51
|
Zou Y, Zhu W, Sloan DB, Wu Z. Long-read sequencing characterizes mitochondrial and plastid genome variants in Arabidopsis msh1 mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:738-755. [PMID: 36097957 PMCID: PMC9617793 DOI: 10.1111/tpj.15976] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The abundant repeats in plant mitochondrial genomes can cause rapid genome rearrangements and are also a major obstacle in short-read sequencing studies. Nuclear-encoded proteins such as MSH1 are known to suppress the generation of repeat-associated mitochondrial genome variants, but our understanding of these mechanisms has been constrained by the limitations of short-read technologies. Here, we used highly accurate long-read sequencing (PacBio HiFi) to characterize mitochondrial and plastid genome variants in Arabidopsis thaliana msh1 mutant individuals. The HiFi reads provided a global view of recombination dynamics with detailed quantification of parental and crossover recombination products for both large and small repeats. We found that recombination breakpoints were distributed relatively evenly across the length of repeated sequences and detected widespread internal exchanges of sequence variants between pairs of imperfect repeats in the mitochondrial genome of msh1 mutants. Long-read assemblies of mitochondrial genomes from seven other A. thaliana wild-type accessions differed by repeat-mediated structural rearrangements similar to those observed in msh1 mutants, but they were all in a simple low-heteroplasmy state. The Arabidopsis plastid genome generally lacks small repeats and exhibited a very different pattern of variant accumulation in msh1 mutants compared with the mitochondrial genome. Our data illustrate the power of HiFi technology in studying repeat-mediated recombination in plant organellar genomes and improved the sequence resolution for recombinational processes suppressed by MSH1. Plant organellar genomes can undergo rapid rearrangements. Long-read sequencing provides a detailed and quantitative view of mitochondrial and plastid genome variants normally suppressed by MSH1, advancing our understanding of plant organellar genome dynamics.
Collapse
Affiliation(s)
- Yi Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Weidong Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
52
|
Yang J, Ling C, Zhang H, Hussain Q, Lyu S, Zheng G, Liu Y. A Comparative Genomics Approach for Analysis of Complete Mitogenomes of Five Actinidiaceae Plants. Genes (Basel) 2022; 13:genes13101827. [PMID: 36292711 PMCID: PMC9601400 DOI: 10.3390/genes13101827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022] Open
Abstract
Actinidiaceae, an economically important plant family, includes the Actinidia, Clematoclethra and Saurauia genus. Kiwifruit, with remarkably high vitamin C content, is an endemic species widely distributed in China with high economic value. Although many Actinidiaceae chloroplast genomes have been reported, few complete mitogenomes of Actinidiaceae have been studied. Here, complete circular mitogenomes of the four kiwifruit species and Saurauia tristyla were assembled. Codon usage, sequence repeats, RNA editing, gene transfers, selective pressure, and phylogenetic relationships in the four kiwifruit species and S. tristyla were comparatively analyzed. This research will contribute to the study of phylogenetic relationships within Actiniaceae and molecular barcoding in kiwifruit.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Chengcheng Ling
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Huamin Zhang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Guohua Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (G.Z.); (Y.L.)
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (G.Z.); (Y.L.)
| |
Collapse
|
53
|
Zhang X, Hu Y, Smith DR. HSDatabase-a database of highly similar duplicate genes from plants, animals, and algae. Database (Oxford) 2022; 2022:baac086. [PMID: 36208223 PMCID: PMC9547538 DOI: 10.1093/database/baac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Gene duplication is an important evolutionary mechanism capable of providing new genetic material, which in some instances can help organisms adapt to various environmental conditions. Recent studies, for example, have indicated that highly similar duplicate genes (HSDs) are aiding adaptation to extreme conditions via gene dosage. However, for most eukaryotic genomes HSDs remain uncharacterized, partly because they can be hard to identify and categorize efficiently and effectively. Here, we collected and curated HSDs in nuclear genomes from various model animals, land plants and algae and indexed them in an online, open-access sequence repository called HSDatabase. Currently, this database contains 117 864 curated HSDs from 40 distinct genomes; it includes statistics on the total number of HSDs per genome as well as individual HSD copy numbers/lengths and provides sequence alignments of the duplicate gene copies. HSDatabase also allows users to download sequences of gene copies, access genome browsers, and link out to other databases, such as Pfam and Kyoto Encyclopedia of Genes and Genomes. What is more, a built-in Basic Local Alignment Search Tool option is available to conveniently explore potential homologous sequences of interest within and across species. HSDatabase has a user-friendly interface and provides easy access to the source data. It can be used on its own for comparative analyses of gene duplicates or in conjunction with HSDFinder, a newly developed bioinformatics tool for identifying, annotating, categorizing and visualizing HSDs. Database URL: http://hsdfinder.com/database/.
Collapse
Affiliation(s)
- Xi Zhang
- Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yining Hu
- Department of Computer Science, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario N6A 3K7, Canada
| |
Collapse
|
54
|
Shen J, Li X, Li M, Cheng H, Huang X, Jin S. Characterization, comparative phylogenetic, and gene transfer analyses of organelle genomes of Rhododendron × pulchrum. FRONTIERS IN PLANT SCIENCE 2022; 13:969765. [PMID: 36212362 PMCID: PMC9532937 DOI: 10.3389/fpls.2022.969765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Rhododendron × pulchrum, an important horticultural species, is widely distributed in Europe, Asia, and North America. To analyze the phylogenetic and organelle genome information of R. × pulchrum and its related species, the organelle genome of R. × pulchrum was sequenced and assembled. The complete mitochondrial genome showed lineage DNA molecules, which were 816,410 bp long and contained 64 genes, namely 24 transfer RNA (tRNA) genes, 3 ribosomal RNA (rRNA) genes, and 37 protein-coding genes. The chloroplast genome of R. × pulchrum was reassembled and re-annotated; the results were different from those of previous studies. There were 42 and 46 simple sequence repeats (SSR) identified from the mitochondrial and chloroplast genomes of R. × pulchrum, respectively. Five genes (nad1, nad2, nad4, nad7, and rps3) were potentially useful molecular markers. The R. × pulchrum mitochondrial genome collinear alignment among five species of the Ericaceae showed that the mitochondrial genomes of these related species have a high degree of homology with R. × pulchrum in this gene region, and the most conservative genes were trnC-GCA, trnD-GUC, trnM-CAU, trnN-GUU, trnY-GUA, atp4, nad4, nad2, nad5, ccmC, and rrn26. The phylogenetic trees of mitochondrial genome showed that R. simsii was a sister to R. × pulchrum. The results verified that there was gene rearrangement between R. × pulchrum and R. simsii mitochondrial genomes. The codon usage bias of 10 Ericaceae mitochondrial genes and 7 Rhododendron chloroplast genes were influenced by mutation, while other genes codon usages had undergone selection. The study identified 13 homologous fragments containing gene sequences between the chloroplast and mitochondrial genomes of R. × pulchrum. Overall, our results illustrate the organelle genome information could explain the phylogenetics of plants and could be used to develop molecular markers and genetic evolution. Our study will facilitate the study of population genetics and evolution in Rhododendron and other genera in Ericaceae.
Collapse
Affiliation(s)
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji, China
- Department of Life Science and Health, Huzhou College, Huzhou, Zhejiang, China
| | - Mingzhi Li
- Bio and Data Biotechnology Co., Ltd., Guangzhou, China
| | - Hefeng Cheng
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | | | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, China
- Department of Life Science and Health, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
55
|
Complex Physical Structure of Complete Mitochondrial Genome of Quercus acutissima (Fagaceae): A Significant Energy Plant. Genes (Basel) 2022; 13:genes13081321. [PMID: 35893058 PMCID: PMC9331829 DOI: 10.3390/genes13081321] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Quercus acutissima Carruth. is a Chinese important energy plant with high ecological and economic values. While the species chloroplast genome has been reported, its mitochondrial genome (mitogenome) is still unexplored. Here, we assembled and annotated the Q. acutissima mitogenome, and we compared its characteristic differences with several closely related species. The Q. acutissima mitogenome’s main structure is branched with three distinguished contigs (linear molecule 1, circular molecule 2, and circular molecule 3) with 448,982 bp total length and 45.72% GC content. The mitogenome contained 51 genes, including 32 protein-coding, 16 tRNA and 3 rRNA genes. We examined codon usage, repeated sequences, genome recombination, chloroplast to mitochondrion DNA transformation, RNA editing, and synteny in the Q. acutissima mitogenome. Phylogenetic trees based on 29 species mitogenomes clarified the species classification. Our results provided comprehensive information of Q. acutissima mitogenome, and they are expected to provide valuable information for Fagaceae evolutionary biology and to promote the species germplasm utilization.
Collapse
|
56
|
Wu J, Xu XD, Liu L, Ma L, Pu Y, Wang W, Hua XY, Song JM, Liu K, Lu G, Fang Y, Li X, Sun W. A Chromosome Level Genome Assembly of a Winter Turnip Rape ( Brassica rapa L.) to Explore the Genetic Basis of Cold Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:936958. [PMID: 35909760 PMCID: PMC9335200 DOI: 10.3389/fpls.2022.936958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Winter rapeseed (Brassica rapa L.) is an important overwintering oilseed crop that is widely planted in northwest China and suffers chronic low temperatures in winter. So the cold stress becomes one of the major constraints that limit its production. The currently existing genomes limit the understanding of the cold-tolerant genetic basis of rapeseed. Here we assembled a high-quality long-read genome of B. rapa "Longyou-7" cultivar, which has a cold-tolerant phenotype, and constructed a graph-based pan-genome to detect the structural variations within homologs of currently reported cold-tolerant related genes in the "Longyou-7" genome, which provides an additional elucidation of the cold-tolerant genetic basis of "Longyou-7" cultivar and promotes the development of cold-tolerant breeding in B. rapa.
Collapse
Affiliation(s)
- Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xin-Dong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Pu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xue-Yang Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangyuan Lu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xuecai Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
57
|
Mizrahi R, Shevtsov-Tal S, Ostersetzer-Biran O. Group II Intron-Encoded Proteins (IEPs/Maturases) as Key Regulators of Nad1 Expression and Complex I Biogenesis in Land Plant Mitochondria. Genes (Basel) 2022; 13:genes13071137. [PMID: 35885919 PMCID: PMC9321910 DOI: 10.3390/genes13071137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are semi-autonomous organelles that produce much of the energy required for cellular metabolism. As descendants of a bacterial symbiont, most mitochondria harbor their own genetic system (mtDNA/mitogenome), with intrinsic machineries for transcription and protein translation. A notable feature of plant mitochondria involves the presence of introns (mostly group II-type) that reside in many organellar genes. The splicing of the mtRNAs relies on the activities of various protein cofactors, which may also link organellar functions with cellular or environmental signals. The splicing of canonical group II introns is aided by an ancient class of RT-like enzymes (IEPs/maturases, MATs) that are encoded by the introns themselves and act specifically on their host introns. The plant organellar introns are degenerated in structure and are generally also missing their cognate intron-encoded proteins. The factors required for plant mtRNA processing are mostly nuclearly-encoded, with the exception of a few degenerated MATs. These are in particular pivotal for the maturation of NADH-dehydrogenase transcripts. In the following review we provide an update on the non-canonical MAT factors in angiosperm mitochondria and summarize the current knowledge of their essential roles in regulating Nad1 expression and complex I (CI) biogenesis during embryogenesis and early plant life.
Collapse
|
58
|
Cagirici HB, Budak H, Sen TZ. G4Boost: a machine learning-based tool for quadruplex identification and stability prediction. BMC Bioinformatics 2022; 23:240. [PMID: 35717172 PMCID: PMC9206279 DOI: 10.1186/s12859-022-04782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background G-quadruplexes (G4s), formed within guanine-rich nucleic acids, are secondary structures involved in important biological processes. Although every G4 motif has the potential to form a stable G4 structure, not every G4 motif would, and accurate energy-based methods are needed to assess their structural stability. Here, we present a decision tree-based prediction tool, G4Boost, to identify G4 motifs and predict their secondary structure folding probability and thermodynamic stability based on their sequences, nucleotide compositions, and estimated structural topologies.
Results G4Boost predicted the quadruplex folding state with an accuracy greater then 93% and an F1-score of 0.96, and the folding energy with an RMSE of 4.28 and R2 of 0.95 only by the means of sequence intrinsic feature. G4Boost was successfully applied and validated to predict the stability of experimentally-determined G4 structures, including for plants and humans. Conclusion G4Boost outperformed the three machine-learning based prediction tools, DeepG4, Quadron, and G4RNA Screener, in terms of both accuracy and F1-score, and can be highly useful for G4 prediction to understand gene regulation across species including plants and humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04782-z.
Collapse
Affiliation(s)
- H Busra Cagirici
- US Department of Agriculture - Agricultural Research Service, Crop Improvement Genetics Research Unit, Western Regional Research Center, 800 Buchanan St, Albany, CA, 94710, USA
| | | | - Taner Z Sen
- US Department of Agriculture - Agricultural Research Service, Crop Improvement Genetics Research Unit, Western Regional Research Center, 800 Buchanan St, Albany, CA, 94710, USA.
| |
Collapse
|
59
|
The Roles of Mutation and Selection Acting on Mitochondrial Genomes Inferred from Intraspecific Variation in Seed Plants. Genes (Basel) 2022; 13:genes13061036. [PMID: 35741799 PMCID: PMC9222611 DOI: 10.3390/genes13061036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
There is a paradox in the plant mitochondrial genome, that is, the genic region evolves slowly while the intergenic region evolves rapidly. Thus, the intergenic regions of the plant mitochondrial genome are difficult to align across different species, even in closely related species. Here, to character the mechanism of this paradox, we identified interspecific variations in the Ginkgo biloba, Oryza sativa, and Arabidopsis thaliana mitochondrial and plastid genome at a genome-wide level. The substitution rate of synonymous sites in genic regions was similar to the substitution rate of intergenic regions, while the substitution rate of nonsynonymous sites in genic regions was lower than that in intergenic regions, suggesting the mutation inputs were the same among different categories within the organelle genome, but the selection pressure varied. The substitution rate of single-copy regions was higher than that of IR (inverted repeats) in the plastid genome at an intraspecific level. The substitution rate of single-copy regions was higher than that of repeats in the G. biloba and A. thaliana mitochondrial genomes, but lower in that of O. sativa. This difference may be related to the length and distribution of repeats. Copy number variations that existed in the G. biloba and O. sativa mitochondrial genomes were confirmed. This study reveals the intraspecific variation pattern of organelle genomes at a genome-wide level, and that copy number variations were common in plant mitochondrial genomes.
Collapse
|
60
|
Chevigny N, Weber-Lotfi F, Le Blevenec A, Nadiras C, Fertet A, Bichara M, Erhardt M, Dietrich A, Raynaud C, Gualberto JM. RADA-dependent branch migration has a predominant role in plant mitochondria and its defect leads to mtDNA instability and cell cycle arrest. PLoS Genet 2022; 18:e1010202. [PMID: 35550632 PMCID: PMC9129000 DOI: 10.1371/journal.pgen.1010202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022] Open
Abstract
Mitochondria of flowering plants have large genomes whose structure and segregation are modulated by recombination activities. The post-synaptic late steps of mitochondrial DNA (mtDNA) recombination are still poorly characterized. Here we show that RADA, a plant ortholog of bacterial RadA/Sms, is an organellar protein that drives the major branch-migration pathway of plant mitochondria. While RadA/Sms is dispensable in bacteria, RADA-deficient Arabidopsis plants are severely impacted in their development and fertility, correlating with increased mtDNA recombination across intermediate-size repeats and accumulation of recombination-generated mitochondrial subgenomes. The radA mutation is epistatic to recG1 that affects the additional branch migration activity. In contrast, the double mutation radA recA3 is lethal, underlining the importance of an alternative RECA3-dependent pathway. The physical interaction of RADA with RECA2 but not with RECA3 further indicated that RADA is required for the processing of recombination intermediates in the RECA2-depedent recombination pathway of plant mitochondria. Although RADA is dually targeted to mitochondria and chloroplasts we found little to no effects of the radA mutation on the stability of the plastidial genome. Finally, we found that the deficient maintenance of the mtDNA in radA apparently triggers a retrograde signal that activates nuclear genes repressing cell cycle progression. In flowering plants, the mitochondrial genome is very large and dynamic, and its stability influences plant fitness and development. Rearrangements by recombination drive its very rapid evolution and can lead to valuable agronomic traits such as cytoplasmic sterility, used by breeders for the production of hybrid seeds. Here we describe RADA, a DNA helicase essential for the stability of the mitochondrial DNA in Arabidopsis. We demonstrate that RADA has branch migrating activity, accelerating the processing of recombination intermediates. radA mutants are severely affected in development and fertility. They display mitochondrial genome instability that results in uncoordinated replication of subgenomes created by recombination. Furthermore, we found that an important component of the growth defects of radA mutants is apparently a cellular response triggered by the sensing of damages to the mitochondrial genome, resulting in the activation of genes that suppress the progression of the cell cycle. Our results underline the importance of better understanding the plant mitochondrial recombination pathways and their cross-talk with nuclear gene expression.
Collapse
Affiliation(s)
- Nicolas Chevigny
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Anaïs Le Blevenec
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Cédric Nadiras
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Arnaud Fertet
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Marc Bichara
- Biotechnologie et Signalisation Cellulaire, CNRS, Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - José M. Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
61
|
Fields PD, Waneka G, Naish M, Schatz MC, Henderson IR, Sloan DB. Complete Sequence of a 641-kb Insertion of Mitochondrial DNA in the Arabidopsis thaliana Nuclear Genome. Genome Biol Evol 2022; 14:evac059. [PMID: 35446419 PMCID: PMC9071559 DOI: 10.1093/gbe/evac059] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Intracellular transfers of mitochondrial DNA continue to shape nuclear genomes. Chromosome 2 of the model plant Arabidopsis thaliana contains one of the largest known nuclear insertions of mitochondrial DNA (numts). Estimated at over 600 kb in size, this numt is larger than the entire Arabidopsis mitochondrial genome. The primary Arabidopsis nuclear reference genome contains less than half of the numt because of its structural complexity and repetitiveness. Recent data sets generated with improved long-read sequencing technologies (PacBio HiFi) provide an opportunity to finally determine the accurate sequence and structure of this numt. We performed a de novo assembly using sequencing data from recent initiatives to span the Arabidopsis centromeres, producing a gap-free sequence of the Chromosome 2 numt, which is 641 kb in length and has 99.933% nucleotide sequence identity with the actual mitochondrial genome. The numt assembly is consistent with the repetitive structure previously predicted from fiber-based fluorescent in situ hybridization. Nanopore sequencing data indicate that the numt has high levels of cytosine methylation, helping to explain its biased spectrum of nucleotide sequence divergence and supporting previous inferences that it is transcriptionally inactive. The original numt insertion appears to have involved multiple mitochondrial DNA copies with alternative structures that subsequently underwent an additional duplication event within the nuclear genome. This work provides insights into numt evolution, addresses one of the last unresolved regions of the Arabidopsis reference genome, and represents a resource for distinguishing between highly similar numt and mitochondrial sequences in studies of transcription, epigenetic modifications, and de novo mutations.
Collapse
Affiliation(s)
- Peter D. Fields
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
62
|
Canaguier A, Guilbaud R, Denis E, Magdelenat G, Belser C, Istace B, Cruaud C, Wincker P, Le Paslier MC, Faivre-Rampant P, Barbe V. Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection. BMC Genomics 2022; 23:317. [PMID: 35448948 PMCID: PMC9026655 DOI: 10.1186/s12864-022-08499-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection. This study aims to investigate performance of two techniques, 1) long-read sequencing obtained with the MinION device (Oxford Nanopore Technologies) and 2) optical mapping obtained with Saphyr device (Bionano Genomics) to detect and characterize SVs in the genomes of the two ecotypes of Arabidopsis thaliana, Columbia-0 (Col-0) and Landsberg erecta 1 (Ler-1). RESULTS We described the SVs detected from the alignment of the best ONT assembly and DLE-1 optical maps of A. thaliana Ler-1 against the public reference genome Col-0 TAIR10.1. After filtering (SV > 1 kb), 1184 and 591 Ler-1 SVs were retained from ONT and Bionano technologies respectively. A total of 948 Ler-1 ONT SVs (80.1%) corresponded to 563 Bionano SVs (95.3%) leading to 563 common locations. The specific locations were scrutinized to assess improvement in SV detection by either technology. The ONT SVs were mostly detected near TE and gene features, and resistance genes seemed particularly impacted. CONCLUSIONS Structural variations linked to ONT sequencing error were removed and false positives limited, with high quality Bionano SVs being conserved. When compared with the Col-0 TAIR10.1 reference genome, most of the detected SVs discovered by both technologies were found in the same locations. ONT assembly sequence leads to more specific SVs than Bionano one, the latter being more efficient to characterize large SVs. Even if both technologies are complementary approaches, ONT data appears to be more adapted to large scale populations studies, while Bionano performs better in improving assembly and describing specificity of a genome compared to a reference.
Collapse
Affiliation(s)
- Aurélie Canaguier
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Romane Guilbaud
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Erwan Denis
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Ghislaine Magdelenat
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Benjamin Istace
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Corinne Cruaud
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Marie-Christine Le Paslier
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Patricia Faivre-Rampant
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000 Evry-Courcouronnes, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
63
|
High-quality chromosome-scale de novo assembly of the Paspalum notatum 'Flugge' genome. BMC Genomics 2022; 23:293. [PMID: 35410159 PMCID: PMC9004155 DOI: 10.1186/s12864-022-08489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paspalum notatum 'Flugge' is a diploid with 20 chromosomes (2n = 20) multi-purpose subtropical herb native to South America and has a high ecological significance. It is currently widely planted in tropical and subtropical regions. Despite the gene pool of P. notatum 'Flugge' being unearthed to a large extent in the past decade, no details about the genomic information of relevant species in Paspalum have been reported. In this study, the complete genome information of P. notatum was established and annotated through sequencing and de novo assembly of its genome. RESULTS The latest PacBio third-generation HiFi assembly and sequencing revealed that the genome size of P. notatum 'Flugge' is 541 M. The assembly result is the higher index among the genomes of the gramineous family published so far, with a contig N50 = 52Mbp, scaffold N50 = 49Mbp, and BUSCOs = 98.1%, accounting for 98.5% of the estimated genome. Genome annotation revealed 36,511 high-confidence gene models, thus providing an important resource for future molecular breeding and evolutionary research. A comparison of the genome annotation results of P. notatum 'Flugge' with other closely related species revealed that it had a close relationship with Zea mays but not close compared to Brachypodium distachyon, Setaria viridis, Oryza sativa, Puccinellia tenuiflora, Echinochloa crusgalli. An analysis of the expansion and contraction of gene families suggested that P. notatum 'Flugge' contains gene families associated with environmental resistance, increased reproductive ability, and molecular evolution, which explained its excellent agronomic traits. CONCLUSION This study is the first to report the high-quality chromosome-scale-based genome of P. notatum 'Flugge' assembled using the latest PacBio third-generation HiFi sequencing reads. The study provides an excellent genetic resource bank for gramineous crops and invaluable perspectives regarding the evolution of gramineous plants.
Collapse
|
64
|
Ma Q, Wang Y, Li S, Wen J, Zhu L, Yan K, Du Y, Ren J, Li S, Chen Z, Bi C, Li Q. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: a woody oil-tree species producing nervonic acid. BMC PLANT BIOLOGY 2022; 22:29. [PMID: 35026989 PMCID: PMC8756732 DOI: 10.1186/s12870-021-03416-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/27/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Acer truncatum (purpleblow maple) is a woody tree species that produces seeds with high levels of valuable fatty acids (especially nervonic acid). The species is admired as a landscape plant with high developmental prospects and scientific research value. The A. truncatum chloroplast genome has recently been reported; however, the mitochondrial genome (mitogenome) is still unexplored. RESULTS We characterized the A. truncatum mitogenome, which was assembled using reads from PacBio and Illumina sequencing platforms, performed a comparative analysis against different species of Acer. The circular mitogenome of A. truncatum has a length of 791,052 bp, with a base composition of 27.11% A, 27.21% T, 22.79% G, and 22.89% C. The A. truncatum mitogenome contains 62 genes, including 35 protein-coding genes, 23 tRNA genes and 4 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the A. truncatum mitogenome. To determine the evolutionary and taxonomic status of A. truncatum, we conducted a phylogenetic analysis based on the mitogenomes of A. truncatum and 25 other taxa. In addition, the gene migration from chloroplast and nuclear genomes to the mitogenome were analyzed. Finally, we developed a novel NAD1 intron indel marker for distinguishing several Acer species. CONCLUSIONS In this study, we assembled and annotated the mitogenome of A. truncatum, a woody oil-tree species producing nervonic acid. The results of our analyses provide comprehensive information on the A. truncatum mitogenome, which would facilitate evolutionary research and molecular barcoding in Acer.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yuxiao Wang
- Nanjing Forestry University, Nanjing, 210037 China
| | - Shushun Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jing Wen
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Kunyuan Yan
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Yiming Du
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, 230031 Anhui China
| | - Shuxian Li
- Nanjing Forestry University, Nanjing, 210037 China
| | - Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, 40 Nongkenanlu, Hefei, 230031 Anhui China
| | - Changwei Bi
- Nanjing Forestry University, Nanjing, 210037 China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| |
Collapse
|
65
|
Palevich N, Maclean PH. Sequencing and Reconstructing Helminth Mitochondrial Genomes Directly from Genomic Next-Generation Sequencing Data. Methods Mol Biol 2022; 2369:27-40. [PMID: 34313982 DOI: 10.1007/978-1-0716-1681-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We present a detailed method for extraction of high-molecular weight genomic DNA suitable for numerous DNA sequencing applications, and a straightforward in silico approach for reconstructing novel mitochondrial (mt) genomes directly from total genomic DNA extracts derived from next-generation sequencing (NGS) data sets. The in silico post-sequencing pipeline described is fast, accurate, and highly efficient, with modest memory requirements that can be performed using a standard desktop computer. The approach is particularly effective for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information currently available and overcomes many of the limitations of traditional strategies. The described methodologies are also applicable for metagenomics sequencing from mixed or pooled samples containing multiple species and subsequent specific assembly of specific mitochondrial genomes.
Collapse
Affiliation(s)
- Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.
| | - Paul Haydon Maclean
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
66
|
Assessment of Protein Synthesis in Mitochondria Isolated from Rosette Leaves and Liquid Culture Seedlings of Arabidopsis. Methods Mol Biol 2022; 2363:183-197. [PMID: 34545494 DOI: 10.1007/978-1-0716-1653-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitochondria are subcellular organelles with their own genome and expression system, including translation machinery to make proteins. Several independent studies have shown that translation is an essential regulatory step in expression of the plant mitochondrial genome. Thus, the study of mitochondrial translation seems to be crucial for the comprehension of plant mitochondrial biogenesis and maintenance. In organello protein synthesis in isolated mitochondria is a direct method to visualize the translational products of this organellar genetic system. In this method, highly purified, functional mitochondria synthesize proteins in the presence of radiolabeled amino acids, such as methionine, and an energy regeneration system. The labeled, newly synthesized polypeptides are separated by SDS-polyacrylamide gel electrophoresis and are detected by autoradiography. Here we describe the detailed protocol for in organello labeling of translation products that was optimized for mitochondria isolated from rosette leaves and liquid culture seedlings of Arabidopsis thaliana plants.
Collapse
|
67
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
68
|
Kim M, Schulz V, Brings L, Schoeller T, Kühn K, Vierling E. mTERF18 and ATAD3 are required for mitochondrial nucleoid structure and their disruption confers heat tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 232:2026-2042. [PMID: 34482561 DOI: 10.1111/nph.17717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
Mitochondria play critical roles in generating ATP through oxidative phosphorylation (OXPHOS) and produce both damaging and signaling reactive oxygen species (ROS). They have reduced genomes that encode essential subunits of the OXPHOS machinery. Mitochondrial Transcription tERmination Factor-related (mTERF) proteins are involved in organelle gene expression, interacting with organellar DNA or RNA. We previously found that mutations in Arabidopsis thaliana mTERF18/SHOT1 enable plants to better tolerate heat and oxidative stresses, presumably due to low ROS production and reduced oxidative damage. Here we discover that shot1 mutants have greatly reduced OXPHOS complexes I and IV and reveal that suppressor of hot1-4 1 (SHOT1) binds DNA and localizes to mitochondrial nucleoids, which are disrupted in shot1. Furthermore, three homologues of animal ATPase family AAA domain-containing protein 3 (ATAD3), which is involved in mitochondrial nucleoid organization, were identified as SHOT1-interacting proteins. Importantly, disrupting ATAD3 function disrupts nucleoids, reduces accumulation of complex I, and enhances heat tolerance, as is seen in shot1 mutants. Our data link nucleoid organization to OXPHOS biogenesis and suggest that the common defects in shot1 mutants and ATAD3-disrupted plants lead to critical changes in mitochondrial metabolism and signaling that result in plant heat tolerance.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vincent Schulz
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Lea Brings
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
| | - Theresa Schoeller
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Kristina Kühn
- Department of Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10099, Berlin, Germany
- Department of Plant Physiology, Institute of Biology, Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
69
|
Naish M, Alonge M, Wlodzimierz P, Tock AJ, Abramson BW, Schmücker A, Mandáková T, Jamge B, Lambing C, Kuo P, Yelina N, Hartwick N, Colt K, Smith LM, Ton J, Kakutani T, Martienssen RA, Schneeberger K, Lysak MA, Berger F, Bousios A, Michael TP, Schatz MC, Henderson IR. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 2021; 374:eabi7489. [PMID: 34762468 PMCID: PMC10164409 DOI: 10.1126/science.abi7489] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Piotr Wlodzimierz
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Andrew J. Tock
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Bradley W. Abramson
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Schmücker
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Bhagyshree Jamge
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Christophe Lambing
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Pallas Kuo
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Natasha Yelina
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nolan Hartwick
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kelly Colt
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lisa M. Smith
- School of Biosciences and Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Jurriaan Ton
- School of Biosciences and Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Tetsuji Kakutani
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Korbinian Schneeberger
- Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Martin A. Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | | | - Todd P. Michael
- The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Ian R. Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
70
|
van Wijk KJ, Leppert T, Sun Q, Boguraev SS, Sun Z, Mendoza L, Deutsch EW. The Arabidopsis PeptideAtlas: Harnessing worldwide proteomics data to create a comprehensive community proteomics resource. THE PLANT CELL 2021; 33:3421-3453. [PMID: 34411258 PMCID: PMC8566204 DOI: 10.1093/plcell/koab211] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/13/2021] [Indexed: 05/02/2023]
Abstract
We developed a resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis thaliana proteome, such as the significance of protein splice forms and post-translational modifications (PTMs), or simply to obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) data collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical, and biological metadata. Nearly 40 million out of ∼143 million MS/MS (tandem MS) spectra were matched to the reference genome Araport11, identifying ∼0.5 million unique peptides and 17,858 uniquely identified proteins (only isoform per gene) at the highest confidence level (false discovery rate 0.0004; 2 non-nested peptides ≥9 amino acid each), assigned canonical proteins, and 3,543 lower-confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified that were generated from pseudogenes, alternative start, stops, and/or splice variants, and small Open Reading Frames; these features should be considered when updating the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB, and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS/MS data.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| | - Tami Leppert
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853, USA
| | - Sascha S Boguraev
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, New York 14853, USA
| | - Zhi Sun
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Luis Mendoza
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
- Authors for correspondence: (K.J.V.W.), (E.W.D.)
| |
Collapse
|
71
|
Genome-Wide Identification MIKC-Type MADS-Box Gene Family and Their Roles during Development of Floral Buds in Wheel Wingnut ( Cyclocarya paliurus). Int J Mol Sci 2021; 22:ijms221810128. [PMID: 34576289 PMCID: PMC8471257 DOI: 10.3390/ijms221810128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
MADS-box transcription factors (TFs) have fundamental roles in regulating floral organ formation and flowering time in flowering plants. In order to understand the function of MIKC-type MADS-box family genes in Cyclocarya paliurus (Batal.) Iljinskaja, we first implemented a genome-wide analysis of MIKC-type MADS-box genes in C. paliurus. Here, the phylogenetic relationships, chromosome location, conserved motif, gene structure, promoter region, and gene expression profile were analyzed. The results showed that 45 MIKC-type MADS-box were divided into 14 subfamilies: BS (3), AGL12 (1), AP3-PI (3), MIKC* (3), AGL15 (3), SVP (5), AGL17 (2), AG (3), TM8 (1), AGL6 (2), SEP (5), AP1-FUL (6), SOC1 (7), and FLC (1). The 43 MIKC-type MADS-box genes were distributed unevenly in 14 chromosomes, but two members were mapped on unanchored scaffolds. Gene structures were varied in the same gene family or subfamily, but conserved motifs shared similar distributions and sequences. The element analysis in promoters’ regions revealed that MIKC-type MADS-box family genes were associated with light, phytohormone, and temperature responsiveness, which may play important roles in floral development and differentiation. The expression profile showed that most MIKC-type MADS-box genes were differentially expressed in six tissues (specifically expressed in floral buds), and the expression patterns were also visibly varied in the same subfamily. CpaF1st24796 and CpaF1st23405, belonging to AP3-PI and SEP subfamilies, exhibited the high expression levels in PA-M and PG-F, respectively, indicating their functions in presenting heterodichogamy. We further verified the MIKC-type MADS-box gene expression levels on the basis of transcriptome and qRT-PCR analysis. This study would provide a theoretical basis for classification, cloning, and regulation of flowering mechanism of MIKC-type MADS-box genes in C. paliurus.
Collapse
|
72
|
Transcriptional Landscape and Splicing Efficiency in Arabidopsis Mitochondria. Cells 2021; 10:cells10082054. [PMID: 34440822 PMCID: PMC8392254 DOI: 10.3390/cells10082054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Plant mitochondrial transcription is initiated from multiple promoters without an apparent motif, which precludes their identification in other species based on sequence comparisons. Even though coding regions take up only a small fraction of plant mitochondrial genomes, deep RNAseq studies uncovered that these genomes are fully or nearly fully transcribed with significantly different RNA read depth across the genome. Transcriptomic analysis can be a powerful tool to understand the transcription process in diverse angiosperms, including the identification of potential promoters and co-transcribed genes or to study the efficiency of intron splicing. In this work, we analyzed the transcriptional landscape of the Arabidopsis mitochondrial genome (mtDNA) based on large-scale RNA sequencing data to evaluate the use of RNAseq to study those aspects of the transcription process. We found that about 98% of the Arabidopsis mtDNA is transcribed with highly different RNA read depth, which was elevated in known genes. The location of a sharp increase in RNA read depth upstream of genes matched the experimentally identified promoters. The continuously high RNA read depth across two adjacent genes agreed with the known co-transcribed units in Arabidopsis mitochondria. Most intron-containing genes showed a high splicing efficiency with no differences between cis and trans-spliced introns or between genes with distinct splicing mechanisms. Deep RNAseq analyses of diverse plant species will be valuable to recognize general and lineage-specific characteristics related to the mitochondrial transcription process.
Collapse
|
73
|
Cheng L, Wang W, Yao Y, Sun Q. Mitochondrial RNase H1 activity regulates R-loop homeostasis to maintain genome integrity and enable early embryogenesis in Arabidopsis. PLoS Biol 2021; 19:e3001357. [PMID: 34343166 PMCID: PMC8330923 DOI: 10.1371/journal.pbio.3001357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Plant mitochondrial genomes undergo frequent homologous recombination (HR). Ectopic HR activity is inhibited by the HR surveillance pathway, but the underlying regulatory mechanism is unclear. Here, we show that the mitochondrial RNase H1 AtRNH1B impairs the formation of RNA:DNA hybrids (R-loops) and participates in the HR surveillance pathway in Arabidopsis thaliana. AtRNH1B suppresses ectopic HR at intermediate-sized repeats (IRs) and thus maintains mitochondrial DNA (mtDNA) replication. The RNase H1 AtRNH1C is restricted to the chloroplast; however, when cells lack AtRNH1B, transport of chloroplast AtRNH1C into the mitochondria secures HR surveillance, thus ensuring the integrity of the mitochondrial genome and allowing embryogenesis to proceed. HR surveillance is further regulated by the single-stranded DNA-binding protein ORGANELLAR SINGLE-STRANDED DNA BINDING PROTEIN1 (OSB1), which decreases the formation of R-loops. This study uncovers a facultative dual targeting mechanism between organelles and sheds light on the roles of RNase H1 in organellar genome maintenance and embryogenesis. This study clarifies the function of mitochondrial RNase H1 in genome stability and early embryogenesis in plants, and shows that mitochondrial R-loops are involved in homologous recombination surveillance of mtDNA. Facultative re-targeting of the chloroplast RNase H1 protein to mitochondria, in response to cellular conditions, can help guarantee mitochondrial RNase H1 activity.
Collapse
Affiliation(s)
- Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjie Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yao Yao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
74
|
Shidhi PR, Biju VC, Anu S, Vipin CL, Deelip KR, Achuthsankar SN. Genome Characterization, Comparison and Phylogenetic Analysis of Complete Mitochondrial Genome of Evolvulus alsinoides Reveals Highly Rearranged Gene Order in Solanales. Life (Basel) 2021; 11:769. [PMID: 34440513 PMCID: PMC8398076 DOI: 10.3390/life11080769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Mitogenome sequencing provides an understanding of the evolutionary mechanism of mitogenome formation, mechanisms driving plant gene order, genome structure, and migration sequences. Data on the mitochondrial genome for family Convolvulaceae members is lacking. E. alsinoides, also known as shankhpushpi, is an important medicinal plant under the family Convolvulaceae, widely used in the Ayurvedic system of medicine. We identified the mitogenome of E. alsinoides using the Illumina mate-pair sequencing platform, and annotated using bioinformatics approaches in the present study. The mitogenome of E. alsinoides was 344184 bp in length and comprised 46 unique coding genes, including 31 protein-coding genes (PCGs), 12 tRNA genes, and 3 rRNA genes. The secondary structure of tRNAs shows that all the tRNAs can be folded into canonical clover-leaf secondary structures, except three trnW, trnG, and trnC. Measurement of the skewness of the nucleotide composition showed that the AT and GC skew is positive, indicating higher A's and G's in the mitogenome of E. alsinoides. The Ka/Ks ratios of 11 protein-coding genes (atp1, ccmC, cob, cox1, rps19, rps12, nad3, nad9, atp9, rpl5, nad4L) were <1, indicating that these genes were under purifying selection. Synteny and gene order analysis were performed to identify homologous genes among the related species. Synteny blocks representing nine genes (nad9, nad2, ccmFc, nad1, nad4, nad5, matR, cox1, nad7) were observed in all the species of Solanales. Gene order comparison showed that a high level of gene rearrangement has occurred among all the species of Solanales. The mitogenome data obtained in the present study could be used as the Convolvulaceae family representative for future studies, as there is no complex taxonomic history associated with this plant.
Collapse
Affiliation(s)
- Pattayampadam Ramakrishnan Shidhi
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| | - Vadakkemukadiyil Chellappan Biju
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| | - Sasi Anu
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| | - Chandrasekharan Laila Vipin
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| | - Kumar Raveendran Deelip
- Campus Computing Facility (CCF) at the Central Laboratory for Instrumentation and Facilitation, University of Kerala, Thiruvananthapuram 695581, India;
| | - Sukumaran Nair Achuthsankar
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram 695581, India; (V.C.B.); (S.A.); (C.L.V.); (S.N.A.)
| |
Collapse
|
75
|
Fertet A, Graindorge S, Koechler S, de Boer GJ, Guilloteau-Fonteny E, Gualberto JM. Sequence of the Mitochondrial Genome of Lactuca virosa Suggests an Unexpected Role in Lactuca sativa's Evolution. FRONTIERS IN PLANT SCIENCE 2021; 12:697136. [PMID: 34381482 PMCID: PMC8350775 DOI: 10.3389/fpls.2021.697136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The involvement of the different Lactuca species in the domestication and diversification of cultivated lettuce is not totally understood. Lactuca serriola is considered as the direct ancestor and the closest relative to Lactuca sativa, while the other wild species that can be crossed with L. sativa, Lactuca virosa, and Lactuca saligna, would have just contributed to the latter diversification of cultivated typologies. To contribute to the study of Lactuca evolution, we assembled the mtDNA genomes of nine Lactuca spp. accessions, among them three from L. virosa, whose mtDNA had not been studied so far. Our results unveiled little to no intraspecies variation among Lactuca species, with the exception of L. serriola where the accessions we sequenced diverge significantly from the mtDNA of a L. serriola accession already reported. Furthermore, we found a remarkable phylogenetic closeness between the mtDNA of L. sativa and the mtDNA of L. virosa, contrasting to the L. serriola origin of the nuclear and plastidial genomes. These results suggest that a cross between L. virosa and the ancestor of cultivated lettuce is at the origin of the actual mitochondrial genome of L. sativa.
Collapse
Affiliation(s)
- Arnaud Fertet
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Sandrine Koechler
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Gert-Jan de Boer
- Enza Zaden Research and Development B.V., Enkhuizen, Netherlands
| | | | - José M. Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
76
|
Shevtsov-Tal S, Best C, Matan R, Chandran SA, Brown GG, Ostersetzer-Biran O. nMAT3 is an essential maturase splicing factor required for holo-complex I biogenesis and embryo development in Arabidopsis thaliana plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1128-1147. [PMID: 33683754 DOI: 10.1111/tpj.15225] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 05/21/2023]
Abstract
Group-II introns are self-splicing mobile genetic elements consisting of catalytic intron-RNA and its related intron-encoded splicing maturase protein cofactor. Group-II sequences are particularly plentiful within the mitochondria of land plants, where they reside within many critical gene loci. During evolution, the plant organellar introns have degenerated, such as they lack regions that are are required for splicing, and also lost their evolutionary related maturase proteins. Instead, for their splicing the organellar introns in plants rely on different host-acting protein cofactors, which may also provide a means to link cellular signals with respiratory functions. The nuclear genome of Arabidopsis thaliana encodes four maturase-related factors. Previously, we showed that three of the maturases, nMAT1, nMAT2 and nMAT4, function in the excision of different group-II introns in Arabidopsis mitochondria. The function of nMAT3 (encoded by the At5g04050 gene locus) was found to be essential during early embryogenesis. Using a modified embryo-rescue method, we show that nMAT3-knockout plants are strongly affected in the splicing of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria, resulting in complex-I biogenesis defects and altered respiratory activities. Functional complementation of nMAT3 restored the organellar defects and embryo-arrested phenotypes associated with the nmat3 mutant line. Notably, nMAT3 and nMA4 were found to act on the same RNA targets but have no redundant functions in the splicing of nad1 transcripts. The two maturases, nMAT3 and nMAT4 are likely to cooperate together in the maturation of nad1 pre-RNAs. Our results provide important insights into the roles of maturases in mitochondria gene expression and the biogenesis of the respiratory system during early plant life.
Collapse
Affiliation(s)
- Sofia Shevtsov-Tal
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Corinne Best
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Roei Matan
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Sam A Chandran
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, India
| | - Gregory G Brown
- Department of Biology, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| |
Collapse
|
77
|
Masutani B, Arimura SI, Morishita S. Investigating the mitochondrial genomic landscape of Arabidopsis thaliana by long-read sequencing. PLoS Comput Biol 2021; 17:e1008597. [PMID: 33434206 PMCID: PMC7833223 DOI: 10.1371/journal.pcbi.1008597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/25/2021] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
Plant mitochondrial genomes have distinctive features compared to those of animals; namely, they are large and divergent, with sizes ranging from hundreds of thousands of to a few million bases. Recombination among repetitive regions is thought to produce similar structures that differ slightly, known as "multipartite structures," which contribute to different phenotypes. Although many reference plant mitochondrial genomes represent almost all the genes in mitochondria, the full spectrum of their structures remains largely unknown. The emergence of long-read sequencing technology is expected to yield this landscape; however, many studies aimed to assemble only one representative circular genome, because properly understanding multipartite structures using existing assemblers is not feasible. To elucidate multipartite structures, we leveraged the information in existing reference genomes and classified long reads according to their corresponding structures. We developed a method that exploits two classic algorithms, partial order alignment (POA) and the hidden Markov model (HMM) to construct a sensitive read classifier. This method enables us to represent a set of reads as a POA graph and analyze it using the HMM. We can then calculate the likelihood of a read occurring in a given cluster, resulting in an iterative clustering algorithm. For synthetic data, our proposed method reliably detected one variation site out of 9,000-bp synthetic long reads with a 15% sequencing-error rate and produced accurate clustering. It was also capable of clustering long reads from six very similar sequences containing only slight differences. For real data, we assembled putative multipartite structures of mitochondrial genomes of Arabidopsis thaliana from nine accessions sequenced using PacBio Sequel. The results indicated that there are recurrent and strain-specific structures in A. thaliana mitochondrial genomes.
Collapse
Affiliation(s)
- Bansho Masutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- * E-mail:
| | - Shin-ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
78
|
Arimura SI, Ayabe H, Sugaya H, Okuno M, Tamura Y, Tsuruta Y, Watari Y, Yanase S, Yamauchi T, Itoh T, Toyoda A, Takanashi H, Tsutsumi N. Targeted gene disruption of ATP synthases 6-1 and 6-2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1459-1471. [PMID: 33098708 DOI: 10.1111/tpj.15041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 05/22/2023]
Abstract
We recently achieved targeted disruptions of cytoplasmic male sterility (CMS)-associated genes in the mitochondrial genomes of rice and rapeseed by using mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs). It was the first report of stable and heritable targeted gene modification of plant mitochondrial genomes. Here, we attempted to use mitoTALENs to disrupt two mitochondrial genes in the model plant Arabidopsis thaliana(Arabidopsis) using three different promoters and two types of TALENs. The targets were the two isoforms of the ATP synthase subunit 6 gene, atp6-1 and atp6-2. Each of these genes was successfully deleted and the mitochondrial genomes were recovered in a homoplasmic state. The nuclear genome also has a copy of atp6-1, and we were able to confirm that it was the mitochondrial gene and not the nuclear pseudogene that was knocked out. Among the three mitoTALEN promoters tried, the RPS5A promoter was the most effective. Conventional mitoTALENs were more effective than single-molecule mito-compactTALENs. Targeted mitochondrial gene deletion was achieved by crossing as well as by floral-dip transformation to introduce the mitoTALEN constructs into the nucleus. The gene disruptions were caused by large (kb-size) deletions. The ends of the remaining sequences were connected to distant loci, mostly by illegitimate homologous recombinations between repeats.
Collapse
Affiliation(s)
- Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroki Ayabe
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hajime Sugaya
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, M6-1, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yoshiko Tamura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yu Tsuruta
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuta Watari
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shungo Yanase
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takaki Yamauchi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, M6-1, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Atsushi Toyoda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hideki Takanashi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
79
|
Huang C, Yu J, Cai Q, Chen Y, Li Y, Ren Y, Miao Y. Triple-localized WHIRLY2 Influences Leaf Senescence and Silique Development via Carbon Allocation. PLANT PHYSIOLOGY 2020; 184:1348-1362. [PMID: 32900978 PMCID: PMC7608173 DOI: 10.1104/pp.20.00832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/28/2020] [Indexed: 05/29/2023]
Abstract
Coordination of gene expression in mitochondria, plastids, and nucleus is critical for plant development and survival. Although WHIRLY2 (WHY2) is involved in mitochondrial genome repair and affects the DNA copy number of the mitochondrial genome, the detailed mechanism of action of the WHY2 protein is still elusive. In this study, we found that WHY2 was triple-localized among the mitochondria, plastids, and the nucleus during Arabidopsis (Arabidopsis thaliana) aging. Overexpressing WHY2 increased starch granule numbers in chloroplasts of pericarp cells, showing a partially dry, yellowing silique and early senescence leaves. Accordingly, WHY2 protein could directly activate the expression of jasmonic acid carboxyl methyltransferase and senescence associated gene 29 (SWEET15) gene expression and repress SWEET11 gene expression in the nucleus, leading to alteration of starch accumulation and transport in pericarp cells. In contrast, loss of WHY2 decreased starch and sugar content in pericarp cells but promoted starch accumulation in leaves and seeds. These phenotypes of WHY2-overexpressing plants were enhanced in response to methyl jasmonate. Our results suggest that WHY2 in plastids, mitochondria, and the nucleus plays a vital role in alteration of carbon reallocation from maternal tissue to filial tissue.
Collapse
Affiliation(s)
- Chenxing Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinfa Yu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Cai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxiang Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujun Ren
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
80
|
Yu X, Jiang W, Tan W, Zhang X, Tian X. Deciphering the organelle genomes and transcriptomes of a common ornamental plant Ligustrum quihoui reveals multiple fragments of transposable elements in the mitogenome. Int J Biol Macromol 2020; 165:1988-1999. [PMID: 33091470 DOI: 10.1016/j.ijbiomac.2020.10.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023]
Abstract
Ligustrum quihoui (L. quihoui) is an important hedge material for landscaping and also possesses medicinal value. To generate genomic resources for better understanding the evolutionary history of this important plant, the organelle genomes of L. quihoui are de novo assembled and functionally annotated. Compared with other Oleaceae species, the 163,069 bp chloroplast genome of L. quihoui exhibits a typical quadripartite structure with highly conserved gene content and gene order, while the 848,451 bp mitochondrial genome of L. quihoui exhibits highly divergent genome size and gene content. Codon usage analyses show that genes related with photosynthesis and mitochondrial respiratory chain show inconsistent codon biases. A total of 48,760 bp transposable elements (TEs) fragments and 41,887 bp chloroplast-like sequences are found in the L. quihoui mitochondrial genome. A striking discrepancy of RNA editing between the two organelle genomes is found in L. quihoui, in which 146 mitochondrial editing sites coexist with only 43 such sites in chloroplast. Based on DNA and RNA-Seq data, we propose that GTG may act as the start codon of mitochondrial rpl16 in Oleaceae species. Phylogenetic analysis based on chloroplast genome shows that L. quihoui and L. japonicum form a sister clade within the genus Ligustrum.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiling Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Tan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
81
|
Mader M, Schroeder H, Schott T, Schöning-Stierand K, Leite Montalvão AP, Liesebach H, Liesebach M, Fussi B, Kersten B. Mitochondrial Genome of Fagus sylvatica L. as a Source for Taxonomic Marker Development in the Fagales. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1274. [PMID: 32992588 PMCID: PMC7650814 DOI: 10.3390/plants9101274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
European beech, Fagus sylvatica L., is one of the most important and widespread deciduous tree species in Central Europe and is widely managed for its hard wood. The complete DNA sequence of the mitochondrial genome of Fagus sylvatica L. was assembled and annotated based on Illumina MiSeq reads and validated using long reads from nanopore MinION sequencing. The genome assembled into a single DNA sequence of 504,715 bp in length containing 58 genes with predicted function, including 35 protein-coding, 20 tRNA and three rRNA genes. Additionally, 23 putative protein-coding genes were predicted supported by RNA-Seq data. Aiming at the development of taxon-specific mitochondrial genetic markers, the tool SNPtax was developed and applied to select genic SNPs potentially specific for different taxa within the Fagales. Further validation of a small SNP set resulted in the development of four CAPS markers specific for Fagus, Fagaceae, or Fagales, respectively, when considering over 100 individuals from a total of 69 species of deciduous trees and conifers from up to 15 families included in the marker validation. The CAPS marker set is suitable to identify the genus Fagus in DNA samples from tree tissues or wood products, including wood composite products.
Collapse
Affiliation(s)
- Malte Mader
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Thomas Schott
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Katrin Schöning-Stierand
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
- Center for Bioinformatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Ana Paula Leite Montalvão
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Heike Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Mirko Liesebach
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| | - Barbara Fussi
- Bavarian Office for Forest Genetics, 83317 Teisendorf, Germany;
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, D-22927 Grosshansdorf, Germany; (M.M.); (H.S.); (T.S.); (K.S.-S.); (A.P.L.M.); (H.L.); (M.L.)
| |
Collapse
|
82
|
Oldenkott B, Burger M, Hein AC, Jörg A, Senkler J, Braun HP, Knoop V, Takenaka M, Schallenberg-Rüdinger M. One C-to-U RNA Editing Site and Two Independently Evolved Editing Factors: Testing Reciprocal Complementation with DYW-Type PPR Proteins from the Moss Physcomitrium ( Physcomitrella) patens and the Flowering Plants Macadamia integrifolia and Arabidopsis. THE PLANT CELL 2020; 32:2997-3018. [PMID: 32616665 PMCID: PMC7474288 DOI: 10.1105/tpc.20.00311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/30/2020] [Indexed: 05/15/2023]
Abstract
Cytidine-to-uridine RNA editing is a posttranscriptional process in plant organelles, mediated by specific pentatricopeptide repeat (PPR) proteins. In angiosperms, hundreds of sites undergo RNA editing. By contrast, only 13 sites are edited in the moss Physcomitrium (Physcomitrella) patens Some are conserved between the two species, like the mitochondrial editing site nad5eU598RC. The PPR proteins assigned to this editing site are known in both species: the DYW-type PPR protein PPR79 in P. patens and the E+-type PPR protein CWM1 in Arabidopsis (Arabidopsis thaliana). CWM1 also edits sites ccmCeU463RC, ccmBeU428SL, and nad5eU609VV. Here, we reciprocally expressed the P. patens and Arabidopsis editing factors in the respective other genetic environment. Surprisingly, the P. patens editing factor edited all target sites when expressed in the Arabidopsis cwm1 mutant background, even when carboxy-terminally truncated. Conversely, neither Arabidopsis CWM1 nor CWM1-PPR79 chimeras restored editing in P. patens ppr79 knockout plants. A CWM1-like PPR protein from the early diverging angiosperm macadamia (Macadamia integrifolia) features a complete DYW domain and fully rescued editing of nad5eU598RC when expressed in P. patens. We conclude that (1) the independently evolved P. patens editing factor PPR79 faithfully operates in the more complex Arabidopsis editing system, (2) truncated PPR79 recruits catalytic DYW domains in trans when expressed in Arabidopsis, and (3) the macadamia CWM1-like protein retains the capacity to work in the less complex P. patens editing environment.
Collapse
Affiliation(s)
- Bastian Oldenkott
- Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, 53115 Bonn, Germany
| | | | - Anke-Christiane Hein
- Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, 53115 Bonn, Germany
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | - Jennifer Senkler
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Volker Knoop
- Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, 53115 Bonn, Germany
| | - Mizuki Takenaka
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
83
|
Hall ND, Zhang H, Mower JP, McElroy JS, Goertzen LR. The Mitochondrial Genome of Eleusine indica and Characterization of Gene Content within Poaceae. Genome Biol Evol 2020; 12:3684-3697. [PMID: 31665327 PMCID: PMC7145533 DOI: 10.1093/gbe/evz229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Plant mitochondrial (mt) genome assembly provides baseline data on size, structure, and gene content, but resolving the sequence of these large and complex organelle genomes remains challenging due to fragmentation, frequent recombination, and transfers of DNA from neighboring plastids. The mt genome for Eleusine indica (Poaceae: goosegrass) is comprehensibly analyzed here, providing key reference data for an economically significant invasive species that is also the maternal parent of the allotetraploid crop Finger millet (Eleusine coracana). The assembled E. indica genome contains 33 protein coding genes, 6 rRNA subunits, 24 tRNA, 8 large repetitive regions 15 kb of transposable elements across a total of 520,691 bp. Evidence of RNA editing and loss of rpl2, rpl5, rps14, rps11, sdh4, and sdh3 genes is evaluated in the context of an updated survey of mt genomic gene content across the grasses through an analysis of publicly available data. Hypothesized patterns of Poaceae mt gene loss are examined in a phylogenetic context to clarify timing, showing that rpl2 was transferred to the nucleus from the mitochondrion prior to the origin of the PACMAD clade.
Collapse
Affiliation(s)
- Nathan D Hall
- Department of Biological Sciences, Auburn University
| | - Hui Zhang
- Department of Crop, Soil and Environmental Sciences, Auburn University
| | - Jeffrey P Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln
| | | | | |
Collapse
|
84
|
Wang J, Liu W, Zhu D, Zhou X, Hong P, Zhao H, Tan Y, Chen X, Zong X, Xu L, Zhang L, Wei H, Liu Q. A de novo assembly of the sweet cherry ( Prunus avium cv. Tieton) genome using linked-read sequencing technology. PeerJ 2020; 8:e9114. [PMID: 32547856 PMCID: PMC7278891 DOI: 10.7717/peerj.9114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/10/2020] [Indexed: 11/20/2022] Open
Abstract
The sweet cherry (Prunus avium) is one of the most economically important fruit species in the world. However, there is a limited amount of genetic information available for this species, which hinders breeding efforts at a molecular level. We were able to describe a high-quality reference genome assembly and annotation of the diploid sweet cherry (2n = 2x = 16) cv. Tieton using linked-read sequencing technology. We generated over 750 million clean reads, representing 112.63 GB of raw sequencing data. The Supernova assembler produced a more highly-ordered and continuous genome sequence than the current P. avium draft genome, with a contig N50 of 63.65 KB and a scaffold N50 of 2.48 MB. The final scaffold assembly was 280.33 MB in length, representing 82.12% of the estimated Tieton genome. Eight chromosome-scale pseudomolecules were constructed, completing a 214 MB sequence of the final scaffold assembly. De novo, homology-based, and RNA-seq methods were used together to predict 30,975 protein-coding loci. 98.39% of core eukaryotic genes and 97.43% of single copy orthologues were identified in the embryo plant, indicating the completeness of the assembly. Linked-read sequencing technology was effective in constructing a high-quality reference genome of the sweet cherry, which will benefit the molecular breeding and cultivar identification in this species.
Collapse
Affiliation(s)
- Jiawei Wang
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Weizhen Liu
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei, China
| | - Dongzi Zhu
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Po Hong
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Hongjun Zhao
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Yue Tan
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Xin Chen
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Xiaojuan Zong
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Li Xu
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Lisi Zhang
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Hairong Wei
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| | - Qingzhong Liu
- Scientific Observation and Experiment Station of Fruits in Huang-huai Area, Ministry of Agriculture, Shandong Institute of Pomology, Taian, Shandong, China
| |
Collapse
|
85
|
Waltz F, Corre N, Hashem Y, Giegé P. Specificities of the plant mitochondrial translation apparatus. Mitochondrion 2020; 53:30-37. [PMID: 32334144 DOI: 10.1016/j.mito.2020.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria are endosymbiotic organelles responsible for energy production in most eukaryotic cells. They host a genome and a fully functional gene expression machinery. In plants this machinery involves hundreds of pentatricopeptide repeat (PPR) proteins. Translation, the final step of mitochondrial gene expression is performed by mitochondrial ribosomes (mitoribosomes). The nature of these molecular machines remained elusive for a very long time. Because of their bacterial origin, it was expected that mitoribosomes would closely resemble bacterial ribosomes. However, recent advances in cryo-electron microscopy have revealed the extraordinary diversity of mitoribosome structure and composition. The plant mitoribosome was characterized for Arabidopsis. In plants, in contrast to other species such as mammals and kinetoplastids where rRNA has been largely reduced, the mitoribosome could be described as a protein/RNA-augmented bacterial ribosome. It has an oversized small subunit formed by expanded ribosomal RNAs and additional protein components when compared to bacterial ribosomes. The same holds true for the large subunit. The small subunit is characterized by a new elongated domain on the head. Among its additional proteins, several PPR proteins are core mitoribosome proteins. They mainly act at the structural level to stabilize and maintain the plant-specific ribosomal RNA expansions but could also be involved in translation initiation. Recent advances in plant mitoribosome composition and structure, its specialization for membrane protein synthesis, translation initiation, the regulation and dynamics of mitochondrial translation are reviewed here and put in perspective with the diversity of mitochondrial translation processes in the green lineage and in the wider context of eukaryote evolution.
Collapse
Affiliation(s)
- Florent Waltz
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, F 33600 Pessac, France
| | - Nicolas Corre
- Institut de biologie de moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, F 67084 Strasbourg, France
| | - Yaser Hashem
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 2 rue R. Escarpit, F 33600 Pessac, France
| | - Philippe Giegé
- Institut de biologie de moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du général Zimmer, F 67084 Strasbourg, France.
| |
Collapse
|
86
|
The Tempo and Mode of Angiosperm Mitochondrial Genome Divergence Inferred from Intraspecific Variation in Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2020; 10:1077-1086. [PMID: 31964685 PMCID: PMC7056966 DOI: 10.1534/g3.119.401023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mechanisms of sequence divergence in angiosperm mitochondrial genomes have long been enigmatic. In particular, it is difficult to reconcile the rapid divergence of intergenic regions that can make non-coding sequences almost unrecognizable even among close relatives with the unusually high levels of sequence conservation found in genic regions. It has been hypothesized that different mutation and repair mechanisms act on genic and intergenic sequences or alternatively that mutational input is relatively constant but that selection has strikingly different effects on these respective regions. To test these alternative possibilities, we analyzed mtDNA divergence within Arabidopsis thaliana, including variants from the 1001 Genomes Project and changes accrued in published mutation accumulation (MA) lines. We found that base-substitution frequencies are relatively similar for intergenic regions and synonymous sites in coding regions, whereas indel and nonsynonymous substitutions rates are greatly depressed in coding regions, supporting a conventional model in which mutation/repair mechanisms are consistent throughout the genome but differentially filtered by selection. Most types of sequence and structural changes were undetectable in 10-generation MA lines, but we found significant shifts in relative copy number across mtDNA regions for lines grown under stressed vs. benign conditions. We confirmed quantitative variation in copy number across the A. thaliana mitogenome using both whole-genome sequencing and droplet digital PCR, further undermining the classic but oversimplified model of a circular angiosperm mtDNA structure. Our results suggest that copy number variation is one of the most fluid features of angiosperm mitochondrial genomes.
Collapse
|
87
|
Wynn E, Purfeerst E, Christensen A. Mitochondrial DNA Repair in an Arabidopsis thaliana Uracil N-Glycosylase Mutant. PLANTS (BASEL, SWITZERLAND) 2020; 9:E261. [PMID: 32085412 PMCID: PMC7076443 DOI: 10.3390/plants9020261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023]
Abstract
Substitution rates in plant mitochondrial genes are extremely low, indicating strong selective pressure as well as efficient repair. Plant mitochondria possess base excision repair pathways; however, many repair pathways such as nucleotide excision repair and mismatch repair appear to be absent. In the absence of these pathways, many DNA lesions must be repaired by a different mechanism. To test the hypothesis that double-strand break repair (DSBR) is that mechanism, we maintained independent self-crossing lineages of plants deficient in uracil-N-glycosylase (UNG) for 11 generations to determine the repair outcomes when that pathway is missing. Surprisingly, no single nucleotide polymorphisms (SNPs) were fixed in any line in generation 11. The pattern of heteroplasmic SNPs was also unaltered through 11 generations. When the rate of cytosine deamination was increased by mitochondrial expression of the cytosine deaminase APOBEC3G, there was an increase in heteroplasmic SNPs but only in mature leaves. Clearly, DNA maintenance in reproductive meristem mitochondria is very effective in the absence of UNG while mitochondrial genomes in differentiated tissue are maintained through a different mechanism or not at all. Several genes involved in DSBR are upregulated in the absence of UNG, indicating that double-strand break repair is a general system of repair in plant mitochondria. It is important to note that the developmental stage of tissues is critically important for these types of experiments.
Collapse
Affiliation(s)
- Emily Wynn
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (E.W.); (E.P.)
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Emma Purfeerst
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (E.W.); (E.P.)
- Athletics Department, Bethany Lutheran College, Mankato, MN 56001, USA
| | - Alan Christensen
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (E.W.); (E.P.)
| |
Collapse
|
88
|
Factors Affecting Organelle Genome Stability in Physcomitrella patens. PLANTS 2020; 9:plants9020145. [PMID: 31979236 PMCID: PMC7076466 DOI: 10.3390/plants9020145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/25/2023]
Abstract
Organelle genomes are essential for plants; however, the mechanisms underlying the maintenance of organelle genomes are incompletely understood. Using the basal land plant Physcomitrella patens as a model, nuclear-encoded homologs of bacterial-type homologous recombination repair (HRR) factors have been shown to play an important role in the maintenance of organelle genome stability by suppressing recombination between short dispersed repeats. In this review, I summarize the factors and pathways involved in the maintenance of genome stability, as well as the repeats that cause genomic instability in organelles in P. patens, and compare them with findings in other plant species. I also discuss the relationship between HRR factors and organelle genome structure from the evolutionary standpoint.
Collapse
|
89
|
Flood PJ, Theeuwen TPJM, Schneeberger K, Keizer P, Kruijer W, Severing E, Kouklas E, Hageman JA, Wijfjes R, Calvo-Baltanas V, Becker FFM, Schnabel SK, Willems LAJ, Ligterink W, van Arkel J, Mumm R, Gualberto JM, Savage L, Kramer DM, Keurentjes JJB, van Eeuwijk F, Koornneef M, Harbinson J, Aarts MGM, Wijnker E. Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. NATURE PLANTS 2020; 6:13-21. [PMID: 31932677 DOI: 10.1038/s41477-019-0575-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/25/2019] [Indexed: 05/21/2023]
Abstract
Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype-nucleotype combinations (cybrids)1. We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype-plasmotype-environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype-plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.
Collapse
Affiliation(s)
- Pádraic J Flood
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
- Horticulture and Product Physiology, Wageningen University & Research, Wageningen, the Netherlands.
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Paul Keizer
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Evangelos Kouklas
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Jos A Hageman
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Raúl Wijfjes
- Bioinformatics Group, Wageningen, the Netherlands
| | - Vanesa Calvo-Baltanas
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Sabine K Schnabel
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Leo A J Willems
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jeroen van Arkel
- Bioscience, Wageningen University & Research, Wageningen, the Netherlands
| | - Roland Mumm
- Bioscience, Wageningen University & Research, Wageningen, the Netherlands
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Linda Savage
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - David M Kramer
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Fred van Eeuwijk
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jeremy Harbinson
- Horticulture and Product Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
90
|
Waltz F, Giegé P. Striking Diversity of Mitochondria-Specific Translation Processes across Eukaryotes. Trends Biochem Sci 2019; 45:149-162. [PMID: 31780199 DOI: 10.1016/j.tibs.2019.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Mitochondria are essential organelles that act as energy conversion powerhouses and metabolic hubs. Their gene expression machineries combine traits inherited from prokaryote ancestors and specific features acquired during eukaryote evolution. Mitochondrial research has wide implications ranging from human health to agronomy. We highlight recent advances in mitochondrial translation. Functional, biochemical, and structural data have revealed an unexpected diversity of mitochondrial translation systems, particularly of their key players, the mitochondrial ribosomes (mitoribosomes). Ribosome assembly and translation mechanisms, such as initiation, are discussed and put in perspective with the prevalence of eukaryote-specific families of mitochondrial translation factors such as pentatricopeptide repeat (PPR) proteins.
Collapse
Affiliation(s)
- Florent Waltz
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France; Institut Européen de Chimie et de Biologie, l'Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
91
|
Brieba LG. Structure-Function Analysis Reveals the Singularity of Plant Mitochondrial DNA Replication Components: A Mosaic and Redundant System. PLANTS 2019; 8:plants8120533. [PMID: 31766564 PMCID: PMC6963530 DOI: 10.3390/plants8120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.
Collapse
Affiliation(s)
- Luis Gabriel Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Guanajuato C.P. 36821, Mexico
| |
Collapse
|
92
|
Smith DR. Revisiting published genomes with fresh eyes and new data: Revising old sequencing data can yield unexpected insights and identify errors. EMBO Rep 2019; 20:e49482. [PMID: 31680386 DOI: 10.15252/embr.201949482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Old data are like yesterday's leftovers: sapped of novelty and excitement. But revisiting old sequence data with a fresh mind and new techniques can yield new and unexpected results.
Collapse
Affiliation(s)
- David R Smith
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
93
|
Zhang S, Zhang YJ. Proposal of a new nomenclature for introns in protein-coding genes in fungal mitogenomes. IMA Fungus 2019; 10:15. [PMID: 32647619 PMCID: PMC7325650 DOI: 10.1186/s43008-019-0015-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Fungal mitochondrial genes are often invaded by group I or II introns, which represent an ideal marker for understanding fungal evolution. A standard nomenclature of mitochondrial introns is needed to avoid confusion when comparing different fungal mitogenomes. Currently, there has been a standard nomenclature for introns present in rRNA genes, but there is a lack of a standard nomenclature for introns present in protein-coding genes. In this study, we propose a new nomenclature system for introns in fungal mitochondrial protein-coding genes based on (1) three-letter abbreviation of host scientific name, (2) host gene name, (3), one capital letter P (for group I introns), S (for group II introns), or U (for introns with unknown types), and (4) intron insertion site in the host gene according to the cyclosporin-producing fungus Tolypocladium inflatum. The suggested nomenclature was proved feasible by naming introns present in mitogenomes of 16 fungi of different phyla, including both basal and higher fungal lineages although minor adjustment of the nomenclature is needed to fit certain special conditions. The nomenclature also had the potential to name plant/protist/animal mitochondrial introns. We hope future studies follow the proposed nomenclature to ensure direct comparison across different studies.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006 China
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006 China
| |
Collapse
|
94
|
Park J, Kim Y, Kwon M. The complete mitochondrial genome of tulip tree, Liriodendron tulipifera L. (Magnoliaceae): intra-species variations on mitochondrial genome. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1591242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Yongsung Kim
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Mi Kwon
- InfoBoss Co., Ltd., Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|
95
|
Kwon W, Kim Y, Park J. The complete mitochondrial genome of Dumortiera hirsuta (Sw.) Nees (Dumortieraceae, Marchantiophyta). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1596767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Woochan Kwon
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Yongsung Kim
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| |
Collapse
|