a large number of functional sgRNA scaffold variants. With these scaffold variants and different tRNAs, fusion polymerase chain reaction protocol was developed to rapidly synthesize spacer-scaffold-tRNA-spacer units with up to 9 targets. In conjunction with golden gate cloning, gene editing vectors with up to 24 target sites were efficiently cloned in one-step cloning. One such gene editing vector targeting 12 genes in tomato were tested in stable transformation and 10 out of the 12 genes were found mutated in a single transgenic line. To facilitate the application of multiplexed gene editing using these scaffold variants and tRNAs from different species, a webserver was created to generate primer sets and provide template sequences for the synthesis of large sgRNA expression units based on the user-supplied target sequences and species.
Collapse
Affiliation(s)
- Yaqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xiaofei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Minglei Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Yingjia Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Feng Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
63
|
Zhang CX, Li RJ, Baude L, Reinhardt D, Xie ZP, Staehelin C. CRISPR/Cas9-Mediated Generation of Mutant Lines in Medicago truncatula Indicates a Symbiotic Role of MtLYK10 during Nodule Formation. BIOLOGY 2024; 13:53. [PMID: 38275729 PMCID: PMC10812973 DOI: 10.3390/biology13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
CRISPR/Cas9 systems are commonly used for plant genome editing; however, the generation of homozygous mutant lines in Medicago truncatula remains challenging. Here, we present a CRISPR/Cas9-based protocol that allows the efficient generation of M. truncatula mutants. Gene editing was performed for the LysM receptor kinase gene MtLYK10 and two major facilitator superfamily transporter genes. The functionality of CRISPR/Cas9 vectors was tested in Nicotiana benthamiana leaves by editing a co-transformed GUSPlus gene. Transformed M. truncatula leaf explants were regenerated to whole plants at high efficiency (80%). An editing efficiency (frequency of mutations at a given target site) of up to 70% was reached in the regenerated plants. Plants with MtLYK10 knockout mutations were propagated, and three independent homozygous mutant lines were further characterized. No off-target mutations were identified in these lyk10 mutants. Finally, the lyk10 mutants and wild-type plants were compared with respect to the formation of root nodules induced by nitrogen-fixing Sinorhizobium meliloti bacteria. Nodule formation was considerably delayed in the three lyk10 mutant lines. Surprisingly, the size of the rare nodules in mutant plants was higher than in wild-type plants. In conclusion, the symbiotic characterization of lyk10 mutants generated with the developed CRISPR/Cas9 protocol indicated a role of MtLYK10 in nodule formation.
Collapse
Affiliation(s)
- Chun-Xiao Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ru-Jie Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Laura Baude
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
64
|
Li J, Kong D, Ke Y, Zeng W, Miki D. Application of multiple sgRNAs boosts efficiency of CRISPR/Cas9-mediated gene targeting in Arabidopsis. BMC Biol 2024; 22:6. [PMID: 38233866 PMCID: PMC10795408 DOI: 10.1186/s12915-024-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Precise gene targeting (GT) is a powerful tool for heritable precision genome engineering, enabling knock-in or replacement of the endogenous sequence via homologous recombination. We recently established a CRISPR/Cas9-mediated approach for heritable GT in Arabidopsis thaliana (Arabidopsis) and rice and reported that the double-strand breaks (DSBs) frequency of Cas9 influences the GT efficiency. However, the relationship between DSBs and GT at the same locus was not examined. Furthermore, it has never been investigated whether an increase in the number of copies of sgRNAs or the use of multiple sgRNAs would improve the efficiency of GT. RESULTS Here, we achieved precise GT at endogenous loci Embryo Defective 2410 (EMB2410) and Repressor of Silencing 1 (ROS1) using the sequential transformation strategy and the combination of sgRNAs. We show that increasing of sgRNAs copy number elevates both DSBs and GT efficiency. On the other hand, application of multiple sgRNAs does not always enhance GT efficiency. Our results also suggested that some inefficient sgRNAs would play a role as a helper to facilitate other sgRNAs DSBs activity. CONCLUSIONS The results of this study clearly show that DSB efficiency, rather than mutation pattern, is one of the most important key factors determining GT efficiency. This study provides new insights into the relationship between sgRNAs, DSBs, and GTs and the molecular mechanisms of CRISPR/Cas9-mediated GTs in plants.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Ke
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
65
|
Tricoli DM, Debernardi JM. An efficient protoplast-based genome editing protocol for Vitis species. HORTICULTURE RESEARCH 2024; 11:uhad266. [PMID: 38895602 PMCID: PMC11184525 DOI: 10.1093/hr/uhad266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/01/2023] [Indexed: 06/21/2024]
Abstract
CRISPR-Cas technologies allow for precise modifications in plant genomes and promise to revolutionize agriculture. These technologies depend on the delivery of editing components into plant cells and the regeneration of fully edited plants. In vegetatively propagated plants, such as grape, protoplast culture provides one of the best avenues for producing non-chimeric and transgene-free genome-edited plants. However, poor regeneration of plants from protoplasts has hindered their implementation for genome editing. Here, we report an efficient protocol for regenerating plants from protoplasts from multiple grape varieties. By encapsulating the protoplasts in calcium alginate beads and co-culturing them with feeder cultures, the protoplasts divide to form callus colonies that regenerate into embryos and ultimately plants. This protocol worked successfully in wine and table grape (Vitis vinifera) varieties, as well as grape rootstocks and the grapevine wild relative Vitis arizonica. Moreover, by transfecting protoplasts with CRISPR-plasmid or ribonucleoprotein (RNP) complexes, we regenerated albino plants with edits in VvPHYTOENE DESATURASE gene in three varieties and in V. arizonica. The results reveal the potential of this platform to facilitate genome editing in Vitis species.
Collapse
Affiliation(s)
- David M Tricoli
- Plant Transformation Facility, University of California, Davis, CA 95616, USA
| | - Juan M Debernardi
- Plant Transformation Facility, University of California, Davis, CA 95616, USA
| |
Collapse
|
66
|
Nagalakshmi U, Meier N, Dinesh-Kumar SP. Virus-Induced Heritable Gene Editing in Plants. Methods Mol Biol 2024; 2724:273-288. [PMID: 37987913 DOI: 10.1007/978-1-0716-3485-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Gene editing using clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nuclease is an excellent tool for assessing gene function in plants. However, delivery of CRISPR/Cas-editing components into plant cells is still a major bottleneck and requires tissue culture-based approaches and regeneration of plants. To overcome this limitation, several plant viral vectors have recently been engineered to deliver single-guide RNA (sgRNA) targets into SpCas9-expressing plants. Here, we describe an optimized, step-by-step protocol based on the tobacco rattle virus (TRV)-based vector system to deliver sgRNAs fused to mobile tRNA sequences for efficient heritable editing in Nicotiana benthamiana and Arabidopsis thaliana model systems. The protocol described here could be adopted to study the function of any gene of interest.
Collapse
Affiliation(s)
- Ugrappa Nagalakshmi
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
| | - Nathan Meier
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
67
|
Satyavathi VV, Princy K, Gupta N, Nizampatnam NR, Sharma R, Sreelakshmi Y. A Comprehensive Protocol for Assembly of Multiple gRNAs into a Direct Vector for Genome Editing in Tomato. Methods Mol Biol 2024; 2788:317-335. [PMID: 38656523 DOI: 10.1007/978-1-0716-3782-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas 9 (CRISPR-associated protein 9) is a robust DNA-encoded, RNA-mediated sequence-specific nuclease system widely used for genome editing of various plants. Although there are many reports on the assembly of gRNAs and plant transformation, there is no single resource for the complete gene editing methodology in tomato. This chapter provides a comprehensive protocol for designing gRNAs, their assembly into the vector, plant transformation, and final mutant analysis in tomato.
Collapse
Affiliation(s)
- Valluri V Satyavathi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Kunnappady Princy
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Neha Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | | | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
68
|
Perrella G, Fasano C, Donald NA, Daddiego L, Fang W, Martignago D, Carr C, Conti L, Herzyk P, Amtmann A. Histone Deacetylase Complex 1 and histone 1 epigenetically moderate stress responsiveness of Arabidopsis thaliana seedlings. THE NEW PHYTOLOGIST 2024; 241:166-179. [PMID: 37565540 PMCID: PMC10953426 DOI: 10.1111/nph.19165] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
Early responses of plants to environmental stress factors prevent damage but can delay growth and development in fluctuating conditions. Optimising these trade-offs requires tunability of plant responsiveness to environmental signals. We have previously reported that Histone Deacetylase Complex 1 (HDC1), which interacts with multiple proteins in histone deacetylation complexes, regulates the stress responsiveness of Arabidopsis seedlings, but the underlying mechanism remained elusive. Here, we show that HDC1 attenuates transcriptome re-programming in salt-treated seedlings, and we identify two genes (LEA and MAF5) that inhibit seedling establishment under salt stress downstream of HDC1. HDC1 attenuates their transcriptional induction by salt via a dual mechanism involving H3K9/14 deacetylation and H3K27 trimethylation. The latter, but not the former, was also abolished in a triple knockout mutant of the linker histone H1, which partially mimics the hypersensitivity of the hdc1-1 mutant to salt stress. Although stress-induced H3K27me3 accumulation required both H1 and HDC1, it was not fully recovered by complementing hdc1-1 with a truncated, H1-binding competent HDC1 suggesting other players or independent inputs. The combined findings reveal a dual brake function of HDC1 via regulating both active and repressive epigenetic marks on stress-inducible genes. This natural 'anti-panic' device offers a molecular leaver to tune stress responsiveness in plants.
Collapse
Affiliation(s)
- Giorgio Perrella
- Department of BiosciencesUniversità degli Studi di MilanoVia Celoria 26Milan20133Italy
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
| | - Carlo Fasano
- Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentTrisaia Research CentreRotondella (Matera)75026Italy
| | - Naomi A. Donald
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
| | - Loretta Daddiego
- Italian National Agency for New Technologies, Energy and Sustainable Economic DevelopmentTrisaia Research CentreRotondella (Matera)75026Italy
| | - Weiwei Fang
- Department of BiosciencesUniversità degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Damiano Martignago
- Department of BiosciencesUniversità degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Craig Carr
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
| | - Lucio Conti
- Department of BiosciencesUniversità degli Studi di MilanoVia Celoria 26Milan20133Italy
| | - Pawel Herzyk
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
- Glasgow Polyomics, Wolfson Wohl Cancer Research CentreUniversity of GlasgowGlasgowG61 1QHUK
| | - Anna Amtmann
- Plant Science GroupSchool of Molecular Biosciences (SMB), University of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
69
|
Aalders TR, de Sain M, Gawehns F, Oudejans N, Jak YD, Dekker HL, Rep M, van den Burg HA, Takken FL. Specific members of the TOPLESS family are susceptibility genes for Fusarium wilt in tomato and Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:248-261. [PMID: 37822043 PMCID: PMC10754003 DOI: 10.1111/pbi.14183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Vascular wilt diseases caused by Fusarium oxysporum are a major threat to many agriculturally important crops. Genetic resistance is rare and inevitably overcome by the emergence of new races. To identify potentially durable and non-race-specific genetic resistance against Fusarium wilt diseases, we set out to identify effector targets in tomato that mediate susceptibility to the fungus. For this purpose, we used the SIX8 effector protein, an important and conserved virulence factor present in many pathogenic F. oxysporum isolates. Using protein pull-downs and yeast two-hybrid assays, SIX8 was found to interact specifically with two members of the tomato TOPLESS family: TPL1 and TPL2. Loss-of-function mutations in TPL1 strongly reduced disease susceptibility to Fusarium wilt and a tpl1;tpl2 double mutant exerted an even higher level of resistance. Similarly, Arabidopsis tpl;tpr1 mutants became significantly less diseased upon F. oxysporum inoculation as compared to wildtype plants. We conclude that TPLs encode susceptibility genes whose mutation can confer resistance to F. oxysporum.
Collapse
Affiliation(s)
- Thomas R. Aalders
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Mara de Sain
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Fleur Gawehns
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Nina Oudejans
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Yoran D. Jak
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Henk L. Dekker
- Mass Spectrometry of BiomoleculesSwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Martijn Rep
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Harrold A. van den Burg
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Frank L.W. Takken
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
70
|
Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PVV, Mir RA. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM CROPS & FOOD 2023; 14:1-20. [PMID: 36606637 PMCID: PMC9828793 DOI: 10.1080/21645698.2022.2146952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Domestication of orphan crops could be explored by editing their genomes. Genome editing has a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid generation of targeted allelic diversity and innovative breeding germplasm. We explain how plant breeders could employ genome editing as a novel platform to accelerate the domestication of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder supplies. This review emphasizes both the practicality of the strategy and the need to invest in research that advances our understanding of plant genomes, genes, and cellular systems. Planting more of these abandoned orphan crops could help alleviate food scarcities in the challenge of future climate crises.
Collapse
Affiliation(s)
- Huwaida Yaqoob
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Arooj Tariq
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Kaisar Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Iqra Bashir Nehvi
- Department of Clinical Biochemistry, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China,Ali Raza College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India,CONTACT Rakeeb Ahmad MirDepartment of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India
| |
Collapse
|
71
|
Spencer KP, Burger JT, Campa M. CRISPR-based resistance to grapevine virus A. FRONTIERS IN PLANT SCIENCE 2023; 14:1296251. [PMID: 38111883 PMCID: PMC10725905 DOI: 10.3389/fpls.2023.1296251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023]
Abstract
Introduction Grapevine (Vitis vinifera) is an important fruit crop which contributes significantly to the agricultural sector worldwide. Grapevine viruses are widespread and cause serious diseases which impact the quality and quantity of crop yields. More than 80 viruses plague grapevine, with RNA viruses constituting the largest of these. A recent extension to the clustered regularly interspaced, short palindromic repeat (CRISPR) armory is the Cas13 effector, which exclusively targets single-strand RNA. CRISPR/Cas has been implemented as a defense mechanism in plants, against both DNA and RNA viruses, by being programmed to directly target and cleave the viral genomes. The efficacy of the CRISPR/Cas tool in plants is dependent on efficient delivery of its components into plant cells. Methods To this end, the aim of this study was to use the recent Cas13d variant from Ruminococcus flavefaciens (CasRx) to target the RNA virus, grapevine virus A (GVA). GVA naturally infects grapevine, but can infect the model plant Nicotiana benthamiana, making it a helpful model to study virus infection in grapevine. gRNAs were designed against the coat protein (CP) gene of GVA. N. benthamiana plants expressing CasRx were co-infiltrated with GVA, and with a tobacco rattle virus (TRV)-gRNA expression vector, harbouring a CP gRNA. Results and discussion Results indicated more consistent GVA reductions, specifically gRNA CP-T2, which demonstrated a significant negative correlation with GVA accumulation, as well as multiple gRNA co-infiltrations which similarly showed reduced GVA titre. By establishing a virus-targeting defense system in plants, efficient virus interference mechanisms can be established and applied to major crops, such as grapevine.
Collapse
Affiliation(s)
| | | | - Manuela Campa
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
72
|
Zhang A, Shan T, Sun Y, Chen Z, Hu J, Hu Z, Ming Z, Zhu Z, Li X, He J, Liu S, Jiang L, Dong X, Wu Y, Wang Y, Liu Y, Li C, Wan J. Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2597-2610. [PMID: 37571976 PMCID: PMC10651138 DOI: 10.1111/pbi.14156] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
CRISPR-based directed evolution is an effective breeding biotechnology to improve agronomic traits in plants. However, its gene diversification is still limited using individual single guide RNA. We described here a multiplexed orthogonal base editor (MoBE), and a randomly multiplexed sgRNAs assembly strategy to maximize gene diversification. MoBE could induce efficiently orthogonal ABE (<36.6%), CBE (<36.0%), and A&CBE (<37.6%) on different targets, while the sgRNA assembling strategy randomized base editing events on various targets. With respective 130 and 84 targets from each strand of the 34th exon of rice acetyl-coenzyme A carboxylase (OsACC), we observed the target-scaffold combination types up to 27 294 in randomly dual and randomly triple sgRNA libraries. We further performed directed evolution of OsACC using MoBE and randomly dual sgRNA libraries in rice, and obtained single or linked mutations of stronger herbicide resistance. These strategies are useful for in situ directed evolution of functional genes and may accelerate trait improvement in rice.
Collapse
Affiliation(s)
- Ao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Tiaofeng Shan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Yan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhipeng Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Jianjian Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhichao Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Ziheng Ming
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhitao Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Xue Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Jun He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome EditingInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Yuqiang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop Science, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
73
|
Gal A, Dalal A, Anfang M, Sharma D, Binenbaum J, Muchaki P, Kumar R, Egbaria A, Duarte KE, Kelly G, de Souza WR, Sade N. Plasma membrane aquaporins regulate root hydraulic conductivity in the model plant Setaria viridis. PLANT PHYSIOLOGY 2023; 193:2640-2660. [PMID: 37607257 DOI: 10.1093/plphys/kiad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
The high rate of productivity observed in panicoid crops is in part due to their extensive root system. Recently, green foxtail (Setaria viridis) has emerged as a genetic model system for panicoid grasses. Natural accessions of S. viridis originating from different parts of the world, with differential leaf physiological behavior, have been identified. This work focused on understanding the physiological and molecular mechanisms controlling root hydraulic conductivity and root-to-shoot gas exchange signaling in S. viridis. We identified 2 accessions, SHA and ZHA, with contrasting behavior at the leaf, root, and whole-plant levels. Our results indicated a role for root aquaporin (AQP) plasma membrane (PM) intrinsic proteins in the differential behavior of SHA and ZHA. Moreover, a different root hydraulic response to low levels of abscisic acid between SHA and ZHA was observed, which was associated with root AQPs. Using cell imaging, biochemical, and reverse genetic approaches, we identified PM intrinsic protein 1;6 (PIP1;6) as a possible PIP1 candidate that regulates radial root hydraulics and root-to-shoot signaling of gas exchange in S. viridis. In heterologous systems, PIP1;6 localized in the endoplasmic reticulum, and upon interaction with PIP2s, relocalization to the PM was observed. PIP1;6 was predominantly expressed at the root endodermis. Generation of knockout PIP1;6 plants (KO-PIP1;6) in S. viridis showed altered root hydraulic conductivity, altered gas exchange, and alteration of root transcriptional patterns. Our results indicate that PIPs are essential in regulating whole-plant water homeostasis in S. viridis. We conclude that root hydraulic conductivity and gas exchange are positively associated and are regulated by AQPs.
Collapse
Affiliation(s)
- Atara Gal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ahan Dalal
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Purity Muchaki
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rakesh Kumar
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aiman Egbaria
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karoline Estefani Duarte
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André 09210170, Brazil
| | - Gilor Kelly
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization, Rishon Le-Zion 7505101, Israel
| | - Wagner Rodrigo de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André 09210170, Brazil
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
74
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
75
|
Zuccarelli R, Rodríguez-Ruiz M, Silva FO, Gomes LDL, Lopes-Oliveira PJ, Zsögön A, Andrade SCS, Demarco D, Corpas FJ, Peres LEP, Rossi M, Freschi L. Loss of S-nitrosoglutathione reductase disturbs phytohormone homeostasis and regulates shoot side branching and fruit growth in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6349-6368. [PMID: 37157899 DOI: 10.1093/jxb/erad166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Marta Rodríguez-Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Fernanda O Silva
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Letícia D L Gomes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Patrícia J Lopes-Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
76
|
Tsakirpaloglou N, Septiningsih EM, Thomson MJ. Guidelines for Performing CRISPR/Cas9 Genome Editing for Gene Validation and Trait Improvement in Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:3564. [PMID: 37896028 PMCID: PMC10610170 DOI: 10.3390/plants12203564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
With the rapid advances in plant genome editing techniques over the past 10 years, more efficient and powerful crop genome editing applications are now possible. Candidate genes for key traits can be validated using CRISPR/Cas9-based knockouts and through the up- and down-regulation of gene expression. Likewise, new trait improvement approaches can take advantage of targeted editing to improve stress tolerance, disease resistance, and nutritional traits. However, several key steps in the process can prove tricky for researchers who might be new to plant genome editing. Here, we present step-by-step guidelines and best practices for a crop genome editing pipeline that should help to improve the rate of success. Important factors in the process include proper target sequence analysis and single guide RNA (sgRNA) design, sequencing of the target site in the genotypes of interest, performing an in vitro CRISPR/Cas9 ribonucleoprotein (RNP) assay to validate the designed sgRNAs, preparing the transformation constructs, considering a protoplast editing step as further validation, and, finally, stable plant transformation and mutation detection by Sanger and/or next-generation sequencing. With these detailed guidelines, a new user should be able to quickly set up a genome editing pipeline in their crop of interest and start making progress with the different CRISPR/Cas-based editing variants for gene validation and trait improvement purposes.
Collapse
Affiliation(s)
| | | | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA; (N.T.); (E.M.S.)
| |
Collapse
|
77
|
Ruiz‐Ramón F, Rodríguez‐Sepúlveda P, Bretó P, Donaire L, Hernando Y, Aranda MA. The tomato calcium-permeable channel 4.1 (SlOSCA4.1) is a susceptibility factor for pepino mosaic virus. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2140-2154. [PMID: 37448155 PMCID: PMC10502756 DOI: 10.1111/pbi.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The hyperosmolality-gated calcium permeable channel 4.1 (OSCA4.1) belongs to an evolutionarily conserved small family of mechano-sensitive channels. OSCA members may represent key players in plant resistance to drought and to pathogen infection but are scarcely studied. After screening for resistance to pepino mosaic virus (PepMV) a collection of 1000 mutagenized tomato families, we identified a mutant showing no symptoms and reduced virus accumulation. Resistance was mapped to chromosome 2 between positions 46 309 531 to 47 044 163, where a missense mutation caused the putative truncation of the OSCA4.1 protein. A CRISPR/Cas9 slosca4.1 mutant was resistant to PepMV, but not to tobacco mosaic virus or potato virus X. Inoculation of mutant and wild type tomato protoplasts showed that resistance was expressed in single cells, suggesting a role for SlOSCA4.1 in early viral function(s); congruently, SlOSCA4.1 re-localized to structures reminiscent of viral replication complexes. We propose that SlOSCA4.1 contributes to the correct regulation of the Ca2+ homeostasis necessary for optimal PepMV infection. PepMV is a pandemic virus that causes significant losses in tomato crops worldwide. In spite of its importance, no tomato-resistant varieties have been deployed yet; the mutant identified here has great potential to breed tomato varieties resistant to PepMV.
Collapse
Affiliation(s)
- Fabiola Ruiz‐Ramón
- Abiopep S.L., Parque Científico de MurciaMurciaSpain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICCampus Universitario de EspinardoMurciaSpain
| | | | - Pau Bretó
- Abiopep S.L., Parque Científico de MurciaMurciaSpain
| | - Livia Donaire
- Abiopep S.L., Parque Científico de MurciaMurciaSpain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICCampus Universitario de EspinardoMurciaSpain
| | | | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)‐CSICCampus Universitario de EspinardoMurciaSpain
| |
Collapse
|
78
|
Nishihara M, Hirabuchi A, Goto F, Watanabe A, Yoshida C, Washiashi R, Odashima M, Nemoto K. Efficient double-flowered gentian plant production using the CRISPR/Cas9 system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:229-236. [PMID: 38420567 PMCID: PMC10901158 DOI: 10.5511/plantbiotechnology.23.0424a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 03/02/2024]
Abstract
Japanese cultivated gentians are highly valued ornamental flowers in Japan, but the flower shape is mostly limited to the single-flower type, unlike other flowers such as roses and carnations. To overcome this limitation, we used the CRISPR/Cas9 genome editing system to increase double-flowered genetic resources in gentians. Our approach targeted an AGAMOUS (AG) floral homeotic gene (AG1), which is responsible for the natural mutation that causes double flowers in gentians. We designed two targets in exon 1 of AG1 for genome editing and found that 9 of 12 herbicide-resistant shoots had biallelic mutations in the target regions of AG1. These nine lines all produced double flowers, with stamens converted into petaloid organs, similar to the natural mutant. We also analyzed the off-target effects of AG2, which is homologous to AG1, and found that such effects occurred in gentian genome editing but with low frequency. Furthermore, we successfully produced transgene-free genome-edited plants (null segregants) by crossing with wild-type pollen. F1 seedlings were subjected to PCR analysis to determine whether foreign DNA sequences, two partial regions of the CaMV35S promoter and Cas9 gene, were present in the genome. As a result, foreign genes were segregated at a 1 : 1 ratio, indicating successful null segregant production. Using PCR analysis, we confirmed that four representative null segregants did not contain transfer DNA. In summary, our study demonstrates that the CRISPR/Cas9 system can efficiently produce double-flowered gentians, and null segregants can also be obtained. These genome-edited plants are valuable genetic resources for future gentian breeding programs.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Akiko Hirabuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Fumina Goto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Aiko Watanabe
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Chiharu Yoshida
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Rie Washiashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Masashi Odashima
- Iwate Agricultural Research Center, 20-1 Narita, Kitakami, Iwate 024-0003, Japan
| | - Keiichirou Nemoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| |
Collapse
|
79
|
Kusano H, Takeuchi A, Shimada H. Efficiency of potato genome editing: Targeted mutation on the genes involved in starch biosynthesis using the CRISPR/dMac3-Cas9 system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:201-209. [PMID: 38420566 PMCID: PMC10901159 DOI: 10.5511/plantbiotechnology.23.0611a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/11/2023] [Indexed: 03/02/2024]
Abstract
Potato (Solanum tuberosum L.) has a tetraploid genome. To make a mutant lacking a specific gene function, it is necessary to introduce mutations into all four gene alleles. To achieve this goal, we developed a powerful genome editing tool, CRISPR/dMac3-Cas9, which installed the translation enhancer dMac3 that greatly increased the translation of the downstream open reading frame. The CRISPR/dMac3-Cas9 system employing three guide RNAs (gRNAs) greatly elevated the frequency of the generation rate of mutation. This system enabled to create the 4-allele mutants of granule-bound starch synthase (GBSS) and starch branching enzyme (SBE). These mutants indicated functionally defective features, suggesting that we succeeded in efficient genome editing of the potato tetraploid genome. Here, we show the effect of the number of gRNAs for efficient mutagenesis of the target gene using the mutants of the GBSS1 gene. CRISPR/dMac3-Cas9 employing three gRNA genes achieved a higher mutation efficiency than the CRISPR/dMac3-Cas9 with two gRNAs, suggesting being influenced by the dose effect of the number of gRNAs at the target region. The alleles of the SBE3 gene contained SNPs that caused sequence differences in the gRNAs but these gRNAs functioned efficiently. However, many rearrangement events and large deletions were induced. These results support the importance of accurate binding of gRNA to the target sequence, which may lead to a hint to avoid the unexpected mutation on the off-target sites.
Collapse
Affiliation(s)
- Hiroaki Kusano
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ami Takeuchi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science,Tokyo 125-8585, Japan
| |
Collapse
|
80
|
Barrera-Rojas CH, Vicente MH, Pinheiro Brito DA, Silva EM, Lopez AM, Ferigolo LF, do Carmo RM, Silva CMS, Silva GFF, Correa JPO, Notini MM, Freschi L, Cubas P, Nogueira FTS. Tomato miR156-targeted SlSBP15 represses shoot branching by modulating hormone dynamics and interacting with GOBLET and BRANCHED1b. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5124-5139. [PMID: 37347477 DOI: 10.1093/jxb/erad238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
The miRNA156 (miR156)/SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL/SBP) regulatory hub is highly conserved among phylogenetically distinct species, but how it interconnects multiple pathways to converge to common integrators controlling shoot architecture is still unclear. Here, we demonstrated that the miR156/SlSBP15 node modulates tomato shoot branching by connecting multiple phytohormones with classical genetic pathways regulating both axillary bud development and outgrowth. miR156-overexpressing plants (156-OE) displayed high shoot branching, whereas plants overexpressing a miR156-resistant SlSBP15 allele (rSBP15) showed arrested shoot branching. Importantly, the rSBP15 allele was able to partially restore the wild-type shoot branching phenotype in the 156-OE background. rSBP15 plants have tiny axillary buds, and their activation is dependent on shoot apex-derived auxin transport inhibition. Hormonal measurements revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations were lower in 156-OE and higher in rSBP15 axillary buds, respectively. Genetic and molecular data indicated that SlSBP15 regulates axillary bud development and outgrowth by inhibiting auxin transport and GOBLET (GOB) activity, and by interacting with tomato BRANCHED1b (SlBRC1b) to control ABA levels within axillary buds. Collectively, our data provide a new mechanism by which the miR156/SPL/SBP hub regulates shoot branching, and suggest that modulating SlSBP15 activity might have potential applications in shaping tomato shoot architecture.
Collapse
Affiliation(s)
- Carlos Hernán Barrera-Rojas
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Mateus Henrique Vicente
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Diego Armando Pinheiro Brito
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Aitor Muñoz Lopez
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Leticia F Ferigolo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Rafael Monteiro do Carmo
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Carolina M S Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| | - Luciano Freschi
- Biosciences Institute, University of Sao Paulo (USP), Sao Paulo, CEP: 05508-090, Brazil
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Piracicaba, São Paulo, CEP: 13418-900, Brazil
| |
Collapse
|
81
|
Singh A, Pandey H, Pandey S, Lal D, Chauhan D, Aparna, Antre SH, B S, Kumar A. Drought stress in maize: stress perception to molecular response and strategies for its improvement. Funct Integr Genomics 2023; 23:296. [PMID: 37697159 DOI: 10.1007/s10142-023-01226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Given the future demand for food crops, increasing crop productivity in drought-prone rainfed areas has become essential. Drought-tolerant varieties are warranted to solve this problem in major crops, with drought tolerance as a high-priority trait for future research. Maize is one such crop affected by drought stress, which limits production, resulting in substantial economic losses. It became a more serious issue due to global climate change. The most drought sensitive among all stages of maize is the reproductive stages and the most important for overall maize production. The exact molecular basis of reproductive drought sensitivity remains unclear due to genes' complex regulation of drought stress. Understanding the molecular biology and signaling of the unexplored area of reproductive drought tolerance will provide an opportunity to develop climate-smart drought-tolerant next-generation maize cultivars. In recent decades, significant progress has been made in maize to understand the drought tolerance mechanism. However, improving maize drought tolerance through breeding is ineffective due to the complex nature and multigenic control of drought traits. With the help of advanced breeding techniques, molecular genetics, and a precision genome editing approach like CRISPR-Cas, candidate genes for drought-tolerant maize can be identified and targeted. This review summarizes the effects of drought stress on each growth stage of maize, potential genes, and transcription factors that determine drought tolerance. In addition, we discussed drought stress sensing, its molecular mechanisms, different approaches to developing drought-resistant maize varieties, and how molecular breeding and genome editing will help with the current unpredictable climate change.
Collapse
Affiliation(s)
- Ashutosh Singh
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | | | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Dalpat Lal
- College of Agriculture, Jodhpur Agriculture University, Jodhpur, Rajasthan, 342304, India
| | - Divya Chauhan
- Banasthali University, Radha Kishanpura, Rajasthan, 304022, India
| | - Aparna
- Departments of Agriculture, Jagan Nath University, Jaipur, Rajasthan, 303901, India
| | - Suresh H Antre
- Advanced Centre of Plant Biotechnology, UAS, GKVK, Bangalore, Karnataka, 560065, India
| | - Santhosh B
- Centre for Advanced Studies On Climate Change, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Amarjeet Kumar
- Department of Genetics and Plant Breeding, MTTC & VTC, Selesih, CAU, Imphal, 795001, India
| |
Collapse
|
82
|
Shi L, Su J, Cho MJ, Song H, Dong X, Liang Y, Zhang Z. Promoter editing for the genetic improvement of crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4349-4366. [PMID: 37204916 DOI: 10.1093/jxb/erad175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Gene expression plays a fundamental role in the regulation of agronomically important traits in crop plants. The genetic manipulation of plant promoters through genome editing has emerged as an effective strategy to create favorable traits in crops by altering the expression pattern of the pertinent genes. Promoter editing can be applied in a directed manner, where nucleotide sequences associated with favorable traits are precisely generated. Alternatively, promoter editing can also be exploited as a random mutagenic approach to generate novel genetic variations within a designated promoter, from which elite alleles are selected based on their phenotypic effects. Pioneering studies have demonstrated the potential of promoter editing in engineering agronomically important traits as well as in mining novel promoter alleles valuable for plant breeding. In this review, we provide an update on the application of promoter editing in crops for increased yield, enhanced tolerance to biotic and abiotic stresses, and improved quality. We also discuss several remaining technical bottlenecks and how this strategy may be better employed for the genetic improvement of crops in the future.
Collapse
Affiliation(s)
- Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Hao Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
83
|
Ahn E, Botkin J, Curtin SJ, Zsögön A. Ideotype breeding and genome engineering for legume crop improvement. Curr Opin Biotechnol 2023; 82:102961. [PMID: 37331239 DOI: 10.1016/j.copbio.2023.102961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 06/20/2023]
Abstract
Ideotype breeding is a strategy whereby traits are modeled a priori and then introduced into a model or crop species to assess their impact on yield. Thus, knowledge about the connection between genotype and phenotype is required for ideotype breeding to be deployed successfully. The growing understanding of the genetic basis of yield-related traits, combined with increasingly efficient genome engineering tools, improved transformation efficiency, and high-throughput genotyping of regenerants paves the way for the widespread adoption of ideotype breeding as a complement to conventional breeding. We briefly discuss how ideotype breeding, coupled with such state-of-the-art biotechnological tools, could contribute to knowledge-based legume breeding and accelerate yield gains to ensure food security in the coming decades.
Collapse
Affiliation(s)
- Ezekiel Ahn
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN 55108, USA
| | - Jacob Botkin
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| | - Shaun J Curtin
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN 55108, USA; Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA; Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN 55108, USA; Center for Genome Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.
| |
Collapse
|
84
|
Chen YH, Sharma S, Bewg WP, Xue LJ, Gizelbach CR, Tsai CJ. Multiplex Editing of the Nucleoredoxin1 Tandem Array in Poplar: From Small Indels to Translocations and Complex Inversions. CRISPR J 2023; 6:339-349. [PMID: 37307061 PMCID: PMC10460964 DOI: 10.1089/crispr.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/21/2023] [Indexed: 06/13/2023] Open
Abstract
The CRISPR-Cas9 system has been deployed for precision mutagenesis in an ever-growing number of species, including agricultural crops and forest trees. Its application to closely linked genes with extremely high sequence similarities has been less explored. In this study, we used CRISPR-Cas9 to mutagenize a tandem array of seven Nucleoredoxin1 (NRX1) genes spanning ∼100 kb in Populus tremula × Populus alba. We demonstrated efficient multiplex editing with one single guide RNA in 42 transgenic lines. The mutation profiles ranged from small insertions and deletions and local deletions in individual genes to large genomic dropouts and rearrangements spanning tandem genes. We also detected complex rearrangements including translocations and inversions resulting from multiple cleavage and repair events. Target capture sequencing was instrumental for unbiased assessments of repair outcomes to reconstruct unusual mutant alleles. The work highlights the power of CRISPR-Cas9 for multiplex editing of tandemly duplicated genes to generate diverse mutants with structural and copy number variations to aid future functional characterization.
Collapse
Affiliation(s)
- Yen-Ho Chen
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shakuntala Sharma
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
| | - William P. Bewg
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Department of Genetics, University of Georgia, Athens, Georgia, USA; and College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Department of Genetics, University of Georgia, Athens, Georgia, USA; and College of Forestry, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Cole R. Gizelbach
- Department of Genetics, University of Georgia, Athens, Georgia, USA; and College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Chung-Jui Tsai
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA; College of Forestry, Nanjing Forestry University, Nanjing, China
- Department of Genetics, University of Georgia, Athens, Georgia, USA; and College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
85
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
86
|
Bekalu ZE, Panting M, Bæksted Holme I, Brinch-Pedersen H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int J Mol Sci 2023; 24:11920. [PMID: 37569295 PMCID: PMC10419073 DOI: 10.3390/ijms241511920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture. Unfortunately, current tissue culture systems restrict successful results to only a limited number of plant species and genotypes. In order to release the full potential of the GE tools, procedures need to be species and genotype independent. This review provides an in-depth summary and insights into the various in vitro tissue culture systems used for GE in the economically important crops barley, wheat, rice, sorghum, soybean, maize, potatoes, cassava, and millet and uncovers new opportunities and challenges of already-established tissue culture platforms for GE in the crops.
Collapse
|
87
|
Anuradha, Kumari M, Zinta G, Chauhan R, Kumar A, Singh S, Singh S. Genetic resources and breeding approaches for improvement of amaranth ( Amaranthus spp.) and quinoa ( Chenopodium quinoa). Front Nutr 2023; 10:1129723. [PMID: 37554703 PMCID: PMC10405290 DOI: 10.3389/fnut.2023.1129723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Nowadays, the human population is more concerned about their diet and very specific in choosing their food sources to ensure a healthy lifestyle and avoid diseases. So people are shifting to more smart nutritious food choices other than regular cereals and staple foods they have been eating for a long time. Pseudocereals, especially, amaranth and quinoa, are important alternatives to traditional cereals due to comparatively higher nutrition, essential minerals, amino acids, and zero gluten. Both Amaranchaceae crops are low-input demanding and hardy plants tolerant to stress, drought, and salinity conditions. Thus, these crops may benefit developing countries that follow subsistence agriculture and have limited farming resources. However, these are underutilized orphan crops, and the efforts to improve them by reducing their saponin content remain ignored for a long time. Furthermore, these crops have very rich variability, but the progress of their genetic gain for getting high-yielding genotypes is slow. Realizing problems in traditional cereals and opting for crop diversification to tackle climate change, research should be focused on the genetic improvement for low saponin, nutritionally rich, tolerant to biotic and abiotic stresses, location-specific photoperiod, and high yielding varietal development of amaranth and quinoa to expand their commercial cultivation. The latest technologies that can accelerate the breeding to improve yield and quality in these crops are much behind and slower than the already established major crops of the world. We could learn from past mistakes and utilize the latest trends such as CRISPR/Cas, TILLING, and RNA interference (RNAi) technology to improve these pseudocereals genetically. Hence, the study reviewed important nutrition quality traits, morphological descriptors, their breeding behavior, available genetic resources, and breeding approaches for these crops to shed light on future breeding strategies to develop superior genotypes.
Collapse
Affiliation(s)
- Anuradha
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Manisha Kumari
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Gaurav Zinta
- Division of Biotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ramesh Chauhan
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ashok Kumar
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Sanatsujat Singh
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Satbeer Singh
- Division of Agrotechnology, Council of Scientific and Industrial Research–Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
88
|
Niazian M, Belzile F, Curtin SJ, de Ronne M, Torkamaneh D. Optimization of in vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation of soybean for visual screening of transformants using RUBY. FRONTIERS IN PLANT SCIENCE 2023; 14:1207762. [PMID: 37484469 PMCID: PMC10361064 DOI: 10.3389/fpls.2023.1207762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
In vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation (HRT) assays are key components of the plant biotechnology and functional genomics toolkit. In this report, both in vitro and ex vitro HRT were optimized in soybean using the RUBY reporter. Different parameters including A. rhizogenes strain, optical density of the bacterial cell culture (OD600), co-cultivation media, soybean genotype, explant age, and acetosyringone addition and concentration were evaluated. Overall, the in vitro assay was more efficient than the ex vitro assay in terms of the percentage of induction of hairy roots and transformed roots (expressing RUBY). Nonetheless, the ex vitro technique was deemed faster and a less complicated approach. The highest transformation of RUBY was observed on 7-d-old cotyledons of cv. Bert inoculated for 30 minutes with the R1000 resuspended in ¼ B5 medium to OD600 (0.3) and 150 µM of acetosyringone. The parameters of this assay also led to the highest percentage of RUBY through two-step ex vitro hairy root transformation. Finally, using machine learning-based modeling, optimal protocols for both assays were further defined. This study establishes efficient and reliable hairy root transformation protocols applicable for functional studies in soybean.
Collapse
Affiliation(s)
- Mohsen Niazian
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Shaun J. Curtin
- Plant Science Research Unit, United States Department of Agriculture (USDA), St Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec City, QC, Canada
| |
Collapse
|
89
|
Brooks EG, Elorriaga E, Liu Y, Duduit JR, Yuan G, Tsai CJ, Tuskan GA, Ranney TG, Yang X, Liu W. Plant Promoters and Terminators for High-Precision Bioengineering. BIODESIGN RESEARCH 2023; 5:0013. [PMID: 37849460 PMCID: PMC10328392 DOI: 10.34133/bdr.0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 10/19/2023] Open
Abstract
High-precision bioengineering and synthetic biology require fine-tuning gene expression at both transcriptional and posttranscriptional levels. Gene transcription is tightly regulated by promoters and terminators. Promoters determine the timing, tissues and cells, and levels of the expression of genes. Terminators mediate transcription termination of genes and affect mRNA levels posttranscriptionally, e.g., the 3'-end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs. The promoter and terminator combination affects gene expression. In the present article, we review the function and features of plant core promoters, proximal and distal promoters, and terminators, and their effects on and benchmarking strategies for regulating gene expression.
Collapse
Affiliation(s)
- Emily G. Brooks
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Estefania Elorriaga
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James R. Duduit
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chung-Jui Tsai
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas G. Ranney
- Mountain Crop Improvement Lab, Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
| | - Xiaohan Yang
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Warnell School of Forestry and Natural Resource, University of Georgia, Athens, GA 30602, USA
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
90
|
Ni P, Zhao Y, Zhou X, Liu Z, Huang Z, Ni Z, Sun Q, Zong Y. Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biol 2023; 24:156. [PMID: 37386475 PMCID: PMC10308706 DOI: 10.1186/s13059-023-02990-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Prime editing is limited by low efficiency in plants. Here, we develop an upgraded engineered plant prime editor in hexaploid wheat, ePPEplus, by introducing a V223A substitution into reverse transcriptase in the ePPEmax* architecture. ePPEplus enhances the efficiency by an average 33.0-fold and 6.4-fold compared to the original PPE and ePPE, respectively. Importantly, a robust multiplex prime editing platform is established for simultaneous editing of four to ten genes in protoplasts and up to eight genes in regenerated wheat plants at frequencies up to 74.5%, thus expanding the applicability of prime editors for stacking of multiple agronomic traits.
Collapse
Affiliation(s)
- Pei Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zehua Liu
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhengwei Huang
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
91
|
Laura M, Forti C, Barberini S, Ciorba R, Mascarello C, Giovannini A, Pistelli L, Pieracci Y, Lanteri AP, Ronca A, Minuto A, Ruffoni B, Cardi T, Savona M. Highly Efficient CRISPR/Cas9 Mediated Gene Editing in Ocimum basilicum 'FT Italiko' to Induce Resistance to Peronospora belbahrii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2395. [PMID: 37446956 DOI: 10.3390/plants12132395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Ocimum basilicum (sweet basil) is an economically important aromatic herb; in Italy, approximately 1000 ha of "Genovese-type" basil are grown annually in greenhouses and open fields and are subjected to Downy Mildew (DM) disease, caused by Peronospora belbahrii, leading to huge crop losses. Mutation of the Susceptibility (S) gene DMR6 (Downy Mildew Resistant 6) has been proven to confer a broad-spectrum resistance to DM. In this work, an effective Genome Editing (GE) approach mediated by CRISPR/Cas9 in O. basilicum 'Italiko', the élite cultivar used to produce "Pesto Genovese D.O.P", was developed. A highly efficient genetic transformation method mediated by A. tumefaciens has been optimized from cotyledonary nodes, obtaining 82.2% of regenerated shoots, 84.6% of which resulted in Cas9+ plants. Eleven T0 lines presented different type of mutations in ObDMR6; 60% were indel frameshift mutations with knock-out of ObDMR6 of 'FT Italiko'. Analysis of six T1 transgene-free seedlings revealed that the mutations of T0 plants were inherited and segregated. Based on infection trials conducted on T0 plants, clone 22B showed a very low percentage of disease incidence after 14 days post infection. The aromatic profile of all in vitro edited plants was also reported; all of them showed oxygenated monoterpenes as the major fraction.
Collapse
Affiliation(s)
- Marina Laura
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Chiara Forti
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, Via Bassini 12, 20133 Milano, Italy
| | - Sara Barberini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IPSP, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Roberto Ciorba
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | - Carlo Mascarello
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Annalisa Giovannini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Anna Paola Lanteri
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Agostina Ronca
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Andrea Minuto
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Barbara Ruffoni
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Teodoro Cardi
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBR, Institute of Biosciences and Bioresources, 80055 Portici, Italy
| | - Marco Savona
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| |
Collapse
|
92
|
Huertas R, Torres-Jerez I, Curtin SJ, Scheible W, Udvardi M. Medicago truncatula PHO2 genes have distinct roles in phosphorus homeostasis and symbiotic nitrogen fixation. FRONTIERS IN PLANT SCIENCE 2023; 14:1211107. [PMID: 37409286 PMCID: PMC10319397 DOI: 10.3389/fpls.2023.1211107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
Three PHO2-like genes encoding putative ubiquitin-conjugating E2 enzymes of Medicago truncatula were characterized for potential roles in phosphorous (P) homeostasis and symbiotic nitrogen fixation (SNF). All three genes, MtPHO2A, B and C, contain miR399-binding sites characteristic of PHO2 genes in other plant species. Distinct spatiotemporal expression patterns and responsiveness of gene expression to P- and N-deprivation in roots and shoots indicated potential roles, especially for MtPHO2B, in P and N homeostasis. Phenotypic analysis of pho2 mutants revealed that MtPHO2B is integral to Pi homeostasis, affecting Pi allocation during plant growth under nutrient-replete conditions, while MtPHO2C had a limited role in controlling Pi homeostasis. Genetic analysis also revealed a connection between Pi allocation, plant growth and SNF performance. Under N-limited, SNF conditions, Pi allocation to different organs was dependent on MtPHO2B and, to a lesser extent, MtPHO2C and MtPHO2A. MtPHO2A also affected Pi homeostasis associated with nodule formation. Thus, MtPHO2 genes play roles in systemic and localized, i.e., nodule, P homeostasis affecting SNF.
Collapse
Affiliation(s)
- Raul Huertas
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Shaun J. Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Wolf Scheible
- Noble Research Institute LLC, Ardmore, OK, United States
| | | |
Collapse
|
93
|
Ingvardsen CR, Brinch-Pedersen H. Challenges and potentials of new breeding techniques in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1154332. [PMID: 37360738 PMCID: PMC10285108 DOI: 10.3389/fpls.2023.1154332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Cannabis sativa L. is an ancient crop used for fiber and seed production and not least for its content of cannabinoids used for medicine and as an intoxicant drug. Due to the psychedelic effect of one of the compounds, tetrahydrocannabinol (THC), many countries had regulations or bands on Cannabis growing, also as fiber or seed crop. Recently, as many of these regulations are getting less tight, the interest for the many uses of this crop is increasing. Cannabis is dioecious and highly heterogenic, making traditional breeding costly and time consuming. Further, it might be difficult to introduce new traits without changing the cannabinoid profile. Genome editing using new breeding techniques might solve these problems. The successful use of genome editing requires sequence information on suitable target genes, a genome editing tool to be introduced into plant tissue and the ability to regenerate plants from transformed cells. This review summarizes the current status of Cannabis breeding, uncovers potentials and challenges of Cannabis in an era of new breeding techniques and finally suggests future focus areas that may help to improve our overall understanding of Cannabis and realize the potentials of the plant.
Collapse
|
94
|
Yu Y, Beyene G, Villmer J, Duncan KE, Hu H, Johnson T, Doust AN, Taylor NJ, Kellogg EA. Grain shattering by cell death and fracture in Eragrostis tef. PLANT PHYSIOLOGY 2023; 192:222-239. [PMID: 36756804 PMCID: PMC10152664 DOI: 10.1093/plphys/kiad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
Abscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance. Previous work has suggested that grain shattering in Eragrostis might have little in common with other cereals. In this study, we characterize the anatomy, cellular structure, and gene regulatory control of the abscission zone (AZ) in E. tef. We show that the AZ of E. tef is a narrow stalk below the caryopsis, which is common in Eragrostis species. X-ray microscopy, scanning electron microscopy, transmission electron microscopy, and immunolocalization of cell wall components showed that the AZ cells are thin walled and break open along with programmed cell death (PCD) at seed maturity, rather than separating between cells as in other studied species. Knockout of YABBY2/SHATTERING1, documented to control abscission in several cereals, had no effect on abscission or AZ structure in E. tef. RNA sequencing analysis showed that genes related to PCD and cell wall modification are enriched in the AZ at the early seed maturity stage. These data show that E. tef drops its seeds using a unique mechanism. Our results provide the groundwork for understanding grain shattering in Eragrostis and further improvement of shattering in E. tef.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Getu Beyene
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Justin Villmer
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Keith E Duncan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Toni Johnson
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
95
|
Liu L, Xue Y, Luo J, Han M, Liu X, Jiang T, Zhao Y, Xu Y, Ma C. Developing a UV-visible reporter-assisted CRISPR/Cas9 gene editing system to alter flowering time in Chrysanthemum indicum. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37128708 PMCID: PMC10363752 DOI: 10.1111/pbi.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Lei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yujin Xue
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Jiayi Luo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Mingzheng Han
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuening Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Tianhua Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yafei Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
96
|
Nunes TDG, Berg LS, Slawinska MW, Zhang D, Redt L, Sibout R, Vogel JP, Laudencia-Chingcuanco D, Jesenofsky B, Lindner H, Raissig MT. Regulation of hair cell and stomatal size by a hair cell-specific peroxidase in the grass Brachypodium distachyon. Curr Biol 2023; 33:1844-1854.e6. [PMID: 37086717 DOI: 10.1016/j.cub.2023.03.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023]
Abstract
The leaf epidermis is the outermost cell layer forming the interface between plants and the atmosphere that must both provide a robust barrier against (a)biotic stressors and facilitate carbon dioxide uptake and leaf transpiration.1 To achieve these opposing requirements, the plant epidermis developed a wide range of specialized cell types such as stomata and hair cells. Although factors forming these individual cell types are known,2,3,4,5 it is poorly understood how their number and size are coordinated. Here, we identified a role for BdPRX76/BdPOX, a class III peroxidase, in regulating hair cell and stomatal size in the model grass Brachypodium distachyon. In bdpox mutants, prickle hair cells were smaller and stomata were longer. Because stomatal density remained unchanged, the negative correlation between stomatal size and density was disrupted in bdpox and resulted in higher stomatal conductance and lower intrinsic water-use efficiency. BdPOX was exclusively expressed in hair cells, suggesting that BdPOX cell-autonomously promotes hair cell size and indirectly restricts stomatal length. Cell-wall autofluorescence and lignin stainings indicated a role for BdPOX in the lignification or crosslinking of related phenolic compounds at the hair cell base. Ectopic expression of BdPOX in the stomatal lineage increased phenolic autofluorescence in guard cell (GC) walls and restricted stomatal elongation in bdpox. Together, we highlight a developmental interplay between hair cells and stomata that optimizes epidermal functionality. We propose that cell-type-specific changes disrupt this interplay and lead to compensatory developmental defects in other epidermal cell types.
Collapse
Affiliation(s)
- Tiago D G Nunes
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Lea S Berg
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Magdalena W Slawinska
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Dan Zhang
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Leonie Redt
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Richard Sibout
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, Nantes 44300, France
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Barbara Jesenofsky
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Heike Lindner
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland.
| |
Collapse
|
97
|
Yuan G, Liu Y, Yao T, Muchero W, Chen JG, Tuskan GA, Yang X. eYGFPuv-Assisted Transgenic Selection in Populus deltoides WV94 and Multiplex Genome Editing in Protoplasts of P. trichocarpa × P. deltoides Clone '52-225'. PLANTS (BASEL, SWITZERLAND) 2023; 12:1657. [PMID: 37111880 PMCID: PMC10145771 DOI: 10.3390/plants12081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Although CRISPR/Cas-based genome editing has been widely used for plant genetic engineering, its application in the genetic improvement of trees has been limited, partly because of challenges in Agrobacterium-mediated transformation. As an important model for poplar genomics and biotechnology research, eastern cottonwood (Populus deltoides) clone WV94 can be transformed by A. tumefaciens, but several challenges remain unresolved, including the relatively low transformation efficiency and the relatively high rate of false positives from antibiotic-based selection of transgenic events. Moreover, the efficacy of CRISPR-Cas system has not been explored in P. deltoides yet. Here, we first optimized the protocol for Agrobacterium-mediated stable transformation in P. deltoides WV94 and applied a UV-visible reporter called eYGFPuv in transformation. Our results showed that the transgenic events in the early stage of transformation could be easily recognized and counted in a non-invasive manner to narrow down the number of regenerated shoots for further molecular characterization (at the DNA or mRNA level) using PCR. We found that approximately 8.7% of explants regenerated transgenic shoots with green fluorescence within two months. Next, we examined the efficacy of multiplex CRISPR-based genome editing in the protoplasts derived from P. deltoides WV94 and hybrid poplar clone '52-225' (P. trichocarpa × P. deltoides clone '52-225'). The two constructs expressing the Trex2-Cas9 system resulted in mutation efficiency ranging from 31% to 57% in hybrid poplar clone 52-225, but no editing events were observed in P. deltoides WV94 transient assay. The eYGFPuv-assisted plant transformation and genome editing approach demonstrated in this study has great potential for accelerating the genome editing-based breeding process in poplar and other non-model plants species and point to the need for additional CRISPR work in P. deltoides.
Collapse
Affiliation(s)
- Guoliang Yuan
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Yang Liu
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
| | - Tao Yao
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
98
|
Ordon J, Kiel N, Becker D, Kretschmer C, Schulze-Lefert P, Stuttmann J. Targeted gene deletion with SpCas9 and multiple guide RNAs in Arabidopsis thaliana: four are better than two. PLANT METHODS 2023; 19:30. [PMID: 36978193 PMCID: PMC10053088 DOI: 10.1186/s13007-023-01010-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In plant genome editing, RNA-guided nucleases such as Cas9 from Streptococcus pyogenes (SpCas9) predominantly induce small insertions or deletions at target sites. This can be used for inactivation of protein-coding genes by frame shift mutations. However, in some cases, it may be advantageous to delete larger chromosomal segments. This is achieved by simultaneously inducing double strand breaks upstream and downstream of the segment to be deleted. Experimental approaches for the deletion of larger chromosomal segments have not been systematically evaluated. RESULTS We designed three pairs of guide RNAs for deletion of a ~ 2.2 kb chromosomal segment containing the Arabidopsis WRKY30 locus. We tested how the combination of guide RNA pairs and co-expression of the exonuclease TREX2 affect the frequency of wrky30 deletions in editing experiments. Our data demonstrate that compared to one pair of guide RNAs, two pairs increase the frequency of chromosomal deletions. The exonuclease TREX2 enhanced mutation frequency at individual target sites and shifted the mutation profile towards larger deletions. However, TREX2 did not elevate the frequency of chromosomal segment deletions. CONCLUSIONS Multiplex editing with at least two pairs of guide RNAs (four guide RNAs in total) elevates the frequency of chromosomal segment deletions at least at the AtWRKY30 locus, and thus simplifies the selection of corresponding mutants. Co-expression of the TREX2 exonuclease can be used as a general strategy to increase editing efficiency in Arabidopsis without obvious negative effects.
Collapse
Affiliation(s)
- Jana Ordon
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D50829, Cologne, Germany
| | - Niklas Kiel
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Dieter Becker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D50829, Cologne, Germany
| | - Carola Kretschmer
- Institute for Biology, Department of Plant Genetics, Martin Luther University Halle-Wittenberg, D06120, Halle, Germany
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Johannes Stuttmann
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kühn-Institute (JKI), 06484, Quedlinburg, Germany.
- CEA, CNRS, BIAM, UMR7265, LEMiRE (Rhizosphère et Interactions sol-plante-microbiote), Aix Marseille University, 13115, Saint-Paul lez Durance, France.
| |
Collapse
|
99
|
Chamness JC, Kumar J, Cruz AJ, Rhuby E, Holum MJ, Cody JP, Tibebu R, Gamo ME, Starker CG, Zhang F, Voytas DF. An extensible vector toolkit and parts library for advanced engineering of plant genomes. THE PLANT GENOME 2023:e20312. [PMID: 36896468 DOI: 10.1002/tpg2.20312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Plant biotechnology is rife with new advances in transformation and genome engineering techniques. A common requirement for delivery and coordinated expression in plant cells, however, places the design and assembly of transformation constructs at a crucial juncture as desired reagent suites grow more complex. Modular cloning principles have simplified some aspects of vector design, yet many important components remain unavailable or poorly adapted for rapid implementation in biotechnology research. Here, we describe a universal Golden Gate cloning toolkit for vector construction. The toolkit chassis is compatible with the widely accepted Phytobrick standard for genetic parts, and supports assembly of arbitrarily complex T-DNAs through improved capacity, positional flexibility, and extensibility in comparison to extant kits. We also provision a substantial library of newly adapted Phytobricks, including regulatory elements for monocot and dicot gene expression, and coding sequences for genes of interest such as reporters, developmental regulators, and site-specific recombinases. Finally, we use a series of dual-luciferase assays to measure contributions to expression from promoters, terminators, and from cross-cassette interactions attributable to enhancer elements in certain promoters. Taken together, these publicly available cloning resources can greatly accelerate the testing and deployment of new tools for plant engineering.
Collapse
Affiliation(s)
- James C Chamness
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jitesh Kumar
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Anna J Cruz
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
| | - Elissa Rhuby
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
| | - Mason J Holum
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
| | - Jon P Cody
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Redeat Tibebu
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Maria Elena Gamo
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Colby G Starker
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Feng Zhang
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
100
|
Peters SA, Underwood CJ. Technology-driven approaches for meiosis research in tomato and wild relatives. PLANT REPRODUCTION 2023; 36:97-106. [PMID: 36149478 PMCID: PMC9957858 DOI: 10.1007/s00497-022-00450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Meiosis is a specialized cell division during reproduction where one round of chromosomal replication is followed by genetic recombination and two rounds of segregation to generate recombined, ploidy-reduced spores. Meiosis is crucial to the generation of new allelic combinations in natural populations and artificial breeding programs. Several plant species are used in meiosis research including the cultivated tomato (Solanum lycopersicum) which is a globally important crop species. Here we outline the unique combination of attributes that make tomato a powerful model system for meiosis research. These include the well-characterized behavior of chromosomes during tomato meiosis, readily available genomics resources, capacity for genome editing, clonal propagation techniques, lack of recent polyploidy and the possibility to generate hybrids with twelve related wild species. We propose that further exploitation of genome bioinformatics, genome editing and artificial intelligence in tomato will help advance the field of plant meiosis research. Ultimately this will help address emerging themes including the evolution of meiosis, how recombination landscapes are determined, and the effect of temperature on meiosis.
Collapse
Affiliation(s)
- Sander A Peters
- Business Unit Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
| |
Collapse
|