51
|
Abstract
Metal cofactors are critical centers for different biochemical processes of metalloproteins, and often, this metal coordination renders additional structural stability. In this study, we explore the additional stability conferred by the copper ion on azurin by analyzing both the apo and holo forms using temperature replica exchange molecular dynamics (REMD) data. We find a 14 K decrease in denaturation temperature for apo (406 K) azurin relative to that of holo (420 K), indicating a copper ion-induced additional thermal stability for holo azurin. The unfolding of apo azurin begins with the melting of α-helix and β-sheet V, similar to that of holo form. β-Sheets IV, VII, and VIII are comparatively more stable than other β-strands and melt at higher temperatures. Similar to holo azurin, the strong hydrophobic interactions among the apolar residues in the protein core is the key factor that renders high stability to apo protein as well. We construct free energy surfaces at different temperatures to capture the major conformations along the unfolding basins of the protein. Using contact maps from different basins we show the changes in the interaction between different residues along the unfolding pathway. Furthermore, we compare the Cα root-mean-square fluctuations (Cα-RMSF) and B-factor of all residues of apo and holo forms to understand the flexibility of different regions. The concerted displacement of α-helix and β-sheets V and VI from the protein core is another distinction we observe for apo compared to the holo form, where β-sheet VI was relatively stable.
Collapse
Affiliation(s)
- Albin Joy
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| | - Rajib Biswas
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| |
Collapse
|
52
|
Lisina S, Inam W, Huhtala M, Howaili F, Zhang H, Rosenholm JM. Nano Differential Scanning Fluorimetry as a Rapid Stability Assessment Tool in the Nanoformulation of Proteins. Pharmaceutics 2023; 15:pharmaceutics15051473. [PMID: 37242715 DOI: 10.3390/pharmaceutics15051473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The development and production of innovative protein-based therapeutics is a complex and challenging avenue. External conditions such as buffers, solvents, pH, salts, polymers, surfactants, and nanoparticles may affect the stability and integrity of proteins during formulation. In this study, poly (ethylene imine) (PEI) functionalized mesoporous silica nanoparticles (MSNs) were used as a carrier for the model protein bovine serum albumin (BSA). To protect the protein inside MSNs after loading, polymeric encapsulation with poly (sodium 4-styrenesulfonate) (NaPSS) was used to seal the pores. Nano differential scanning fluorimetry (NanoDSF) was used to assess protein thermal stability during the formulation process. The MSN-PEI carrier matrix or conditions used did not destabilize the protein during loading, but the coating polymer NaPSS was incompatible with the NanoDSF technique due to autofluorescence. Thus, another pH-responsive polymer, spermine-modified acetylated dextran (SpAcDEX), was applied as a second coating after NaPSS. It possessed low autofluorescence and was successfully evaluated with the NanoDSF method. Circular dichroism (CD) spectroscopy was used to determine protein integrity in the case of interfering polymers such as NaPSS. Despite this limitation, NanoDSF was found to be a feasible and rapid tool to monitor protein stability during all steps needed to create a viable nanocarrier system for protein delivery.
Collapse
Affiliation(s)
- Sofia Lisina
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Wali Inam
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Mikko Huhtala
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20500 Turku, Finland
| | - Fadak Howaili
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| |
Collapse
|
53
|
Jung F, Frey K, Zimmer D, Mühlhaus T. DeepSTABp: A Deep Learning Approach for the Prediction of Thermal Protein Stability. Int J Mol Sci 2023; 24:ijms24087444. [PMID: 37108605 PMCID: PMC10138888 DOI: 10.3390/ijms24087444] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Proteins are essential macromolecules that carry out a plethora of biological functions. The thermal stability of proteins is an important property that affects their function and determines their suitability for various applications. However, current experimental approaches, primarily thermal proteome profiling, are expensive, labor-intensive, and have limited proteome and species coverage. To close the gap between available experimental data and sequence information, a novel protein thermal stability predictor called DeepSTABp has been developed. DeepSTABp uses a transformer-based protein language model for sequence embedding and state-of-the-art feature extraction in combination with other deep learning techniques for end-to-end protein melting temperature prediction. DeepSTABp can predict the thermal stability of a wide range of proteins, making it a powerful and efficient tool for large-scale prediction. The model captures the structural and biological properties that impact protein stability, and it allows for the identification of the structural features that contribute to protein stability. DeepSTABp is available to the public via a user-friendly web interface, making it accessible to researchers in various fields.
Collapse
Affiliation(s)
- Felix Jung
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kevin Frey
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - David Zimmer
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
54
|
Khan S, Siraj S, Shahid M, Haque MM, Islam A. Osmolytes: Wonder molecules to combat protein misfolding against stress conditions. Int J Biol Macromol 2023; 234:123662. [PMID: 36796566 DOI: 10.1016/j.ijbiomac.2023.123662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The proper functioning of any protein depends on its three dimensional conformation which is achieved by the accurate folding mechanism. Keeping away from the exposed stress conditions leads to cooperative unfolding and sometimes partial folding, forming the structures like protofibrils, fibrils, aggregates, oligomers, etc. leading to several neurodegenerative diseases like Parkinson's disease, Alzheimer's, Cystic fibrosis, Huntington, Marfan syndrome, and also cancers in some cases, too. Hydration of proteins is necessary, which may be achieved by the presence of organic solutes called osmolytes within the cell. Osmolytes belong to different classes in different organisms and play their role by preferential exclusion of osmolytes and preferential hydration of water molecules and achieves the osmotic balance in the cell otherwise it may cause problems like cellular infection, cell shrinkage leading to apoptosis and cell swelling which is also the major injury to the cell. Osmolyte interacts with protein, nucleic acids, intrinsically disordered proteins by non-covalent forces. Stabilizing osmolytes increases the Gibbs free energy of the unfolded protein and decreases that of folded protein and vice versa with denaturants (urea and guanidinium hydrochloride). The efficacy of each osmolyte with the protein is determined by the calculation of m value which reflects its efficiency with protein. Hence osmolytes can be therapeutically considered and used in drugs.
Collapse
Affiliation(s)
- Sobia Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Seerat Siraj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box: 173, Al Kharj, Saudi Arabia
| | | | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
55
|
Murty R, Bera MK, Walton IM, Whetzel C, Prausnitz MR, Walton KS. Interrogating Encapsulated Protein Structure within Metal-Organic Frameworks at Elevated Temperature. J Am Chem Soc 2023; 145:7323-7330. [PMID: 36961883 PMCID: PMC10080685 DOI: 10.1021/jacs.2c13525] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Encapsulating biomacromolecules within metal-organic frameworks (MOFs) can confer thermostability to entrapped guests. It has been hypothesized that the confinement of guest molecules within a rigid MOF scaffold results in heightened stability of the guests, but no direct evidence of this mechanism has been shown. Here, we present a novel analytical method using small-angle X-ray scattering (SAXS) to solve the structure of bovine serum albumin (BSA) while encapsulated within two zeolitic imidazolate frameworks (ZIF-67 and ZIF-8). Our approach comprises subtracting the scaled SAXS spectrum of the ZIF from that of the biocomposite BSA@ZIF to determine the radius of gyration of encapsulated BSA through Guinier, Kratky, and pair distance distribution function analyses. While native BSA exposed to 70 °C became denatured, in situ SAXS analysis showed that encapsulated BSA retained its size and folded state at 70 °C when encapsulated within a ZIF scaffold, suggesting that entrapment within MOF cavities inhibited protein unfolding and thus denaturation. This method of SAXS analysis not only provides insight into biomolecular stabilization in MOFs but may also offer a new approach to study the structure of other conformationally labile molecules in rigid matrices.
Collapse
Affiliation(s)
- Rohan Murty
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mrinal K Bera
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ian M Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christina Whetzel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Krista S Walton
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
56
|
Wanarase SR, Chavan SV, Sharma S, D S. Evaluation of SNPs from human IGFBP6 associated with gene expression: an in-silico study. J Biomol Struct Dyn 2023; 41:13937-13949. [PMID: 36946206 DOI: 10.1080/07391102.2023.2192793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/28/2023] [Indexed: 03/23/2023]
Abstract
In the bloodstream and in local tissues, most IGF molecules are associated with the one of the members of the IGF-binding protein (IGFBP) family, which are divided into six distinct types. IGF-binding proteins have been demonstrated to either decrease or increase the growth-promoting effects of IGFs on cell culture, by extending their half-life. They alter how IGFs interact with the receptors on their cell surfaces. IGFBP6 gene is associated with disease in-situ carcinoma. Upregulation or downregulation of IGFBP6 gene has been implicated in different types of cancer in humans. Nonsynonymous SNPs changes have the potential to affect the protein's structure and function. Potential functional SNPs can be assessed before undertaking studies in larger populations because validation of these functional SNPs can be a crucial problem. So, in this in-silico investigation, we used a variety of sequence- and structure-based bioinformatics methods to separate the potential nsSNPs of the IGFBP6 gene from the neutral ones. In total of 216 nsSNPs, 5 were found to have potential effects using 5 prediction tools. From which, 2 nsSNPs (R128G and R164H) were selected as potentially damaging due to their presence in highly conserved region and ability to decrease protein stability. Among these 2 nsSNPs, only R164H was found to be associated with Uterine corpus endometrial carcinoma. It was also found that both, upregulation or downregulation of IGFBP6 gene can lead to the different types of cancers. The findings of the present study will certainly be valuable in the future large population-based investigations as well as drug discovery, especially developing personalized medicine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, India
| | - Susha D
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, India
| |
Collapse
|
57
|
Williams SJ, Gewing-Mullins JA, Lieberman WK, Kolbaba-Kartchner B, Iqbal R, Burgess HM, Colee CM, Ornelas MY, Reid-McLaughlin ES, Mills JH, Prescher JA, Leconte AM. Biochemical Analysis Leads to Improved Orthogonal Bioluminescent Tools. Chembiochem 2023; 24:e202200726. [PMID: 36592373 PMCID: PMC10265744 DOI: 10.1002/cbic.202200726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/03/2023]
Abstract
Engineered luciferase-luciferin pairs have expanded the number of cellular targets that can be visualized in tandem. While light production relies on selective processing of synthetic luciferins by mutant luciferases, little is known about the origin of selectivity. The development of new and improved pairs requires a better understanding of the structure-function relationship of bioluminescent probes. In this work, we report a biochemical approach to assessing and optimizing two popular bioluminescent pairs: Cashew/d-luc and Pecan/4'-BrLuc. Single mutants derived from Cashew and Pecan revealed key residues for selectivity and thermal stability. Stability was further improved through a rational addition of beneficial residues. In addition to providing increased stability, the known stabilizing mutations surprisingly also improved selectivity. The resultant improved pair of luciferases are >100-fold selective for their respective substrates and highly thermally stable. Collectively, this work highlights the importance of mechanistic insight for improving bioluminescent pairs and provides significantly improved Cashew and Pecan enzymes which should be immediately suitable for multicomponent imaging applications.
Collapse
Affiliation(s)
- Sierra J Williams
- Department of Chemistry, University of California, Irvine, 1120 Natural Science II, Irvine, CA 92697, USA
| | - Jordan A Gewing-Mullins
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Whitney K Lieberman
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Bethany Kolbaba-Kartchner
- School of Molecular Sciences, Arizona State University, Physical Sciences Center PSd-D102, Tempe, AZ 85287, USA
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Reema Iqbal
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Hana M Burgess
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Clair M Colee
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Marya Y Ornelas
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Edison S Reid-McLaughlin
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| | - Jeremy H Mills
- School of Molecular Sciences, Arizona State University, Physical Sciences Center PSd-D102, Tempe, AZ 85287, USA
- The Biodesign Center for Molecular Design and Biomimetics, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, 1120 Natural Science II, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA 92697, USA
| | - Aaron M Leconte
- W.M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, The Claremont Colleges, 925 N. Mills Ave., Claremont, CA 91711, USA
| |
Collapse
|
58
|
N 6-methyladenosine of Spi2a attenuates inflammation and sepsis-associated myocardial dysfunction in mice. Nat Commun 2023; 14:1185. [PMID: 36864027 PMCID: PMC9979126 DOI: 10.1038/s41467-023-36865-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Bacteria-triggered sepsis is characterized by systemic, uncontrolled inflammation in affected individuals. Controlling the excessive production of pro-inflammatory cytokines and subsequent organ dysfunction in sepsis remains challenging. Here, we demonstrate that Spi2a upregulation in lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages reduces the production of pro-inflammatory cytokines and myocardial impairment. In addition, exposure to LPS upregulates the lysine acetyltransferase, KAT2B, to promote METTL14 protein stability through acetylation at K398, leading to the increased m6A methylation of Spi2a in macrophages. m6A-methylated Spi2a directly binds to IKKβ to impair IKK complex formation and inactivate the NF-κB pathway. The loss of m6A methylation in macrophages aggravates cytokine production and myocardial damage in mice under septic conditions, whereas forced expression of Spi2a reverses this phenotype. In septic patients, the mRNA expression levels of the human orthologue SERPINA3 negatively correlates with those of the cytokines, TNF, IL-6, IL-1β and IFNγ. Altogether, these findings suggest that m6A methylation of Spi2a negatively regulates macrophage activation in the context of sepsis.
Collapse
|
59
|
Miftahussurur M, Alfaray RI, Fauzia KA, Dewayani A, Doohan D, Waskito LA, Rezkitha YAA, Utomo DH, Somayana G, Fahrial Syam A, Lubis M, Akada J, Matsumoto T, Yamaoka Y. Low-grade intestinal metaplasia in Indonesia: Insights into the expression of proinflammatory cytokines during Helicobacter pylori infection and unique East-Asian CagA characteristics. Cytokine 2023; 163:156122. [PMID: 36640695 DOI: 10.1016/j.cyto.2022.156122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023]
Abstract
Helicobacter pylori infection is a major cause of intestinal metaplasia. In this study, we aimed to understand the reason underlying the low grade and incidence of intestinal metaplasia in Indonesia, based on the expression of genes encoding proinflammatory cytokines in gastric biopsy specimens. The possible reasons for the lesser virulence of the East-Asian-type CagA in Indonesia than that of the Western-type CagA, which is not common in other countries, were also investigated. The mRNA expression of cytokines was evaluated using real-time PCR. CagA characteristics were analyzed using in silico analysis. The expression of cytokines was typically not robust, among H. pylori-infected subjects in Indonesia, despite them predominantly demonstrating the East-Asian-type CagA. This might partially be explained by the characteristics of the East-Asian-type CagA in Indonesia, which showed a higher instability index and required higher energy to interact with proteins related to the cytokine induction pathway compared with the other types (p < 0.001 and p < 0.05, respectively). Taken together, besides the low prevalence of H. pylori, the low inflammatory response of the host and low CagA virulence, even among populations with high infection rates, may play an essential role in the low grade and low incidence of intestinal metaplasia in Indonesia. We believe that these findings would be relevant for better understanding of intestinal metaplasia, which is closely associated with the development of gastric cancer.
Collapse
Affiliation(s)
- Muhammad Miftahussurur
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Jalan Mayjend Prof, Dr. Moestopo, No. 6-8, Surabaya, Surabaya 60131, Indonesia; Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Ricky Indra Alfaray
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan.
| | - Kartika Afrida Fauzia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan; Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Astri Dewayani
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Infectious Disease Control, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan; Department of Anatomy, Histology and Pharmacology, Universitas Airlangga, Surabaya 60131, Indonesia.
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Anatomy, Histology and Pharmacology, Universitas Airlangga, Surabaya 60131, Indonesia.
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia; Department of Internal Medicine, Faculty of Medicine, University of Muhammadiyah, Surabaya, Surabaya 60113, Indonesia.
| | - Didik Huswo Utomo
- Research and Education Center for Bioinformatics, Indonesia Institute of Bioinformatics, Malang 65162, Indonesia.
| | - Gde Somayana
- Gastroentero Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Sanglah Hospital, Udayana University, Denpasar, Bali 80114, Indonesia.
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, University of Indonesia, Jakarta 10430, Indonesia.
| | - Masrul Lubis
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine-Cipto Mangunkusumo Teaching Hospital, Universitas Sumatera Utara, Medan 20222, Indonesia
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan.
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita 879-5593, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
60
|
Mahapatra SR, Dey J, Raj TK, Misra N, Suar M. Designing a Next-Generation Multiepitope-Based Vaccine against Staphylococcus aureus Using Reverse Vaccinology Approaches. Pathogens 2023; 12:376. [PMID: 36986298 PMCID: PMC10058999 DOI: 10.3390/pathogens12030376] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Staphylococcus aureus is a human bacterial pathogen that can cause a wide range of symptoms. As virulent and multi-drug-resistant strains of S. aureus have evolved, invasive S. aureus infections in hospitals and the community have become one of the leading causes of mortality and morbidity. The development of novel techniques is therefore necessary to overcome this bacterial infection. Vaccines are an appropriate alternative in this context to control infections. In this study, the collagen-binding protein (CnBP) from S. aureus was chosen as the target antigen, and a series of computational methods were used to find epitopes that may be used in vaccine development in a systematic way. The epitopes were passed through a filtering pipeline that included antigenicity, toxicity, allergenicity, and cytokine inducibility testing, with the objective of identifying epitopes capable of eliciting both T and B cell-mediated immune responses. To improve vaccine immunogenicity, the final epitopes and phenol-soluble modulin α4 adjuvant were fused together using appropriate linkers; as a consequence, a multiepitope vaccine was developed. The chosen T cell epitope ensemble is expected to cover 99.14% of the global human population. Furthermore, docking and dynamics simulations were used to examine the vaccine's interaction with the Toll-like receptor 2 (TLR2), revealing great affinity, consistency, and stability between the two. Overall, the data indicate that the vaccine candidate may be extremely successful, and it will need to be evaluated in experimental systems to confirm its efficiency.
Collapse
Affiliation(s)
- Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - T. Kiran Raj
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
61
|
Ferreras S, Singh NP, Le Borgne R, Bun P, Binz T, Parton RG, Verbavatz JM, Vannier C, Galli T. A synthetic organelle approach to probe SNARE-mediated membrane fusion in a bacterial host. J Biol Chem 2023; 299:102974. [PMID: 36738791 PMCID: PMC10011478 DOI: 10.1016/j.jbc.2023.102974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
In vivo and in vitro assays, particularly reconstitution using artificial membranes, have established the role of synaptic soluble N-Ethylmaleimide-sensitive attachment protein receptors (SNAREs) VAMP2, Syntaxin-1A, and SNAP-25 in membrane fusion. However, using artificial membranes requires challenging protein purifications that could be avoided in a cell-based assay. Here, we developed a synthetic biological approach based on the generation of membrane cisternae by the integral membrane protein Caveolin in Escherichia coli and coexpression of SNAREs. Syntaxin-1A/SNAP-25/VAMP-2 complexes were formed and regulated by SNARE partner protein Munc-18a in the presence of Caveolin. Additionally, Syntaxin-1A/SNAP-25/VAMP-2 synthesis provoked increased length of E. coli only in the presence of Caveolin. We found that cell elongation required SNAP-25 and was inhibited by tetanus neurotoxin. This elongation was not a result of cell division arrest. Furthermore, electron and super-resolution microscopies showed that synaptic SNAREs and Caveolin coexpression led to the partial loss of the cisternae, suggesting their fusion with the plasma membrane. In summary, we propose that this assay reconstitutes membrane fusion in a simple organism with an easy-to-observe phenotype and is amenable to structure-function studies of SNAREs.
Collapse
Affiliation(s)
- Soledad Ferreras
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Membrane Traffic in Healthy & Diseased Brain, Paris, France
| | - Neha Pratap Singh
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Membrane Traffic in Healthy & Diseased Brain, Paris, France
| | - Remi Le Borgne
- Université Paris Cité, CNRS, UMR7592, Institut Jacques Monod, Paris, France
| | - Philippe Bun
- Université Paris Cité, NeurImag, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Thomas Binz
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, Qld, Brisbane, Australia
| | | | - Christian Vannier
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Membrane Traffic in Healthy & Diseased Brain, Paris, France.
| | - Thierry Galli
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM, Membrane Traffic in Healthy & Diseased Brain, Paris, France; GHU Paris psychiatrie neurosciences, Paris, France.
| |
Collapse
|
62
|
Catalytic mechanism for Renilla-type luciferases. Nat Catal 2023. [DOI: 10.1038/s41929-022-00895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
63
|
Nag A, Dasgupta A, Sengupta S, Lai TK, Acharya K. An in-silico pharmacophore-based molecular docking study to evaluate the inhibitory potentials of novel fungal triterpenoid Astrakurkurone analogues against a hypothetical mutated main protease of SARS-CoV-2 virus. Comput Biol Med 2023; 152:106433. [PMID: 36565483 PMCID: PMC9767885 DOI: 10.1016/j.compbiomed.2022.106433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The main protease is an important structural protein of SARS-CoV-2, essential for its survivability inside a human host. Considering current vaccines' limitations and the absence of approved therapeutic targets, Mpro may be regarded as the potential candidate drug target. Novel fungal phytocompound Astrakurkurone may be studied as the potential Mpro inhibitor, considering its medicinal properties reported elsewhere. METHODS In silico molecular docking was performed with Astrakurkurone and its twenty pharmacophore-based analogues against the native Mpro protein. A hypothetical Mpro was also constructed with seven mutations and targeted by Astrakurkurone and its analogues. Furthermore, multiple parameters such as statistical analysis (Principal Component Analysis), pharmacophore alignment, and drug likeness evaluation were performed to understand the mechanism of protein-ligand molecular interaction. Finally, molecular dynamic simulation was done for the top-ranking ligands to validate the result. RESULT We identified twenty Astrakurkurone analogues through pharmacophore screening methodology. Among these twenty compounds, two analogues namely, ZINC89341287 and ZINC12128321 showed the highest inhibitory potentials against native and our hypothetical mutant Mpro, respectively (-7.7 and -7.3 kcal mol-1) when compared with the control drug Telaprevir (-5.9 and -6.0 kcal mol-1). Finally, we observed that functional groups of ligands namely two aromatic and one acceptor groups were responsible for the residual interaction with the target proteins. The molecular dynamic simulation further revealed that these compounds could make a stable complex with their respective protein targets in the near-native physiological condition. CONCLUSION To conclude, Astrakurkurone analogues ZINC89341287 and ZINC12128321 can be potential therapeutic agents against the highly infectious SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Adhiraj Dasgupta
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Sutirtha Sengupta
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Tapan Kumar Lai
- Department of Chemistry, Vidyasagar Metropolitan College, Kolkata, West Bengal, India
| | - Krishnendu Acharya
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
64
|
Kojasoy V, Tantillo DJ. Impacts of noncovalent interactions involving sulfur atoms on protein stability, structure, folding, and bioactivity. Org Biomol Chem 2022; 21:11-23. [PMID: 36345987 DOI: 10.1039/d2ob01602h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review discusses the various types of noncovalent interactions in which sulfur atoms participate and their effects on protein stability, structure, folding and bioactivity. Current approaches and recommendations for modelling these noncovalent interactions (in terms of both geometries and interaction energies) are highlighted.
Collapse
Affiliation(s)
- Volga Kojasoy
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
65
|
Ahmed R, Forman-Kay JD. NMR insights into dynamic, multivalent interactions of intrinsically disordered regions: from discrete complexes to condensates. Essays Biochem 2022; 66:863-873. [PMID: 36416859 PMCID: PMC9760423 DOI: 10.1042/ebc20220056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022]
Abstract
The spatial and temporal organization of interactions between proteins underlie the regulation of most cellular processes. The requirement for such interactions to be specific predisposes a view that protein-protein interactions are relatively static and are formed through the stable complementarity of the interacting partners. A growing body of reports indicate, however, that many interactions lead to fuzzy complexes with an ensemble of conformations in dynamic exchange accounting for the observed binding. Here, we discuss how NMR has facilitated the characterization of these discrete, dynamic complexes and how such characterization has aided the understanding of dynamic, condensed phases of phase-separating proteins with exchanging multivalent interactions.
Collapse
Affiliation(s)
- Rashik Ahmed
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
66
|
Arora H, Dhiman D, Kumar K, Venkatesu P. Fortification of thermal and structural stability of hemoglobin using choline chloride-based deep eutectic solvents. Phys Chem Chem Phys 2022; 24:29683-29692. [PMID: 36453254 DOI: 10.1039/d2cp03407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Of late, DESs have occupied the centre stage due to their eco-friendly and resource-efficient nature and their low toxicity. In this work, we have investigated the structural and thermal stability of hemoglobin (Hb) in two choline chloride ([Ch]Cl)-based DESs namely urea [Ch]Cl-urea (DES1) and [Ch]Cl-glycerol (Gly); (DES 2). Different biophysical techniques reveal that the presence of DESs facilitates the stability of Hb in a concentration-dependent manner and the extent of stability is more pronounced in [Ch]Cl-Gly as compared to [Ch]Cl-urea. Additionally, for a better understanding of the role of DESs in modulating the thermal and structural stability of Hb, studies have been performed on Hb in the presence of individual constituents of DESs, i.e., [Ch]Cl, urea, and Gly. Altogether, it was observed that the effect on the stability of Hb was by the presence of the DESs rather than their individual constituents. For instance, urea itself is a destabilizing co-solvent for biomolecules. However, the harmful effects of urea were surpassed when a DES is formed in the presence of [Ch]Cl. Therefore, overall, it can be concluded that both DESs can be described as potential non-harmful, green, and promising solvents for enhancing the structural and thermal stability of Hb.
Collapse
Affiliation(s)
- Harshita Arora
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Diksha Dhiman
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi, 110 007, India. .,Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
67
|
Behairy MY, Soltan MA, Eldeen MA, Abdulhakim JA, Alnoman MM, Abdel-Daim MM, Otifi H, Al-Qahtani SM, Zaki MSA, Alsharif G, Albogami S, Jafri I, Fayad E, Darwish KM, Elhady SS, Eid RA. HBD-2 variants and SARS-CoV-2: New insights into inter-individual susceptibility. Front Immunol 2022; 13:1008463. [PMID: 36569842 PMCID: PMC9780532 DOI: 10.3389/fimmu.2022.1008463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Background A deep understanding of the causes of liability to SARS-CoV-2 is essential to develop new diagnostic tests and therapeutics against this serious virus in order to overcome this pandemic completely. In the light of the discovered role of antimicrobial peptides [such as human b-defensin-2 (hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it became important to identify the damaging missense mutations in the genes of these molecules and study their role in the pathogenesis of COVID-19. Methods We conducted a comprehensive analysis with multiple in silico approaches to identify the damaging missense SNPs for hBD-2 and LL-37; moreover, we applied docking methods and molecular dynamics analysis to study the impact of the filtered mutations. Results The comprehensive analysis reveals the presence of three damaging SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2 with a damaging impact on hBD-2 structure as well. G51D and C53G mutations were located in highly conserved positions and were associated with differences in the secondary structures of hBD-2. Docking-coupled molecular dynamics simulation analysis revealed compromised binding affinity for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein-protein binding profiles for hBD-2 SNPs, in relation to their native form, were guided through residue-wise levels and differential adopted conformation/orientation. Conclusions The presented model paves the way for identifying patients prone to COVID-19 in a way that would guide the personalization of both the diagnostic and management protocols for this serious disease.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Mohamed A. Soltan
- Department of Microbiology and immunology, Faculty of Pharmacy, Sinai University – Kantara Branch, Ismailia, Egypt,*Correspondence: Mohamed A Soltan, ; Mohammed Y. Behairy,
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Biology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jawaher A. Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Maryam M. Alnoman
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hassan Otifi
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha, Saudi Arabia,Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig, Egypt
| | - Ghadi Alsharif
- College of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
68
|
In Silico Evaluation of Nonsynonymous SNPs in Human ADAM33: The Most Common Form of Genetic Association to Asthma Susceptibility. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1089722. [DOI: 10.1155/2022/1089722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022]
Abstract
ADAM33 is a zinc-dependent metalloprotease of the ADAM family, which plays a vital biological role as an activator of Th2 cytokines and growth factors. Moreover, this protein is crucial for the normal development of the lung in the fetus two months after gestation leading to determining lung functions all over life. In this regard, mutations in ADAM33 have been linked with asthma risk factors. Consequently, identifying ADAM33 pathogenic nonsynonymous single-nucleotide polymorphisms (nsSNPs) can be very important in asthma treatment. In the present study, 1055 nsSNPs of human ADAM33 were analyzed using biocomputational software, 31 of which were found to be detrimental mutations. Precise structural and stability analysis revealed D219V, C669G, and C606S as the most destabilizing SNPs. Furthermore, MD simulations disclosed higher overall fluctuation and alteration in intramolecular interactions compared with the wild-type structure. Overall, the results suggest D219V, C669G, and C606S detrimental mutations as a starting point for further case-control studies on the ADAM33 protein as well as an essential source for future targeted mechanisms.
Collapse
|
69
|
Liu X, Liang L, Wu B, Zhang X, Zeng X, Deng Y, Peng B, Zhang X, Zheng L. Effect of the R126C mutation on the structure and function of the glucose transporter GLUT1: A molecular dynamics simulation study. J Mol Graph Model 2022; 116:108227. [PMID: 35671570 DOI: 10.1016/j.jmgm.2022.108227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Glucose transporter 1 (GLUT1) is responsible for basal glucose uptake and is expressed in most tissues under normal conditions. GLUT1 mutations can cause early-onset absence epilepsy and myoclonus dystonia syndrome (MDS), with MDS potentially lethal. In this study, the effect of the R126C mutation, which is associated with MDS, on structural stability and substrate transport of GLUT1 was investigated. Various bioinformatics tools were used to predict the stability of GLUT1, revealing that the R126C mutation reduces the structural stability of GLUT1. Molecular dynamics (MD) simulations were used to further characterize the effect of the R126C mutation on GLUT1 structural stability. Based on the MD simulations, specific conformational changes and dominant motions of the GLUT1 mutant were characterized by Principal component analysis (PCA). The mutation disrupts hydrogen bonds between substrate-binding residues and glucose, thus likely reducing substrate affinity. The R126C mutation reduces the conformational stability of the protein, and fewer intramolecular hydrogen bonds were present in the mutated GLUT1 when compared with that of wild-type GLUT1. The mutation increased the free energy of glucose transport through GLUT1 significantly, especially at the mutation site, indicating that passage of glucose through the channel is hindered, and this mutant may even release cytoplasmic glucose. This study provides a detailed atomic-level explanation for the reduced structural stability and substrate transport capacity of a GLUT1 mutant. The results aid our understanding of the structure of GLUT1 and provide a framework for developing drugs to treat GLUT1-related diseases, such as MDS.
Collapse
Affiliation(s)
- Xiaoliu Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Medical Laboratory of Shenzhen Luohu People's Hospital, 518001, China
| | - Luguang Liang
- School of Laboratory Medicine, Guangdong Medical University, Dongguan, China
| | - Bodeng Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | | | - Yurong Deng
- Medical Laboratory of Shenzhen Luohu People's Hospital, 518001, China
| | - Bin Peng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiuming Zhang
- Medical Laboratory of Shenzhen Luohu People's Hospital, 518001, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
70
|
Wang L, Fan R, Li Z, Wang L, Bai X, Bu T, Dong Y, Xu Y, Quan C. Insights into the structure and function of the histidine kinase ComP from Bacillus amyloliquefaciens based on molecular modeling. Biosci Rep 2022; 42:BSR20220352. [PMID: 36052710 PMCID: PMC9620489 DOI: 10.1042/bsr20220352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/01/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
The ComPA two-component signal transduction system (TCS) is essential in Bacillus spp. However, the molecular mechanism of the histidine kinase ComP remains unclear. Here, we predicted the structure of ComP from Bacillus amyloliquefaciens Q-426 (BaComP) using an artificial intelligence approach, analyzed the structural characteristics based on the molecular docking results and compared homologous proteins, and then investigated the biochemical properties of BaComP. We obtained a truncated ComPS protein with high purity and correct folding in solution based on the predicted structures. The expression and purification of BaComP proteins suggested that the subdomains in the cytoplasmic region influenced the expression and stability of the recombinant proteins. ComPS is a bifunctional enzyme that exhibits the activity of both histidine kinase and phosphotransferase. We found that His571 played an obligatory role in the autophosphorylation of BaComP based on the analysis of the structures and mutagenesis studies. The molecular docking results suggested that the HATPase_c domain contained an ATP-binding pocket, and the ATP molecule was coordinated by eight conserved residues from the N, G1, and G2 boxes. Our study provides novel insight into the histidine kinase BaComP and its homologous proteins.
Collapse
Affiliation(s)
- Lulu Wang
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
| | - Ruochen Fan
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, Liaoning, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
| | - Zhuting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| | - Lina Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Lvshun Road, Dalian 116044, Liaoning, China
| | - Xue Bai
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| | - Tingting Bu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| | - Yuesheng Dong
- School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, Liaoning, China
| | - Yongbin Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China
| |
Collapse
|
71
|
Muindi MP, Lee JH, Kweon H, Kasina M. Effect of Extraction Ingredients on the Conformation and Stability of Silk Sericin (SS). Polymers (Basel) 2022; 14:polym14194118. [PMID: 36236065 PMCID: PMC9572401 DOI: 10.3390/polym14194118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Silk sericin (SS) has different physicochemical properties depending on the extraction technique. In this study, SS was isolated in the presence of ingredients, including 5 to 10% ethanol (EtOH) and 5 to 10% glycine. Furthermore, temperature conditions of 80 °C, 100 °C, and 120 °C were used for 1, 3, and 5 h to evaluate the extraction rates. The extraction, gelation, structural, and cytotoxicity properties of SS extracted under different conditions were investigated. Extraction at 100 °C and 120 °C were found to have the highest SS yield, with 80 °C being the lowest. SS isolated at 100 °C and 120 °C for 1 and 3 h in water, and EtOH gelled at 4 °C in 2 to 3 days and 37 °C in 40 min. Glycine SS extracts were obtained at 100 °C and 120 °C for 1 h, gelled at 4 °C for 20 days and 37 °C for 16 h. SS was observed at 80 °C, with no gelation occurring. Glycine SS extracts obtained for 3, and 5 h at 120 °C showed no gelation. Circular dichroism (CD) results show glycine in SS induces α-helix and random coil structure. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and fast performance liquid chromatography (FPLC) were used to quantify the molecular weight distribution at 63 and 70 kDa, respectively. The MMT assay (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) revealed no cytotoxicity in macrophage RAW 264.7 cells treated with this method SS; these findings present the significance and possibility of using selected extraction ingredients in SS that allow for the application of native SS at an initial extraction viscosity.
Collapse
Affiliation(s)
- Munguti Peter Muindi
- National Sericulture Research Center, Kenya Agricultural and Livestock Research Organization, Thika 7816-01000, Kenya
| | - Ji Hae Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
- Correspondence: (J.H.L.); (H.K.)
| | - HaeYong Kweon
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea
- Correspondence: (J.H.L.); (H.K.)
| | - Muo Kasina
- National Sericulture Research Center, Kenya Agricultural and Livestock Research Organization, Thika 7816-01000, Kenya
| |
Collapse
|
72
|
Ionic liquids as protein stabilizers for biological and biomedical applications: A review. Biotechnol Adv 2022; 61:108055. [DOI: 10.1016/j.biotechadv.2022.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
|
73
|
Behairy MY, Abdelrahman AA, Toraih EA, Ibrahim EEDA, Azab MM, Sayed AA, Hashem HR. Investigation of TLR2 and TLR4 Polymorphisms and Sepsis Susceptibility: Computational and Experimental Approaches. Int J Mol Sci 2022; 23:10982. [PMID: 36142893 PMCID: PMC9504743 DOI: 10.3390/ijms231810982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLR) play an eminent role in the regulation of immune responses to invading pathogens during sepsis. TLR genetic variants might influence individual susceptibility to developing sepsis. The current study aimed to investigate the association of genetic polymorphisms of the TLR2 and TLR4 with the risk of developing sepsis with both a pilot study and in silico tools. Different in silico tools were used to predict the impact of our SNPs on protein structure, stability, and function. Furthermore, in our prospective study, all patients matching the inclusion criteria in the intensive care units (ICU) were included and followed up, and DNA samples were genotyped using real-time polymerase chain reaction (RT-PCR) technology. There was a significant association between TLR2 Arg753Gln polymorphisms and sepsis under the over-dominant model (p = 0.043). In contrast, we did not find a significant difference with the TLR4 Asp299Gly polymorphism with sepsis. However, there was a significant association between TLR4 Asp299Gly polymorphisms and Acinetobacter baumannii infection which is quite a virulent organism in ICU (p = 0.001) and post-surgical cohorts (p = 0.033). Our results conclude that the TLR2 genotype may be a risk factor for sepsis in adult patients.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City 32958, Egypt
| | - Ali A. Abdelrahman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology & Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Emad El-Deen A. Ibrahim
- Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Marwa M. Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Anwar A. Sayed
- Department of Medical Microbiology and Immunology, Taibah University, Madinah 42353, Saudi Arabia
- Department of Surgery and Cancer, Imperial College London, London SW7 2BX, UK
| | - Hany R. Hashem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
74
|
Lee S, Jo K, Jeong HG, Choi YS, Kyoung H, Jung S. Freezing-induced denaturation of myofibrillar proteins in frozen meat. Crit Rev Food Sci Nutr 2022; 64:1385-1402. [PMID: 36052640 DOI: 10.1080/10408398.2022.2116557] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Freezing is commonly used to extend the shelf life of meat and meat products but may impact the overall quality of those products by inducing structural changes in myofibrillar proteins (MPs) through denaturation, chemical modification, and encouraging protein aggregation. This review covers the effect of freezing on the denaturation of MPs in terms of the effects of ice crystallization on solute concentrations, cold denaturation, and protein oxidation. Freezing-induced denaturation of MPs begins with ice crystallization in extracellular spaces and changes in solute concentrations in the unfrozen water fraction. At typical temperatures for freezing meat (lower than -18 °C), cold denaturation of proteins occurs, accompanied by an alteration in their secondary and tertiary structure. Moreover, the disruption of muscle cells triggers the release of cellular enzymes, accelerating protein degradation and oxidation. To minimize severe deterioration during the freezing and frozen storage of meat, there is a vital need to use an appropriate freezing temperature below the glass transition temperature and to avoid temperature fluctuations during storage to prevent recrystallization. Such an understanding of MP denaturation can be applied to determine the optimum freezing conditions for meat products with highly retained sensory, nutritional, and functional qualities.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
75
|
Selvaraj C, Pravin MA, Alhoqail WA, Nayarisseri A, Singh SK. Intrinsically disordered proteins in viral pathogenesis and infections. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:221-242. [PMID: 36088077 DOI: 10.1016/bs.apcsb.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Disordered proteins serve a crucial part in many biological processes that go beyond the capabilities of ordered proteins. A large number of virus-encoded proteins have extremely condensed proteomes and genomes, which results in highly disordered proteins. The presence of these IDPs allows them to rapidly adapt to changes in their biological environment and play a significant role in viral replication and down-regulation of host defense mechanisms. Since viruses undergo rapid evolution and have a high rate of mutation and accumulation in their proteome, IDPs' insights into viruses are critical for understanding how viruses hijack cells and cause disease. There are many conformational changes that IDPs can adopt in order to interact with different protein partners and thus stabilize the particular fold and withstand high mutation rates. This chapter explains the molecular mechanism behind viral IDPs, as well as the significance of recent research in the field of IDPs, with the goal of gaining a deeper comprehension of the essential roles and functions played by viral proteins.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Muthuraja Arun Pravin
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Wardah A Alhoqail
- Department of Biology, College of Education, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Anuraj Nayarisseri
- In Silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
76
|
Hu X, Roy SR, Jin C, Li G, Zhang Q, Asano N, Asahina S, Kajiwara T, Takahara A, Feng B, Aoki K, Xu C, Zhang Y. Control cell migration by engineering integrin ligand assembly. Nat Commun 2022; 13:5002. [PMID: 36008449 PMCID: PMC9411606 DOI: 10.1038/s41467-022-32686-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in mechanistic understanding of integrin-mediated adhesion highlight the importance of precise control of ligand presentation in directing cell migration. Top-down nanopatterning limited the spatial presentation to sub-micron placing restrictions on both fundamental study and biomedical applications. To break the constraint, here we propose a bottom-up nanofabrication strategy to enhance the spatial resolution to the molecular level using simple formulation that is applicable as treatment agent. Via self-assembly and co-assembly, precise control of ligand presentation is succeeded by varying the proportions of assembling ligand and nonfunctional peptide. Assembled nanofilaments fulfill multi-functions exerting enhancement to suppression effect on cell migration with tunable amplitudes. Self-assembled nanofilaments possessing by far the highest ligand density prevent integrin/actin disassembly at cell rear, which expands the perspective of ligand-density-dependent-modulation, revealing valuable inputs to therapeutic innovations in tumor metastasis.
Collapse
Affiliation(s)
- Xunwu Hu
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan, China
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chengzhi Jin
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Guangzhou Municipal and Guangdong Provincial Key of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qizheng Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | | | | | - Tomoko Kajiwara
- Research Center for Negative Emission Technology, Kyushu University, Fukuoka, Japan
| | - Atsushi Takahara
- Research Center for Negative Emission Technology, Kyushu University, Fukuoka, Japan
| | - Bolu Feng
- Fluid Mechanics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institute of Natural Sciences, Aichi, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- Department of Basic Biology, School of Science, SOKENDAI (The Graduate University for Advanced Studies), Aichi, Japan
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Ye Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan, China.
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
77
|
Behairy MY, Soltan MA, Adam MS, Refaat AM, Ezz EM, Albogami S, Fayad E, Althobaiti F, Gouda AM, Sileem AE, Elfaky MA, Darwish KM, Alaa Eldeen M. Computational Analysis of Deleterious SNPs in NRAS to Assess Their Potential Correlation With Carcinogenesis. Front Genet 2022; 13:872845. [PMID: 36051694 PMCID: PMC9424727 DOI: 10.3389/fgene.2022.872845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
The NRAS gene is a well-known oncogene that acts as a major player in carcinogenesis. Mutations in the NRAS gene have been linked to multiple types of human tumors. Therefore, the identification of the most deleterious single nucleotide polymorphisms (SNPs) in the NRAS gene is necessary to understand the key factors of tumor pathogenesis and therapy. We aimed to retrieve NRAS missense SNPs and analyze them comprehensively using sequence and structure approaches to determine the most deleterious SNPs that could increase the risk of carcinogenesis. We also adopted structural biology methods and docking tools to investigate the behavior of the filtered SNPs. After retrieving missense SNPs and analyzing them using six in silico tools, 17 mutations were found to be the most deleterious mutations in NRAS. All SNPs except S145L were found to decrease NRAS stability, and all SNPs were found on highly conserved residues and important functional domains, except R164C. In addition, all mutations except G60E and S145L showed a higher binding affinity to GTP, implicating an increase in malignancy tendency. As a consequence, all other 14 mutations were expected to increase the risk of carcinogenesis, with 5 mutations (G13R, G13C, G13V, P34R, and V152F) expected to have the highest risk. Thermodynamic stability was ensured for these SNP models through molecular dynamics simulation based on trajectory analysis. Free binding affinity toward the natural substrate, GTP, was higher for these models as compared to the native NRAS protein. The Gly13 SNP proteins depict a differential conformational state that could favor nucleotide exchange and catalytic potentiality. A further application of experimental methods with all these 14 mutations could reveal new insights into the pathogenesis and management of different types of tumors.
Collapse
Affiliation(s)
- Mohammed Y. Behairy
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mohamed A. Soltan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
- *Correspondence: Mohamed A. Soltan, ; Muhammad Alaa Eldeen,
| | - Mohamed S. Adam
- Department of Pharmacology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Ahmed M. Refaat
- Zoology Departmen, Faculty of Science, Minia University, El-Minia, Egypt
| | - Ehab M. Ezz
- Department of Pharmacology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sarah Albogami
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ahmed M. Gouda
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ashraf E. Sileem
- Department of Chest Diseases, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud A. Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology and Genetics Division, Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
- *Correspondence: Mohamed A. Soltan, ; Muhammad Alaa Eldeen,
| |
Collapse
|
78
|
Mahmood MS, Afzal M, Batool H, Saif A, Aqdas T, Ashraf NM, Saleem M. Screening of Pathogenic Missense Single Nucleotide Variants From LHPP Gene Associated With the Hepatocellular Carcinoma: An In silico Approach. Bioinform Biol Insights 2022; 16:11779322221115547. [PMID: 35966807 PMCID: PMC9373111 DOI: 10.1177/11779322221115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/11/2022] [Indexed: 11/15/2022] Open
Abstract
LHPP gene encodes a phospholysine phosphohistidine inorganic pyrophosphate phosphatase, which functions as a tumor-suppressor protein. The tumor suppression by this protein has been confirmed in various cancers, including hepatocellular carcinoma (HCC). LHPP downregulation promotes cell growth and proliferation by modulating the PI3K/AKT signaling pathway. This study identifies potentially deleterious missense single nucleotide variants (SNVs) associated with the LHPP gene using multiple computational tools based on different algorithms. A total of 4 destabilizing mutants are identified as L22P, I212T, G227R, and G236R, from the conserved region of the phosphatase. The 3-dimensional (3D) modeling and structural comparison of variants with the native protein reveals significant structural and conformational variations after mutations, suggesting disruption in the function of phospholysine phosphohistidine inorganic pyrophosphate phosphatase. The identified mutations might, therefore, participate in the cause of HCC.
Collapse
Affiliation(s)
- Malik Siddique Mahmood
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan.,Department of Biochemistry, NUR International University, Lahore, Pakistan
| | - Maryam Afzal
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Hina Batool
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Amara Saif
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Tahreem Aqdas
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry & Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
79
|
Heimsch KC, Gertzen CGW, Schuh AK, Nietzel T, Rahlfs S, Przyborski JM, Gohlke H, Schwarzländer M, Becker K, Fritz-Wolf K. Structure and Function of Redox-Sensitive Superfolder Green Fluorescent Protein Variant. Antioxid Redox Signal 2022; 37:1-18. [PMID: 35072524 PMCID: PMC9293687 DOI: 10.1089/ars.2021.0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims: Genetically encoded green fluorescent protein (GFP)-based redox biosensors are widely used to monitor specific and dynamic redox processes in living cells. Over the last few years, various biosensors for a variety of applications were engineered and enhanced to match the organism and cellular environments, which should be investigated. In this context, the unicellular intraerythrocytic parasite Plasmodium, the causative agent of malaria, represents a challenge, as the small size of the organism results in weak fluorescence signals that complicate precise measurements, especially for cell compartment-specific observations. To address this, we have functionally and structurally characterized an enhanced redox biosensor superfolder roGFP2 (sfroGFP2). Results: SfroGFP2 retains roGFP2-like behavior, yet with improved fluorescence intensity (FI) in cellulo. SfroGFP2-based redox biosensors are pH insensitive in a physiological pH range and show midpoint potentials comparable with roGFP2-based redox biosensors. Using crystallography and rigidity theory, we identified the superfolding mutations as being responsible for improved structural stability of the biosensor in a redox-sensitive environment, thus explaining the improved FI in cellulo. Innovation: This work provides insight into the structure and function of GFP-based redox biosensors. It describes an improved redox biosensor (sfroGFP2) suitable for measuring oxidizing effects within small cells where applicability of other redox sensor variants is limited. Conclusion: Improved structural stability of sfroGFP2 gives rise to increased FI in cellulo. Fusion to hGrx1 (human glutaredoxin-1) provides the hitherto most suitable biosensor for measuring oxidizing effects in Plasmodium. This sensor is of major interest for studying glutathione redox changes in small cells, as well as subcellular compartments in general. Antioxid. Redox Signal. 37, 1-18.
Collapse
Affiliation(s)
- Kim C Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Katharina Schuh
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Jude M Przyborski
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,John von Neumann Institute of Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Giessen, Germany.,Max-Planck Institute of Medical Research, Heidelberg, Germany
| |
Collapse
|
80
|
Mandal SK, Kanaujia SP. Role of an orphan substrate-binding protein MhuP in transient heme transfer in Mycobacterium tuberculosis. Int J Biol Macromol 2022; 211:342-356. [PMID: 35569676 DOI: 10.1016/j.ijbiomac.2022.05.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
The redox property of iron makes it an essential cofactor for numerous enzymes involved in various metabolic processes. In vertebrates, iron is attached to either heme molecules or with other circulatory proteins, making its accessibility restricted for bacterial pathogens residing inside the host. Due to this importance, there is always an ongoing battle between the host system and pathogens, known as nutritional immunity. To capture the bound iron from the human hosts, intracellular pathogens like Mycobacterium tuberculosis secrete siderophore molecules which are ultimately uptaken by versatile transport machinery such as ATP-binding cassette (ABC) transporters. Earlier reports have suggested the presence of a heme uptake protein MhuP (ORF id: Rv0265c) in M. tuberculosis, which transiently transfers the bound iron to the protein DppA for further heme transport by utilizing its cognate transport machinery (DppBCD). In the present study, we report the crystal structure of MhuP. The binding experiments of heme with MhuP suggest its specific nature. Molecular docking studies confirm the binding of the protein MhuP with heme as well as to the protein DppA. Thus, the results indicate the binding of heme to MhuP and its probable transient transport via the DppABCD transport system in M. tuberculosis.
Collapse
Affiliation(s)
- Suraj Kumar Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
81
|
Gierse RM, Oerlemans R, Reddem ER, Gawriljuk VO, Alhayek A, Baitinger D, Jakobi H, Laber B, Lange G, Hirsch AKH, Groves MR. First crystal structures of 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) from Mycobacterium tuberculosis indicate a distinct mechanism of intermediate stabilization. Sci Rep 2022; 12:7221. [PMID: 35508530 PMCID: PMC9068908 DOI: 10.1038/s41598-022-11205-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
The development of drug resistance by Mycobacterium tuberculosis and other pathogenic bacteria emphasizes the need for new antibiotics. Unlike animals, most bacteria synthesize isoprenoid precursors through the MEP pathway. 1-Deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the first reaction of the MEP pathway and is an attractive target for the development of new antibiotics. We report here the successful use of a loop truncation to crystallize and solve the first DXPS structures of a pathogen, namely M. tuberculosis (MtDXPS). The main difference found to other DXPS structures is in the active site where a highly coordinated water was found, showing a new mechanism for the enamine-intermediate stabilization. Unlike other DXPS structures, a “fork-like” motif could be identified in the enamine structure, using a different residue for the interaction with the cofactor, potentially leading to a decrease in the stability of the intermediate. In addition, electron density suggesting a phosphate group could be found close to the active site, provides new evidence for the D-GAP binding site. These results provide the opportunity to improve or develop new inhibitors specific for MtDXPS through structure-based drug design.
Collapse
Affiliation(s)
- Robin M Gierse
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany.,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Rick Oerlemans
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Eswar R Reddem
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Victor O Gawriljuk
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.,São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany
| | - Dominik Baitinger
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany
| | - Harald Jakobi
- Research & Development Crop Science, Bayer AG, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Bernd Laber
- Research & Development Crop Science, Bayer AG, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Gudrun Lange
- Research & Development Crop Science, Bayer AG, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus Building E 8.1, 66123, Saarbrücken, Germany. .,Department of Pharmacy, Saarland University, Campus Building E8.1, 66123, Saarbrücken, Germany. .,Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | - Matthew R Groves
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.
| |
Collapse
|
82
|
Behairy MY, Abdelrahman ALA, Abdallah HY, Ibrahim EEDA, Sayed AA, Azab MM. In silico analysis of missense variants of the C1qA gene related to infection and autoimmune diseases. J Taibah Univ Med Sci 2022; 17:1074-1082. [PMID: 36212588 PMCID: PMC9519598 DOI: 10.1016/j.jtumed.2022.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives C1q is a key activator of the classical pathway of the complement system and exerts consequences relating to opsonization and phagocytosis. The C1qA gene is one of three genes encoding the C1q molecule. Defects in C1q, and especially in C1qA, have been linked to an increased susceptibility to infection, sepsis, and systemic lupus erythematosus. These defects could arise from missense single nucleotide polymorphisms (SNPs) and their deleterious impacts on protein structure and function. Thus, identifying high-risk missense SNPs in C1qA has become a necessity if we are to identify appropriate measures for prevention and management of affected patients. Methods A comprehensive in silico study was conducted to screen the 184 missense SNPs in the C1qA gene using different tools with different algorithms and approaches. We investigated the impact of SNPs on protein function, stability, and structure. In addition, we identified the location of the SNPs on protein domains, secondary structure alignment, and the phylogenetic conservation of their positions. Results Of the 184 missense SNPs, 10 SNPs were predicted to be the most damaging to protein function and structure. Conclusion Ten missense SNPs were predicted to have the highest risk of damaging protein function and structure, thus leading to infection, sepsis, and systemic lupus erythematosus. These 10 SNPs constitute the best candidates for further experimental investigations.
Collapse
|
83
|
Au SX, Noor NDM, Matsumura H, Rahman RNZRA, Normi YM. Procedure of the overexpression, purification and crystallization of BLEG-1, a bifunctional and evolutionary divergent B3 metallo-β-lactamase, for structure-function studies. MethodsX 2022; 9:101740. [PMID: 35707637 PMCID: PMC9189199 DOI: 10.1016/j.mex.2022.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/21/2022] [Indexed: 10/26/2022] Open
|
84
|
Karade SS, Kolesnikov A, Treston AM, Mariuzza RA. Identification of Endoplasmic Reticulum α-Glucosidase I from a Thermophilic Fungus as a Platform for Structure-Guided Antiviral Drug Design. Biochemistry 2022; 61:822-832. [PMID: 35476408 DOI: 10.1021/acs.biochem.2c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All viruses depend on host cell proteins for replication. Denying viruses' access to the function of critical host proteins can result in antiviral activity against multiple virus families. In particular, small-molecule drug candidates which inhibit the α-glucosidase enzymes of the endoplasmic reticulum (ER) translation quality control (QC) pathway have demonstrated broad-spectrum antiviral activities and low risk for development of viral resistance. However, antiviral drug discovery focused on the ERQC enzyme α-glucosidase I (α-GluI) has been hampered by difficulties in obtaining crystal structures of complexes with inhibitors. We report here the identification of an orthologous enzyme from a thermophilic fungus, Chaetomium thermophilum (Ct), as a robust surrogate for mammalian ER α-GluI and a platform for inhibitor design. Previously annotated only as a hypothetical protein, the Ct protein was validated as a bona fide α-glucosidase by comparing its crystal structure to that of mammalian α-GluI, by demonstrating enzymatic activity on the unusual α-d-Glcp-(1 → 2)-α-d-Glcp-(1 → 3) substrate glycan, and by showing that well-known inhibitors of mammalian α-GluI (1-DNJ, UV-4, UV-5) also inhibit Ct α-GluI. Crystal structures of Ct α-GluI in complex with three such inhibitors (UV-4, UV-5, EB-0159) revealed extensive interactions with all four enzyme subsites and provided insights into the catalytic mechanism. Identification of ER Ct α-GluI as a surrogate for mammalian α-GluI will accelerate the structure-guided discovery of broad-spectrum antivirals. This study also highlights Ct as a source of thermostable eukaryotic proteins, such as ER α-Glu I, that lack orthologs in bacterial or archaeal thermophiles.
Collapse
Affiliation(s)
- Sharanbasappa S Karade
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States
| | - Alexander Kolesnikov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States
| | | | - Roy A Mariuzza
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
85
|
Ali MZ, Farid A, Ahmad S, Muzammal M, Mohaini MA, Alsalman AJ, Al Hawaj MA, Alhashem YN, Alsaleh AA, Almusalami EM, Maryam M, Khan MA. In Silico Analysis Identified Putative Pathogenic Missense nsSNPs in Human SLITRK1 Gene. Genes (Basel) 2022; 13:672. [PMID: 35456478 PMCID: PMC9030497 DOI: 10.3390/genes13040672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Human DNA contains several variations, which can affect the structure and normal functioning of a protein. These variations could be single nucleotide polymorphisms (SNPs) or insertion-deletions (InDels). SNPs, as opposed to InDels, are more commonly present in DNA and may cause genetic disorders. In the current study, several bioinformatic tools were used to prioritize the pathogenic variants in the SLITRK1 gene. Out of all of the variants, 16 were commonly predicted to be pathogenic by these tools. All the variants had very low frequency, i.e., <0.0001 in the global population. The secondary structure of all filtered variants was predicted, but no structural change was observed at the site of variation in any variant. Protein stability analysis of these variants was then performed, which determined a decrease in protein stability of 10 of the variants. Amino acid conservation analysis revealed that all the amino acids were highly conserved, indicating their structural and functional importance. Protein 3D structure of wildtype SLITRK1 and all of its variants was predicted using I-TASSER, and the effect of variation on 3D structure of the protein was observed using the Missense3D tool, which presented the probable structural loss in three variants, i.e., Asn529Lys, Leu496Pro and Leu94Phe. The wildtype SLITRK1 protein and these three variants were independently docked with their close interactor protein PTPRD, and remarkable differences were observed in the docking sites of normal and variants, which will ultimately affect the functional activity of the SLITRK1 protein. Previous studies have shown that mutations in SLITRK1 are involved in Tourette syndrome. The present study may assist a molecular geneticist in interpreting the variant pathogenicity in research as well as diagnostic setup.
Collapse
Affiliation(s)
- Muhammad Zeeshan Ali
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Safeer Ahmad
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Al Ahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Al Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | - Yousef N. Alhashem
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia; (Y.N.A.); (A.A.A.)
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia; (Y.N.A.); (A.A.A.)
| | | | - Mahpara Maryam
- Department of Zoology, Government College No.1, Dera Ismail Khan 29111, Pakistan;
| | - Muzammil Ahmad Khan
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29111, Pakistan; (M.Z.A.); (A.F.); (S.A.); (M.M.)
- Department of Human Genetics, Sidra Medical and Research Centre, Doha 26999, Qatar
| |
Collapse
|
86
|
Ali F, Manzoor U, Khan FI, Lai D, Khan MKA, Chandrashekharaiah KS, Singh LR, Dar TA. Effect of polyol osmolytes on the structure-function integrity and aggregation propensity of catalase: A comprehensive study based on spectroscopic and molecular dynamic simulation measurements. Int J Biol Macromol 2022; 209:198-210. [PMID: 35395280 DOI: 10.1016/j.ijbiomac.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 01/24/2023]
Abstract
Owing to the ability of catalase to function under oxidative stress vis-à-vis its industrial importance, the structure-function integrity of the enzyme is of prime concern. In the present study, polyols (glycerol, sorbitol, sucrose, xylitol), were evaluated for their ability to modulate structure, activity and aggregation of catalase using in vitro and in silico approaches. All polyols increased catalase activity by decreasing Km and increasing Vmax resulting in enhanced catalytic efficiency (kcat/Km) of the enzyme, with glycerol being the most efficient with a kcat/Km increase from 4.38 × 104 mM-1 S-1 (control) to 5.8 × 105 mM-1 S-1. Correlatively with this, enhanced secondary structure with reduced hydrophobic exposure was observed in all polyols. Furthermore, increased stability, with an increase in melting temperature by 15.2 °C, and almost no aggregation was observed in glycerol. Overall, ability to regulate structure-function integrity and aggregation propensity was highest for glycerol and lowest for xylitol. Simulation studies were performed involving structural dynamics measurements, principal component analysis and free energy landscape analysis. Altogether, all polyols were stabilizing in nature and glycerol, in particular, has potential to efficiently prevent not only the antioxidant defense system but also might serve as a stability aid during industrial processing of catalase.
Collapse
Affiliation(s)
- Fasil Ali
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | - Usma Manzoor
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai 600 048, Tamil Nadu, India
| | - K S Chandrashekharaiah
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | | | - Tanveer Ali Dar
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
87
|
Identification and In Silico Characterization of a Novel COLGALT2 Gene Variant in a Child with Mucosal Rectal Prolapse. Int J Mol Sci 2022; 23:ijms23073670. [PMID: 35409030 PMCID: PMC8999070 DOI: 10.3390/ijms23073670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Rectal prolapse is influenced by many factors including connective tissue dysfunction. Currently, there is no data about genetic contribution in the etiology of this disorder. In this study, we performed trio whole-exome sequencing in an 11-year-old girl with mucosal rectal prolapse and her parents and sibling. Genetic testing revealed a novel heterozygous missense variant c.1406G>T; p.G469V in exon 11 of the COLGALT2 gene encoding the GLT25 D2 enzyme. Sanger sequencing confirmed this variant only in the patient while the mother, father and sister showed a wild-type sequence. The pathogenicity of the novel variant was predicted using 10 different in silico tools that classified it as pathogenic. Further, in silico prediction, according to Phyre2, Project HOPE, I-Mutant3.0 and MutPred2 showed that the missense variant can decrease protein stability and cause alterations in the physical properties of amino acids resulting in structural and functional changes of the GLT25D2 protein. In conclusion, the present study identifies a previously unknown missense mutation in the COLGALT2 gene that encodes the enzyme involved in collagen glycosylation. The clinical features observed in the patient and the results of in silico analysis suggest that the new genetic variant can be pathogenic.
Collapse
|
88
|
Joy A, Biswas R. Molecular Insight into the High Thermal Stability of Metalloprotein Azurin. J Phys Chem B 2022; 126:2496-2506. [PMID: 35324174 DOI: 10.1021/acs.jpcb.2c00622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the events characterizing the steps of the unfolding pathway of blue copper metalloprotein azurin using replica exchange molecular dynamics (REMD). Our studies show that the unfolding of azurin begins with the melting of α-helix and β-sheets II and V. This is followed by the melting of other β-sheets and the exposure of hydrophobic protein core to the solvent, resulting in disruptions of its tertiary structure. Free energy surfaces constructed at different temperatures portray different basins that signify the stability of different melted structures in the unfolding process. The contact maps at different temperatures reveal that the strong hydrophobic interaction within the core of the protein is the vital force that renders high stability to this protein. Analysis of the individual β-sheets by looking into their amino acid sequence shows that β-sheets with charged side chains on the surface melt fast compared to others. The β-barrel of azurin is able to dynamically rearrange, and it helps the protein to preserve its hydrophobic core, holding back the native topology from melting fast. B-factor analysis shows that residues of β-sheets III, IV, and VII deviate less from their initial structure at the transition temperature.
Collapse
Affiliation(s)
- Albin Joy
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| | - Rajib Biswas
- Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| |
Collapse
|
89
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
90
|
Das SC, Rahman MA, Das Gupta S. In-silico analysis unravels the structural and functional consequences of non-synonymous SNPs in the human IL-10 gene. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that affects different immune cells. It is also associated with the stimulation of the T and B cells for the production of antibodies. Several genetic polymorphisms in the IL-10 gene have been reported to cause or aggravate certain diseases like inflammatory bowel disease, rheumatoid arthritis, systemic sclerosis, asthma, etc. However, the disease susceptibility and abnormal function of the mutated IL-10 variants remain obscure.
Results
In this study, we used seven bioinformatics tools (SIFT, PROVEAN, PMut, PANTHER, PolyPhen-2, PHD-SNP, and SNPs&GO) to predict the disease susceptible non-synonymous SNPs (nsSNPs) of IL-10. Nine nsSNPs of IL-10 were predicted to be potentially deleterious: R42G, R45Q, F48L, E72G, M95T, A98D, R125S, Y155C, and I168T. Except two, all of the putative deleterious mutations are found in the highly conserved region of IL-10 protein structure, thus affecting the protein's stability. The 3-D structure of mutant proteins was modeled by project HOPE, and the protein–protein interactions were assessed with STRING. The predicted nsSNPs: R42Q, R45Q, F48L, E72G, and I168T are situated in the binding site region of the IL-10R1 receptor. Disruption of binding affinity with its receptor leads to deregulation of the JAK-STAT pathway and results in enhanced inflammation that imbalance in cellular signaling. Finally, Kaplan–Meier Plotter analysis displayed that deregulation of IL-10 expression affects gastric and ovarian cancer patients' survival rate. Thus, IL-10 could be useful as a potential prognostic marker gene for some cancers.
Conclusion
This study has determined the deleterious nsSNPs of IL-10 that might contribute to the malfunction of IL-10 protein and ultimately lead to the IL-10 associated diseases.
Collapse
|
91
|
Tembe N, Machaba KE, Ndagi U, Kumalo HM, Mhlongo NN. Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase-a molecular modelling perspective. J Mol Model 2022; 28:35. [PMID: 35022913 DOI: 10.1007/s00894-021-04993-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/23/2021] [Indexed: 01/05/2023]
Abstract
The escalating burden of tuberculosis disease and drastic effects of current medicine has stimulated a search for alternative drugs. A medicinal plant Warburgia salutaris has been reported to possess inhibitory properties against M. tuberculosis. In this study, we apply computational methods to investigate the probability of W. salutaris compounds as potential inhibitors of M. tuberculosis QcrB protein. We performed molecular docking, molecular dynamics simulations, radius of gyration, principal component analysis (PCA), and molecular mechanics-generalized born surface area (MM-GBSA) binding-free energy calculations in explicit solvent to achieve our objective. The results suggested that ursolic acid (UA) and ursolic acid acetate (UAA) could serve as preferred potential inhibitors of mycobacterial QcrB compared to lansoprazole sulphide (LSPZ) and telacebec (Q203)-UA and UAA have a higher binding affinity to QcrB compared to LSPZ and Q203 drugs. UA binding affinity is attributed to hydrogen bond formation with Val120, Arg364 and Arg366, and largely resonated from van der Waals forces resulting from UA interactions with hydrophobic amino acids in its vicinity. UAA binds to the porphyrin ring binding site with higher binding affinity compared to LSPZ. The binding affinity results primarily from van der Waals forces between UAA and hydrophobic residues of QcrB in the porphyrin ring binding site where UAA binds competitively. UA and UAA formed stable complexes with the protein with reduced overall residue mobility, consequently supporting the magnitude of binding affinity of the respective ligands. UAA could potentially compete with the porphyrin ring for the binding site and deprive the mycobacterial cell from oxygen, consequently disturbing mycobacterial oxygen-dependent metabolic processes. Therefore, discovery of a compound that competes with porphyrin ring for the binding site may be useful in QcrB pharmocological studies. UA proved to be a superior compound, although its estimated toxicity profile revealed UA to be hepatotoxic within acceptable parameters. Although preliminary findings of this report still warrant experimental validation, they could serve as a baseline for the development of new anti-tubercular drugs from natural resources that target QcrB.
Collapse
Affiliation(s)
- Ntombikayise Tembe
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kgothatso E Machaba
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Umar Ndagi
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Hezekiel M Kumalo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Ndumiso N Mhlongo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
92
|
Using hydrogen-deuterium exchange mass spectrometry to characterize Mtr4 interactions with RNA. Methods Enzymol 2022; 673:475-516. [PMID: 35965017 DOI: 10.1016/bs.mie.2022.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) is a valuable technique to investigate the dynamics of protein systems. The approach compares the deuterium uptake of protein backbone amides under multiple conditions to characterize protein conformation and interaction. HDX-MS is versatile and can be applied to diverse ligands, however, challenges remain when it comes to exploring complexes containing nucleic acids. In this chapter, we present procedures for the optimization and application of HDX-MS to studying RNA-binding proteins and use the RNA helicase Mtr4 as a demonstrative example. We highlight considerations in designing on-exchange, bottom-up, comparative studies on proteins with RNA. Our protocol details preliminary testing and optimization of experimental parameters. Difficulties arising from the inclusion of RNA, such as signal repression and sample carryover, are addressed. We discuss how chromatography parameters can be adjusted depending on the issues presented by the RNA, emphasizing reproducible peptide recovery in the absence and presence of RNA. Methods for visualization of HDX data integrated with statistical analysis are also reviewed with examples. These protocols can be applied to future studies of various RNA-protein complexes.
Collapse
|
93
|
Halder SK, Mim MM, Alif MMH, Shathi JF, Alam N, Shil A, Himel MK. Oxa-376 and Oxa-530 variants of β-lactamase: computational study uncovers potential therapeutic targets of Acinetobacter baumannii. RSC Adv 2022; 12:24319-24338. [PMID: 36128545 PMCID: PMC9412156 DOI: 10.1039/d2ra02939a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance is a major global health crisis, resulting in thousands of deaths each year. Antibiotics' effectiveness against microorganisms deteriorates over time as multidrug resistance (MDR) develops, which is exacerbated by irregular antibiotic use, poor disease management, and the evasive nature of bacteria. The World Health Organization has recognized multidrug resistance as a critical public health concern, and Acinetobacter baumannii has been at the center of attention due to its ability to develop multidrug resistance (MDR). It generally produces carbapenem-hydrolyzing oxacillinase, which has been identified as the primary source of beta-lactam resistance in MDR bacteria. Recently, point mutations in A. baumannii have been identified as a key factor of multidrug resistance, making them a prime concern for researchers. The goal of the current work was to establish a unique way of finding multidrug-resistant variants and identify the most damaging mutations in the existing databases. We characterized the deleterious variants of oxacillinases using several computational tools. Following a thorough analysis, Oxa-376 and Oxa-530 were found to be more damaging when compared with the wild-type Oxa-51. The mutants' 3D structures were then prepared and refined with RaptorX, GalaxyRefine, and SAVES servers. Our research incorporates seven antimicrobial agents to illustrate the resistance capability of the variants of oxacillinase by evaluating binding affinity in Autodock-vina and Schrodinger software. RMSD, RMSF, Radius of gyration analysis, the solvent-accessible surface area (SASA), hydrogen bonding analysis and MM-GBSA from Molecular Dynamics Simulation revealed the dynamic nature and stability of wild-type and Oxa-376 and Oxa-530 variants. Our findings will benefit researchers looking for the deleterious mutations of Acinetobacter baumannii and new therapeutics to combat those variants. However, further studies are necessary to evaluate the mechanism of hydrolyzing activity and antibiotic resistance of these variants. Determining novel therapeutic targets of Acinetobacter baumannii. Deleterious variants, causing antibiotic resistance, were identified by molecular docking and molecular dynamics simulation suggesting new therapeutic targets Oxa-376 and Oxa-530.![]()
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Research Assistant at Padma Bioresearch, Dhaka, Bangladesh
| | - Maria Mulla Mim
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Meharab Hassan Alif
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Jannatul Fardous Shathi
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Nuhu Alam
- Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Aparna Shil
- Department of Botany, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | |
Collapse
|
94
|
Flores SS, Clop PD, Barra JL, Argaraña CE, Perillo MA, Nolan V, Sánchez JM. His-tag β-galactosidase supramolecular performance. Biophys Chem 2021; 281:106739. [PMID: 34923392 DOI: 10.1016/j.bpc.2021.106739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 11/02/2022]
Abstract
β-Galactosidase is an important biotechnological enzyme used in the dairy industry, pharmacology and in molecular biology. In our laboratory we have overexpressed a recombinant β-galactosidase in Escherichia coli (E. coli). This enzyme differs from its native version (β-GalWT) in that 6 histidine residues have been added to the carboxyl terminus in the primary sequence (β-GalHis), which allows its purification by immobilized metal affinity chromatography (IMAC). In this work we compared the functionality and structure of both proteins and evaluated their catalytic behavior on the kinetics of lactose hydrolysis. We observed a significant reduction in the enzymatic activity of β-GalHis with respect to β-GalWT. Although, both enzymes showed a similar catalytic profile as a function of temperature, β-GalHis presented a higher resistance to the thermal inactivation compared to β-GalWT. At room temperature, β-GalHis showed a fluorescence spectrum compatible with a partially unstructured protein, however, it exhibited a lower tendency to the thermal-induced unfolding with respect to β-GalWT. The distinctively supramolecular arranges of the proteins would explain the effect of the presence of His-tag on the enzymatic activity and thermal stability.
Collapse
Affiliation(s)
- Sandra S Flores
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Pedro D Clop
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - José L Barra
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Av. Haya de la Torre s/N° Ciudad Universitaria CP, X5000HUA Córdoba, Argentina; CONICET, Centro de Investigaciones en Química Biológicas de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Carlos E Argaraña
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica "Ranwel Caputto", Av. Haya de la Torre s/N° Ciudad Universitaria CP, X5000HUA Córdoba, Argentina; CONICET, Centro de Investigaciones en Química Biológicas de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - María A Perillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
| | - Verónica Nolan
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina.
| | - Julieta M Sánchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina.
| |
Collapse
|
95
|
Coll-Satue C, Jansman MMT, Thulstrup PW, Hosta-Rigau L. Optimization of Hemoglobin Encapsulation within PLGA Nanoparticles and Their Investigation as Potential Oxygen Carriers. Pharmaceutics 2021; 13:1958. [PMID: 34834373 PMCID: PMC8619773 DOI: 10.3390/pharmaceutics13111958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Hemoglobin (Hb)-based oxygen carriers (HBOCs) display the excellent oxygen-carrying properties of red blood cells, while overcoming some of the limitations of donor blood. Various encapsulation platforms have been explored to prepare HBOCs which aim to avoid or minimize the adverse effects caused by the administration of free Hb. Herein, we entrapped Hb within a poly(lactide-co-glycolide) (PLGA) core, prepared by the double emulsion solvent evaporation method. We study the effect of the concentrations of Hb, PLGA, and emulsifier on the size, polydispersity (PDI), loading capacity (LC), and entrapment efficiency (EE) of the resulting Hb-loaded PLGA nanoparticles (HbNPs). Next, the ability of the HbNPs to reversibly bind and release oxygen was thoroughly evaluated. When needed, trehalose, a well-known protein stabilizer that has never been explored for the fabrication of HBOCs, was incorporated to preserve Hb's functionality. The optimized formulation had a size of 344 nm, a PDI of 0.172, a LC of 26.9%, and an EE of 40.7%. The HbNPs were imaged by microscopy and were further characterized by FTIR and CD spectroscopy to assess their chemical composition and structure. Finally, the ability of the encapsulated Hb to bind and release oxygen over several rounds was demonstrated, showing the preservation of its functionality.
Collapse
Affiliation(s)
- Clara Coll-Satue
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kongens Lyngby, Denmark; (C.C.-S.); (M.M.T.J.)
| | - Michelle Maria Theresia Jansman
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kongens Lyngby, Denmark; (C.C.-S.); (M.M.T.J.)
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Leticia Hosta-Rigau
- Center for Nanomedicine and Theranostics, Department of Health Technology, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kongens Lyngby, Denmark; (C.C.-S.); (M.M.T.J.)
| |
Collapse
|
96
|
Burastero O, Niebling S, Defelipe LA, Günther C, Struve A, Garcia Alai MM. eSPC: an online data-analysis platform for molecular biophysics. Acta Crystallogr D Struct Biol 2021; 77:1241-1250. [PMID: 34605428 PMCID: PMC8489228 DOI: 10.1107/s2059798321008998] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
All biological processes rely on the formation of protein-ligand, protein-peptide and protein-protein complexes. Studying the affinity, kinetics and thermodynamics of binding between these pairs is critical for understanding basic cellular mechanisms. Many different technologies have been designed for probing interactions between biomolecules, each based on measuring different signals (fluorescence, heat, thermophoresis, scattering and interference, among others). Evaluation of the data from binding experiments and their fitting is an essential step towards the quantification of binding affinities. Here, user-friendly online tools to analyze biophysical data from steady-state fluorescence spectroscopy, microscale thermophoresis and differential scanning fluorimetry experiments are presented. The modules of the data-analysis platform (https://spc.embl-hamburg.de/) contain classical thermodynamic models and clear user guidelines for the determination of equilibrium dissociation constants (Kd) and thermal unfolding parameters such as melting temperatures (Tm).
Collapse
Affiliation(s)
- Osvaldo Burastero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2620, Ciudad Autónoma de Buenos Aires, Argentina
- IQUIBICEN–UBA/CONICET, Intendente Güiraldes 2620, Ciudad Autónoma de Buenos Aires, Argentina
| | - Stephan Niebling
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lucas A. Defelipe
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian Günther
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Angelica Struve
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| | - Maria M. Garcia Alai
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
- Centre for Structural Systems Biology, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
97
|
Bhat P, Honson D, Guttman M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol 2021; 22:653-670. [PMID: 34341548 DOI: 10.1038/s41580-021-00387-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
Gene regulation requires the dynamic coordination of hundreds of regulatory factors at precise genomic and RNA targets. Although many regulatory factors have specific affinity for their nucleic acid targets, molecular diffusion and affinity models alone cannot explain many of the quantitative features of gene regulation in the nucleus. One emerging explanation for these quantitative properties is that DNA, RNA and proteins organize within precise, 3D compartments in the nucleus to concentrate groups of functionally related molecules. Recently, nucleic acids and proteins involved in many important nuclear processes have been shown to engage in cooperative interactions, which lead to the formation of condensates that partition the nucleus. In this Review, we discuss an emerging perspective of gene regulation, which moves away from classic models of stoichiometric interactions towards an understanding of how spatial compartmentalization can lead to non-stoichiometric molecular interactions and non-linear regulatory behaviours. We describe key mechanisms of nuclear compartment formation, including emerging roles for non-coding RNAs in facilitating their formation, and discuss the functional role of nuclear compartments in transcription regulation, co-transcriptional and post-transcriptional RNA processing, and higher-order chromatin regulation. More generally, we discuss how compartmentalization may explain important quantitative aspects of gene regulation.
Collapse
Affiliation(s)
- Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Drew Honson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
98
|
Voss JM, Harder OF, Olshin PK, Drabbels M, Lorenz UJ. Rapid melting and revitrification as an approach to microsecond time-resolved cryo-electron microscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
99
|
Ali A, Almesmari FSA, Dhahouri NA, Saleh Ali AM, Aldhanhani MAAMA, Vijayan R, Al Tenaiji A, Al Shamsi A, Hertecant J, Al Jasmi F. Clinical, Biochemical, and Genetic Heterogeneity in Glutaric Aciduria Type II Patients. Genes (Basel) 2021; 12:1334. [PMID: 34573316 PMCID: PMC8466204 DOI: 10.3390/genes12091334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
The variants of electron transfer flavoprotein (ETFA, ETFB) and ETF dehydrogenase (ETFDH) are the leading cause of glutaric aciduria type II (GA-II). In this study, we identified 13 patients harboring six variants of two genes associated with GA-II. Out of the six variants, four were missense, and two were frameshift mutations. A missense variant (ETFDH:p.Gln269His) was observed in a homozygous state in nine patients. Among nine patients, three had experienced metabolic crises with recurrent vomiting, abdominal pain, and nausea. In one patient with persistent metabolic acidosis, hypoglycemia, and a high anion gap, the ETFDH:p.Gly472Arg, and ETFB:p.Pro94Thrfs*8 variants were identified in a homozygous, and heterozygous state, respectively. A missense variant ETFDH:p.Ser442Leu was detected in a homozygous state in one patient with metabolic acidosis, hypoglycemia, hyperammonemia and liver dysfunction. The ETFDH:p.Arg41Leu, and ETFB:p.Ile346Phefs*19 variants were observed in a homozygous state in one patient each. Both these variants have not been reported so far. In silico approaches were used to evaluate the pathogenicity and structural changes linked with these six variants. Overall, the results indicate the importance of a newborn screening program and genetic investigations for patients with GA-II. Moreover, careful interpretation and correlation of variants of uncertain significance with clinical and biochemical findings are needed to confirm the pathogenicity of such variants.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Fatmah Saeed Ali Almesmari
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Nahid Al Dhahouri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Arwa Mohammad Saleh Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Mohammed Ahmed Ali Mohamed Ahmed Aldhanhani
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amal Al Tenaiji
- Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi P.O. Box 51900, United Arab Emirates;
| | - Aisha Al Shamsi
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.S.); (J.H.)
| | - Jozef Hertecant
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.S.); (J.H.)
| | - Fatma Al Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.); (F.S.A.A.); (N.A.D.); (A.M.S.A.); (M.A.A.M.A.A.)
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.S.); (J.H.)
| |
Collapse
|
100
|
Khoruddin NA, Noorizhab MN, Teh LK, Mohd Yusof FZ, Salleh MZ. Pathogenic nsSNPs that increase the risks of cancers among the Orang Asli and Malays. Sci Rep 2021; 11:16158. [PMID: 34373545 PMCID: PMC8352870 DOI: 10.1038/s41598-021-95618-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are the most common genetic variations for various complex human diseases, including cancers. Genome-wide association studies (GWAS) have identified numerous SNPs that increase cancer risks, such as breast cancer, colorectal cancer, and leukemia. These SNPs were cataloged for scientific use. However, GWAS are often conducted on certain populations in which the Orang Asli and Malays were not included. Therefore, we have developed a bioinformatic pipeline to mine the whole-genome sequence databases of the Orang Asli and Malays to determine the presence of pathogenic SNPs that might increase the risks of cancers among them. Five different in silico tools, SIFT, PROVEAN, Poly-Phen-2, Condel, and PANTHER, were used to predict and assess the functional impacts of the SNPs. Out of the 80 cancer-related nsSNPs from the GWAS dataset, 52 nsSNPs were found among the Orang Asli and Malays. They were further analyzed using the bioinformatic pipeline to identify the pathogenic variants. Three nsSNPs; rs1126809 (TYR), rs10936600 (LRRC34), and rs757978 (FARP2), were found as the most damaging cancer pathogenic variants. These mutations alter the protein interface and change the allosteric sites of the respective proteins. As TYR, LRRC34, and FARP2 genes play important roles in numerous cellular processes such as cell proliferation, differentiation, growth, and cell survival; therefore, any impairment on the protein function could be involved in the development of cancer. rs1126809, rs10936600, and rs757978 are the important pathogenic variants that increase the risks of cancers among the Orang Asli and Malays. The roles and impacts of these variants in cancers will require further investigations using in vitro cancer models.
Collapse
Affiliation(s)
- Nurul Ain Khoruddin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam Campus, Selangor, Malaysia
| | - Mohd NurFakhruzzaman Noorizhab
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Farida Zuraina Mohd Yusof
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam Campus, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia.
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia.
| |
Collapse
|