51
|
Chen Z, Dong Y, Huang X. Plant responses to UV-B radiation: signaling, acclimation and stress tolerance. STRESS BIOLOGY 2022; 2:51. [PMID: 37676395 PMCID: PMC10441900 DOI: 10.1007/s44154-022-00076-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/22/2022] [Indexed: 09/08/2023]
Abstract
Ultraviolet-B (UV-B) light is an intrinsic part of sunlight that reaches the earth's surface, and affects plant survival and adaptation. How plants respond to UV-B light is regulated by the wavelength, intensity and duration of UV-B radiation, and is also regulated by photosynthetically active radiation perceived by phytochrome and cryptochrome photoreceptors. Non-damaging UV-B light promotes plant photomorphogenesis and UV-B acclimation which enhances plant tolerance against UV-B stress. However, high-level UV-B radiation induces DNA damage, generates reactive oxygen species (ROS) and impairs photosynthesis. Plants have evolved efficient mechanisms to utilize informational UV-B signal, and protect themselves from UV-B stress. UV RESISTANCE LOCUS8 (UVR8) is a conserved plant-specific UV-B photoreceptor. It interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate UV-B-specific light signaling and regulate UV-B responsive gene expression. A set of transcription factors such as ELONGATED HYPOCOTYL5 (HY5) function downstream of the UVR8-COP1 module to promote seedling de-etiolation for photomorphogenic development and biosynthesis of sunscreen flavonoids for UV-B stress tolerance. In addition to UVR8 signaling pathways, plants subjected to damaging UV-B radiation initiate stress protection and repair mechanisms through UVR8-independent pathways. In this review, we summarize the emerging mechanisms underlying UV-B stress acclimation and protection in plants, primarily revealed in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhiren Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yuan Dong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
52
|
Sezen Toksoy Köseoğlu, Ali Doğru. Effect of Short-Term and Long-Term UV-B Radiation on PSII Activity and Antioxidant Enzymes in Cucurbita pepo L. Leaves. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
53
|
Montes C, Wang P, Liao C, Nolan TM, Song G, Clark NM, Elmore JM, Guo H, Bassham DC, Yin Y, Walley JW. Integration of multi-omics data reveals interplay between brassinosteroid and Target of Rapamycin Complex signaling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:893-910. [PMID: 35892179 PMCID: PMC9804314 DOI: 10.1111/nph.18404] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/16/2022] [Indexed: 06/01/2023]
Abstract
Brassinosteroids (BRs) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. Brassinosteroids function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing. We quantified the level of 23 975 transcripts, 11 183 proteins, and 27 887 phosphorylation sites in wild-type Arabidopsis thaliana and in mutants with altered levels of either BRASSINOSTEROID INSENSITIVE 2 (BIN2) or REGULATORY ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), two key players in BR and TORC signaling, respectively. We found that perturbation of BIN2 or RAPTOR1B levels affects a common set of gene-products involved in growth and stress responses. Furthermore, we used the multi-omic data to reconstruct an integrated signaling network. We screened 41 candidate genes identified from the reconstructed network and found that loss of function mutants of many of these proteins led to an altered BR response and/or modulated autophagy activity. Altogether, these results establish a predictive network that defines different layers of molecular interactions between BR- or TORC-regulated growth and autophagy.
Collapse
Affiliation(s)
- Christian Montes
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Ping Wang
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Ching‐Yi Liao
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Trevor M. Nolan
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
- Department of BiologyDuke UniversityDurhamNC27708USA
| | - Gaoyuan Song
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Natalie M. Clark
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - J. Mitch Elmore
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
- USDA‐ARS Cereal Disease LaboratoryUniversity of MinnesotaSt PaulMN55108USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
- Plant Sciences InstituteIowa State UniversityAmesIA50011USA
| | - Justin W. Walley
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
- Plant Sciences InstituteIowa State UniversityAmesIA50011USA
| |
Collapse
|
54
|
Chai S, Chen J, Yue X, Li C, Zhang Q, de Dios VR, Yao Y, Tan W. Interaction of BES1 and LBD37 transcription factors modulates brassinosteroid-regulated root forging response under low nitrogen in arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:998961. [PMID: 36247555 PMCID: PMC9555238 DOI: 10.3389/fpls.2022.998961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteriod (BR) plays important roles in regulation of plant growth, development and environmental responses. BR signaling regulates multiple biological processes through controlling the activity of BES1/BZR1 regulators. Apart from the roles in the promotion of plant growth, BR is also involved in regulation of the root foraging response under low nitrogen, however how BR signaling regulate this process remains unclear. Here we show that BES1 and LBD37 antagonistically regulate root foraging response under low nitrogen conditions. Both the transcriptional level and dephosphorylated level of BES1, is significant induced by low nitrogen, predominantly in root. Phenotypic analysis showed that BES1 gain-of-function mutant or BES1 overexpression transgenic plants exhibits progressive outgrowth of lateral root in response to low nitrogen and BES1 negatively regulates repressors of nitrate signaling pathway and positively regulates several key genes required for NO3 - uptake and signaling. In contrast, BES1 knock-down mutant BES1-RNAi exhibited a dramatical reduction of lateral root elongation in response to low N. Furthermore, we identified a BES1 interacting protein, LBD37, which is a negative repressor of N availability signals. Our results showed that BES1 can inhibit LBD37 transcriptional repression on N-responsive genes. Our results thus demonstrated that BES1-LBD37 module acts critical nodes to integrate BR signaling and nitrogen signaling to modulate the root forging response at LN condition.
Collapse
Affiliation(s)
- Shuli Chai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Junhua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaolan Yue
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chenlin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Qiang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Leida, Spain
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wenrong Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
55
|
Shi H, Li X, Lv M, Li J. BES1/BZR1 Family Transcription Factors Regulate Plant Development via Brassinosteroid-Dependent and Independent Pathways. Int J Mol Sci 2022; 23:ijms231710149. [PMID: 36077547 PMCID: PMC9478962 DOI: 10.3390/ijms231710149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.
Collapse
|
56
|
Job N, Lingwan M, Masakapalli SK, Datta S. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. PLANT PHYSIOLOGY 2022; 189:2467-2480. [PMID: 35511140 PMCID: PMC9342961 DOI: 10.1093/plphys/kiac195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 05/04/2023]
Abstract
UV-B radiation acts as a developmental cue and a stress factor for plants, depending on dose. Activation of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) in a UV RESISTANCE LOCUS 8 (UVR8)-dependent manner leads to the induction of a broad set of genes under UV-B. However, the underlying molecular mechanisms regulating this process are less understood. Here, we use molecular, biochemical, genetic, and metabolomic tools to identify the B-BOX transcription factor B-BOX PROTEIN 11 (BBX11) as a component of the molecular response to UV-B in Arabidopsis (Arabidopsis thaliana). BBX11 expression is induced by UV-B in a dose-dependent manner. Under low UV-B, BBX11 regulates hypocotyl growth suppression, whereas it protects plants exposed to high UV-B radiation by promoting the accumulation of photo-protective phenolics and antioxidants, and inducing DNA repair genes. Our genetic studies indicate that BBX11 regulates hypocotyl elongation under UV-B partially dependent on HY5. Overexpression of BBX11 can partially rescue the high UV-B sensitivity of hy5, suggesting that HY5-mediated UV-B stress tolerance is partially dependent on BBX11. HY5 regulates the UV-B-mediated induction of BBX11 by directly binding to its promoter. BBX11 reciprocally regulates the mRNA and protein levels of HY5. We report here the role of a BBX11-HY5 feedback loop in regulating photomorphogenesis and stress tolerance under UV-B.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| | - Maneesh Lingwan
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Shyam Kumar Masakapalli
- BioX School of Basic Sciences, Indian Institute of Technology-Mandi, Mandi 175005, Himachal Pradesh, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research-Bhopal, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
57
|
Han Q, Song H, Yang C, Zhang S, Korpelainen H, Li C. Integrated DNA methylation, transcriptome and physiological analyses reveal new insights into superiority of poplars formed by interspecific grafting. TREE PHYSIOLOGY 2022; 42:1481-1500. [PMID: 35134240 DOI: 10.1093/treephys/tpac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Plant grafting has a long history and it is extensively employed to improve plant performance. In our previous research, reciprocal grafts of Populus cathayana Rehder (C) and Populus deltoides Bart. Ex Marsh (D) were generated. The results showed that interspecific grafting combinations (scion/rootstock: C/D and D/C) grew better than intraspecific grafting combinations (C/C and D/D). To further understand differences in molecular mechanisms between interspecific and intraspecific grafting, we performed an integrated analysis, including bisulfite sequencing, RNA sequencing and measurements of physiological indicators, to investigate leaves of different grafting combinations. We found that the difference at the genome-wide methylation level was greater in D/C vs D/D than in C/D vs C/C, but no difference was detected at the transcription level in D/C vs D/D. Furthermore, the grafting superiority of D/C vs D/D was not as strong as that of C/D vs C/C. These results may be associated with the different methylation forms, mCHH (71.76%) and mCG (57.16%), that accounted for the highest percentages in C/D vs C/C and D/C vs D/D, respectively. In addition, the interspecific grafting superiority was found mainly related to the process of photosynthesis, phytohormone signal transduction, biosynthesis of secondary metabolites, cell wall and transcriptional regulation based on both physiological and molecular results. Overall, the results indicated that the physiological and molecular phenotypes of grafted plants are affected by the interaction between scion and rootstock. Thus, our study provides a theoretical basis for developing suitable scion-rootstock combinations for grafted plants.
Collapse
Affiliation(s)
- Qingquan Han
- Institute of Physical Education, Ludong University, Yantai 264025, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
58
|
Cao J, Liang Y, Yan T, Wang X, Zhou H, Chen C, Zhang Y, Zhang B, Zhang S, Liao J, Cheng S, Chu J, Huang X, Xu D, Li J, Deng XW, Lin F. The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. THE PLANT CELL 2022; 34:2266-2285. [PMID: 35294019 PMCID: PMC9134050 DOI: 10.1093/plcell/koac092] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/27/2022] [Indexed: 05/20/2023]
Abstract
B-box containing proteins (BBXs) integrate light and various hormonal signals to regulate plant growth and development. Here, we demonstrate that the photomorphogenic repressors BBX28 and BBX29 positively regulate brassinosteroid (BR) signaling in Arabidopsis thaliana seedlings. Treatment with the BR brassinolide stabilized BBX28 and BBX29, which partially depended on BR INSENSITIVE1 (BRI1) and BIN2. bbx28 bbx29 seedlings exhibited larger cotyledon aperture than the wild-type when treated with brassinazole in the dark, which partially suppressed the closed cotyledons of brassinazole resistant 1-1D (bzr1-1D). Consistently, overexpressing BBX28 and BBX29 partially rescued the short hypocotyls of bri1-5 and bin2-1 in both the dark and light, while the loss-of-function of BBX28 and BBX29 partially suppressed the long hypocotyls of bzr1-1D in the light. BBX28 and BBX29 physically interacted with BR-ENHANCED EXPRESSION1 (BEE1), BEE2, and BEE3 and enhanced their binding to and activation of their target genes. Moreover, BBX28 and BBX29 as well as BEE1, BEE2, and BEE3 increased BZR1 accumulation to promote the BR signaling pathway. Therefore, both BBX28 and BBX29 interact with BEE1, BEE2, and BEE3 to orchestrate light and BR signaling by facilitating the transcriptional activity of BEE target genes. Our study provides insights into the pivotal roles of BBX28 and BBX29 as signal integrators in ensuring normal seedling development.
Collapse
Affiliation(s)
| | | | | | - Xuncheng Wang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Hua Zhou
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingli Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beihong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuhao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juncheng Liao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shujing Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xing Wang Deng
- Department of Biology, Institute of Plant and Food Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
59
|
Su M, Wang S, Liu W, Yang M, Zhang Z, Wang N, Chen X. MdJa2 Participates in the Brassinosteroid Signaling Pathway to Regulate the Synthesis of Anthocyanin and Proanthocyanidin in Red-Fleshed Apple. FRONTIERS IN PLANT SCIENCE 2022; 13:830349. [PMID: 35615132 PMCID: PMC9125324 DOI: 10.3389/fpls.2022.830349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanin and proanthocyanidin play important roles in plant secondary metabolism. Although previous studies identified many transcription factors involved in anthocyanin and proanthocyanidin synthesis, the effects of MADS-box transcription factors are unclear in apple. Brassinosteroids (BRs) are steroid hormones that affect plant flavonoid biosynthesis, but the underlying regulatory mechanism is not yet well established. In this study, we identified a MADS-box transcription factor, MdJa2, which contained a highly conserved MADS-box domain and belonged to the STMADS11 subfamily. Additionally, MdJa2 was responsive to BR signal, and the overexpression of MdJa2 inhibited the synthesis of anthocyanin and proanthocyanidin. The silencing of MdJa2 in "Orin" calli promoted anthocyanin and proanthocyanidin accumulations. Moreover, MdJa2 interacted with MdBZR1. MdJa2 was revealed to independently regulate anthocyanin and proanthocyanidin synthesis pathways. The MdJa2-MdBZR1 complex enhanced the binding of MdJa2 to the promoters of downstream target genes. Our research provides new insights into how MADS-box transcription factors in the BR signaling pathway control the accumulations of anthocyanin and proanthocyanidin in red-fleshed apple.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Shuo Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Ming Yang
- College of Continuing Education, Shandong Agricultural University, Tai’an, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai’an, China
| |
Collapse
|
60
|
Yang G, Zhang C, Dong H, Liu X, Guo H, Tong B, Fang F, Zhao Y, Yu Y, Liu Y, Lin L, Yin R. Activation and negative feedback regulation of SlHY5 transcription by the SlBBX20/21-SlHY5 transcription factor module in UV-B signaling. THE PLANT CELL 2022; 34:2038-2055. [PMID: 35188198 PMCID: PMC9048894 DOI: 10.1093/plcell/koac064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
In tomato (Solanum lycopersicum) and other plants, the photoreceptor UV-RESISTANCE LOCUS 8 regulates plant UV-B photomorphogenesis by modulating the transcription of many genes, the majority of which depends on the transcription factor ELONGATED HYPOCOTYL 5 (HY5). HY5 transcription is induced and then rapidly attenuated by UV-B. However, neither the transcription factors that activate HY5 transcription nor the mechanism for its attenuation during UV-B signaling is known. Here, we report that the tomato B-BOX (BBX) transcription factors SlBBX20 and SlBBX21 interact with SlHY5 and bind to the SlHY5 promoter to activate its transcription. UV-B-induced SlHY5 expression and SlHY5-controlled UV-B responses are normal in slbbx20 and slbbx21 single mutants, but strongly compromised in the slbbx20 slbbx21 double mutant. Surprisingly, UV-B responses are also compromised in lines overexpressing SlBBX20 or SlBBX21. Both SlHY5 and SlBBX20 bind to G-box1 in the SlHY5 promoter. SlHY5 outcompetes SlBBX20 for binding to the SlHY5 promoter in vitro, and inhibits the association of SlBBX20 with the SlHY5 promoter in vivo. Overexpressing 35S:SlHY5-FLAG in the WT background inhibits UV-B-induced endogenous SlHY5 expression. Together, our results reveal the critical role of the SlBBX20/21-SlHY5 module in activating the expression of SlHY5, the gene product of which inhibits its own gene transcription under UV-B, forming an autoregulatory negative feedback loop that balances SlHY5 transcription in plants.
Collapse
Affiliation(s)
- Guoqian Yang
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunli Zhang
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaxi Dong
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaorui Liu
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huicong Guo
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boqin Tong
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Fang
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiyang Zhao
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunji Yu
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Liu
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Lin
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruohe Yin
- Shanghai Cooperative Innovation Center for Modern Seed Industry/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture Ministry of Agriculture, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
61
|
Pucker B, Selmar D. Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:963. [PMID: 35406945 PMCID: PMC9002769 DOI: 10.3390/plants11070963] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 05/20/2023]
Abstract
Flavonoids are a biochemically diverse group of specialized metabolites in plants that are derived from phenylalanine. While the biosynthesis of the flavonoid aglycone is highly conserved across species and well characterized, numerous species-specific decoration steps and their relevance remained largely unexplored. The flavonoid biosynthesis takes place at the cytosolic side of the endoplasmatic reticulum (ER), but accumulation of various flavonoids was observed in the central vacuole. A universal explanation for the subcellular transport of flavonoids has eluded researchers for decades. Current knowledge suggests that a glutathione S-transferase-like protein (ligandin) protects anthocyanins and potentially proanthocyanidin precursors during the transport to the central vacuole. ABCC transporters and to a lower extend MATE transporters sequester anthocyanins into the vacuole. Glycosides of specific proanthocyanidin precursors are sequestered through MATE transporters. A P-ATPase in the tonoplast and potentially other proteins generate the proton gradient that is required for the MATE-mediated antiport. Vesicle-mediated transport of flavonoids from the ER to the vacuole is considered as an alternative or additional route.
Collapse
Affiliation(s)
- Boas Pucker
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106 Braunschweig, Germany
| | - Dirk Selmar
- Institute of Plant Biology, TU Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|
62
|
Naik J, Misra P, Trivedi PK, Pandey A. Molecular components associated with the regulation of flavonoid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111196. [PMID: 35193745 DOI: 10.1016/j.plantsci.2022.111196] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids exhibit amazing structural diversity and play different roles in plants. Besides, these compounds have been associated with several health benefits in humans. Several exogenous and endogenous cues, for example, light, temperature, nutrient status, and phytohormones have been reported as modulators of biosynthesis and accumulation of flavonoids. Thus, multiple hormones and stress-related signaling pathways are involved in the regulation of gene expression associated with this pathway. The transcriptional regulators belonging to the MYB and bHLH family transcription factors are well documented as the direct regulators of the structural genes associated with flavonoid biosynthesis. Recent studies also suggest that some of these factors are regulated by molecular components involved in stress and hormone signaling pathways. Adapter proteins for transcriptional activation or repression via recruitment of co-activators and co-repressors, respectively, E2 ubiquitin ligases, miRNA processing complex, and DNA methylation/demethylation factors have been recently discovered in various plants to play key roles in fine-tuning flavonoids synthesis. In the present review, we aim to provide comprehensive information about the role of different factors in the regulation of flavonoid biosynthesis. Besides, we describe the potential upstream regulators involved in the regulation of flavonoid biosynthesis within the context of available information. To sum up, the present review furnishes an updated account of signal transduction pathways modulating the biosynthesis of flavonoids.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prashant Misra
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | | - Ashutosh Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
63
|
Richmond BL, Coelho CL, Wilkinson H, McKenna J, Ratchinski P, Schwarze M, Frost M, Lagunas B, Gifford ML. Elucidating connections between the strigolactone biosynthesis pathway, flavonoid production and root system architecture in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13681. [PMID: 35362177 PMCID: PMC9324854 DOI: 10.1111/ppl.13681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 05/20/2023]
Abstract
Strigolactones (SLs) are the most recently discovered phytohormones, and their roles in root architecture and metabolism are not fully understood. Here, we investigated four MORE AXILLARY GROWTH (MAX) SL mutants in Arabidopsis thaliana, max3-9, max4-1, max1-1 and max2-1, as well as the SL receptor mutant d14-1 and karrikin receptor mutant kai2-2. By characterising max2-1 and max4-1, we found that variation in SL biosynthesis modified multiple metabolic pathways in root tissue, including that of xyloglucan, triterpenoids, fatty acids and flavonoids. The transcription of key flavonoid biosynthetic genes, including TRANSPARENT TESTA4 (TT4) and TRANSPARENT TESTA5 (TT5) was downregulated in max2 roots and seedlings, indicating that the proposed MAX2 regulation of flavonoid biosynthesis has a widespread effect. We found an enrichment of BRI1-EMS-SUPPRESSOR 1 (BES1) targets amongst genes specifically altered in the max2 mutant, reflecting that the regulation of flavonoid biosynthesis likely occurs through the MAX2 degradation of BES1, a key brassinosteroid-related transcription factor. Finally, flavonoid accumulation decreased in max2-1 roots, supporting a role for MAX2 in regulating both SL and flavonoid biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Maximillian Schwarze
- School of Life SciencesUniversity of WarwickCoventryUK
- School of BiosciencesBirminghamUK
| | - Matthew Frost
- School of Life SciencesUniversity of WarwickCoventryUK
| | | | - Miriam L. Gifford
- School of Life SciencesUniversity of WarwickCoventryUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryUK
| |
Collapse
|
64
|
Brassinosteroid signaling regulates female germline specification in Arabidopsis. Curr Biol 2022; 32:1102-1114.e5. [DOI: 10.1016/j.cub.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
65
|
Song Y, Ma B, Guo Q, Zhou L, Lv C, Liu X, Wang J, Zhou X, Zhang C. UV-B induces the expression of flavonoid biosynthetic pathways in blueberry ( Vaccinium corymbosum) calli. FRONTIERS IN PLANT SCIENCE 2022; 13:1079087. [PMID: 36483950 PMCID: PMC9722975 DOI: 10.3389/fpls.2022.1079087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B) radiation is an environmental signal that affects the accumulation of secondary metabolites in plants. In particular, UV-B promotes flavonoid biosynthesis, leading to improved fruit quality. To explore the underlying molecular mechanism, we exposed blueberry (Vaccinium corymbosum) calli to UV-B radiation and performed a transcriptome deep sequencing (RNA-seq) analysis to identify differentially expressed genes (DEGs). We detected 16,899 DEGs among different treatments, with the largest number seen after 24 h of UV-B exposure relative to controls. Functional annotation and enrichment analysis showed a significant enrichment for DEGs in pathways related to plant hormone signal transduction and phenylpropanoid and flavonoid biosynthesis. In agreement with the transcriptome data, flavonol, anthocyanin and proanthocyanidin accumulated upon UV-B radiation, and most DEGs mapping to the phenylpropanoid and flavonoid biosynthetic pathways using the KEGG mapper tool were upregulated under UV-B radiation. We also performed a weighted gene co-expression network analysis (WGCNA) to explore the relationship among genes involved in plant hormone signal transduction, encoding transcription factors or participating in flavonoid biosynthesis. The transcription factors VcMYBPA1, MYBPA2.1, MYB114, MYBA2, MYBF, and MYB102 are likely activators, whereas MYB20, VcMYB14, MYB44, and VcMYB4a are inhibitors of the flavonoid biosynthetic pathway, as evidenced by the direction of correlation between the expression of these MYBs and flavonoid biosynthesis-related genes. The transcription factors bHLH74 and bHLH25 might interact with MYB repressors or directly inhibited the expression of flavonoid biosynthetic genes to control flavonoid accumulation. We also observed the downregulation of several genes belonging to the auxin, gibberellin and brassinosteroid biosynthetic pathways, suggesting that MYB inhibitors or activators are directly or indirectly regulated to promote flavonoid biosynthesis under UV-B radiation.
Collapse
|
66
|
Wu LY, Shang GD, Wang FX, Gao J, Wan MC, Xu ZG, Wang JW. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Dev Cell 2022; 57:526-542.e7. [DOI: 10.1016/j.devcel.2021.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
|
67
|
Zhang M, Li M, Fu H, Wang K, Tian X, Qiu R, Liu J, Gao S, Zhong Z, Yang B, Zhang L. Transcriptomic analysis unravels the molecular response of Lonicera japonica leaves to chilling stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1092857. [PMID: 36618608 PMCID: PMC9815118 DOI: 10.3389/fpls.2022.1092857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 05/10/2023]
Abstract
Lonicera japonica is not only an important resource of traditional Chinese medicine, but also has very high horticultural value. Studies have been performed on the physiological responses of L. japonica leaves to chilling, however, the molecular mechanism underlying the low temperature-induced leaves morphological changes remains unclear. In this study, it has been demonstrated that the ratio of pigments content including anthocyanins, chlorophylls, and carotenoids was significantly altered in response to chilling condition, resulting in the color transformation of leaves from green to purple. Transcriptomic analysis showed there were 10,329 differentially expressed genes (DEGs) co-expressed during chilling stress. DEGs were mainly mapped to secondary metabolism, cell wall, and minor carbohydrate. The upregulated genes (UGs) were mainly enriched in protein metabolism, transport, and signaling, while UGs in secondary metabolism were mainly involved in phenylpropaoids-flavonoids pathway (PFP) and carotenoids pathway (CP). Protein-protein interaction analysis illustrated that 21 interacted genes including CAX3, NHX2, ACA8, and ACA9 were enriched in calcium transport/potassium ion transport. BR biosynthesis pathway related genes and BR insensitive (BRI) were collectively induced by chilling stress. Furthermore, the expression of genes involved in anthocyanins and CPs as well as the content of chlorogenic acid (CGA) and luteoloside were increased in leaves of L. japonica under stress. Taken together, these results indicate that the activation of PFP and CP in leaves of L. japonica under chilling stress, largely attributed to the elevation of calcium homeostasis and stimulation of BR signaling, which then regulated the PFP/CP related transcription factors.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengxin Li
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongwei Fu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Kehao Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu Tian
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Renping Qiu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinkun Liu
- Department of Techonology Center, Shandong Anran Nanometer Industry Development Company Limited, Weihai, China
| | - Shuai Gao
- Department of Techonology Center, Shandong Anran Nanometer Industry Development Company Limited, Weihai, China
| | - Zhuoheng Zhong
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bingxian Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Bingxian Yang, ; Lin Zhang,
| | - Lin Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Bingxian Yang, ; Lin Zhang,
| |
Collapse
|
68
|
Tao M, Zhu W, Han H, Liu S, Liu A, Li S, Fu H, Tian J. Mitochondrial proteomic analysis reveals the regulation of energy metabolism and reactive oxygen species production in Clematis terniflora DC. leaves under high-level UV-B radiation followed by dark treatment. J Proteomics 2021; 254:104410. [PMID: 34923174 DOI: 10.1016/j.jprot.2021.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022]
Abstract
Clematis terniflora DC. is an important medicinal plant from the family Ranunculaceae. A previous study has shown that active ingredients in C. terniflora, such as flavonoids and coumarins, are increased under ultraviolet B radiation (UV-B) and dark treatment and that the numbers of genes related to the tricarboxylic acid cycle and mitochondrial electron transport chain (mETC) are changed. To uncover the mechanism of the response to UV-B radiation and dark treatment in C. terniflora, mitochondrial proteomics was performed. The results showed that proteins related to photorespiration, mitochondrial membrane permeability, the tricarboxylic acid cycle, and the mETC mainly showed differential expression profiles. Moreover, the increase in alternative oxidase indicated that another oxygen-consuming respiratory pathway in plant mitochondria was induced to minimize mitochondrial reactive oxygen species production. These results suggested that respiration and mitochondrial membrane permeability were deeply influenced to avoid energy consumption and maintain energy balance under UV-B radiation and dark treatment in C. terniflora leaf mitochondria. Furthermore, oxidative phosphorylation was able to regulate intracellular oxygen balance to resist oxidative stress. This study improves understanding of the function of mitochondria in response to UV-B radiation and dark treatment in C. terniflora. SIGNIFICANCE: C. terniflora was an important traditional Chinese medicine for anti-inflammatory. Previous study showed that the contents of coumarins which were the main active ingredient in C. terniflora were induced by UV-B radiation and dark treatment. In the present study, to uncover the regulatory mechanism of metabolic changes in C. terniflora, mitochondrial proteomics analysis of leaves was performed. The results showed that photorespiration and oxidative phosphorylation pathways were influenced under UV-B radiation and dark treatment. Mitochondria in C. terniflora leaf played a crucial role in energy mechanism and regulation of cellular oxidation-reduction to maintain cell homeostasis under UV-B radiation followed with dark treatment.
Collapse
Affiliation(s)
- Minglei Tao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Changshu Qiushi Technology Co. Ltd, Suzhou 215500, PR China
| | - Haote Han
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shouxin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Hongwei Fu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
69
|
Lin F, Cao J, Yuan J, Liang Y, Li J. Integration of Light and Brassinosteroid Signaling during Seedling Establishment. Int J Mol Sci 2021; 22:12971. [PMID: 34884771 PMCID: PMC8657978 DOI: 10.3390/ijms222312971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 01/02/2023] Open
Abstract
Light and brassinosteroid (BR) are external stimuli and internal cue respectively, that both play critical roles in a wide range of developmental and physiological process. Seedlings grown in the light exhibit photomorphogenesis, while BR promotes seedling etiolation. Light and BR oppositely control the development switch from shotomorphogenesis in the dark to photomorphogenesis in the light. Recent progress report that substantial components have been identified as hubs to integrate light and BR signals. Photomorphogenic repressors including COP1, PIFs, and AGB1 have been reported to elevate BR response, while photomorphogenesis-promoting factors such as HY5, BZS1, and NF-YCs have been proven to repress BR signal. In addition, BR components also modulate light signal. Here, we review the current research on signaling network associated with light and brassinosteroids, with a focus on the integration of light and BR signals enabling plants to thrive in the changeable environment.
Collapse
Affiliation(s)
- Fang Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (J.C.); (J.Y.); (Y.L.); (J.L.)
| | | | | | | | | |
Collapse
|
70
|
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The Flavonoid Biosynthesis Network in Plants. Int J Mol Sci 2021; 22:ijms222312824. [PMID: 34884627 PMCID: PMC8657439 DOI: 10.3390/ijms222312824] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
Collapse
Affiliation(s)
- Weixin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yi Feng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Suhang Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| |
Collapse
|
71
|
Shi C, Liu H. How plants protect themselves from ultraviolet-B radiation stress. PLANT PHYSIOLOGY 2021; 187:1096-1103. [PMID: 34734275 PMCID: PMC8566272 DOI: 10.1093/plphys/kiab245] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B) radiation has a wavelength range of 280-315 nm. Plants perceive UV-B as an environmental signal and a potential abiotic stress factor that affects development and acclimation. UV-B regulates photomorphogenesis including hypocotyl elongation inhibition, cotyledon expansion, and flavonoid accumulation, but high intensity UV-B can also harm plants by damaging DNA, triggering accumulation of reactive oxygen species, and impairing photosynthesis. Plants have evolved "sunscreen" flavonoids that accumulate under UV-B stress to prevent or limit damage. The UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) plays a critical role in promoting flavonoid biosynthesis to enhance UV-B stress tolerance. Recent studies have clarified several UVR8-mediated and UVR8-independent pathways that regulate UV-B stress tolerance. Here, we review these additions to our understanding of the molecular pathways involved in UV-B stress tolerance, highlighting the important roles of ELONGATED HYPOCOTYL 5, BRI1-EMS-SUPPRESSOR1, MYB DOMAIN PROTEIN 13, MAP KINASE PHOSPHATASE 1, and ATM- and RAD3-RELATED. We also summarize the known interactions with visible light receptors and the contribution of melatonin to UV-B stress responses. Finally, we update a working model of the UV-B stress tolerance pathway.
Collapse
Affiliation(s)
- Chen Shi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
72
|
Sáenz-de la O D, Morales LO, Strid Å, Torres-Pacheco I, Guevara-González RG. Ultraviolet-B exposure and exogenous hydrogen peroxide application lead to cross-tolerance toward drought in Nicotiana tabacum L. PHYSIOLOGIA PLANTARUM 2021; 173:666-679. [PMID: 33948972 DOI: 10.1111/ppl.13448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Acclimation of plants to water deficit involves biochemical and physiological adjustments. Here, we studied how ultraviolet (UV)-B exposure and exogenously applied hydrogen peroxide (H2 O2 ) potentiates drought tolerance in tobacco (Nicotiana tabacum L. cv. xanthi nc). Separate and combined applications for 14 days of 1.75 kJ m-2 day-1 UV-B radiation and 0.2 mM H2 O2 were assessed. Both factors, individually and combined, resulted in inhibition of growth. Furthermore, the combined treatment led to the most compacted plants. UV-B- and UV-B + H2 O2 -treated plants increased total antioxidant capacity and foliar epidermal flavonol index. H2 O2 - and UV-B + H2 O2 -pre-treated plants showed cross-tolerance to a subsequent 7-day moderate drought treatment, which was assessed as the absence of negative impact on growth, leaf wilting, and leaf relative water content. Plant responses to the pre-treatment were notably different: (1) H2 O2 increased the activity of catalase (EC 1.11.1.6), phenylalanine ammonia lyase (EC 4.3.1.5), and peroxidase activities (EC 1.11.1.7), and (2) the combined treatment induced epidermal flavonols which were key to drought tolerance. We report synergistic effects of UV-B and H2 O2 on transcription accumulation of UV RESISTANCE LOCUS 8, NAC DOMAIN PROTEIN 13 (NAC13), and BRI1-EMS-SUPPRESSOR 1 (BES1). Our data demonstrate a pre-treatment-dependent response to drought for NAC13, BES1, and CHALCONE SYNTHASE transcript accumulation. This study highlights the potential of combining UV-B and H2 O2 to improve drought tolerance which could become a useful tool to reduce water use.
Collapse
Affiliation(s)
- Diana Sáenz-de la O
- Biosystems Engineering, School of Engineering, Autonomous University of Queretaro-Campus Amazcala, Querétaro, Mexico
| | - Luis O Morales
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Åke Strid
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Irineo Torres-Pacheco
- Biosystems Engineering, School of Engineering, Autonomous University of Queretaro-Campus Amazcala, Querétaro, Mexico
| | - Ramón G Guevara-González
- Biosystems Engineering, School of Engineering, Autonomous University of Queretaro-Campus Amazcala, Querétaro, Mexico
| |
Collapse
|
73
|
Wang J, Li M, Feng J, Yan X, Chen H, Han R. Effects of TiO 2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana. CHEMOSPHERE 2021; 281:130809. [PMID: 33992849 DOI: 10.1016/j.chemosphere.2021.130809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
As the ozone hole in the North and South poles continues to increase, the entire ecosystem will face an environmental crisis caused by enhanced UV-B radiation. Considering the function of TiO2 and the application of nanomaterials in agriculture, the effect of TiO2-NPs on UV-B stress tolerance in Arabidopsis was investigated. The phenotype of plants was determined, and the expression patterns of antioxidant systems and related genes were analyzed. Modification of the antioxidant system and changes in the flavonoid content of plants were observed by histochemical staining. The effects of TiO2-NPs and UV-B on mitosis were observed at the cellular level, and the degree of DNA damage was analyzed by the detection of CPDs content. The effects of TiO2-NPs and UV-B on SOD isozymes were detected by SOD isozyme Native-PAGE electrophoresis. A laser confocal microscope was used to explore the protective mechanism of TiO2-NPs against UV-B radiation. Results showed that pretreatment of TiO2-NPs significantly alleviated the stress of UV-B radiation on plants. TiO2-NPs activated the antioxidant system of plants, improved the activity of antioxidant enzymes, and promoted the synthesis of flavonoids. Moreover, TiO2-NPs could effectively shield UV-B radiation to prevent the depolymerization of microtubules in plant cells. 10 mg/L of TiO2-NPs is a safe and effective application dose, which has no biological toxicity to plants. Our research results reported for the first time that pretreatment of TiO2-NPs could effectively alleviate UV-B stress to plants, providing new ideas for the application of nanomaterials in agriculture.
Collapse
Affiliation(s)
- Jianhua Wang
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Mingwei Li
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Jinlin Feng
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Xiaoyan Yan
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Huize Chen
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Rong Han
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| |
Collapse
|
74
|
Wang Y, Mao Z, Jiang H, Zhang Z, Wang N, Chen X. Brassinolide inhibits flavonoid biosynthesis and red-flesh coloration via the MdBEH2.2-MdMYB60 complex in apple. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6382-6399. [PMID: 34128531 DOI: 10.1093/jxb/erab284] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/12/2021] [Indexed: 05/28/2023]
Abstract
Flavonoid content, which is an important indicator of the nutritional value of fruits and vegetables, directly determines the marketability of many fruit crops, including apple (Malus domestica). Brassinosteroids (BRs) are steroid hormones that affect flavonoid biosynthesis in plants, but the underlying regulatory mechanism remains unclear. In this study, treatments with brassinolide (the most active BR) and brassinazole (a BR biosynthesis inhibitor) decreased and increased, respectively, the flavonoid, anthocyanin, and proanthocyanidin (PA) content in red-fleshed apple seedlings and calli. We subsequently demonstrated that a BZR (BRI1-EMS-suppressor (BES)/brassinazole-resistant) family transcription factor, MdBEH2.2, participates in BR-regulated flavonoid biosynthesis. Specifically, MdBEH2.2 inhibits the accumulation of flavonoids, anthocyanins, and PAs in apple seedlings; however, brassinazole treatment weakens the inhibitory effect. Additionally, we confirmed that a BR-induced MYB TF, MdMYB60, interacts with MdBEH2.2. The resulting MdBEH2.2-MdMYB60 complex further enhances the inhibitory effect of MdBEH2.2 or MdMYB60 on the transcription of flavonoid biosynthesis-related genes. These results indicate that brassinolide decreases flavonoid content through the MdBEH2.2-MdMYB60 regulatory module. Our findings further clarify the molecular mechanism mediating the regulation of flavonoid biosynthesis by BR signals in horticultural crops.
Collapse
Affiliation(s)
- Yicheng Wang
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Zuolin Mao
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Huiyan Jiang
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Zongying Zhang
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Nan Wang
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Xuesen Chen
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| |
Collapse
|
75
|
Podolec R, Demarsy E, Ulm R. Perception and Signaling of Ultraviolet-B Radiation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:793-822. [PMID: 33636992 DOI: 10.1146/annurev-arplant-050718-095946] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) radiation is an intrinsic fraction of sunlight that plants perceive through the UVR8 photoreceptor. UVR8 is a homodimer in its ground state that monomerizes upon UV-B photon absorption via distinct tryptophan residues. Monomeric UVR8 competitively binds to the substrate binding site of COP1, thus inhibiting its E3 ubiquitin ligase activity against target proteins, which include transcriptional regulators such as HY5. The UVR8-COP1 interaction also leads to the destabilization of PIF bHLH factor family members. Additionally, UVR8 directly interacts with and inhibits the DNA binding of a different set of transcription factors. Each of these UVR8 signaling mechanisms initiates nuclear gene expression changes leading to UV-B-induced photomorphogenesis and acclimation. The two WD40-repeat proteins RUP1 and RUP2 provide negative feedback regulation and inactivate UVR8 by facilitating redimerization. Here, we review the molecular mechanisms of the UVR8 pathway from UV-B perception and signal transduction to gene expression changes and physiological UV-B responses.
Collapse
Affiliation(s)
- Roman Podolec
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Emilie Demarsy
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
| | - Roman Ulm
- Department of Botany and Plant Biology, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland; , ,
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
76
|
He F, Shi YJ, Mi JX, Zhao KJ, Cui XL, Chen LH, Yang HB, Zhang F, Zhao Q, Huang JL, Wan XQ. Genome-Wide Investigation of the NF-X1 Gene Family in Populus trichocarpa Expression Profiles during Development and Stress. Int J Mol Sci 2021; 22:4664. [PMID: 33925110 PMCID: PMC8124260 DOI: 10.3390/ijms22094664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
Poplar are planted extensively in reforestation and afforestation. However, their successful establishment largely depends on the environmental conditions of the newly established plantation and their resistance to abiotic as well as biotic stresses. NF-X1, a widespread transcription factor in plants, plays an irreplaceable role in plant growth, development, and stress tolerance. Although the whole genome sequence of Populus trichocarpa has been published for a long time, little is known about the NF-X1 genes in poplar, especially those related to drought stress, mechanical damage, insect feeding, and hormone response at the whole genome level. In this study, whole genome analysis of the poplar NF-X1 family was performed, and 4 PtrNF-X1 genes were identified. Then, bioinformatics analysis and qRT-PCR were applied to analyze the gene structure, phylogeny, chromosomal localization, gene replication, Cis-elements, and expression patterns of PtrNF-X1genes. Sequence analysis revealed that one-quarter of the PtrNF-X1 genes did not contain introns. Phylogenetic analysis revealed that all NF-X1 genes were split into three subfamilies. The number of two pairs of segmented replication genes were detected in poplars. Cis-acting element analysis identified a large number of elements of growth and development and stress-related elements on the promoters of different NF-X1 members. In addition, some PtrNF-X1 could be significantly induced by polyethylene glycol (PEG) and abscisic acid (ABA), thus revealing their potential role in regulating stress response. Comprehensive analysis is helpful in selecting candidate NF-X1 genes for the follow-up study of the biological function, and molecular genetic progress of stress resistance in forest trees provides genetic resources.
Collapse
Affiliation(s)
- Fang He
- Correspondence: (F.H.); (X.-Q.W.); Tel.: +86-176-8377-7884 (F.H.); +86-138-8163-4583 (X.-Q.W.)
| | | | | | | | | | | | | | | | | | | | - Xue-Qin Wan
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.-J.S.); (J.-X.M.); (K.-J.Z.); (X.-L.C.); (L.-H.C.); (H.-B.Y.); (F.Z.); (Q.Z.); (J.-L.H.)
| |
Collapse
|
77
|
Wang J, Yan X, Chen H, Feng J, Han R. Enhanced UV-B radiation affects AUR1 regulation of mitotic spindle morphology leading to aberrant mitosis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:160-170. [PMID: 33370689 DOI: 10.1016/j.plaphy.2020.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Enhanced UV-B radiation can lead to a variety of stress responses, including effects on cell cycle regulation and mitosis. Aurora kinases are part of the serine/threonine kinase family and play important roles in cell cycle regulation and mitosis. We hypothesize that there may be a connection between these two processes. In this study, the dynamics of chromosomal (H2B-YFP) and AUR1-GFP changes after enhanced UV-B radiation were observed using confocal microscopy, and gene and protein expression patterns under UV-B stress were quantified using RT-qPCR and Western blotting techniques. We analyzed the responses of the AUR1 overexpression to UV-B stress. We measured maximum quantum yield of photosystem Ⅱ as a proxy for UV-B stress. The recovery capacity of AUR1 overexpression strains was analyzed. In our research, we observed that enhanced UV-B radiation affects the subcellular positioning of AUR1, resulting in abnormalities in the positioning and location of the spindle at the poles, which ultimately affects the separation of chromosomes, resulting in "partition-bundle division" and the incorrect direction of division. At the same time, our results also indicated that low-dose UV-B can induce the expression of AUR1, and this overexpression of AUR1 can alleviate the damage caused by UV-B radiation. In summary, the results of our study show that enhanced UV-B radiation can change the activity and expression of AUR1, which is one of the causes of abnormal chromosome segregation. AUR1 participates in the response to UV-B stress, and, to a certain extent, can improve the UV-B tolerance of plants.
Collapse
Affiliation(s)
- Jianhua Wang
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Xiaoyan Yan
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Huize Chen
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Jinlin Feng
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Rong Han
- College of Life Science, Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| |
Collapse
|
78
|
Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:180-209. [PMID: 33325112 DOI: 10.1111/jipb.13054] [Citation(s) in RCA: 631] [Impact Index Per Article: 157.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 05/21/2023]
Abstract
Phenylpropanoid metabolism is one of the most important metabolisms in plants, yielding more than 8,000 metabolites contributing to plant development and plant-environment interplay. Phenylpropanoid metabolism materialized during the evolution of early freshwater algae that were initiating terrestrialization and land plants have evolved multiple branches of this pathway, which give rise to metabolites including lignin, flavonoids, lignans, phenylpropanoid esters, hydroxycinnamic acid amides, and sporopollenin. Recent studies have revealed that many factors participate in the regulation of phenylpropanoid metabolism, and modulate phenylpropanoid homeostasis when plants undergo successive developmental processes and are subjected to stressful environments. In this review, we summarize recent progress on elucidating the contribution of phenylpropanoid metabolism to the coordination of plant development and plant-environment interaction, and metabolic flux redirection among diverse metabolic routes. In addition, our review focuses on the regulation of phenylpropanoid metabolism at the transcriptional, post-transcriptional, post-translational, and epigenetic levels, and in response to phytohormones and biotic and abiotic stresses.
Collapse
Affiliation(s)
- Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
79
|
Peng Z, Wang Y, Zuo WT, Gao YR, Li RZ, Yu CX, Liu ZY, Zheng Y, Shen YY, Duan LS. Integration of Metabolome and Transcriptome Studies Reveals Flavonoids, Abscisic Acid, and Nitric Oxide Comodulating the Freezing Tolerance in Liriope spicata. FRONTIERS IN PLANT SCIENCE 2021; 12:764625. [PMID: 35154173 PMCID: PMC8828910 DOI: 10.3389/fpls.2021.764625] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/14/2021] [Indexed: 05/20/2023]
Abstract
Liriope spicata is an evergreen perennial ornamental groundcover with a strong freezing tolerance. However, the molecular mechanism underlying the freezing tolerance in L. spicata remains unclear. In this study, a comprehensive investigation of L. spicata freezing tolerance was conducted at the levels of physiology and biochemistry, metabolite, and transcript during the stress treatment. There were 581 unique differentially expressed metabolites (DEMs) and 10,444 unique differentially expressed genes (DEGs) between freezing treatment and normal cultured plant in leaves. Integrated analysis of metabolomics and transcriptomics showed that flavonoid biosynthesis, carbohydrate metabolism, amino acid metabolism, lipid metabolism, and signal transduction pathways were prominently enriched in response to the freezing stress in L. spicata. Now, we identified genes and metabolites involved in the flavonoid pathway, abscisic acid (ABA) biosynthesis, and the oxidative synthesis pathway of nitric oxide (NO), which may form a regulatory network and play a synergistic effect in osmotic adjustment, reactive oxygen species (ROS) homeostasis, and stomatal closure under freezing stress. These results offer a comprehensive network of flavonoids, ABA, and NO comodulating the freezing tolerance in L. spicata.
Collapse
Affiliation(s)
- Zhen Peng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Wen-Tian Zuo
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yue-Rong Gao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Run-Zhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Chun-Xin Yu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zi-Yan Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yi Zheng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Bioinformatics Center, Beijing University of Agriculture, Beijing, China
| | - Yuan-Yue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
| | - Liu-Sheng Duan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing, China
- *Correspondence: Liu-Sheng Duan,
| |
Collapse
|
80
|
Wang DD, Li P, Chen QY, Chen XY, Yan ZW, Wang MY, Mao YB. Differential Contributions of MYCs to Insect Defense Reveals Flavonoids Alleviating Growth Inhibition Caused by Wounding in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:700555. [PMID: 34326858 PMCID: PMC8313826 DOI: 10.3389/fpls.2021.700555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/17/2021] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, basic helix-loop-helix transcription factors (TFs) MYC2, MYC3, and MYC4 are involved in many biological processes, such as defense against insects. We found that despite functional redundancy, MYC-related mutants displayed different resistance to cotton bollworm (Helicoverpa armigera). To screen out the most likely genes involved in defense against insects, we analyzed the correlation of gene expression with cotton bollworm resistance in wild-type (WT) and MYC-related mutants. In total, the expression of 94 genes in untreated plants and 545 genes in wounded plants were strongly correlated with insect resistance, and these genes were defined as MGAIs (MYC-related genes against insects). MYC3 had the greatest impact on the total expression of MGAIs. Gene ontology (GO) analysis revealed that besides the biosynthesis pathway of glucosinolates (GLSs), MGAIs, which are well-known defense compounds, were also enriched in flavonoid biosynthesis. Moreover, MYC3 dominantly affected the gene expression of flavonoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) revealed that AAE18, which is involved in activating auxin precursor 2,4-dichlorophenoxybutyric acid (2,4-DB) and two other auxin response genes, was highly co-expressed with flavonoid biosynthesis genes. With wounding treatment, the WT plants exhibited better growth performance than chalcone synthase (CHS), which was defective in flavonoid biosynthesis. The data demonstrated dominant contributions of MYC3 to cotton bollworm resistance and imply that flavonoids might alleviate the growth inhibition caused by wounding in Arabidopsis.
Collapse
Affiliation(s)
- Dan-Dan Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Pai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiu-Yi Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Ying Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Zi-Wei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Ying-Bo Mao,
| |
Collapse
|
81
|
Du M, Wang Y, Chen H, Han R. Actin filaments mediated root growth inhibition by changing their distribution under UV-B and hydrogen peroxide exposure in Arabidopsis. Biol Res 2020; 53:54. [PMID: 33228803 PMCID: PMC7685599 DOI: 10.1186/s40659-020-00321-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UV-B signaling in plants is mediated by UVR8, which interacts with transcriptional factors to induce root morphogenesis. However, research on the downstream molecules of UVR8 signaling in roots is still scarce. As a wide range of functional cytoskeletons, how actin filaments respond to UV-B-induced root morphogenesis has not been reported. The aim of this study was to investigate the effect of actin filaments on root morphogenesis under UV-B and hydrogen peroxide exposure in Arabidopsis. RESULTS A Lifeact-Venus fusion protein was used to stain actin filaments in Arabidopsis. The results showed that UV-B inhibited hypocotyl and root elongation and caused an increase in H2O2 content only in the root but not in the hypocotyl. Additionally, the actin filaments in hypocotyls diffused under UV-B exposure but were gathered in a bundle under the control conditions in either Lifeact-Venus or uvr8 plants. Exogenous H2O2 inhibited root elongation in a dose-dependent manner. The actin filaments changed their distribution from filamentous to punctate in the root tips and mature regions at a lower concentration of H2O2 but aggregated into thick bundles with an abnormal orientation at H2O2 concentrations up to 2 mM. In the root elongation zone, the actin filament arrangement changed from lateral to longitudinal after exposure to H2O2. Actin filaments in the root tip and elongation zone were depolymerized into puncta under UV-B exposure, which showed the same tendency as the low-concentration treatments. The actin filaments were hardly filamentous in the maturation zone. The dynamics of actin filaments in the uvr8 group under UV-B exposure were close to those of the control group. CONCLUSIONS The results indicate that UV-B inhibited Arabidopsis hypocotyl elongation by reorganizing actin filaments from bundles to a loose arrangement, which was not related to H2O2. UV-B disrupted the dynamics of actin filaments by changing the H2O2 level in Arabidopsis roots. All these results provide an experimental basis for investigating the interaction of UV-B signaling with the cytoskeleton.
Collapse
Affiliation(s)
- Meiting Du
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University in Shanxi Province, Linfen, 041000, Shanxi, China
| | - Yanhong Wang
- School of Life Sciences, Linfen, 041000, Shanxi, China
| | - Huize Chen
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University in Shanxi Province, Linfen, 041000, Shanxi, China. .,School of Life Sciences, Linfen, 041000, Shanxi, China.
| | - Rong Han
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response, Shanxi Normal University in Shanxi Province, Linfen, 041000, Shanxi, China. .,School of Life Sciences, Linfen, 041000, Shanxi, China.
| |
Collapse
|
82
|
Kono A, Yin Y. Updates on BES1/BZR1 Regulatory Networks Coordinating Plant Growth and Stress Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:617162. [PMID: 33343611 PMCID: PMC7744466 DOI: 10.3389/fpls.2020.617162] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
Brassinosteroids (BRs) play pivotal roles in the regulation of many dimensions of a plant's life. Hence, through extensive efforts from many research groups, BR signaling has emerged as one of the best-characterized plant signaling pathways. The key molecular players of BR signaling from the cell surface to the nucleus important for the regulation of plant growth and development are well-established. Recent data show that BRs also modulate plant responses to environmental stresses such as drought and pathogen infection. In this mini review, we present the recent progress in BR signaling specifically in the post-translational SUMO modification of BR's master regulators, BES1/BZR1. We also discuss recent findings on the crosstalk between BR, UV light, and jasmonic acid signaling pathways to balance growth during light stress and pathogen infections. Finally, we describe the current update on the molecular link between BR signaling and intracellular auxin transport that essential for plant development.
Collapse
|