51
|
Reynolds M, Atkin OK, Bennett M, Cooper M, Dodd IC, Foulkes MJ, Frohberg C, Hammer G, Henderson IR, Huang B, Korzun V, McCouch SR, Messina CD, Pogson BJ, Slafer GA, Taylor NL, Wittich PE. Addressing Research Bottlenecks to Crop Productivity. TRENDS IN PLANT SCIENCE 2021; 26:607-630. [PMID: 33893046 DOI: 10.1016/j.tplants.2021.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in 'precompetitive' space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and source-sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico.
| | - Owen K Atkin
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia.
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK.
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Claus Frohberg
- BASF BBC-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | - Susan R McCouch
- Plant Breeding & Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Carlos D Messina
- Corteva Agriscience, 7250 NW 62nd Avenue, Johnston, IA 50310, USA.
| | - Barry J Pogson
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida, AGROTECNIO, CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain; ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Peter E Wittich
- Syngenta Seeds B.V., Westeinde 62, 1601 BK, Enkhuizen, The Netherlands.
| |
Collapse
|
52
|
Ivanova A, Ghifari AS, Berkowitz O, Whelan J, Murcha MW. The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly. PLANT PHYSIOLOGY 2021; 186:599-610. [PMID: 33616659 PMCID: PMC8154063 DOI: 10.1093/plphys/kiab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 06/02/2023]
Abstract
ATP is generated in mitochondria by oxidative phosphorylation. Complex I (NADH:ubiquinone oxidoreductase or NADH dehydrogenase) is the first multisubunit protein complex of this pathway, oxidizing NADH and transferring electrons to the ubiquinone pool. Typically, Complex I mutants display a slow growth rate compared to wild-type plants. Here, using a forward genetic screen approach for restored growth of a Complex I mutant, we have identified the mitochondrial ATP-dependent metalloprotease, Filamentous Temperature Sensitive H 3 (FTSH3), as a factor that is required for the disassembly of Complex I. An ethyl methanesulfonate-induced mutation in FTSH3, named as rmb1 (restoration of mitochondrial biogenesis 1), restored Complex I abundance and plant growth. Complementation could be achieved with FTSH3 lacking proteolytic activity, suggesting the unfoldase function of FTSH3 has a role in Complex I disassembly. The introduction of the rmb1 to an additional, independent, and extensively characterized Complex I mutant, ndufs4, resulted in similar increases to Complex I abundance and a partial restoration of growth. These results show that disassembly or degradation of Complex I plays a role in determining its steady-state abundance and thus turnover may vary under different conditions.
Collapse
Affiliation(s)
- Aneta Ivanova
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Vic, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, The ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora 3086, Vic, Australia
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
53
|
Cagnola JI, Parco M, Rotili DH, Ploschuk EL, Curin F, Amas JI, Luque SF, Maddonni GA, Otegui ME, Casal JJ. Artificial selection for grain yield has increased net CO2 exchange of the ear leaf in maize crops. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3902-3913. [PMID: 33744949 DOI: 10.1093/jxb/erab119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Identifying the physiological traits indirectly selected during the search for high-yielding maize hybrids is useful for guiding further improvements. To investigate such traits, in this study we focused on the critical period of kernel formation because kernel number is the main yield component affected by breeding. Our results show that breeding has increased the number of florets per ear and ear growth rate but not the vegetative shoot growth rate, suggesting localised effects around the ear. Consistent with this possibility, breeding has increased the net CO2 exchange of the ear leaf in field-grown crops grown at high population densities. This response is largely accounted for by increased light interception (which increases photosynthesis) and by reduced rates of respiration of the ear leaf in modern hybrids compared to older ones. Modern hybrids show increased ear-leaf area per unit leaf dry matter (specific leaf area), which accounts for the reduced respiratory load per unit leaf area. These observations are consistent with a model where the improved ear leaf CO2 exchange helps the additional florets produced by modern hybrids to survive the critical period of high susceptibility to stress and hence to produce kernels.
Collapse
Affiliation(s)
- Juan I Cagnola
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Fisiología Vegetal, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín Parco
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego H Rotili
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Edmundo L Ploschuk
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Facundo Curin
- Centro de Investigaciones y Transferencia del noroeste de la Provincia de Buenos Aires (CIT-NOBA-CONICET), Argentina
| | - Juan I Amas
- CONICET at INTA, Centro Regional Buenos Aires Norte, Estación Experimental INTA Pergamino, Argentina
| | - Sergio F Luque
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo A Maddonni
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cerealicultura, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - María E Otegui
- CONICET at INTA, Centro Regional Buenos Aires Norte, Estación Experimental INTA Pergamino, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Producción Vegetal, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
| | - Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Fisiología Vegetal, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
54
|
The number of catalytic cycles in an enzyme's lifetime and why it matters to metabolic engineering. Proc Natl Acad Sci U S A 2021; 118:2023348118. [PMID: 33753504 PMCID: PMC8020674 DOI: 10.1073/pnas.2023348118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The continuous replacement of enzymes and other proteins appropriates up to half the maintenance energy budget in microorganisms and plants. High enzyme replacement rates therefore cut the productivity of biosystems ranging from microbial fermentations to crops. However, yardsticks to assess what drives enzyme protein replacement and guidelines on how to reduce it are lacking. Accordingly, we compared enzymes’ life spans across kingdoms using a new yardstick (catalytic cycles until replacement [CCR]) and related CCR to enzyme reaction chemistry. We concluded that 1) many enzymes fail due to collateral damage from the reaction they catalyze, and 2) such damage and its attendant enzyme replacement costs are mitigable by engineering and are therefore promising targets for synthetic biology. Metabolic engineering uses enzymes as parts to build biosystems for specified tasks. Although a part’s working life and failure modes are key engineering performance indicators, this is not yet so in metabolic engineering because it is not known how long enzymes remain functional in vivo or whether cumulative deterioration (wear-out), sudden random failure, or other causes drive replacement. Consequently, enzymes cannot be engineered to extend life and cut the high energy costs of replacement. Guided by catalyst engineering, we adopted catalytic cycles until replacement (CCR) as a metric for enzyme functional life span in vivo. CCR is the number of catalytic cycles that an enzyme mediates in vivo before failure or replacement, i.e., metabolic flux rate/protein turnover rate. We used estimated fluxes and measured protein turnover rates to calculate CCRs for ∼100–200 enzymes each from Lactococcus lactis, yeast, and Arabidopsis. CCRs in these organisms had similar ranges (<103 to >107) but different median values (3–4 × 104 in L. lactis and yeast versus 4 × 105 in Arabidopsis). In all organisms, enzymes whose substrates, products, or mechanisms can attack reactive amino acid residues had significantly lower median CCR values than other enzymes. Taken with literature on mechanism-based inactivation, the latter finding supports the proposal that 1) random active-site damage by reaction chemistry is an important cause of enzyme failure, and 2) reactive noncatalytic residues in the active-site region are likely contributors to damage susceptibility. Enzyme engineering to raise CCRs and lower replacement costs may thus be both beneficial and feasible.
Collapse
|
55
|
Li G, Chen T, Feng B, Peng S, Tao L, Fu G. Respiration, Rather Than Photosynthesis, Determines Rice Yield Loss Under Moderate High-Temperature Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:678653. [PMID: 34249047 PMCID: PMC8264589 DOI: 10.3389/fpls.2021.678653] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/03/2021] [Indexed: 05/11/2023]
Abstract
Photosynthesis is an important biophysical and biochemical reaction that provides food and oxygen to maintain aerobic life on earth. Recently, increasing photosynthesis has been revisited as an approach for reducing rice yield losses caused by high temperatures. We found that moderate high temperature causes less damage to photosynthesis but significantly increases respiration. In this case, the energy production efficiency is enhanced, but most of this energy is allocated to maintenance respiration, resulting in an overall decrease in the energy utilization efficiency. In this perspective, respiration, rather than photosynthesis, may be the primary contributor to yield losses in a high-temperature climate. Indeed, the dry matter weight and yield could be enhanced if the energy was mainly allocated to the growth respiration. Therefore, we proposed that engineering smart rice cultivars with a highly efficient system of energy production, allocation, and utilization could effectively solve the world food crisis under high-temperature conditions.
Collapse
Affiliation(s)
- Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shaobing Peng
- Crop Production and Physiology Center (CPPC), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Longxing Tao,
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Guanfu Fu,
| |
Collapse
|
56
|
Yang X, Medford JI, Markel K, Shih PM, De Paoli HC, Trinh CT, McCormick AJ, Ployet R, Hussey SG, Myburg AA, Jensen PE, Hassan MM, Zhang J, Muchero W, Kalluri UC, Yin H, Zhuo R, Abraham PE, Chen JG, Weston DJ, Yang Y, Liu D, Li Y, Labbe J, Yang B, Lee JH, Cottingham RW, Martin S, Lu M, Tschaplinski TJ, Yuan G, Lu H, Ranjan P, Mitchell JC, Wullschleger SD, Tuskan GA. Plant Biosystems Design Research Roadmap 1.0. BIODESIGN RESEARCH 2020; 2020:8051764. [PMID: 37849899 PMCID: PMC10521729 DOI: 10.34133/2020/8051764] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/30/2020] [Indexed: 10/19/2023] Open
Abstract
Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - June I. Medford
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Henrique C. De Paoli
- Department of Biodesign, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cong T. Trinh
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Steven G. Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1858, Frederiksberg, Copenhagen, Denmark
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology and the Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jessy Labbe
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Jun Hyung Lee
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
57
|
Chadee A, Vanlerberghe GC. Distinctive mitochondrial and chloroplast components contributing to the maintenance of carbon balance during plant growth at elevated CO 2. PLANT SIGNALING & BEHAVIOR 2020; 15:1795395. [PMID: 32705929 PMCID: PMC8550537 DOI: 10.1080/15592324.2020.1795395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant carbon balance depends upon the difference between photosynthetic carbon gain and respiratory carbon loss. In C3 plants, growth at an elevated atmospheric concentration of CO2 (ECO2) stimulates photosynthesis and raises the leaf carbohydrate status, but how respiration responds is less understood. In this study, growth of Nicotiana tabacum at ECO2 increased the protein amount of the non-energy conserving mitochondrial alternative oxidase (AOX). Growth at ECO2 increased AOX1a transcript amount, and the transcript amount of a putative sugar-responsive gene encoding a chloroplast glucose-6-phosphate/phosphate translocator (GPT3). We suggest that the elevated amounts of AOX and GPT3 represent distinctive mitochondrial and chloroplast mechanisms to manage an excessive cytosolic pool of sugar phosphates. AOX respiration could consume cytosolic sugar phosphates, without this activity being restricted by rates of ATP turnover. GPT3 could allow accumulating cytosolic glucose-6-phosphate to return to the chloroplast. This could feed starch synthesis or a glucose-6-phosphate shunt in the Calvin cycle. AOX and GPT3 activities could buffer against Pi depletions that might otherwise disrupt mitochondrial and chloroplast electron transport chain activities. AOX and GPT3 activities could also buffer against a down-regulation of photosynthetic capacity by preventing a persistent imbalance between photosynthetic carbon gain and the activity of carbon utilizing sinks.
Collapse
Affiliation(s)
- Avesh Chadee
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
- CONTACT Greg C. Vanlerberghe Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ONM1C1A4, Canada
| |
Collapse
|
58
|
García-García JD, Joshi J, Patterson JA, Trujillo-Rodriguez L, Reisch CR, Javanpour AA, Liu CC, Hanson AD. Potential for Applying Continuous Directed Evolution to Plant Enzymes: An Exploratory Study. Life (Basel) 2020; 10:E179. [PMID: 32899502 PMCID: PMC7555113 DOI: 10.3390/life10090179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
Plant evolution has produced enzymes that may not be optimal for maximizing yield and quality in today's agricultural environments and plant biotechnology applications. By improving enzyme performance, it should be possible to alleviate constraints on yield and quality currently imposed by kinetic properties or enzyme instability. Enzymes can be optimized more quickly than naturally possible by applying directed evolution, which entails mutating a target gene in vitro and screening or selecting the mutated gene products for the desired characteristics. Continuous directed evolution is a more efficient and scalable version that accomplishes the mutagenesis and selection steps simultaneously in vivo via error-prone replication of the target gene and coupling of the host cell's growth rate to the target gene's function. However, published continuous systems require custom plasmid assembly, and convenient multipurpose platforms are not available. We discuss two systems suitable for continuous directed evolution of enzymes, OrthoRep in Saccharomyces cerevisiae and EvolvR in Escherichia coli, and our pilot efforts to adapt each system for high-throughput plant enzyme engineering. To test our modified systems, we used the thiamin synthesis enzyme THI4, previously identified as a prime candidate for improvement. Our adapted OrthoRep system shows promise for efficient plant enzyme engineering.
Collapse
Affiliation(s)
| | - Jaya Joshi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| | - Jenelle A. Patterson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| | - Lidimarie Trujillo-Rodriguez
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603, USA; (L.T.-R.); (C.R.R.)
| | - Christopher R. Reisch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603, USA; (L.T.-R.); (C.R.R.)
| | - Alex A. Javanpour
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA; (A.A.J.); (C.C.L.)
| | - Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA; (A.A.J.); (C.C.L.)
- Department of Chemistry, University of California, Irvine, CA 92617, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
59
|
Abstract
Fruit set is the process whereby ovaries develop into fruits after pollination and fertilization. The process is induced by the phytohormone gibberellin (GA) in tomatoes, as determined by the constitutive GA response mutant procera However, the role of GA on the metabolic behavior in fruit-setting ovaries remains largely unknown. This study explored the biochemical mechanisms of fruit set using a network analysis of integrated transcriptome, proteome, metabolome, and enzyme activity data. Our results revealed that fruit set involves the activation of central carbon metabolism, with increased hexoses, hexose phosphates, and downstream metabolites, including intermediates and derivatives of glycolysis, the tricarboxylic acid cycle, and associated organic and amino acids. The network analysis also identified the transcriptional hub gene SlHB15A, that coordinated metabolic activation. Furthermore, a kinetic model of sucrose metabolism predicted that the sucrose cycle had high activity levels in unpollinated ovaries, whereas it was shut down when sugars rapidly accumulated in vacuoles in fruit-setting ovaries, in a time-dependent manner via tonoplastic sugar carriers. Moreover, fruit set at least partly required the activity of fructokinase, which may pull fructose out of the vacuole, and this could feed the downstream pathways. Collectively, our results indicate that GA cascades enhance sink capacities, by up-regulating central metabolic enzyme capacities at both transcriptional and posttranscriptional levels. This leads to increased sucrose uptake and carbon fluxes for the production of the constituents of biomass and energy that are essential for rapid ovary growth during the initiation of fruit set.
Collapse
|
60
|
Maldonado M, Padavannil A, Zhou L, Guo F, Letts JA. Atomic structure of a mitochondrial complex I intermediate from vascular plants. eLife 2020; 9:56664. [PMID: 32840211 PMCID: PMC7447434 DOI: 10.7554/elife.56664] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Respiration, an essential metabolic process, provides cells with chemical energy. In eukaryotes, respiration occurs via the mitochondrial electron transport chain (mETC) composed of several large membrane-protein complexes. Complex I (CI) is the main entry point for electrons into the mETC. For plants, limited availability of mitochondrial material has curbed detailed biochemical and structural studies of their mETC. Here, we present the cryoEM structure of the known CI assembly intermediate CI* from Vigna radiata at 3.9 Å resolution. CI* contains CI's NADH-binding and CoQ-binding modules, the proximal-pumping module and the plant-specific γ-carbonic-anhydrase domain (γCA). Our structure reveals significant differences in core and accessory subunits of the plant complex compared to yeast, mammals and bacteria, as well as the details of the γCA domain subunit composition and membrane anchoring. The structure sheds light on differences in CI assembly across lineages and suggests potential physiological roles for CI* beyond assembly.
Collapse
Affiliation(s)
- Maria Maldonado
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| | - Abhilash Padavannil
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| | - Long Zhou
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States.,BIOEM Facility, University of California Davis, Davis, United States
| | - James A Letts
- Department of Molecular and Cellular Biology, University of California Davis, Davis, United States
| |
Collapse
|
61
|
Fitzpatrick TB, Chapman LM. The importance of thiamine (vitamin B 1) in plant health: From crop yield to biofortification. J Biol Chem 2020; 295:12002-12013. [PMID: 32554808 PMCID: PMC7443482 DOI: 10.1074/jbc.rev120.010918] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Ensuring that people have access to sufficient and nutritious food is necessary for a healthy life and the core tenet of food security. With the global population set to reach 9.8 billion by 2050, and the compounding effects of climate change, the planet is facing challenges that necessitate significant and rapid changes in agricultural practices. In the effort to provide food in terms of calories, the essential contribution of micronutrients (vitamins and minerals) to nutrition is often overlooked. Here, we focus on the importance of thiamine (vitamin B1) in plant health and discuss its impact on human health. Vitamin B1 is an essential dietary component, and deficiencies in this micronutrient underlie several diseases, notably nervous system disorders. The predominant source of dietary vitamin B1 is plant-based foods. Moreover, vitamin B1 is also vital for plants themselves, and its benefits in plant health have received less attention than in the human health sphere. In general, vitamin B1 is well-characterized for its role as a coenzyme in metabolic pathways, particularly those involved in energy production and central metabolism, including carbon assimilation and respiration. Vitamin B1 is also emerging as an important component of plant stress responses, and several noncoenzyme roles of this vitamin are being characterized. We summarize the importance of vitamin B1 in plants from the perspective of food security, including its roles in plant disease resistance, stress tolerance, and crop yield, and review the potential benefits of biofortification of crops with increased vitamin B1 content to improve human health.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
| | - Lottie M Chapman
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
62
|
Benes B, Guan K, Lang M, Long SP, Lynch JP, Marshall-Colón A, Peng B, Schnable J, Sweetlove LJ, Turk MJ. Multiscale computational models can guide experimentation and targeted measurements for crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:21-31. [PMID: 32053236 DOI: 10.1111/tpj.14722] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 05/18/2023]
Abstract
Computational models of plants have identified gaps in our understanding of biological systems, and have revealed ways to optimize cellular processes or organ-level architecture to increase productivity. Thus, computational models are learning tools that help direct experimentation and measurements. Models are simplifications of complex systems, and often simulate specific processes at single scales (e.g. temporal, spatial, organizational, etc.). Consequently, single-scale models are unable to capture the critical cross-scale interactions that result in emergent properties of the system. In this perspective article, we contend that to accurately predict how a plant will respond in an untested environment, it is necessary to integrate mathematical models across biological scales. Computationally mimicking the flow of biological information from the genome to the phenome is an important step in discovering new experimental strategies to improve crops. A key challenge is to connect models across biological, temporal and computational (e.g. CPU versus GPU) scales, and then to visualize and interpret integrated model outputs. We address this challenge by describing the efforts of the international Crops in silico consortium.
Collapse
Affiliation(s)
- Bedrich Benes
- Computer Graphics Technology and Computer Science, Purdue University, Knoy Hall of Technology, West Lafayette, IN, 47906, USA
| | - Kaiyu Guan
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Meagan Lang
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL, 61801, USA
- Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 1YX, UK
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Amy Marshall-Colón
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Department of Plant Biology, University of Illinois Urbana-Champaign, 265 Morrill Hall, MC-116, 505 South Goodwin Ave., Urbana, IL, 61801, USA
| | - Bin Peng
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - James Schnable
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Matthew J Turk
- National Center of Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, USA
- School of Information Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
63
|
Patron NJ. Beyond natural: synthetic expansions of botanical form and function. THE NEW PHYTOLOGIST 2020; 227:295-310. [PMID: 32239523 PMCID: PMC7383487 DOI: 10.1111/nph.16562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/03/2020] [Indexed: 05/05/2023]
Abstract
Powered by developments that enabled genome-scale investigations, systems biology emerged as a field aiming to understand how phenotypes emerge from network functions. These advances fuelled a new engineering discipline focussed on synthetic reconstructions of complex biological systems with the goal of predictable rational design and control. Initially, progress in the nascent field of synthetic biology was slow due to the ad hoc nature of molecular biology methods such as cloning. The application of engineering principles such as standardisation, together with several key technical advances, enabled a revolution in the speed and accuracy of genetic manipulation. Combined with mathematical and statistical modelling, this has improved the predictability of engineering biological systems of which nonlinearity and stochasticity are intrinsic features leading to remarkable achievements in biotechnology as well as novel insights into biological function. In the past decade, there has been slow but steady progress in establishing foundations for synthetic biology in plant systems. Recently, this has enabled model-informed rational design to be successfully applied to the engineering of plant gene regulation and metabolism. Synthetic biology is now poised to transform the potential of plant biotechnology. However, reaching full potential will require conscious adjustments to the skillsets and mind sets of plant scientists.
Collapse
Affiliation(s)
- Nicola J. Patron
- Engineering BiologyEarlham InstituteNorwich Research Park, NorwichNorfolkNR4 7UZUK
| |
Collapse
|
64
|
O'Leary B, Plaxton WC. Multifaceted functions of post-translational enzyme modifications in the control of plant glycolysis. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:28-37. [PMID: 32200227 DOI: 10.1016/j.pbi.2020.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Glycolysis is a central feature of metabolism and its regulation plays important roles during plant developmental and stress responses. Recent advances in proteomics and mass spectrometry have documented extensive and dynamic post-translational modifications (PTMs) of most glycolytic enzymes in diverse plant tissues. Protein PTMs represent fundamental regulatory events that integrate signalling and gene expression with cellular metabolic networks, and can regulate glycolytic enzyme activity, localization, protein:protein interactions, moonlighting functions, and turnover. Serine/threonine phosphorylation and redox PTMs of cysteine thiol groups appear to be the most prevalent forms of reversible covalent modification involved in plant glycolytic control. Additional PTMs including monoubiquitination also have important functions. However, the molecular functions and mechanisms of most glycolytic enzyme PTMs remain unknown, and represent important objectives for future studies.
Collapse
Affiliation(s)
- Brendan O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Australia
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|
65
|
Fukuda M, Mieda M, Sato R, Kinoshita S, Tomoyama T, Ferjani A, Maeshima M, Segami S. Lack of Vacuolar H + -Pyrophosphatase and Cytosolic Pyrophosphatases Causes Fatal Developmental Defects in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:655. [PMID: 32528505 PMCID: PMC7266078 DOI: 10.3389/fpls.2020.00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The cytosolic level of inorganic pyrophosphate (PPi) is finely regulated, with PPi hydrolyzed primarily by the vacuolar H+-pyrophosphatase (H+-PPase, VHP1/FUGU5/AVP1) and secondarily by five cytosolic soluble pyrophosphatases (sPPases; PPa1-PPa5) in Arabidopsis thaliana. Loss-of-function mutants of H+-PPase (fugu5s) have been reported to show atrophic phenotypes in their rosette leaves when nitrate is the sole nitrogen source in the culture medium. For this phenotype, two questions remain unanswered: why does atrophy depend on physical contact between shoots and the medium, and how does ammonium prevent such atrophy. To understand the mechanism driving this phenotype, we analyzed the growth and phenotypes of mutants on ammonium-free medium in detail. fugu5-1 showed cuticle defects, cell swelling, reduced β-glucan levels, and vein malformation in the leaves, suggesting cell wall weakening and cell lethality. Based on the observation in the double mutants fugu5-1 ppa1 and fugu5-1 ppa4 of more severe atrophy compared to fugu5-1, the nitrogen-dependent phenotype might be linked to PPi metabolism. To elucidate the role of ammonium in this process, we examined the fluctuations of sPPase mRNA levels and the possibility of alternative PPi-removing factors, such as other types of pyrophosphatase. First, we found that both the protein and mRNA levels of sPPases were unaffected by the nitrogen source. Second, to assess the influence of other PPi-removing factors, we examined the phenotypes of triple knockout mutants of H+-PPase and two sPPases on ammonium-containing medium. Both fugu5 ppa1 ppa2 and fugu5 ppa1 ppa4 had nearly lethal embryonic phenotypes, with the survivors showing striking dwarfism and abnormal morphology. Moreover, fugu5 ppa1+/- ppa4 showed severe atrophy at the leaf margins. The other triple mutants, fugu5 ppa1 ppa5 and fugu5 ppa2 ppa4, exhibited death of root hairs and were nearly sterile due to deformed pistils, respectively, even when grown on standard medium. Together, these results suggest that H+-PPase and sPPases act in concert to maintain PPi homeostasis, that the existence of other PPi removers is unlikely, and that ammonium may suppress the production of PPi during nitrogen metabolism rather than stimulating PPi hydrolysis.
Collapse
Affiliation(s)
- Mayu Fukuda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Marika Mieda
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryosuke Sato
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Satoru Kinoshita
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takaaki Tomoyama
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
66
|
Dourmap C, Roque S, Morin A, Caubrière D, Kerdiles M, Béguin K, Perdoux R, Reynoud N, Bourdet L, Audebert PA, Moullec JL, Couée I. Stress signalling dynamics of the mitochondrial electron transport chain and oxidative phosphorylation system in higher plants. ANNALS OF BOTANY 2020; 125:721-736. [PMID: 31711195 PMCID: PMC7182585 DOI: 10.1093/aob/mcz184] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/07/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Mitochondria play a diversity of physiological and metabolic roles under conditions of abiotic or biotic stress. They may be directly subjected to physico-chemical constraints, and they are also involved in integrative responses to environmental stresses through their central position in cell nutrition, respiration, energy balance and biosyntheses. In plant cells, mitochondria present various biochemical peculiarities, such as cyanide-insensitive alternative respiration, and, besides integration with ubiquitous eukaryotic compartments, their functioning must be coupled with plastid functioning. Moreover, given the sessile lifestyle of plants, their relative lack of protective barriers and present threats of climate change, the plant cell is an attractive model to understand the mechanisms of stress/organelle/cell integration in the context of environmental stress responses. SCOPE The involvement of mitochondria in this integration entails a complex network of signalling, which has not been fully elucidated, because of the great diversity of mitochondrial constituents (metabolites, reactive molecular species and structural and regulatory biomolecules) that are linked to stress signalling pathways. The present review analyses the complexity of stress signalling connexions that are related to the mitochondrial electron transport chain and oxidative phosphorylation system, and how they can be involved in stress perception and transduction, signal amplification or cell stress response modulation. CONCLUSIONS Plant mitochondria are endowed with a diversity of multi-directional hubs of stress signalling that lead to regulatory loops and regulatory rheostats, whose functioning can amplify and diversify some signals or, conversely, dampen and reduce other signals. Involvement in a wide range of abiotic and biotic responses also implies that mitochondrial stress signalling could result in synergistic or conflicting outcomes during acclimation to multiple and complex stresses, such as those arising from climate change.
Collapse
Affiliation(s)
- Corentin Dourmap
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Solène Roque
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Amélie Morin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Damien Caubrière
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Margaux Kerdiles
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Kyllian Béguin
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| | - Romain Perdoux
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Nicolas Reynoud
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Lucile Bourdet
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Pierre-Alexandre Audebert
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Julien Le Moullec
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
| | - Ivan Couée
- Université de Rennes 1, Department of Life Sciences and Environment, Campus de Beaulieu, Rennes, France
- Université de Rennes 1, CNRS ECOBIO (Ecosystems-Biodiversity-Evolution) – UMR 6553, Rennes, France
| |
Collapse
|
67
|
Vanlerberghe GC, Dahal K, Alber NA, Chadee A. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion 2020; 52:197-211. [PMID: 32278748 DOI: 10.1016/j.mito.2020.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
This review summarizes knowledge of alternative oxidase, a mitochondrial electron transport chain component that lowers the ATP yield of plant respiration. Analysis of mutant and transgenic plants has established that alternative oxidase activity supports leaf photosynthesis. The interaction of alternative oxidase respiration with chloroplast metabolism is important under conditions that challenge energy and/or carbon balance in the photosynthetic cell. Under such conditions, alternative oxidase provides an extra-chloroplastic means to optimize the status of chloroplast energy pools (ATP, NADPH) and to manage cellular carbohydrate pools in response to changing rates of carbon fixation and carbon demand for growth and maintenance. Transcriptional and post-translational mechanisms ensure that alternative oxidase can respond effectively when carbon and energy balance are being challenged. This function appears particularly significant under abiotic stress conditions such as water deficit, high salinity, or temperature extremes. Under such conditions, alternative oxidase respiration positively affects growth and stress tolerance, despite it lowering the energy yield and carbon use efficiency of respiration. In part, this beneficial effect relates to the ability of alternative oxidase respiration to prevent excessive reactive oxygen species generation in both mitochondria and chloroplasts. Recent evidence suggests that alternative oxidase respiration is an interesting target for crop improvement.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, New Brunswick E3B4Z7, Canada
| | - Nicole A Alber
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada
| | - Avesh Chadee
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada
| |
Collapse
|
68
|
Roell MS, Zurbriggen MD. The impact of synthetic biology for future agriculture and nutrition. Curr Opin Biotechnol 2020; 61:102-109. [DOI: 10.1016/j.copbio.2019.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
|
69
|
Munns R, Day DA, Fricke W, Watt M, Arsova B, Barkla BJ, Bose J, Byrt CS, Chen ZH, Foster KJ, Gilliham M, Henderson SW, Jenkins CLD, Kronzucker HJ, Miklavcic SJ, Plett D, Roy SJ, Shabala S, Shelden MC, Soole KL, Taylor NL, Tester M, Wege S, Wegner LH, Tyerman SD. Energy costs of salt tolerance in crop plants. THE NEW PHYTOLOGIST 2020; 225:1072-1090. [PMID: 31004496 DOI: 10.1111/nph.15864] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 05/21/2023]
Abstract
Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+ -ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.
Collapse
Affiliation(s)
- Rana Munns
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin (UCD), Dublin, 4, Ireland
| | - Michelle Watt
- Plant Sciences, Institute of Bio and Geosciences, Forschungszentrum Juelich, Helmholtz Association, 52425, Juelich, Germany
| | - Borjana Arsova
- Plant Sciences, Institute of Bio and Geosciences, Forschungszentrum Juelich, Helmholtz Association, 52425, Juelich, Germany
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2481, Australia
| | - Jayakumar Bose
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Caitlin S Byrt
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Kylie J Foster
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Matthew Gilliham
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Sam W Henderson
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Urrbrae, SA, 5064, Australia
| | - Colin L D Jenkins
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stanley J Miklavcic
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Darren Plett
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stuart J Roy
- Australian Research Council (ARC) Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas., 7001, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Megan C Shelden
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Kathleen L Soole
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Nicolas L Taylor
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mark Tester
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefanie Wege
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Lars H Wegner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
70
|
Florez-Sarasa I, Fernie AR, Gupta KJ. Does the alternative respiratory pathway offer protection against the adverse effects resulting from climate change? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:465-469. [PMID: 31559421 PMCID: PMC6946008 DOI: 10.1093/jxb/erz428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Elevated greenhouse gases (GHGs) induce adverse conditions directly and indirectly, causing decreases in plant productivity. To deal with climate change effects, plants have developed various mechanisms including the fine-tuning of metabolism. Plant respiratory metabolism is highly flexible due to the presence of various alternative pathways. The mitochondrial alternative oxidase (AOX) respiratory pathway is responsive to these changes, and several lines of evidence suggest it plays a role in reducing excesses of reactive oxygen species (ROS) and reactive nitrogen species (RNS) while providing metabolic flexibility under stress. Here we discuss the importance of the AOX pathway in dealing with elevated carbon dioxide (CO2), nitrogen oxides (NOx), ozone (O3), and the main abiotic stresses induced by climate change.
Collapse
Affiliation(s)
- Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kapuganti Jagadis Gupta
- National Institute for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
71
|
Wurtzel ET, Vickers CE, Hanson AD, Millar AH, Cooper M, Voss-Fels KP, Nikel PI, Erb TJ. Revolutionizing agriculture with synthetic biology. NATURE PLANTS 2019; 5:1207-1210. [PMID: 31740769 DOI: 10.1038/s41477-019-0539-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/27/2019] [Indexed: 05/26/2023]
Abstract
Synthetic biology is here to stay and will transform agriculture if given the chance. The huge challenges facing food, fuel and chemical production make it vital to give synthetic biology that chance-notwithstanding the shifts in mindset, training and infrastructure investment this demands. Here, we assess opportunities for agricultural synthetic biology and ways to remove barriers to their realization.
Collapse
Affiliation(s)
- Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, USA.
- Graduate School and University Center-CUNY, New York, NY, USA.
| | - Claudia E Vickers
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australia.
- Australian Institute for Bioengineering & Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA.
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Cooper
- Queensland Alliance for Agriculture & Food Innovation, University of Queensland, St. Lucia, Queensland, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture & Food Innovation, University of Queensland, St. Lucia, Queensland, Australia
| | - Pablo I Nikel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Tobias J Erb
- Max-Planck-Institute for Terrestrial Microbiology, Department of Biochemistry & Synthetic Metabolism, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|