51
|
Bai F, Shu P, Deng H, Wu Y, Chen Y, Wu M, Ma T, Zhang Y, Pirrello J, Li Z, Hong Y, Bouzayen M, Liu M. A distal enhancer guides the negative selection of toxic glycoalkaloids during tomato domestication. Nat Commun 2024; 15:2894. [PMID: 38570494 PMCID: PMC10991328 DOI: 10.1038/s41467-024-47292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Steroidal glycoalkaloids (SGAs) are major plant defense metabolites against pests, while they are considered poisonous in food. The genetic basis that guides negative selection of SGAs production during tomato domestication remains poorly understood. Here, we identify a distal enhancer, GAME Enhancer 1 (GE1), as the key regulator of SGAs metabolism in tomato. GE1 recruits MYC2-GAME9 transcriptional complex to regulate the expression of GAME cluster genes via the formation of chromatin loops located in the neighboring DNA region. A naturally occurring GE176 allelic variant is found to be more active in stimulating GAME expression. We show that the weaker GE1 allele has been the main driver for selecting reduced SGAs levels during tomato domestication. Unravelling the "TFs-Enhancer-Promoter" regulatory mechanism operating in SGAs metabolism opens unprecedented prospects for SGAs manipulation in Solanaceae via precision breeding strategies.
Collapse
Affiliation(s)
- Feng Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- State Key Laboratory of North China Crop Improvement and Regulation and College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Mondher Bouzayen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France.
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
52
|
Cao P, Yang J, Xia L, Zhang Z, Wu Z, Hao Y, Liu P, Wang C, Li C, Yang J, Lai J, Li X, Deng M, Wang S. Two gene clusters and their positive regulator SlMYB13 that have undergone domestication-associated negative selection control phenolamide accumulation and drought tolerance in tomato. MOLECULAR PLANT 2024; 17:579-597. [PMID: 38327054 DOI: 10.1016/j.molp.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Among plant metabolites, phenolamides, which are conjugates of hydroxycinnamic acid derivatives and polyamines, play important roles in plant adaptation to abiotic and biotic stresses. However, the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear. In this study, we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters (BGC7 and BGC11) containing 12 genes involved in phenolamide metabolism, including four biosynthesis genes (two 4CL genes, one C3H gene, and one CPA gene), seven decoration genes (five AT genes and two UGT genes), and one transport protein gene (DTX29). Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters, thereby promoting phenolamide accumulation. Genetic and physiological analyses showed that BGC7, BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato. Natural variation analysis suggested that BGC7, BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement, leading to reduced phenolamide content and drought tolerance of cultivated tomato. Collectively, our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.
Collapse
Affiliation(s)
- Peng Cao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China
| | - Jun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China.
| | - Linghao Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Zeyong Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Yingchen Hao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Penghui Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Chao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Jie Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Jun Lai
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Xianggui Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Meng Deng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; College of Tropical Agriculture and Forestry, Hainan University, Haikou 572208, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou 572208, China.
| |
Collapse
|
53
|
Yang T, Deng L, Wang Q, Sun C, Ali M, Wu F, Zhai H, Xu Q, Xin P, Cheng S, Chu J, Huang T, Li CB, Li C. Tomato CYP94C1 inactivates bioactive JA-Ile to attenuate jasmonate-mediated defense during fruit ripening. MOLECULAR PLANT 2024; 17:509-512. [PMID: 38327053 DOI: 10.1016/j.molp.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/16/2023] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
As the master regulators of the ET signaling pathway, EIL transcription factors directly activate the expression of CYP94C1 to inactivate bioactive JA-Ile, thereby attenuating JA-mediated defense during fruit ripening. Knockout of CYP94C1 improves tomato fruit resistance to necrotrophs without compromising fruit quality.
Collapse
Affiliation(s)
- Tianxia Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Taishan Academy of Tomato Innovation, Tai'an 271018, China.
| | - Qinyang Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanlong Sun
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Muhammad Ali
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangming Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Tai'an 271018, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Qian Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Peiyong Xin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shujing Cheng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chuanyou Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Taishan Academy of Tomato Innovation, Tai'an 271018, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
54
|
Shen L, Yang S, Zhao E, Xia X, Yang X. StoMYB41 positively regulates the Solanum torvum response to Verticillium dahliae in an ABA dependent manner. Int J Biol Macromol 2024; 263:130072. [PMID: 38346615 DOI: 10.1016/j.ijbiomac.2024.130072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.
Collapse
Affiliation(s)
- Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Shixin Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xin Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
55
|
Wu S, Hu C, Zhu C, Fan Y, Zhou J, Xia X, Shi K, Zhou Y, Foyer CH, Yu J. The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato. MOLECULAR PLANT 2024; 17:598-613. [PMID: 38341757 DOI: 10.1016/j.molp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Jasmonates (JAs), a class of lipid-derived stress hormones, play a crucial role across an array of plant physiological processes and stress responses. Although JA signaling is thought to rely predominantly on the degradation of specific JAZ proteins by SCFCOI1, it remains unclear whether other pathways are involved in the regulation of JAZ protein stability. Here, we report that PUB22, a plant U-box type E3 ubiquitin ligase, plays a critical role in the regulation of plant resistance against Helicoverpa armigera and other JA responses in tomato. Whereas COI1 physically interacts with JAZ1/2/5/7, PUB22 physically interacts with JAZ1/3/4/6. PUB22 ubiquitinates JAZ4 to promote its degradation via the 26S proteasome pathway. Importantly, we observed that pub22 mutants showreduced resistance to H. armigera, whereas jaz4 single mutants and jaz1 jaz3 jaz4 jaz6 quadruple mutants have enhanced resistance. The hypersensitivity of pub22 mutants to herbivores could be partially rescued by JAZ4 mutation. Moreover, we found that expression of PUB22 can be transcriptionally activated by MYC2, thus forming a positive feedback circuit in JA signaling. We noticed that the PUB22-JAZ4 module also regulates other JA responses, including defense against B. cinerea, inhibition of root elongation, and anthocyanin accumulation. Taken together, these results indicate that PUB22 plays a crucial role in plant growth and defense responses, together with COI1-regulated JA signaling, by targeting specific JAZs.
Collapse
Affiliation(s)
- Shaofang Wu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Chaoyi Hu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Changan Zhu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanfen Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Horticulture, Northwest Agriculture & Forestry University, Xianyang 712100, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaojia Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
56
|
Marqués-Gálvez JE, Pandharikar G, Basso V, Kohler A, Lackus ND, Barry K, Keymanesh K, Johnson J, Singan V, Grigoriev IV, Vilgalys R, Martin F, Veneault-Fourrey C. Populus MYC2 orchestrates root transcriptional reprogramming of defence pathway to impair Laccaria bicolor ectomycorrhizal development. THE NEW PHYTOLOGIST 2024; 242:658-674. [PMID: 38375883 DOI: 10.1111/nph.19609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.
Collapse
Affiliation(s)
- José Eduardo Marqués-Gálvez
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Gaurav Pandharikar
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Veronica Basso
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Nathalie D Lackus
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, Würzburg, 97082, Deutschland
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| |
Collapse
|
57
|
Lv W, Jiang H, Cao Q, Ren H, Wang X, Wang Y. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signaling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1356-1376. [PMID: 38059663 DOI: 10.1111/tpj.16567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Tea plant [Camellia sinensis (L.) O. Kuntze], as one of the most important commercial crops, frequently suffers from anthracnose caused by Colletotrichum camelliae. The plant-specific tau (U) class of glutathione S-transferases (GSTU) participates in ROS homeostasis. Here, we identified a plant-specific GST tau class gene from tea plant, CsGSTU45, which is induced by various stresses, including C. camelliae infection, by analyzing multiple transcriptomes. CsGSTU45 plays a negative role in disease resistance against C. camelliae by accumulating H2 O2 . JA negatively regulates the resistance of tea plants against C. camelliae, which depends on CsGSTU45. CsMYC2.2, which is the key regulator in the JA signaling pathway, directly binds to and activates the promoter of CsGSTU45. Furthermore, silencing CsMYC2.2 increased disease resistance associated with reduced transcript and protein levels of CsGSTU45, and decreased contents of H2 O2 . Therefore, CsMYC2.2 suppresses disease resistance against C. camelliae by binding to the promoter of the CsGSTU45 gene and activating CsGSTU45. CsJAZ1 interacts with CsMYC2.2. Silencing CsJAZ1 attenuates disease resistance, upregulates the expression of CsMYC2.2 elevates the level of the CsGSTU45 protein, and promotes the accumulation of H2 O2 . As a result, CsJAZ1 interacts with CsMYC2.2 and acts as its repressor to suppress the level of CsGSTU45 protein, eventually enhancing disease resistance in tea plants. Taken together, the results show that the JA signaling pathway mediated by CsJAZ1-CsMYC2.2 modulates tea plant susceptibility to C. camelliae by regulating CsGSTU45 to accumulate H2 O2 .
Collapse
Affiliation(s)
- Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Qinghai Cao
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Henze Ren
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| | - Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, Zhejiang, China
| |
Collapse
|
58
|
Tanarsuwongkul S, Fisher KW, Mullis BT, Negi H, Roberts J, Tomlin F, Wang Q, Stratmann JW. Green leaf volatiles co-opt proteins involved in molecular pattern signalling in plant cells. PLANT, CELL & ENVIRONMENT 2024; 47:928-946. [PMID: 38164082 DOI: 10.1111/pce.14795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The green leaf volatiles (GLVs) Z-3-hexen-1-ol (Z3-HOL) and Z-3-hexenyl acetate (Z3-HAC) are airborne infochemicals released from damaged plant tissues that induce defenses and developmental responses in receiver plants, but little is known about their mechanism of action. We found that Z3-HOL and Z3-HAC induce similar but distinctive physiological and signaling responses in tomato seedlings and cell cultures. In seedlings, Z3-HAC showed a stronger root growth inhibition effect than Z3-HOL. In cell cultures, the two GLVs induced distinct changes in MAP kinase (MAPK) activity and proton fluxes as well as rapid and massive changes in the phosphorylation status of proteins within 5 min. Many of these phosphoproteins are involved in reprogramming the proteome from cellular homoeostasis to stress and include pattern recognition receptors, a receptor-like cytoplasmic kinase, MAPK cascade components, calcium signaling proteins and transcriptional regulators. These are well-known components of damage-associated molecular pattern (DAMP) signaling pathways. These rapid changes in the phosphoproteome may underly the activation of defense and developmental responses to GLVs. Our data provide further evidence that GLVs function like DAMPs and indicate that GLVs coopt DAMP signaling pathways.
Collapse
Affiliation(s)
| | - Kirsten W Fisher
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - B Todd Mullis
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
- IMCS, Irmo, South Carolina, USA
| | - Harshita Negi
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Jamie Roberts
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Fallon Tomlin
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Qiang Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
59
|
Li T, Zhang Z, Liu Y, Sun S, Wang H, Geng X. Phenotype and signaling pathway analysis to explore the interaction between tomato plants and TYLCV in different organs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111955. [PMID: 38097048 DOI: 10.1016/j.plantsci.2023.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/04/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD), caused by Tomato yellow leaf curl virus (TYLCV), is one of the most destructive diseases in tomato cultivation. By comparing the phenotypic characteristics and virus quantities in the susceptible variety 'Cooperation 909 Red Tomatoes' and the resistant variety 'Huamei 204' after inoculation with TYLCV infectious clones, our study discovered that the root, stem and leaf growth of the susceptible variety 'Cooperation 909 Red Tomatoes' were severely hindered and the resistant variety 'Huamei 204' showed growth inhibition only in roots. TYLCV accumulation in roots were significantly higher than in leaves. Further, we examined the expression of key genes in the SA and JA signalling pathways in leaves, stems and roots and found the up-regulation of SA-signalling genes in all organs of the susceptible variety after inoculation with TYLCV clones. Interestingly, SlJAZ2 in roots of the resistant variety was significantly down-regulated upon TYLCV infection. Further, we silenced the SlNPR1 and SlCOI1 genes individually using virus induced gene silencing system in tomato plants. We found that viruses accumulated to a higher level in SlNPR1 silenced plants than wild type plants, and the virus quantity in roots was significantly increased in SlCOI1 silenced plants. These results provide new insights for advancing research in understanding tomato-TYLCV interaction.
Collapse
Affiliation(s)
- Tian Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China; College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi Province, People's Republic of China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yang Liu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi Province, People's Republic of China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi Province, People's Republic of China.
| | - Hehe Wang
- Clemson University, Edisto Research and Education Center, Blackville, SC, USA
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
60
|
Chen D, Zhang Z, Chen Y, Li B, Chen T, Tian S. Transcriptional landscape of pathogen-responsive lncRNAs in tomato unveils the role of hydrolase encoding genes in response to Botrytis cinerea invasion. PLANT, CELL & ENVIRONMENT 2024; 47:651-663. [PMID: 37899711 DOI: 10.1111/pce.14757] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/30/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023]
Abstract
LncRNAs have gained increasing attention owing to their important regulatory roles on growth and stress responses of plants. However, the mechanisms underlying the functions of lncRNAs in fruit-pathogen interaction are still largely unknown. In this study, a total of 273 lncRNAs responding to Botrytis cinerea infection were identified in tomato fruit, among which a higher percentage of antisense lncRNAs were targeted to the genes enriched in hydrolase activity. To ascertain the roles of these lncRNAs, seven hydrolase-related transcripts were transiently knocked-down by virus-induced gene silencing. Silencing of lncRNACXE20 reduced the expression level of a carboxylesterase gene, further enhancing the resistance of tomato to B. cinerea. In contrast, silencing of lncRNACHI, lncRNAMMP, lncRNASBT1.9 and lncRNAPME1.9 impaired the resistance to B. cinerea, respectively. Further RT-qPCR assay and enzymatic activity detection displayed that the attenuated resistance of lncRNAMMP and lncRNASBT1.9-silenced plants was associated with the inhibition on the expression of JA-related genes, while the decreased resistance of lncRNACHI-silenced plants resulted in reduced chitinase activity. Collectively, these results may provide references for deciphering the mechanisms underlying specific lncRNAs to interfere with B. cinerea infection by regulating the expression of defence-related genes or affecting hydrolase activity.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhanquan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
61
|
Ma B, Zhang J, Guo S, Xie X, Yan L, Chen H, Zhang H, Bu X, Zheng L, Wang Y. RtNAC055 promotes drought tolerance via a stomatal closure pathway linked to methyl jasmonate/hydrogen peroxide signaling in Reaumuria trigyna. HORTICULTURE RESEARCH 2024; 11:uhae001. [PMID: 38419969 PMCID: PMC10901477 DOI: 10.1093/hr/uhae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024]
Abstract
The stomata regulate CO2 uptake and efficient water usage, thereby promoting drought stress tolerance. NAC proteins (NAM, ATAF1/2, and CUC2) participate in plant reactions following drought stress, but the molecular mechanisms underlying NAC-mediated regulation of stomatal movement are unclear. In this study, a novel NAC gene from Reaumuria trigyna, RtNAC055, was found to enhance drought tolerance via a stomatal closure pathway. It was regulated by RtMYC2 and integrated with jasmonic acid signaling and was predominantly expressed in stomata and root. The suppression of RtNAC055 could improve jasmonic acid and H2O2 production and increase the drought tolerance of transgenic R. trigyna callus. Ectopic expression of RtNAC055 in the Arabidopsis atnac055 mutant rescued its drought-sensitive phenotype by decreasing stomatal aperture. Under drought stress, overexpression of RtNAC055 in poplar promoted ROS (H2O2) accumulation in stomata, which accelerated stomatal closure and maintained a high photosynthetic rate. Drought upregulated the expression of PtRbohD/F, PtP5CS2, and PtDREB1.1, as well as antioxidant enzyme activities in heterologous expression poplars. RtNAC055 promoted H2O2 production in guard cells by directly binding to the promoter of RtRbohE, thus regulating stomatal closure. The stress-related genes RtDREB1.1/P5CS1 were directly regulated by RtNAC055. These results indicate that RtNAC055 regulates stomatal closure by maintaining the balance between the antioxidant system and H2O2 level, reducing the transpiration rate and water loss, and improving photosynthetic efficiency and drought resistance.
Collapse
Affiliation(s)
- Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Jie Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuyu Guo
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xinlei Xie
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lang Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Huijing Chen
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Hongyi Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiangqi Bu
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
62
|
Wang L, Chen H, Chen G, Luo G, Shen X, Ouyang B, Bie Z. Transcription factor SlWRKY50 enhances cold tolerance in tomato by activating the jasmonic acid signaling. PLANT PHYSIOLOGY 2024; 194:1075-1090. [PMID: 37935624 DOI: 10.1093/plphys/kiad578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Tomato (Solanum lycopersicum) is a cold-sensitive crop but frequently experiences low-temperature stimuli. However, tomato responses to cold stress are still poorly understood. Our previous studies have shown that using wild tomato (Solanum habrochaites) as rootstock can significantly enhance the cold resistance of grafted seedlings, in which a high concentration of jasmonic acids (JAs) in scions exerts an important role, but the mechanism of JA accumulation remains unclear. Herein, we discovered that tomato SlWRKY50, a Group II WRKY transcription factor that is cold inducible, responds to cold stimuli and plays a key role in JA biosynthesis. SlWRKY50 directly bound to the promoter of tomato allene oxide synthase gene (SlAOS), and overexpressing SlWRKY50 improved tomato chilling resistance, which led to higher levels of Fv/Fm, antioxidative enzymes, SlAOS expression, and JA accumulation. SlWRKY50-silenced plants, however, exhibited an opposite trend. Moreover, diethyldithiocarbamate acid (a JA biosynthesis inhibitor) foliar treatment drastically reduced the cold tolerance of SlWRKY50-overexpression plants to wild-type levels. Importantly, SlMYC2, the key regulator of the JA signaling pathway, can control SlWRKY50 expression. Overall, our research indicates that SlWRKY50 promotes cold tolerance by controlling JA biosynthesis and that JA signaling mediates SlWRKY50 expression via transcriptional activation by SlMYC2. Thus, this contributes to the genetic knowledge necessary for developing cold-resistant tomato varieties.
Collapse
Affiliation(s)
- Lihui Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hui Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guoyu Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Guangbao Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xinyan Shen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
63
|
Kim YR, Han JY, Choi YE. A Pinus strobus transcription factor PsbHLH1 activates the production of pinosylvin stilbenoids in transgenic Pinus koraiensis calli and tobacco leaves. FRONTIERS IN PLANT SCIENCE 2024; 15:1342626. [PMID: 38304739 PMCID: PMC10830828 DOI: 10.3389/fpls.2024.1342626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
Transcription factors (TFs) play an important role in regulating the biosynthesis of secondary metabolites. In Pinus strobus, the level of methylated derivatives of pinosylvin is significantly increased upon pine wood nematode (PWN) infection, and these compounds are highly toxic to PWNs. In a previous study, we found that the expression of a basic helix-loop-helix TF gene, PsbHLH1, strongly increased in P. strobus plants after infection with PWNs. In this study, we elucidated the regulatory role of the PsbHLH1 gene in the production of methylated derivatives of pinosylvin such as pinosylvin monomethyl ether (PME) and dihydropinoylvin monomethyl ether (DPME). When PsbHLH1 was overexpressed in Pinus koraiensis calli, the production of PME and DPME was significantly increased. Overexpression of the stilbene synthase (PsSTS) and pinosylvin methyl transferase (PsPMT) genes, known as key enzymes for the biosynthesis of methylated pinosylvins, did not change PME or DPME production. Moreover, PME and DPME were not produced in tobacco leaves when the PsSTS and PsPMT genes were transiently coexpressed. However, the transient expression of three genes, PsSTS, PsPMT, and PsbHLH1, resulted in the production of PME and DPME in tobacco leaves. These results prove that PsbHLH1 is an important TF for the pinosylvin stilbene biosynthesis in pine plants and plays a regulatory role in the engineered production of PME and DPME in tobacco plants.
Collapse
Affiliation(s)
| | | | - Yong Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
64
|
Zhang X, Yu Y, Zhang J, Qian X, Li X, Sun X. Recent Progress Regarding Jasmonates in Tea Plants: Biosynthesis, Signaling, and Function in Stress Responses. Int J Mol Sci 2024; 25:1079. [PMID: 38256153 PMCID: PMC10816084 DOI: 10.3390/ijms25021079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Tea plants have to adapt to frequently challenging environments due to their sessile lifestyle and perennial evergreen nature. Jasmonates regulate not only tea plants' responses to biotic stresses, including herbivore attack and pathogen infection, but also tolerance to abiotic stresses, such as extreme weather conditions and osmotic stress. In this review, we summarize recent progress about jasmonaic acid (JA) biosynthesis and signaling pathways, as well as the underlying mechanisms mediated by jasmontes in tea plants in responses to biotic stresses and abiotic stresses. This review provides a reference for future research on the JA signaling pathway in terms of its regulation against various stresses of tea plants. Due to the lack of a genetic transformation system, the JA pathway of tea plants is still in the preliminary stages. It is necessary to perform further efforts to identify new components involved in the JA regulatory pathway through the combination of genetic and biochemical methods.
Collapse
Affiliation(s)
- Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Yongchen Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Jin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaona Qian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 South Meiling Road, Hangzhou 310008, China; (X.Z.); (Y.Y.); (J.Z.); (X.Q.); (X.L.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
65
|
Wang M, Wang Z, Ding Y, Kang S, Jiang S, Yang Z, Xie Z, Wang J, Wei S, Huang J, Li D, Jiang X, Tang H. Host-pathogen interaction between pitaya and Neoscytalidium dimidiatum reveals the mechanisms of immune response associated with defense regulators and metabolic pathways. BMC PLANT BIOLOGY 2024; 24:4. [PMID: 38163897 PMCID: PMC10759344 DOI: 10.1186/s12870-023-04685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Understanding how plants and pathogens regulate each other's gene expression during their interactions is key to revealing the mechanisms of disease resistance and controlling the development of pathogens. Despite extensive studies on the molecular and genetic basis of plant immunity against pathogens, the influence of pitaya immunity on N. dimidiatum metabolism to restrict pathogen growth is poorly understood, and how N. dimidiatum breaks through pitaya defenses. In this study, we used the RNA-seq method to assess the expression profiles of pitaya and N. dimidiatum at 4 time periods after interactions to capture the early effects of N. dimidiatum on pitaya processes. RESULTS The study defined the establishment of an effective method for analyzing transcriptome interactions between pitaya and N. dimidiatum and to obtain global expression profiles. We identified gene expression clusters in both the host pitaya and the pathogen N. dimidiatum. The analysis showed that numerous differentially expressed genes (DEGs) involved in the recognition and defense of pitaya against N. dimidiatum, as well as N. dimidiatum's evasion of recognition and inhibition of pitaya. The major functional groups identified by GO and KEGG enrichment were responsible for plant and pathogen recognition, phytohormone signaling (such as salicylic acid, abscisic acid). Furthermore, the gene expression of 13 candidate genes involved in phytopathogen recognition, phytohormone receptors, and the plant resistance gene (PG), as well as 7 effector genes of N. dimidiatum, including glycoside hydrolases, pectinase, and putative genes, were validated by qPCR. By focusing on gene expression changes during interactions between pitaya and N. dimidiatum, we were able to observe the infection of N. dimidiatum and its effects on the expression of various defense components and host immune receptors. CONCLUSION Our data show that various regulators of the immune response are modified during interactions between pitaya and N. dimidiatum. Furthermore, the activation and repression of these genes are temporally coordinated. These findings provide a framework for better understanding the pathogenicity of N. dimidiatum and its role as an opportunistic pathogen. This offers the potential for a more effective defense against N. dimidiatum.
Collapse
Affiliation(s)
- Meng Wang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhouwen Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
- Yazhou Bay Laboratory, Sanya, 572025, China
| | - Yi Ding
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Shaoling Kang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Senrong Jiang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Zhuangjia Yang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Zhan Xie
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Jialin Wang
- College of Life Sciences, Hainan University, Haikou, 570228, China
| | - Shuangshuang Wei
- College of Life Sciences, Hainan University, Haikou, 570228, China
| | - Jiaquan Huang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Dongdong Li
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China
| | - Xingyu Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Hua Tang
- School of Breeding and Multiplication, Hainan University, Sanya, 572025, China.
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
66
|
You S, Wu Y, Li W, Liu X, Tang Q, Huang F, Li Y, Wang H, Liu M, Zhang Y. SlERF.G3-Like mediates a hierarchical transcriptional cascade to regulate ripening and metabolic changes in tomato fruit. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:165-180. [PMID: 37750661 PMCID: PMC10754011 DOI: 10.1111/pbi.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 09/02/2023] [Indexed: 09/27/2023]
Abstract
The tomato ripening process contains complex changes, including ethylene signalling, cell wall softening and numerous metabolic changes. So far, much is still unknown about how tomato plants precisely coordinate fruit maturation and metabolic regulation. In this paper, the ERF family transcription factor SlERF.G3-Like in tomato was found to be involved in the regulation of ethylene synthesis, cell wall degradation and the flavonoid pathway. We show that the master ripening regulator SlRIN was found to directly bind to the promoter region of SlERF.G3-Like to activate its expression. In addition, we managed to increase the production of resveratrol derivatives from ~1.44 mg/g DW in E8:VvStSy line to ~2.43 mg/g DW by crossing p35S: SlERF.G3-Like with the E8:VvStSy line. Our data provide direct evidence that SlERF.G3-Like, a hierarchical transcriptional factor, can directly manipulate pathways in which tomatoes can coordinate fruit maturation and metabolic changes. We also attest that SlERF.G3-Like can be used as an effective tool for phenylpropanoid metabolic engineering.
Collapse
Affiliation(s)
- Shengjie You
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yu Wu
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Wen Li
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Xiaofeng Liu
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Qinlan Tang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Fengkun Huang
- Sanya Nanfan Research Institute of Hainan UniversityHainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical CropsHainan UniversityHaikouChina
| | - Yan Li
- Sanya Nanfan Research Institute of Hainan UniversityHainan Yazhou Bay Seed LaboratorySanyaChina
- College of Tropical CropsHainan UniversityHaikouChina
| | - Hsihua Wang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Mingchun Liu
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| | - Yang Zhang
- Key Laboratory of Bio‐resource and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduSichuanPeople's Republic of China
| |
Collapse
|
67
|
Wang X, Xiang Y, Sun M, Xiong Y, Li C, Zhang T, Ma W, Wang Y, Liu X. Transcriptomic and metabolomic analyses reveals keys genes and metabolic pathways in tea (Camellia sinensis) against six-spotted spider mite (Eotetranychus Sexmaculatus). BMC PLANT BIOLOGY 2023; 23:638. [PMID: 38072959 PMCID: PMC10712147 DOI: 10.1186/s12870-023-04651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Six-spotted spider mite (Eotetranychus sexmaculatus) is one of the most damaging pests of tea (Camellia sinensis). E. sexmaculatus causes great economic loss and affects tea quality adversely. In response to pests, such as spider mites, tea plants have evolved resistance mechanisms, such as expression of defense-related genes and defense-related metabolites. RESULTS To evaluate the biochemical and molecular mechanisms of resistance in C. sinensis against spider mites, "Tianfu-5" (resistant to E. sexmaculatus) and "Fuding Dabai" (susceptible to E. sexmaculatus) were inoculated with spider mites. Transcriptomics and metabolomics based on RNA-Seq and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) technology were used to analyze changes in gene expression and metabolite content, respectively. RNA-Seq data analysis revealed that 246 to 3,986 differentially expressed genes (DEGs) were identified in multiple compared groups, and these DEGs were significantly enriched in various pathways, such as phenylpropanoid and flavonoid biosynthesis, plant-pathogen interactions, MAPK signaling, and plant hormone signaling. Additionally, the metabolome data detected 2,220 metabolites, with 194 to 260 differentially abundant metabolites (DAMs) identified in multiple compared groups, including phenylalanine, lignin, salicylic acid, and jasmonic acid. The combined analysis of RNA-Seq and metabolomic data indicated that phenylpropanoid and flavonoid biosynthesis, MAPK signaling, and Ca2+-mediated PR-1 signaling pathways may contribute to spider mite resistance. CONCLUSIONS Our findings provide insights for identifying insect-induced genes and metabolites and form a basis for studies on mechanisms of host defense against spider mites in C. sinensis. The candidate genes and metabolites identified will be a valuable resource for tea breeding in response to biotic stress.
Collapse
Affiliation(s)
- Xiaoping Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Yunjia Xiang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Minshan Sun
- Henan Assist Research Biotechnology Co., Ltd, Zhengzhou, China
| | - Yuanyuan Xiong
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chunhua Li
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ting Zhang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Weiwei Ma
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yun Wang
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiao Liu
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
68
|
Wen X, Yuan J, Bozorov TA, Waheed A, Kahar G, Haxim Y, Liu X, Huang L, Zhang D. An efficient screening system of disease-resistant genes from wild apple, Malus sieversii in response to Valsa mali pathogenic fungus. PLANT METHODS 2023; 19:138. [PMID: 38042829 PMCID: PMC10693133 DOI: 10.1186/s13007-023-01115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
For molecular breeding of future apples, wild apple (Malus sieversii), the primary progenitor of domesticated apples, provides abundant genetic diversity and disease-resistance traits. Valsa canker (caused by the fungal pathogen Valsa mali) poses a major threat to wild apple population as well as to cultivated apple production in China. In the present study, we developed an efficient system for screening disease-resistant genes of M. sieversii in response to V. mali. An optimal agrobacterium-mediated transient transformation of M. sieversii was first used to manipulate in situ the expression of candidate genes. After that, the pathogen V. mali was inoculated on transformed leaves and stems, and 3 additional methods for slower disease courses were developed for V. mali inoculation. To identify the resistant genes, a series of experiments were performed including morphological (incidence, lesion area/length, fungal biomass), physiological (H2O2 content, malondialdehyde content), and molecular (Real-time quantitative Polymerase Chain Reaction) approaches. Using the optimized system, we identified two transcription factors with high resistance to V. mali, MsbHLH41 and MsEIL3. Furthermore, 35 and 45 downstream genes of MsbHLH41 and MsEIL3 were identified by screening the V. mali response gene database in M. sieversii, respectively. Overall, these results indicate that the disease-resistant gene screening system has a wide range of applications for identifying resistant genes and exploring their immune regulatory networks.
Collapse
Affiliation(s)
- Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
- National Positioning Observation and Research Station of Forest Ecosystem in Yili (XinJiang), Academy of Forestry in Yili, Yili, 835100, China
| | - Jiangxue Yuan
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China.
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, 838008, China.
| |
Collapse
|
69
|
Liu F, Cai S, Ma Z, Yue H, Xing L, Wang Y, Feng S, Wang L, Dai L, Wan H, Gao J, Chen M, Rahman M, Zhou B. RVE2, a new regulatory factor in jasmonic acid pathway, orchestrates resistance to Verticillium wilt. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2507-2524. [PMID: 37553251 PMCID: PMC10651145 DOI: 10.1111/pbi.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Verticillium dahliae, one of the most destructive fungal pathogens of several crops, challenges the sustainability of cotton productivity worldwide because very few widely-cultivated Upland cotton varieties are resistant to Verticillium wilt (VW). Here, we report that REVEILLE2 (RVE2), the Myb-like transcription factor, confers the novel function in resistance to VW by regulating the jasmonic acid (JA) pathway in cotton. RVE2 expression was essentially required for the activation of JA-mediated disease-resistance response. RVE2 physically interacted with TPL/TPRs and disturbed JAZ proteins to recruit TPL and TPR1 in NINJA-dependent manner, which regulated JA response by relieving inhibited-MYC2 activity. The MYC2 then bound to RVE2 promoter for the activation of its transcription, forming feedback loop. Interestingly, a unique truncated RVE2 widely existing in D-subgenome (GhRVE2D) of natural Upland cotton represses the ability of the MYC2 to activate GhRVE2A promoter but not GausRVE2 or GbRVE2. The result could partially explain why Gossypium barbadense popularly shows higher resistance than Gossypium hirsutum. Furthermore, disturbing the JA-signalling pathway resulted into the loss of RVE2-mediated disease-resistance in various plants (Arabidopsis, tobacco and cotton). RVE2 overexpression significantly enhanced the resistance to VW. Collectively, we conclude that RVE2, a new regulatory factor, plays a pivotal role in fine-tuning JA-signalling, which would improve our understanding the mechanisms underlying the resistance to VW.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liangshuai Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Shouli Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mengfei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mehboob‐ur‐ Rahman
- Plant Genomics & Mol. Breeding LabNational Institute for Biotechnology & Genetic Engineering (NIBGE)FaisalabadPakistan
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
70
|
Huang X, Zhang W, Liao Y, Ye J, Xu F. Contemporary understanding of transcription factor regulation of terpenoid biosynthesis in plants. PLANTA 2023; 259:2. [PMID: 37971670 DOI: 10.1007/s00425-023-04268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
KEY MESSAGE This review summarized how TFs function independently or in response to environmental factors to regulate terpenoid biosynthesis via fine-tuning the expression of rate-limiting enzymes. Terpenoids are derived from various species and sources. They are essential for interacting with the environment and defense mechanisms, such as antimicrobial, antifungal, antiviral, and antiparasitic properties. Almost all terpenoids have high medicinal value and economic performance. Recently, the control of enzyme genes on terpenoid biosynthesis has received a great deal of attention, but transcriptional factors regulatory network on terpenoid biosynthesis and accumulation has yet to get a thorough review. Transcription factors function as activators or suppressors independently or in response to environmental stimuli, fine-tuning terpenoid accumulation through regulating rate-limiting enzyme expression. This study investigates the advancements in transcription factors related to terpenoid biosynthesis and systematically summarizes previous works on the specific mechanisms of transcription factors that regulate terpenoid biosynthesis via hormone signal-transcription regulatory networks in plants. This will help us to better comprehend the regulatory network of terpenoid biosynthesis and build the groundwork for terpenoid development and effective utilization.
Collapse
Affiliation(s)
- Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
71
|
Yan Y, Li XM, Chen Y, Wu TT, Ding CH, Zhang MQ, Guo YT, Wang CY, Zhang J, Zhang X, Rasheed A, Xu S, Wang ML, Ni Z, Sun Q, Gou JY. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust. J Genet Genomics 2023; 50:872-882. [PMID: 37666356 DOI: 10.1016/j.jgg.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Wheat (Triticum aestivum) is one of the most essential human energy and protein sources. However, wheat production is threatened by devastating fungal diseases such as stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst). Here, we reveal that the alternations in chloroplast lipid profiles and the accumulation of jasmonate (JA) in the necrosis region activate JA signaling and trigger the host defense. The collapse of chloroplasts in the necrosis region results in accumulations of polyunsaturated membrane lipids and the lipid-derived phytohormone JA in transgenic lines of Yr36 that encodes Wheat Kinase START 1 (WKS1), a high-temperature-dependent adult plant resistance protein. WKS1.1, a protein encoded by a full-length splicing variant of WKS1, phosphorylates and enhances the activity of keto-acyl thiolase (KAT-2B), a critical enzyme catalyzing the β-oxidation reaction in JA biosynthesis. The premature stop mutant, kat-2b, accumulates less JA and shows defects in the host defense against Pst. Conversely, overexpression of KAT-2B results in a higher level of JA and limits the growth of Pst. Moreover, JA inhibits the growth and reduces pustule densities of Pst. This study illustrates the WKS1.1‒KAT-2B‒JA pathway for enhancing wheat defense against fungal pathogens to attenuate yield loss.
Collapse
Affiliation(s)
- Yan Yan
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; Xianghu Laboratory, Hangzhou, Zhejiang 311231, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiao-Ming Li
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yun Chen
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Tian-Tian Wu
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ci-Hang Ding
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mei-Qi Zhang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yue-Ting Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chu-Yang Wang
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT), Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shengchun Xu
- Xianghu Laboratory, Hangzhou, Zhejiang 311231, China
| | - Meng-Lu Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China
| | - Jin-Ying Gou
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
72
|
Zhou L, Gao G, Li X, Wang W, Tian S, Qin G. The pivotal ripening gene SlDML2 participates in regulating disease resistance in tomato. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2291-2306. [PMID: 37466912 PMCID: PMC10579708 DOI: 10.1111/pbi.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Fruit ripening and disease resistance are two essential biological processes for quality formation and maintenance. DNA methylation, in the form of 5-methylcytosine (5mC), has been elucidated to modulate fruit ripening, but its role in regulating fruit disease resistance remains poorly understood. In this study, we show that mutation of SlDML2, the DNA demethylase gene essential for fruit ripening, affects multiple developmental processes of tomato besides fruit ripening, including seed germination, leaf length and width and flower branching. Intriguingly, loss of SlDML2 function decreased the resistance of tomato fruits against the necrotrophic fungal pathogen Botrytis cinerea. Comparative transcriptomic analysis revealed an obvious transcriptome reprogramming caused by SlDML2 mutation during B. cinerea invasion. Among the thousands of differentially expressed genes, SlβCA3 encoding a β-carbonic anhydrase and SlFAD3 encoding a ω-3 fatty acid desaturase were demonstrated to be transcriptionally activated by SlDML2-mediated DNA demethylation and positively regulate tomato resistance to B. cinerea probably in the same genetic pathway with SlDML2. We further show that the pericarp tissue surrounding B. cinerea infection exhibited a delay in ripening with singnificant decrease in expression of ripening genes that are targeted by SlDML2 and increase in expression of SlβCA3 and SlFAD3. Taken together, our results uncover an essential layer of gene regulation mediated by DNA methylation upon B. cinerea infection and raise the possible that the DNA demethylase gene SlDML2, as a multifunctional gene, participates in modulating the trade-off between fruit ripening and disease resistance.
Collapse
Affiliation(s)
- Leilei Zhou
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Guangtong Gao
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Li
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National Botanical GardenBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
73
|
Zhu Q, Deng L, Chen J, Rodríguez GR, Sun C, Chang Z, Yang T, Zhai H, Jiang H, Topcu Y, Francis D, Hutton S, Sun L, Li CB, van der Knaap E, Li C. Redesigning the tomato fruit shape for mechanized production. NATURE PLANTS 2023; 9:1659-1674. [PMID: 37723204 DOI: 10.1038/s41477-023-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Crop breeding for mechanized harvesting has driven modern agriculture. In tomato, machine harvesting for industrial processing varieties became the norm in the 1970s. However, fresh-market varieties whose fruits are suitable for mechanical harvesting are difficult to breed because of associated reduction in flavour and nutritional qualities. Here we report the cloning and functional characterization of fs8.1, which controls the elongated fruit shape and crush resistance of machine-harvestable processing tomatoes. FS8.1 encodes a non-canonical GT-2 factor that activates the expression of cell-cycle inhibitor genes through the formation of a transcriptional module with the canonical GT-2 factor SlGT-16. The fs8.1 mutation results in a lower inhibitory effect on the cell proliferation of the ovary wall, leading to elongated fruits with enhanced compression resistance. Our study provides a potential route for introducing the beneficial allele into fresh-market tomatoes without reducing quality, thereby facilitating mechanical harvesting.
Collapse
Affiliation(s)
- Qiang Zhu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jie Chen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Gustavo R Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Rosario, Argentina
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zeqian Chang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yasin Topcu
- Institute of Plant Breeding, Department of Horticulture, University of Georgia, Athens, GA, USA
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - David Francis
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Samuel Hutton
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Liang Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Esther van der Knaap
- Institute of Plant Breeding, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
74
|
Xu J, Zhao J, Liu J, Dong C, Zhao L, Ai N, Xu P, Feng G, Xu Z, Guo Q, Cheng J, Wang Y, Wang X, Wang N, Xiao S. GbCYP72A1 Improves Resistance to Verticillium Wilt via Multiple Signaling Pathways. PLANT DISEASE 2023; 107:3198-3210. [PMID: 36890127 DOI: 10.1094/pdis-01-23-0033-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Verticillium dahliae is a fungal pathogen that causes Verticillium wilt (VW), which seriously reduces the yield of cotton owing to biological stress. The mechanism underlying the resistance of cotton to VW is highly complex, and the resistance breeding of cotton is consequently limited by the lack of in-depth research. Using quantitative trait loci (QTL) mapping, we previously identified a novel cytochrome P450 (CYP) gene on chromosome D4 of Gossypium barbadense that is associated with resistance to the nondefoliated strain of V. dahliae. In this study, the CYP gene on chromosome D4 was cloned together with its homologous gene on chromosome A4 and were denoted as GbCYP72A1d and GbCYP72A1a, respectively, according to their genomic location and protein subfamily classification. The two GbCYP72A1 genes were induced by V. dahliae and phytohormone treatment, and the findings revealed that the VW resistance of the lines with silenced GbCYP72A1 genes decreased significantly. Transcriptome sequencing and pathway enrichment analyses revealed that the GbCYP72A1 genes primarily affected disease resistance via the plant hormone signal transduction, plant-pathogen interaction, and mitogen-activated protein kinase (MAPK) signaling pathways. Interestingly, the findings revealed that although GbCYP72A1d and GbCYP72A1a had high sequence similarity and both genes enhanced the disease resistance of transgenic Arabidopsis, there was a difference between their disease resistance abilities. Protein structure analysis revealed that this difference was potentially attributed to the presence of a synaptic structure in the GbCYP72A1d protein. Altogether, the findings suggested that the GbCYP72A1 genes play an important role in plant response and resistance to VW.
Collapse
Affiliation(s)
- Jianwen Xu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Zhao
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianguang Liu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chengguang Dong
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Liang Zhao
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Peng Xu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guoli Feng
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junling Cheng
- College of Agricultural, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yueping Wang
- College of Agricultural, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xin Wang
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China
| | - Ningshan Wang
- Shihezi Agricultural Science Research Institute, Shihezi 832000, China
| | - Songhua Xiao
- Key Laboratory of Cotton and Rapeseed, Institute of Industrial Crops, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
75
|
Zhang Z, Jiang C, Chen C, Su K, Lin H, Zhao Y, Guo Y. VvWRKY5 enhances white rot resistance in grape by promoting the jasmonic acid pathway. HORTICULTURE RESEARCH 2023; 10:uhad172. [PMID: 37841502 PMCID: PMC10569242 DOI: 10.1093/hr/uhad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/20/2023] [Indexed: 10/17/2023]
Abstract
Grape white rot is a disease caused by Coniella diplodiella (Speg.) Sacc. (Cd) can drastically reduce the production and quality of grape (Vitis vinifera). WRKY transcription factors play a vital role in the regulation of plant resistance to pathogens, but their functions in grape white rot need to be further explored. Here, we found that the expression of the WRKY IIe subfamily member VvWRKY5 was highly induced by Cd infection and jasmonic acid (JA) treatment. Transient injection and stable overexpression (in grape calli and Arabidopsis) demonstrated that VvWRKY5 positively regulated grape resistance to white rot. We also determined that VvWRKY5 regulated the JA response by directly binding to the promoters of VvJAZ2 (a JA signaling suppressor) and VvMYC2 (a JA signaling activator), thereby inhibiting and activating the transcription of VvJAZ2 and VvMYC2, respectively. Furthermore, the interaction between VvJAZ2 and VvWRKY5 enhanced the suppression and promotion of VvJAZ2 and VvMYC2 activities by VvWRKY5, respectively. When VvWRKY5 was overexpressed in grape, JA content was also increased. Overall, our results suggested that VvWRKY5 played a key role in regulating JA biosynthesis and signal transduction as well as enhancing white rot resistance in grape. Our results also provide theoretical guidance for the development of elite grape cultivars with enhanced pathogen resistance.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Cui Chen
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Kai Su
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| |
Collapse
|
76
|
Yin Y, Yang T, Li S, Li X, Wang W, Fan S. Transcriptomic analysis reveals that methyl jasmonate confers salt tolerance in alfalfa by regulating antioxidant activity and ion homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1258498. [PMID: 37780521 PMCID: PMC10536279 DOI: 10.3389/fpls.2023.1258498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Introduction Alfalfa, a globally cultivated forage crop, faces significant challenges due to its vulnerability to salt stress. Jasmonates (JAs) play a pivotal role in modulating both plant growth and response to stressors. Methods In this study, alfalfa plants were subjected to 150 mM NaCl with or without methyl jasmonate (MeJA). The physiological parameters were detected and a transcriptomic analysis was performed to elucidate the mechanisms underlying MeJA-mediated salt tolerance in alfalfa. Results Results showed that exogenous MeJA regulated alfalfa seed germination and primary root growth in a dose-dependent manner, with 5µM MeJA exerting the most efficient in enhancing salt tolerance. MeJA at this concentration elavated the salt tolerance of young alfalfa seedlings by refining plant growth, enhancing antioxidant capacity and ameliorating Na+ overaccumulation. Subsequent transcriptomic analysis identified genes differentially regulated by MeJA+NaCl treatment and NaCl alone. PageMan analysis revealed several significantly enriched categories altered by MeJA+NaCl treatment, compared with NaCl treatment alone, including genes involved in secondary metabolism, glutathione-based redox regulation, cell cycle, transcription factors (TFs), and other signal transductions (such as calcium and ROS). Further weighted gene co-expression network analysis (WGCNA) uncovered that turquoise and yellow gene modules were tightly linked to antioxidant enzymes activity and ion content, respectively. Pyruvate decar-boxylase (PDC) and RNA demethylase (ALKBH10B) were identified as the most central hub genes in these two modules. Also, some TFs-hub genes were identified by WGCNA in these two modules highly positive-related to antioxidant enzymes activity and ion content. Discussion MeJA triggered a large-scale transcriptomic remodeling, which might be mediated by transcriptional regulation through TFs or post-transcriptional regulation through demethylation. Our findings contributed new perspectives for understanding the underneath mechanisms by which JA-mediated salt tolerance in alfalfa.
Collapse
Affiliation(s)
- YanLing Yin
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - TianHui Yang
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Shuang Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - Xiaoning Li
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - Wei Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| | - ShuGao Fan
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong, China
| |
Collapse
|
77
|
Lv G, Han R, Wang W, Yu Q, Liu G, Yang C, Jiang J. Functional study of BpCOI1 reveals its role in affecting disease resistance in birch. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107938. [PMID: 37579684 DOI: 10.1016/j.plaphy.2023.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Plants interact with biotic and abiotic environments. Some of these interactions are detrimental including herbivory consumption and infections by microbial pathogens. The COI1 (coronatine insensitive 1) protein is the master controller of JA-regulated plant responses and plays a regulatory role in the plant defense response. However, there is little information on COI1 function in birch (Betula platyphylla × Betula pendula). Herein, we studied the F-box protein BpCOI1 which is located in the nucleus. To validate the function of this protein, we developed transgenic birch plants with overexpression or repression of BpCOI1 gene. Growth traits, such as tree height, ground diameter, number of lateral branches, did not change significantly among transgenic lines. Alternaria alternata treatment experiments indicated that low expression of BpCOI1 reduced disease resistance in birch. Furthermore, our results showed that low expression of BpCOI1 significantly reduced the sensitivity of plants to exogenous MeJA. Co-expression analysis showed gene expression patterns with similar characteristics. These genes may be closely related in function, or members involved in the same signaling pathway or physiological process with BpCOI 1. The results of transcriptome sequencing and co-expression analysis showed that BpCOI1 affects plant defense against Alternaria alternata by regulating jasmonates. This study reveals the role of BpCOI1 in disease resistance and proposes the possibility of controlling diseases through molecular breeding in birch.
Collapse
Affiliation(s)
- Guanbin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Rui Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Jilin, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Qibin Yu
- University of Florida, Lake Alfred, FL, USA
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150036, China.
| |
Collapse
|
78
|
Horváth E, Kulman K, Tompa B, Hajnal ÁB, Pelsőczi A, Bela K, Gallé Á, Csiszár J. Glutathione Transferases Are Involved in the Genotype-Specific Salt-Stress Response of Tomato Plants. Antioxidants (Basel) 2023; 12:1682. [PMID: 37759985 PMCID: PMC10525892 DOI: 10.3390/antiox12091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Glutathione transferases (GSTs) are one of the most versatile multigenic enzyme superfamilies. In our experiments, the involvement of the genotype-specific induction of GST genes and glutathione- or redox-related genes in pathways regulating salt-stress tolerance was examined in tomato cultivars (Solanum lycopersicum Moneymaker, Mobil, and Elán F1). The growth of the Mobil plants was adversely affected during salt stress (100 mM of NaCl), which might be the result of lowered glutathione and ascorbate levels, a more positive glutathione redox potential (EGSH), and reduced glutathione reductase (GR) and GST activities. In contrast, the Moneymaker and Elán F1 cultivars were able to restore their growth and exhibited higher GR and inducible GST activities, as well as elevated, non-enzymatic antioxidant levels, indicating their enhanced salt tolerance. Furthermore, the expression patterns of GR, selected GST, and transcription factor genes differed significantly among the three cultivars, highlighting the distinct regulatory mechanisms of the tomato genotypes during salt stress. The correlations between EGSH and gene expression data revealed several robust, cultivar-specific associations, underscoring the complexity of the stress response mechanism in tomatoes. Our results support the cultivar-specific roles of distinct GST genes during the salt-stress response, which, along with WRKY3, WRKY72, DREB1, and DREB2, are important players in shaping the redox status and the development of a more efficient stress tolerance in tomatoes.
Collapse
Affiliation(s)
- Edit Horváth
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| | - Kitti Kulman
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network, H-2462 Martonvásár, Hungary
| | - Bernát Tompa
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Ádám Barnabás Hajnal
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Alina Pelsőczi
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| |
Collapse
|
79
|
Zou J, Chen X, Liu C, Guo M, Kanwar MK, Qi Z, Yang P, Wang G, Bao Y, Bassham DC, Yu J, Zhou J. Autophagy promotes jasmonate-mediated defense against nematodes. Nat Commun 2023; 14:4769. [PMID: 37553319 PMCID: PMC10409745 DOI: 10.1038/s41467-023-40472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN; Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and different atg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activating ATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.
Collapse
Affiliation(s)
- Jinping Zou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Xinlin Chen
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Chenxu Liu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, 572000, Sanya, China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China.
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China.
| |
Collapse
|
80
|
Hu Y, Liu Y, Tao JJ, Lu L, Jiang ZH, Wei JJ, Wu CM, Yin CC, Li W, Bi YD, Lai YC, Wei W, Zhang WK, Chen SY, Zhang JS. GmJAZ3 interacts with GmRR18a and GmMYC2a to regulate seed traits in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1983-2000. [PMID: 37066995 DOI: 10.1111/jipb.13494] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023]
Abstract
Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Jun Tao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Long Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi-Hao Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Jie Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Mei Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui-Cui Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying-Dong Bi
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yong-Cai Lai
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wei Wei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan, 250000, China
| | - Jin-Song Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
81
|
Zhu Q, Fei YJ, Wu YB, Luo DL, Chen M, Sun K, Zhang W, Dai CC. Endophytic Fungus Reshapes Spikelet Microbiome to Reduce Mycotoxin Produced by Fusarium proliferatum through Altering Rice Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37466504 DOI: 10.1021/acs.jafc.3c02616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rice spikelet rot disease (RSRD) caused by Fusarium proliferatum seriously reduces rice yield and produces mycotoxins that threaten human health. The root symbiotic endophytic fungus Phomopsis liquidambaris reduces RSRD incidence and fumonisins accumulation in grain by 21.5 and 9.3%, respectively, while the mechanism of disease resistance remains largely elusive. Here, we found that B3 significantly reduced the abundance of pathogen from 79.91 to 2.84% and considerably enriched resistant microbes Pseudomonas and Proteobacteria in the spikelet microbial community. Further study revealed that B3 altered the metabolites of spikelets, especially hordenine and l-aspartic acid, which played a key role in reshaping the microbiome and supporting the growth of the functional core microbe Pseudomonas, and inhibited the pathogen growth and mycotoxin production. This study provided a feasibility of regulating the function of aboveground microbial communities by manipulating plant subsurface tissues to control disease and mycotoxin pollutants in agricultural production.
Collapse
Affiliation(s)
- Qiang Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yan-Jun Fei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - De-Lin Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Man Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
82
|
Li Y, Shu P, Xiang L, Sheng J, Shen L. CRISPR/Cas9-Mediated SlATG5 Mutagenesis Reduces the Resistance of Tomato Fruit to Botrytis cinerea. Foods 2023; 12:2750. [PMID: 37509842 PMCID: PMC10380010 DOI: 10.3390/foods12142750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Tomato fruit is highly susceptible to infection by Botrytis cinerea (B. cinerea), a dominant pathogen, during storage. Recent studies have shown that autophagy is essential for plant defense against biotic and abiotic stresses. Autophagy-related gene 5 (ATG5) plays a key role in autophagosome completion and maturation, and is rapidly induced by B. cinerea, but the potential mechanisms of ATG5 in Solanum lycopersicum (SlATG5) in postharvest tomato fruit resistance to B. cinerea remain unclear. To elucidate the role of SlATG5 in tomato fruit resistant to B. cinerea, CRISPR/Cas9-mediated knockout of SlATG5 was used in this study. The results showed that slatg5 mutants were more vulnerable to B. cinerea and exhibited more severe disease symptoms and lower activities of disease-resistant enzymes, such as chitinase (CHI), β-1,3-glucanase (GLU), phenylalanine ammonia-lyase (PAL), and polyphenol oxidase (PPO), than the wild type (WT). Furthermore, the study observed that after inoculation with B. cinerea, the relative expression levels of genes related to salicylic acid (SA) signaling, such as SlPR1, SlEDS1, SlPAD4, and SlNPR1, were higher in slatg5 mutants than in WT. Conversely, the relative expression levels of jasmonic acid (JA) signaling-related genes SlLoxD and SlMYC2 were lower in slatg5 mutants than in WT. These findings suggested that SlATG5 positively regulated the resistance response of tomato fruit to B. cinerea by inhibiting the SA signaling pathway and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pan Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lanting Xiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
83
|
Liu Y, Yu Y, Fei S, Chen Y, Xu Y, Zhu Z, He Y. Overexpression of Sly-miR398b Compromises Disease Resistance against Botrytis cinerea through Regulating ROS Homeostasis and JA-Related Defense Genes in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2572. [PMID: 37447133 DOI: 10.3390/plants12132572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
MicroRNAs (miRNAs) have been shown to be critical components in plant immunity. MicroRNA398 (miR398) is a highly conserved miRNA in all land plants and plays crucial roles in diverse biotic stress responses. However, the role of miR398 has not yet been characterized in tomato resistance against Botrytis cinerea. In this report, the transcript levels of sly-miR398b were strongly decreased in B. cinerea-infected leaves and the overexpression of sly-miR398b resulted in enhanced susceptibility. The attenuated expression of cytosol Cu/Zn-SOD (CSD1), chloroplast Cu/Zn-SOD (CSD2), and guaiacol peroxidase (GPOD), as well as the decreased activities of superoxide dismutase (SOD) and GPOD, collectively led to increased hydrogen peroxide (H2O2) accumulation in sly-miR398b overexpressing plants. Furthermore, sly-miR398b was induced by methyl jasmonate (MeJA) treatment. The overexpression of sly-miR398b suppressed the expression of TomLoxD, LapA, and PR-STH2 in response to B. cinerea and MeJA treatment. Our data demonstrate that sly-miR398b overexpression negatively regulates the resistance to B. cinerea in tomato by inducing the accumulation of reactive oxygen species (ROS) and downregulating the expression of MeJA-responsive defense genes.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yiren Yu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Shihong Fei
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunmin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yong He
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
84
|
Deng H, Ma L, Gong D, Xue S, Ackah S, Prusky D, Bi Y. BTH-induced joint regulation of wound healing at the wounds of apple fruit by JA and its downstream transcription factors. Food Chem 2023; 410:135184. [PMID: 36623456 DOI: 10.1016/j.foodchem.2022.135184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Jasmonic acids (JAs) are important injury signaling molecules, which participate in the process of wound healing in plants. However, how JA and its downstream transcription factors involve in wound healing in apple fruit mediated by BTH has not been reported yet. In the present study, BTH treatment up-regulated gene expression of MdLOX3.1, MdAOS1, MdAOC, and MdOPR3, promoting JA synthesis at fruit wounds. Moreover, BTH up-regulated the gene expression of MdMYC2, MdGAIPB, and MdMYB108 transcription factors and increased MdPAL1, Md4CL2, MdCOMT1, and MdCAD6 expression. In addition, BTH facilitated the synthesis of phenylpropanoid metabolism products and accelerated suberin polyphenolics deposition at the wounds, which effectively reduced fruit weight loss and lesion diameter of apple fruit inoculated with Penicillium expansum during healing. It is suggested that BTH induced wound healing in apple fruit by the stimulating JA and its downstream transcription factors, and phenylpropanoid metabolism.
Collapse
Affiliation(s)
- Huiwen Deng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Sulin Xue
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Sabina Ackah
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
85
|
He X, Zhang W, Sabir IA, Jiao C, Li G, Wang Y, Zhu F, Dai J, Liu L, Chen C, Zhang Y, Song C. The spatiotemporal profile of Dendrobium huoshanense and functional identification of bHLH genes under exogenous MeJA using comparative transcriptomics and genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1169386. [PMID: 37235024 PMCID: PMC10206334 DOI: 10.3389/fpls.2023.1169386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Introduction Alkaloids are one of the main medicinal components of Dendrobium species. Dendrobium alkaloids are mainly composed of terpene alkaloids. Jasmonic acid (JA) induce the biosynthesis of such alkaloids, mainly by enhancing the expression of JA-responsive genes to increase plant resistance and increase the content of alkaloids. Many JA-responsive genes are the target genes of bHLH transcription factors (TFs), especially the MYC2 transcription factor. Methods In this study, the differentially expressed genes involved in the JA signaling pathway were screened out from Dendrobium huoshanense using comparative transcriptomics approaches, revealing the critical roles of basic helix-loop-helix (bHLH) family, particularly the MYC2 subfamily. Results and discussion Microsynteny-based comparative genomics demonstrated that whole genome duplication (WGD) and segmental duplication events drove bHLH genes expansion and functional divergence. Tandem duplication accelerated the generation of bHLH paralogs. Multiple sequence alignments showed that all bHLH proteins included bHLH-zip and ACT-like conserved domains. The MYC2 subfamily had a typical bHLH-MYC_N domain. The phylogenetic tree revealed the classification and putative roles of bHLHs. The analysis of cis-acting elements revealed that promoter of the majority of bHLH genes contain multiple regulatory elements relevant to light response, hormone responses, and abiotic stresses, and the bHLH genes could be activated by binding these elements. The expression profiling and qRT-PCR results indicated that bHLH subgroups IIIe and IIId may have an antagonistic role in JA-mediated expression of stress-related genes. DhbHLH20 and DhbHLH21 were considered to be the positive regulators in the early response of JA signaling, while DhbHLH24 and DhbHLH25 might be the negative regulators. Our findings may provide a practical reference for the functional study of DhbHLH genes and the regulation of secondary metabolites.
Collapse
Affiliation(s)
- Xiaomei He
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenwu Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunyan Jiao
- College of Life Sciences, Hefei Normal University, Hefei, China
| | - Guohui Li
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yan Wang
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jun Dai
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Longyun Liu
- School of Bioengineering, Hefei Technology College, Hefei, China
| | - Cunwu Chen
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Cheng Song
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
86
|
Yeo IC, de Azevedo Manhaes AME, Liu J, Avila J, He P, Devarenne TP. An unexpected role for tomato threonine deaminase 2 in host defense against bacterial infection. PLANT PHYSIOLOGY 2023; 192:527-545. [PMID: 36530164 PMCID: PMC10152684 DOI: 10.1093/plphys/kiac584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/03/2023]
Abstract
The hormones salicylic acid (SA) and jasmonic acid (JA) often act antagonistically in controlling plant defense pathways in response to hemibiotrophs/biotrophs (hemi/biotroph) and herbivores/necrotrophs, respectively. Threonine deaminase (TD) converts threonine to α-ketobutyrate and ammonia as the committed step in isoleucine (Ile) biosynthesis and contributes to JA responses by producing the Ile needed to make the bioactive JA-Ile conjugate. Tomato (Solanum lycopersicum) plants have two TD genes: TD1 and TD2. A defensive role for TD2 against herbivores has been characterized in relation to JA-Ile production. However, it remains unknown whether TD2 is also involved in host defense against bacterial hemi/biotrophic and necrotrophic pathogens. Here, we show that in response to the bacterial pathogen-associated molecular pattern (PAMP) flagellin flg22 peptide, an activator of SA-based defense responses, TD2 activity is compromised, possibly through carboxy-terminal cleavage. TD2 knockdown (KD) plants showed increased resistance to the hemibiotrophic bacterial pathogen Pseudomonas syringae but were more susceptible to the necrotrophic fungal pathogen Botrytis cinerea, suggesting TD2 plays opposite roles in response to hemibiotrophic and necrotrophic pathogens. This TD2 KD plant differential response to different pathogens is consistent with SA- and JA-regulated defense gene expression. flg22-treated TD2 KD plants showed high expression levels of SA-responsive genes, whereas TD2 KD plants treated with the fungal PAMP chitin showed low expression levels of JA-responsive genes. This study indicates TD2 acts negatively in defense against hemibiotrophs and positively against necrotrophs and provides insight into a new TD2 function in the elaborate crosstalk between SA and JA signaling induced by pathogen infection.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | | - Jun Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Julian Avila
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
87
|
Sobol G, Majhi BB, Pasmanik-Chor M, Zhang N, Roberts HM, Martin GB, Sessa G. Tomato receptor-like cytoplasmic kinase Fir1 is involved in flagellin signaling and preinvasion immunity. PLANT PHYSIOLOGY 2023; 192:565-581. [PMID: 36511947 PMCID: PMC10152693 DOI: 10.1093/plphys/kiac577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 05/03/2023]
Abstract
Detection of bacterial flagellin by the tomato (Solanum lycopersicum) receptors Flagellin sensing 2 (Fls2) and Fls3 triggers activation of pattern-triggered immunity (PTI). We identified the tomato Fls2/Fls3-interacting receptor-like cytoplasmic kinase 1 (Fir1) protein that is involved in PTI triggered by flagellin perception. Fir1 localized to the plasma membrane and interacted with Fls2 and Fls3 in yeast (Saccharomyces cerevisiae) and in planta. CRISPR/Cas9-generated tomato fir1 mutants were impaired in several immune responses induced by the flagellin-derived peptides flg22 and flgII-28, including resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, production of reactive oxygen species, and enhanced PATHOGENESIS-RELATED 1b (PR1b) gene expression, but not MAP kinase phosphorylation. Remarkably, fir1 mutants developed larger Pst DC3000 populations than wild-type plants, whereas no differences were observed in wild-type and fir1 mutant plants infected with the flagellin deficient Pst DC3000ΔfliC. fir1 mutants failed to close stomata when infected with Pst DC3000 and Pseudomonas fluorescens and were more susceptible to Pst DC3000 than wild-type plants when inoculated by dipping, but not by vacuum-infiltration, indicating involvement of Fir1 in preinvasion immunity. RNA-seq analysis detected fewer differentially expressed genes in fir1 mutants and altered expression of jasmonic acid (JA)-related genes. In support of JA response deregulation in fir1 mutants, these plants were similarly susceptible to Pst DC3000 and to the coronatine-deficient Pst DC3118 strain, and more resistant to the necrotrophic fungus Botrytis cinerea following PTI activation. These results indicate that tomato Fir1 is required for a subset of flagellin-triggered PTI responses and support a model in which Fir1 negatively regulates JA signaling during PTI activation.
Collapse
Affiliation(s)
- Guy Sobol
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Bharat Bhusan Majhi
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S. Wise Faculty of Life Science, Tel-Aviv University, 69978 Tel- Aviv, Israel
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Holly M Roberts
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
88
|
Zhu Z, Luo M, Li J, Cui B, Liu Z, Fu D, Zhou H, Zhou A. Comparative transcriptome analysis reveals the function of SlPRE2 in multiple phytohormones biosynthesis, signal transduction and stomatal development in tomato. PLANT CELL REPORTS 2023; 42:921-937. [PMID: 37010556 DOI: 10.1007/s00299-023-03001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/27/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Transcriptomic, physiological, and qRT-PCR analysis revealed the potential mechanism by which SlPRE2 regulates plant growth and stomatal size via multiple phytohormone pathways in tomato. Paclobutrazol resistance proteins (PREs) are atypical members of the basic/helix-loop-helix (bHLH) transcription factor family that regulate plant morphology, cell size, pigment metabolism and abiotic stress in response to different phytohormones. However, little is known about the network regulatory mechanisms of PREs in plant growth and development in tomato. In this study, the function and mechanism of SlPRE2 in tomato plant growth and development were investigated. The quantitative RT-PCR results showed that the expression of SlPRE2 was regulated by multiple phytohormones and abiotic stresses. It showed light-repressed expression during the photoperiod. The RNA-seq results revealed that SlPRE2 regulated many genes involved in photosynthesis, chlorophyll metabolism, phytohormone metabolism and signaling, and carbohydrate metabolism, suggesting the role of SlPRE2 in gibberellin, brassinosteroid, auxin, cytokinin, abscisic acid and salicylic acid regulated plant development processes. Moreover, SlPRE2 overexpression plants showed widely opened stomata in young leaves, and four genes involved in stomatal development showed altered expression. Overall, the results demonstrated the mechanism by which SlPRE2 regulates phytohormone and stress responses and revealed the function of SlPRE2 in stomatal development in tomato. These findings provide useful clues for understanding the molecular mechanisms of SlPRE2-regulated plant growth and development in tomato.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| | - Menglin Luo
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Jialing Li
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Baolu Cui
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun, 558000, Guizhou, China
| | - Zixin Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Dapeng Fu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Huiwen Zhou
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Anpei Zhou
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| |
Collapse
|
89
|
Dang F, Lin J, Li Y, Jiang R, Fang Y, Ding F, He S, Wang Y. SlWRKY30 and SlWRKY81 synergistically modulate tomato immunity to Ralstonia solanacearum by directly regulating SlPR-STH2. HORTICULTURE RESEARCH 2023; 10:uhad050. [PMID: 37206055 PMCID: PMC10189802 DOI: 10.1093/hr/uhad050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 03/08/2023] [Indexed: 05/21/2023]
Abstract
Bacterial wilt is a devastating disease of tomato (Solanum lycopersicum) caused by Ralstonia solanacearum that severely threatens tomato production. Group III WRKY transcription factors (TFs) are implicated in the plant response to pathogen infection; however, their roles in the response of tomato to R. solanacearum infection (RSI) remain largely unexplored. Here, we report the crucial role of SlWRKY30, a group III SlWRKY TF, in the regulation of tomato response to RSI. SlWRKY30 was strongly induced by RSI. SlWRKY30 overexpression reduced tomato susceptibility to RSI, and also increased H2O2 accumulation and cell necrosis, suggesting that SlWRKY30 positively regulates tomato resistance to RSI. RNA sequencing and reverse transcription-quantitative PCR revealed that SlWRKY30 overexpression significantly upregulated pathogenesis-related protein (SlPR-STH2) genes SlPR-STH2a, SlPR-STH2b, SlPR-STH2c, and SlPR-STH2d (hereafter SlPR-STH2a/b/c/d) in tomato, and these SlPR-STH2 genes were directly targeted by SlWRKY30. Moreover, four group III WRKY proteins (SlWRKY52, SlWRKY59, SlWRKY80, and SlWRKY81) interacted with SlWRKY30, and SlWRKY81 silencing increased tomato susceptibility to RSI. Both SlWRKY30 and SlWRKY81 activated SlPR-STH2a/b/c/d expression by directly binding to their promoters. Taking these results together, SlWRKY30 and SlWRKY81 synergistically regulate resistance to RSI by activating SlPR-STH2a/b/c/d expression in tomato. Our results also highlight the potential of SlWRKY30 to improve tomato resistance to RSI via genetic manipulations.
Collapse
Affiliation(s)
- Fengfeng Dang
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Jinhui Lin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajing Li
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ruoyun Jiang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yudong Fang
- State Key Laboratory for Conservation and Utilization of Subtropical AgroBioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fei Ding
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Shuilin He
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanfeng Wang
- Shaanxi Key Laboratory of Chinese Jujube, Yan’an University, Yan’an, Shaanxi 716000, China
| |
Collapse
|
90
|
Yang C, Bai Y, Halitschke R, Gase K, Baldwin G, Baldwin IT. Exploring the metabolic basis of growth/defense trade-offs in complex environments with Nicotiana attenuata plants cosilenced in NaMYC2a/b expression. THE NEW PHYTOLOGIST 2023; 238:349-366. [PMID: 36636784 DOI: 10.1111/nph.18732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In response to challenges from herbivores and competitors, plants use fitness-limiting resources to produce (auto)toxic defenses. Jasmonate signaling, mediated by MYC2 transcription factors (TF), is thought to reconfigure metabolism to minimize these formal costs of defense and optimize fitness in complex environments. To study the context-dependence of this metabolic reconfiguration, we cosilenced NaMYC2a/b by RNAi in Nicotiana attenuata and phenotyped plants in the field and increasingly realistic glasshouse setups with competitors and mobile herbivores. NaMYC2a/b had normal phytohormonal responses, and higher growth and fitness in herbivore-reduced environments, but were devastated in high herbivore-load environments in the field due to diminished accumulations of specialized metabolites. In setups with competitors and mobile herbivores, irMYC2a/b plants had lower fitness than empty vector (EV) in single-genotype setups but increased fitness in mixed-genotype setups. Correlational analyses of metabolic, resistance, and growth traits revealed the expected defense/growth associations for most sectors of primary and specialized metabolism. Notable exceptions were some HGL-DTGs and phenolamides that differed between single-genotype and mixed-genotype setups, consistent with expectations of a blurred functional trichotomy of metabolites. MYC2 TFs mediate the reconfiguration of primary and specialized metabolic sectors to allow plants to optimize their fitness in complex environments.
Collapse
Affiliation(s)
- Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Gundega Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
91
|
Luo D, Sun W, Cai J, Hu G, Zhang D, Zhang X, Larkin RM, Zhang J, Yang C, Ye Z, Wang T. SlBBX20 attenuates JA signalling and regulates resistance to Botrytis cinerea by inhibiting SlMED25 in tomato. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:792-805. [PMID: 36582069 PMCID: PMC10037119 DOI: 10.1111/pbi.13997] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Jasmonic acid (JA) plays an important role in regulating plant growth and defence responses. Here, we show that a transcription factor that belongs to the B-box (BBX) family named SlBBX20 regulates resistance to Botrytis cinerea in tomato by modulating JA signalling. The response to JA was significantly suppressed when SlBBX20 was overexpressed in tomato. By contrast, the JA response was enhanced in SlBBX20 knockout lines. RNA sequencing analysis provided more evidence that SlBBX20 modulates the expression of genes that are involved in JA signalling. We found that SlBBX20 interacts with SlMED25, a subunit of the Mediator transcriptional co-activator complex, and prevents the accumulation of the SlMED25 protein and transcription of JA-responsive genes. JA contributes to the defence response against necrotrophic pathogens. Knocking out SlBBX20 or overexpressing SlMED25 enhanced tomato resistance to B. cinerea. The resistance was impaired when SlBBX20 was overexpressed in plants that also overexpressed SlMED25. These data show that SlBBX20 attenuates JA signalling by regulating SlMED25. Interestingly, in addition to developing enhanced resistance to B. cinerea, SlBBX20-KO plants also produced higher fruit yields. SlBBX20 is a potential target gene for efforts that aim to develop elite crop varieties using gene editing technologies.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Wenhui Sun
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Jun Cai
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Guoyu Hu
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Danqiu Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Xiaoyan Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Robert M. Larkin
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Junhong Zhang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Changxian Yang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Zhibiao Ye
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| | - Taotao Wang
- Key Laboratory of Horticulture Plant Biology, Ministry of EducationHuazhong Agriculture UniversityWuhanChina
| |
Collapse
|
92
|
Deng L, Yang T, Li Q, Chang Z, Sun C, Jiang H, Meng X, Huang T, Li CB, Zhong S, Li C. Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. THE PLANT CELL 2023; 35:1038-1057. [PMID: 36471914 PMCID: PMC10015170 DOI: 10.1093/plcell/koac349] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fruit ripening relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, and the evolutionarily conserved Mediator (MED) coactivator complex plays an essential role in this process. In tomato (Solanum lycopersicum), a model climacteric fruit, ripening is tightly coordinated by ethylene and several key transcription factors. However, the mechanism underlying the transmission of context-specific regulatory signals from these ripening-related transcription factors to the Pol II transcription machinery remains unknown. Here, we report the mechanistic function of MED25, a subunit of the plant Mediator transcriptional coactivator complex, in controlling the ethylene-mediated transcriptional program during fruit ripening. Multiple lines of evidence indicate that MED25 physically interacts with the master transcription factors of the ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) family, thereby playing an essential role in pre-initiation complex formation during ethylene-induced gene transcription. We also show that MED25 forms a transcriptional module with EIL1 to regulate the expression of ripening-related regulatory as well as structural genes through promoter binding. Furthermore, the EIL1-MED25 module orchestrates both positive and negative feedback transcriptional circuits, along with its downstream regulators, to fine-tune ethylene homeostasis during fruit ripening.
Collapse
Affiliation(s)
- Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zeqian Chang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwen Meng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
93
|
Zhou GD, He P, Tian L, Xu S, Yang B, Liu L, Wang Y, Bai T, Li X, Li S, Zheng SJ. Disentangling the resistant mechanism of Fusarium wilt TR4 interactions with different cultivars and its elicitor application. FRONTIERS IN PLANT SCIENCE 2023; 14:1145837. [PMID: 36938065 PMCID: PMC10018200 DOI: 10.3389/fpls.2023.1145837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Fusarium wilt of banana, especially Tropical Race 4 (TR4) is a major factor restricting banana production. Developing a resistant cultivar and inducing plant defenses by elicitor application are currently two of the best options to control this disease. Isotianil is a monocarboxylic acid amide that has been used as a fungicide to control rice blast and could potentially induce systemic acquired resistance in plants. To determine the control effect of elicitor isotianil on TR4 in different resistant cultivars, a greenhouse pot experiment was conducted and its results showed that isotianil could significantly alleviate the symptoms of TR4, provide enhanced disease control on the cultivars 'Baxi' and 'Yunjiao No.1' with control effect 50.14% and 56.14%, respectively. We compared the infection processes in 'Baxi' (susceptible cultivars) and 'Yunjiao No.1' (resistant cultivars) two cultivars inoculated with pathogen TR4. The results showed that TR4 hyphae could rapidly penetrate the cortex into the root vascular bundle for colonization, and the colonization capacity in 'Baxi' was significantly higher than that in 'Yunjiao No.1'. The accumulation of a large number of starch grains was observed in corms cells, and further analysis showed that the starch content in 'Yunjiao No. 1' as resistant cultivar was significantly higher than that in 'Baxi' as susceptible cultivar, and isotianil application could significantly increase the starch content in 'Baxi'. Besides, a mass of tyloses were observed in the roots and corms and these tyloses increased after application with isotianil. Furthermore, the total starch and tyloses contents and the control effect in the corms of 'Yunjiao No.1' was higher than that in the 'Baxi'. Moreover, the expression levels of key genes for plant resistance induction and starch synthesis were analyzed, and the results suggested that these genes were significantly upregulated at different time points after the application of isotianil. These results suggest that there are significant differences between cultivars in response to TR4 invasion and plant reactions with respect to starch accumulation, tyloses formation and the expression of plant resistance induction and starch synthesis related genes. Results also indicate that isotianil application may contribute to disease control by inducing host plant defense against TR4 infection and could be potentially used together with resistant cultivar as integrated approach to manage this destructive disease. Further research under field conditions should be included in the next phases of study.
Collapse
Affiliation(s)
- Guang-Dong Zhou
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Ping He
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Libo Tian
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Shengtao Xu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Baoming Yang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Lina Liu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Yongfen Wang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Institute of Tropical and Subtropical Industry Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Tingting Bai
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Xundong Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shu Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Bioversity International, Kunming, Yunnan, China
| |
Collapse
|
94
|
Min D, Li F, Ali M, Liu J, Fu X, Song Y, Ding J, Li X, Ji N, Zhang X. Interaction of methionine sulfoxide reductase B5 with SlMYC2 stimulates the transcription of MeJA-mediated autophagy-related genes in tomato fruit. HORTICULTURE RESEARCH 2023; 10:uhad012. [PMID: 36968182 PMCID: PMC10031729 DOI: 10.1093/hr/uhad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Methyl jasmonate (MeJA) has been shown to induce autophagy in various plant stress responses and metabolic pathways. MYC2 is involved in MeJA-mediated postharvest fruit biological metabolism, but it is unclear how it affects MeJA-induced fruit autophagy. In this study, we noticed that silencing SlMYC2 significantly reduced the increase in autophagy-related genes (SlATGs) expression induced by MeJA. SlMYC2 could also bind to the promoters of several SlATGs, including SlATG13a, SlATG13b, SlATG18a, and SlATG18h, and activate their transcript levels. Moreover, SlMsrB5, a methionine sulfoxide reductase, could interact with SlMYC2. Methionine oxidation in SlMYC2 and mimicking sulfoxidation in SlMYC2 by mutation of methionine-542 to glutamine reduced the DNA-binding ability and transcriptional activity of SlMYC2, respectively. SlMsrB5 partially repaired oxidized SlMYC2 and restored its DNA-binding ability. On the other hand, silencing SlMsrB5 inhibited the transcript levels of SlMYC2-targeted genes (SlATG13a, SlATG13b, SlATG18a, and SlATG18h). Similarly, dual-luciferase reporter (DLR) analysis revealed that SlMsrB5-SlMYC2 interaction significantly increased the ability of SlMYC2-mediated transcriptional activation of SlATG13a, SlATG13b, SlATG18a, and SlATG18h. These findings demonstrate that SlMsrB5-mediated cyclic oxidation/reduction of methionine in SlMYC2 influences SlATGs expression. Collectively, these findings reveal the mechanism of SlMYC2 in SlATGs transcriptional regulation, providing insight into the mechanism of MeJA-mediated postharvest fruit quality regulation.
Collapse
Affiliation(s)
| | | | - Maratab Ali
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Jiong Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiaodong Fu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Yanan Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jun Ding
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiaoan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Nana Ji
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China
| | | |
Collapse
|
95
|
Physiological and Transcriptional Responses of Apocynum venetum to Salt Stress at the Seed Germination Stage. Int J Mol Sci 2023; 24:ijms24043623. [PMID: 36835035 PMCID: PMC9966927 DOI: 10.3390/ijms24043623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Apocynum venetum is a semi-shrubby perennial herb that not only prevents saline-alkaline land degradation but also produces leaves for medicinal uses. Although physiological changes during the seed germination of A. venetum in response to salt stress have been studied, the adaptive mechanism to salt conditions is still limited. Here, the physiological and transcriptional changes during seed germination under different NaCl treatments (0-300 mmol/L) were examined. The results showed that the seed germination rate was promoted at low NaCl concentrations (0-50 mmol/L) and inhibited with increased concentrations (100-300 mmol/L); the activity of antioxidant enzymes exhibited a significant increase from 0 (CK) to 150 mmol/L NaCl and a significant decrease from 150 to 300 mmol/L; and the content of osmolytes exhibited a significant increase with increased concentrations, while the protein content peaked at 100 mmol/L NaCl and then significantly decreased. A total of 1967 differentially expressed genes (DEGs) were generated during seed germination at 300 mmol/L NaCl versus (vs.) CK, with 1487 characterized genes (1293 up-regulated, UR; 194 down-regulated, DR) classified into 11 categories, including salt stress (29), stress response (146), primary metabolism (287), cell morphogenesis (156), transcription factor (TFs, 62), bio-signaling (173), transport (144), photosynthesis and energy (125), secondary metabolism (58), polynucleotide metabolism (21), and translation (286). The relative expression levels (RELs) of selected genes directly involved in salt stress and seed germination were observed to be consistent with the changes in antioxidant enzyme activities and osmolyte contents. These findings will provide useful references to improve seed germination and reveal the adaptive mechanism of A. venetum to saline-alkaline soils.
Collapse
|
96
|
MYC2: A Master Switch for Plant Physiological Processes and Specialized Metabolite Synthesis. Int J Mol Sci 2023; 24:ijms24043511. [PMID: 36834921 PMCID: PMC9963318 DOI: 10.3390/ijms24043511] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The jasmonic acid (JA) signaling pathway plays important roles in plant defenses, development, and the synthesis of specialized metabolites synthesis. Transcription factor MYC2 is a major regulator of the JA signaling pathway and is involved in the regulation of plant physiological processes and specialized metabolite synthesis. Based on our understanding of the mechanism underlying the regulation of specialized metabolite synthesis in plants by the transcription factor MYC2, the use of synthetic biology approaches to design MYC2-driven chassis cells for the synthesis of specialized metabolites with high medicinal value, such as paclitaxel, vincristine, and artemisinin, seems to be a promising strategy. In this review, the regulatory role of MYC2 in JA signal transduction of plants to biotic and abiotic stresses, plant growth, development and specialized metabolite synthesis is described in detail, which will provide valuable reference for the use of MYC2 molecular switches to regulate plant specialized metabolite biosynthesis.
Collapse
|
97
|
Jian Y, Feng S, Huang A, Zhu Z, Zhang J, Tang S, Jin L, Ren M, Dong P. Integrative mRNA and microRNA Analysis Exploring the Inducing Effect and Mechanism of Diallyl Trisulfide (DATS) on Potato against Late Blight. Int J Mol Sci 2023; 24:ijms24043474. [PMID: 36834885 PMCID: PMC9962630 DOI: 10.3390/ijms24043474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Potato late blight, caused by Phytophthora infestans, leads to a significant reduction in the yield and value of potato. Biocontrol displays great potential in the suppression of plant diseases. Diallyl trisulfide (DATS) is a well-known natural compound for biocontrol, although there is little information about it against potato late blight. In this study, DATS was found to be able to inhibit the hyphae growth of P. infestans, reduce its pathogenicity on detached potato leaves and tubers, and induce the overall resistance of potato tubers. DATS significantly increases catalase (CAT) activity of potato tubers, and it does not affect the levels of peroxidase (POD), superoxide dismutase (SOD), and malondialdehyde (MDA). The transcriptome datasets show that totals of 607 and 60 significantly differentially expressed genes (DEGs) and miRNAs (DEMs) are detected. Twenty-one negatively regulated miRNA-mRNA interaction pairs are observed in the co-expression regulatory network, which are mainly enriched in metabolic pathways, biosynthesis of secondary metabolites, and starch and sucrose metabolism based on the KEGG pathway. Our observations provide new insight into the role of DATS in biocontrol of potato late blight.
Collapse
Affiliation(s)
- Yongfei Jian
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
- Sanya Nanfan Research Institute, School of Horticulture, Hainan University, Haikou 570228, China
| | - Airong Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Zhiming Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
- Hongshen Honors School, Chongqing University, Chongqing 401331, China
| | - Jiaomei Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Shicai Tang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
| | - Liang Jin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Correspondence: (M.R.); (P.D.)
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China
- Correspondence: (M.R.); (P.D.)
| |
Collapse
|
98
|
Wang B, Wang J, Yang T, Wang J, Dai Q, Zhang F, Xi R, Yu Q, Li N. The transcriptional regulatory network of hormones and genes under salt stress in tomato plants ( Solanum lycopersicum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1115593. [PMID: 36814758 PMCID: PMC9939653 DOI: 10.3389/fpls.2023.1115593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Salt stress has become one of the main limiting factors affecting the normal growth and development of tomatoes as well as fruit quality and yields. To further reveal the regulatory relationships between tomato hormones under salt stress, the interaction between hormones and TF and the genome-wide gene interaction network were analyzed and constructed. After salt treatment, the levels of ABA, SA, and JA were significantly increased, the levels of GA were decreased, and IAA and tZ showed a trend of first increasing and then decreasing. The expression patterns of hormone biosynthesis and signal transduction related genes were analyzed based on RNA-seq analysis, the co-expression network of hormones and genome-wide co-expression networks were constructed using weighted gene co-expression network analysis (WGCNA). The expression patterns of specific transcription factors under salt stress were also systematically analyzed and identified 20 hormone-related candidate genes associated with salt stress. In conclusion, we first revealed the relationship between hormones and genes in tomatoes under salt stress based on hormone and transcriptome expression profiles and constructed a gene regulatory network. A transcriptional regulation model of tomato consisted of six types of hormones was also proposed. Our study provided valuable insights into the molecular mechanisms regulating salt tolerance in tomatoes.
Collapse
Affiliation(s)
- Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Jinxin Wang
- Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qi Dai
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Fulin Zhang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Rui Xi
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
99
|
Zhao W, Huang H, Wang J, Wang X, Xu B, Yao X, Sun L, Yang R, Wang J, Sun A, Wang S. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:546-561. [PMID: 36534116 DOI: 10.1111/tpj.16067] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The jasmonic acid (JA) signaling pathway is involved in the plant response to drought stress. JA and other hormones synergistically regulate the drought response in plants. However, the molecular mechanism underlying this synergism remains poorly defined. In the present study, transcriptome analyses of guard cells and quantitative PCR experiments revealed that MYC2 negatively regulated the negative regulator of ABA signaling, SlPP2C1, and the type-B response regulator in the cytokinin pathway, SlRR26, and this negative regulation was direct. SlRR26 overexpression reduced drought tolerance in transgenic tomatoes, whereas slrr26cr lines were more tolerant to drought. SlRR26 negatively modulated reactive oxygen species levels in stomata and stomatal closure through RobhB. Moreover, SlRR26 overexpression counteracted JA-mediated stomatal closure, suggesting that SlRR26 played a negative role in the JA-mediated drought response. These findings suggest that MYC2 plays a key role in JA-regulated stomatal closure under drought stress by inhibiting SlPP2C1 and SlRR26.
Collapse
Affiliation(s)
- Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jingjing Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoyun Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Bingqin Xu
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuehui Yao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jianli Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Aidong Sun
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
100
|
Vegetable biology and breeding in the genomics era. SCIENCE CHINA. LIFE SCIENCES 2023; 66:226-250. [PMID: 36508122 DOI: 10.1007/s11427-022-2248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Vegetable crops provide a rich source of essential nutrients for humanity and represent critical economic values to global rural societies. However, genetic studies of vegetable crops have lagged behind major food crops, such as rice, wheat and maize, thereby limiting the application of molecular breeding. In the past decades, genome sequencing technologies have been increasingly applied in genetic studies and breeding of vegetables. In this review, we recapitulate recent progress on reference genome construction, population genomics and the exploitation of multi-omics datasets in vegetable crops. These advances have enabled an in-depth understanding of their domestication and evolution, and facilitated the genetic dissection of numerous agronomic traits, which jointly expedites the exploitation of state-of-the-art biotechnologies in vegetable breeding. We further provide perspectives of further directions for vegetable genomics and indicate how the ever-increasing omics data could accelerate genetic, biological studies and breeding in vegetable crops.
Collapse
|