51
|
Kopp M, Wiesmueller M, Buchbender M, Kesting M, Nagel AM, May MS, Uder M, Roemer FW, Heiss R. MRI of Temporomandibular Joint Disorders: A Comparative Study of 0.55 T and 1.5 T MRI. Invest Radiol 2024; 59:223-229. [PMID: 37493286 PMCID: PMC11446537 DOI: 10.1097/rli.0000000000001008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES Temporomandibular disorders (TMDs) are common and may cause persistent functional limitations and pain. Magnetic resonance imaging (MRI) at 1.5 and 3 T is commonly applied for the evaluation of the temporomandibular joint (TMJ). No evidence is available regarding the feasibility of modern low-field MRI for the assessment of TMDs. The objective of this prospective study was to evaluate the image quality (IQ) of 0.55 T MRI in direct comparison with 1.5 T MRI. MATERIALS AND METHODS Seventeen patients (34 TMJs) with suspected intraarticular TMDs were enrolled, and both 0.55 and 1.5 T MRI were performed on the same day. Two senior readers independently evaluated the IQ focusing on the conspicuity of disc morphology (DM), disc position (DP), and osseous joint morphology (OJM) for each joint. We analyzed the IQ and degree of artifacts using a 4-point Likert scale (LS) at both field strengths. A fully sufficient IQ was defined as an LS score of ≥3. Nonparametric Wilcoxon test for related samples was used for statistical comparison. RESULTS The median IQ for the DM and OJM at 0.55 T was inferior to that at 1.5 T (DM: 3 [interquartile range {IQR}, 3-4] vs 4 [IQR, 4-4]; OJM: 3 [IQR, 3-4] vs 4 [IQR 4-4]; each P < 0.001). For DP, the IQ was comparable (4 [IQR 3-4] vs 4 [IQR 4-4]; P > 0.05). A sufficient diagnostic IQ was maintained for the DM, DP, and OJM in 92% of the cases at 0.55 T and 100% at 1.5 T. Minor image artifacts (LS score of ≥3) were more prevalent at 0.55 T (29%) than at 1.5 T (12%). CONCLUSIONS Magnetic resonance imaging of the TMJ at 0.55 T yields a lower IQ than does MRI at 1.5 T but maintains sufficient diagnostic confidence in the majority of patients. Further improvements are needed for reliable clinical application.
Collapse
|
52
|
Dong Z, Wald LL, Polimeni JR, Wang F. Single-shot Echo Planar Time-resolved Imaging for multi-echo functional MRI and distortion-free diffusion imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577002. [PMID: 38328081 PMCID: PMC10849706 DOI: 10.1101/2024.01.24.577002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Purpose To develop EPTI, a multi-shot distortion-free multi-echo imaging technique, into a single-shot acquisition to achieve improved robustness to motion and physiological noise, increased temporal resolution, and high SNR efficiency for dynamic imaging applications. Methods A new spatiotemporal encoding was developed to achieve single-shot EPTI by enhancing spatiotemporal correlation in k-t space. The proposed single-shot encoding improves reconstruction conditioning and sampling efficiency, with additional optimization under various accelerations to achieve optimized performance. To achieve high SNR efficiency, continuous readout with minimized deadtime was employed that begins immediately after excitation and extends for an SNR-optimized length. Moreover, k-t partial Fourier and simultaneous multi-slice acquisition were integrated to further accelerate the acquisition and achieve high spatial and temporal resolution. Results We demonstrated that ss-EPTI achieves higher tSNR efficiency than multi-shot EPTI, and provides distortion-free imaging with densely-sampled multi-echo images at resolutions ~1.25-3 mm at 3T and 7T-with high SNR efficiency and with comparable temporal resolutions to ss-EPI. The ability of ss-EPTI to eliminate dynamic distortions common in EPI also further improves temporal stability. For fMRI, ss-EPTI also provides early-TE images (e.g., 2.9ms) to recover signal-intensity and functional-sensitivity dropout in challenging regions. The multi-echo images provide TE-dependent information about functional fluctuations, successfully distinguishing noise-components from BOLD signals and further improving tSNR. For diffusion MRI, ss-EPTI provides high-quality distortion-free diffusion images and multi-echo diffusion metrics. Conclusion ss-EPTI provides distortion-free imaging with high image quality, rich multi-echo information, and enhanced efficiency within comparable temporal resolution to ss-EPI, offering a robust and efficient acquisition for dynamic imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
53
|
Hossain MB, Shinde RK, Oh S, Kwon KC, Kim N. A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction. SENSORS (BASEL, SWITZERLAND) 2024; 24:753. [PMID: 38339469 PMCID: PMC10856856 DOI: 10.3390/s24030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Deep learning (DL) in magnetic resonance imaging (MRI) shows excellent performance in image reconstruction from undersampled k-space data. Artifact-free and high-quality MRI reconstruction is essential for ensuring accurate diagnosis, supporting clinical decision-making, enhancing patient safety, facilitating efficient workflows, and contributing to the validity of research studies and clinical trials. Recently, deep learning has demonstrated several advantages over conventional MRI reconstruction methods. Conventional methods rely on manual feature engineering to capture complex patterns and are usually computationally demanding due to their iterative nature. Conversely, DL methods use neural networks with hundreds of thousands of parameters and automatically learn relevant features and representations directly from the data. Nevertheless, there are some limitations to DL-based techniques concerning MRI reconstruction tasks, such as the need for large, labeled datasets, the possibility of overfitting, and the complexity of model training. Researchers are striving to develop DL models that are more efficient, adaptable, and capable of providing valuable information for medical practitioners. We provide a comprehensive overview of the current developments and clinical uses by focusing on state-of-the-art DL architectures and tools used in MRI reconstruction. This study has three objectives. Our main objective is to describe how various DL designs have changed over time and talk about cutting-edge tactics, including their advantages and disadvantages. Hence, data pre- and post-processing approaches are assessed using publicly available MRI datasets and source codes. Secondly, this work aims to provide an extensive overview of the ongoing research on transformers and deep convolutional neural networks for rapid MRI reconstruction. Thirdly, we discuss several network training strategies, like supervised, unsupervised, transfer learning, and federated learning for rapid and efficient MRI reconstruction. Consequently, this article provides significant resources for future improvement of MRI data pre-processing and fast image reconstruction.
Collapse
Affiliation(s)
- Md. Biddut Hossain
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Rupali Kiran Shinde
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Sukhoon Oh
- Research Equipment Operation Department, Korea Basic Science Institute, Cheongju-si 28119, Chungcheongbuk-do, Republic of Korea;
| | - Ki-Chul Kwon
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Nam Kim
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| |
Collapse
|
54
|
Ekanayake M, Pawar K, Harandi M, Egan G, Chen Z. McSTRA: A multi-branch cascaded swin transformer for point spread function-guided robust MRI reconstruction. Comput Biol Med 2024; 168:107775. [PMID: 38061154 DOI: 10.1016/j.compbiomed.2023.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Deep learning MRI reconstruction methods are often based on Convolutional neural network (CNN) models; however, they are limited in capturing global correlations among image features due to the intrinsic locality of the convolution operation. Conversely, the recent vision transformer models (ViT) are capable of capturing global correlations by applying self-attention operations on image patches. Nevertheless, the existing transformer models for MRI reconstruction rarely leverage the physics of MRI. In this paper, we propose a novel physics-based transformer model titled, the Multi-branch Cascaded Swin Transformers (McSTRA) for robust MRI reconstruction. McSTRA combines several interconnected MRI physics-related concepts with the Swin transformers: it exploits global MRI features via the shifted window self-attention mechanism; it extracts MRI features belonging to different spectral components via a multi-branch setup; it iterates between intermediate de-aliasing and data consistency via a cascaded network with intermediate loss computations; furthermore, we propose a point spread function-guided positional embedding generation mechanism for the Swin transformers which exploit the spread of the aliasing artifacts for effective reconstruction. With the combination of all these components, McSTRA outperforms the state-of-the-art methods while demonstrating robustness in adversarial conditions such as higher accelerations, noisy data, different undersampling protocols, out-of-distribution data, and abnormalities in anatomy.
Collapse
Affiliation(s)
- Mevan Ekanayake
- Monash Biomedical Imaging, Monash University, Australia; Department of Electrical and Computer Systems Engineering, Monash University, Australia.
| | - Kamlesh Pawar
- Monash Biomedical Imaging, Monash University, Australia
| | - Mehrtash Harandi
- Department of Electrical and Computer Systems Engineering, Monash University, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Australia; School of Psychological Sciences, Monash University, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Australia; Department of Data Science and AI, Monash University, Australia
| |
Collapse
|
55
|
Elliott ML, Nielsen JA, Hanford LC, Hamadeh A, Hilbert T, Kober T, Dickerson BC, Hyman BT, Mair RW, Eldaief MC, Buckner RL. Precision Brain Morphometry Using Cluster Scanning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.23.23300492. [PMID: 38234845 PMCID: PMC10793507 DOI: 10.1101/2023.12.23.23300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Measurement error limits the statistical power to detect group differences and longitudinal change in structural MRI morphometric measures (e.g., hippocampal volume, prefrontal thickness). Recent advances in scan acceleration enable extremely fast T1-weighted scans (~1 minute) to achieve morphometric errors that are close to the errors in longer traditional scans. As acceleration allows multiple scans to be acquired in rapid succession, it becomes possible to pool estimates to increase measurement precision, a strategy known as "cluster scanning." Here we explored brain morphometry using cluster scanning in a test-retest study of 40 individuals (12 younger adults, 18 cognitively unimpaired older adults, and 10 adults diagnosed with mild cognitive impairment or Alzheimer's Dementia). Morphometric errors from a single compressed sensing (CS) 1.0mm scan with 6x acceleration (CSx6) were, on average, 12% larger than a traditional scan using the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol. Pooled estimates from four clustered CSx6 acquisitions led to errors that were 34% smaller than ADNI despite having a shorter total acquisition time. Given a fixed amount of time, a gain in measurement precision can thus be achieved by acquiring multiple rapid scans instead of a single traditional scan. Errors were further reduced when estimates were pooled from eight CSx6 scans (51% smaller than ADNI). Neither pooling across a break nor pooling across multiple scan resolutions boosted this benefit. We discuss the potential of cluster scanning to improve morphometric precision, boost statistical power, and produce more sensitive disease progression biomarkers.
Collapse
Affiliation(s)
- Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Jared A Nielsen
- Department of Psychology, Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA
| | - Lindsay C Hanford
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Aya Hamadeh
- Baylor College of Medicine, Houston, TX 77030
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit
- Alzheimer's Disease Research Center
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradley T Hyman
- Alzheimer's Disease Research Center
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
| | - Ross W Mair
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Athinoula A. Martinos Center for Biomedical Imaging
| | - Mark C Eldaief
- Frontotemporal Disorders Unit
- Alzheimer's Disease Research Center
- Department of Neurology, Massachusetts General Hospital & Harvard Medical School
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Alzheimer's Disease Research Center
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
56
|
Ohashi K, Nagatani Y, Yoshigoe M, Iwai K, Tsuchiya K, Hino A, Kida Y, Yamazaki A, Ishida T. Applicability Evaluation of Full-Reference Image Quality Assessment Methods for Computed Tomography Images. J Digit Imaging 2023; 36:2623-2634. [PMID: 37550519 PMCID: PMC10584745 DOI: 10.1007/s10278-023-00875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/09/2023] Open
Abstract
Image quality assessments (IQA) are an important task for providing appropriate medical care. Full-reference IQA (FR-IQA) methods, such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), are often used to evaluate imaging conditions, reconstruction conditions, and image processing algorithms, including noise reduction and super-resolution technology. However, these IQA methods may be inapplicable for medical images because they were designed for natural images. Therefore, this study aimed to investigate the correlation between objective assessment by some FR-IQA methods and human subjective assessment for computed tomography (CT) images. For evaluation, 210 distorted images were created from six original images using two types of degradation: noise and blur. We employed nine widely used FR-IQA methods for natural images: PSNR, SSIM, feature similarity (FSIM), information fidelity criterion (IFC), visual information fidelity (VIF), noise quality measure (NQM), visual signal-to-noise ratio (VSNR), multi-scale SSIM (MSSSIM), and information content-weighted SSIM (IWSSIM). Six observers performed subjective assessments using the double stimulus continuous quality scale (DSCQS) method. The performance of IQA methods was quantified using Pearson's linear correlation coefficient (PLCC), Spearman rank order correlation coefficient (SROCC), and root-mean-square error (RMSE). Nine FR-IQA methods developed for natural images were all strongly correlated with the subjective assessment (PLCC and SROCC > 0.8), indicating that these methods can apply to CT images. Particularly, VIF had the best values for all three items, PLCC, SROCC, and RMSE. These results suggest that VIF provides the most accurate alternative measure to subjective assessments for CT images.
Collapse
Affiliation(s)
- Kohei Ohashi
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan.
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan.
| | - Yukihiro Nagatani
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Makoto Yoshigoe
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Kyohei Iwai
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Keiko Tsuchiya
- Department of Radiology, Omihachiman Community Medical Center, Omihachiman, Japan
| | - Atsunobu Hino
- Department of Radiology, Nagahama Red Cross Hospital, Nagahama, Japan
| | - Yukako Kida
- Department of Radiology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Asumi Yamazaki
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Ishida
- Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
57
|
Sihag S, Mateos G, McMillan C, Ribeiro A. Explainable Brain Age Prediction using coVariance Neural Networks. ARXIV 2023:arXiv:2305.18370v3. [PMID: 37808092 PMCID: PMC10557794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
In computational neuroscience, there has been an increased interest in developing machine learning algorithms that leverage brain imaging data to provide estimates of "brain age" for an individual. Importantly, the discordance between brain age and chronological age (referred to as "brain age gap") can capture accelerated aging due to adverse health conditions and therefore, can reflect increased vulnerability towards neurological disease or cognitive impairments. However, widespread adoption of brain age for clinical decision support has been hindered due to lack of transparency and methodological justifications in most existing brain age prediction algorithms. In this paper, we leverage coVariance neural networks (VNN) to propose an explanation-driven and anatomically interpretable framework for brain age prediction using cortical thickness features. Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD) and we make two important observations: (i) VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions, (ii) the interpretability offered by VNNs is contingent on their ability to exploit specific eigenvectors of the anatomical covariance matrix. Together, these observations facilitate an explainable and anatomically interpretable perspective to the task of brain age prediction.
Collapse
|
58
|
Farris S, Clapp R, Araya-Polo M. Learning-Based Seismic Velocity Inversion with Synthetic and Field Data. SENSORS (BASEL, SWITZERLAND) 2023; 23:8277. [PMID: 37837108 PMCID: PMC10574958 DOI: 10.3390/s23198277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Building accurate acoustic subsurface velocity models is essential for successful industrial exploration projects. Traditional inversion methods from field-recorded seismograms struggle in regions with complex geology. While deep learning (DL) presents a promising alternative, its robustness using field data in these complicated regions has not been sufficiently explored. In this study, we present a thorough analysis of DL's capability to harness labeled seismograms, whether field-recorded or synthetically generated, for accurate velocity model recovery in a challenging region of the Gulf of Mexico. Our evaluation centers on the impact of training data selection and data augmentation techniques on the DL model's ability to recover velocity profiles. Models trained on field data produced superior results to data obtained using quantitative metrics like Mean Squared Error (MSE), Structural Similarity Index Measure (SSIM), and R2 (R-squared). They also yielded more geologically plausible predictions and sharper geophysical migration images. Conversely, models trained on synthetic data, while less precise, highlighted the potential utility of synthetic training data, especially when labeled field data are scarce. Our work shows that the efficacy of synthetic data-driven models largely depends on bridging the domain gap between training and test data through the use of advanced wave equation solvers and geologic priors. Our results underscore DL's potential to advance velocity model-building workflows in industrial settings using previously labeled field-recorded seismograms. They also highlight the indispensable role of earth scientists' domain expertise in curating synthetic data when field data are lacking.
Collapse
Affiliation(s)
- Stuart Farris
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA;
| | - Robert Clapp
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA;
| | | |
Collapse
|
59
|
Zibetti MVW, De Moura HL, Keerthivasan MB, Regatte RR. Optimizing variable flip angles in magnetization-prepared gradient-echo sequences for efficient 3D-T1ρ mapping. Magn Reson Med 2023; 90:1465-1483. [PMID: 37288538 PMCID: PMC10524308 DOI: 10.1002/mrm.29740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE To optimize the choice of the flip angles of magnetization-prepared gradient-echo sequences for improved accuracy, precision, and speed of 3D-T1ρ mapping. METHODS We propose a new optimization approach for finding variable flip-angle values that improve magnetization-prepared gradient-echo sequences used for 3D-T1ρ mapping. This new approach can improve the accuracy and SNR, while reducing filtering effects. We demonstrate the concept in the three different versions of the magnetization-prepared gradient-echo sequences that are typically used for 3D-T1ρ mapping and evaluate their performance in model agarose phantoms (n = 4) and healthy volunteers (n = 5) for knee joint imaging. We also tested the optimization with sequence parameters targeting faster acquisitions. RESULTS Our results show that optimized variable flip angle can improve the accuracy and the precision of the sequences, seen as a reduction of the mean of normalized absolute difference from about 5%-6% to 3%-4% in model phantoms and from 15%-16% to 11%-13% in the knee joint, and improving SNR from about 12-28 to 22-32 in agarose phantoms and about 7-14 to 13-17 in healthy volunteers. The optimization can also compensate for the loss in quality caused by making the sequence faster. This results in sequence configurations that acquire more data per unit of time with SNR and mean of normalized absolute difference measurements close to its slower versions. CONCLUSION The optimization of the variable flip angle can be used to increase accuracy and precision, and to improve the speed of the typical imaging sequences used for quantitative 3D-T1ρ mapping of the knee joint.
Collapse
Affiliation(s)
- Marcelo V W Zibetti
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hector L. De Moura
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Ravinder R. Regatte
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
60
|
Man C, Lau V, Su S, Zhao Y, Xiao L, Ding Y, Leung GK, Leong AT, Wu EX. Deep learning enabled fast 3D brain MRI at 0.055 tesla. SCIENCE ADVANCES 2023; 9:eadi9327. [PMID: 37738341 PMCID: PMC10516503 DOI: 10.1126/sciadv.adi9327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
In recent years, there has been an intensive development of portable ultralow-field magnetic resonance imaging (MRI) for low-cost, shielding-free, and point-of-care applications. However, its quality is poor and scan time is long. We propose a fast acquisition and deep learning reconstruction framework to accelerate brain MRI at 0.055 tesla. The acquisition consists of a single average three-dimensional (3D) encoding with 2D partial Fourier sampling, reducing the scan time of T1- and T2-weighted imaging protocols to 2.5 and 3.2 minutes, respectively. The 3D deep learning leverages the homogeneous brain anatomy available in high-field human brain data to enhance image quality, reduce artifacts and noise, and improve spatial resolution to synthetic 1.5-mm isotropic resolution. Our method successfully overcomes low-signal barrier, reconstructing fine anatomical structures that are reproducible within subjects and consistent across two protocols. It enables fast and quality whole-brain MRI at 0.055 tesla, with potential for widespread biomedical applications.
Collapse
Affiliation(s)
- Christopher Man
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Vick Lau
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Shi Su
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Yujiao Zhao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Linfang Xiao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Ye Ding
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Gilberto K. K. Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Alex T. L. Leong
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
61
|
Wang S, Wu R, Li C, Zou J, Zhang Z, Liu Q, Xi Y, Zheng H. PARCEL: Physics-Based Unsupervised Contrastive Representation Learning for Multi-Coil MR Imaging. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2659-2670. [PMID: 36219669 DOI: 10.1109/tcbb.2022.3213669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the successful application of deep learning to magnetic resonance (MR) imaging, parallel imaging techniques based on neural networks have attracted wide attention. However, in the absence of high-quality, fully sampled datasets for training, the performance of these methods is limited. And the interpretability of models is not strong enough. To tackle this issue, this paper proposes a Physics-bAsed unsupeRvised Contrastive rEpresentation Learning (PARCEL) method to speed up parallel MR imaging. Specifically, PARCEL has a parallel framework to contrastively learn two branches of model-based unrolling networks from augmented undersampled multi-coil k-space data. A sophisticated co-training loss with three essential components has been designed to guide the two networks in capturing the inherent features and representations for MR images. And the final MR image is reconstructed with the trained contrastive networks. PARCEL was evaluated on two vivo datasets and compared to five state-of-the-art methods. The results show that PARCEL is able to learn essential representations for accurate MR reconstruction without relying on fully sampled datasets. The code will be made available at https://github.com/ternencewu123/PARCEL.
Collapse
|
62
|
Singh D, Monga A, de Moura HL, Zhang X, Zibetti MVW, Regatte RR. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review. Bioengineering (Basel) 2023; 10:1012. [PMID: 37760114 PMCID: PMC10525988 DOI: 10.3390/bioengineering10091012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides excellent soft-tissue contrast and high-resolution images of the human body, allowing us to understand detailed information on morphology, structural integrity, and physiologic processes. However, MRI exams usually require lengthy acquisition times. Methods such as parallel MRI and Compressive Sensing (CS) have significantly reduced the MRI acquisition time by acquiring less data through undersampling k-space. The state-of-the-art of fast MRI has recently been redefined by integrating Deep Learning (DL) models with these undersampled approaches. This Systematic Literature Review (SLR) comprehensively analyzes deep MRI reconstruction models, emphasizing the key elements of recently proposed methods and highlighting their strengths and weaknesses. This SLR involves searching and selecting relevant studies from various databases, including Web of Science and Scopus, followed by a rigorous screening and data extraction process using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It focuses on various techniques, such as residual learning, image representation using encoders and decoders, data-consistency layers, unrolled networks, learned activations, attention modules, plug-and-play priors, diffusion models, and Bayesian methods. This SLR also discusses the use of loss functions and training with adversarial networks to enhance deep MRI reconstruction methods. Moreover, we explore various MRI reconstruction applications, including non-Cartesian reconstruction, super-resolution, dynamic MRI, joint learning of reconstruction with coil sensitivity and sampling, quantitative mapping, and MR fingerprinting. This paper also addresses research questions, provides insights for future directions, and emphasizes robust generalization and artifact handling. Therefore, this SLR serves as a valuable resource for advancing fast MRI, guiding research and development efforts of MRI reconstruction for better image quality and faster data acquisition.
Collapse
Affiliation(s)
- Dilbag Singh
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (A.M.); (H.L.d.M.); (X.Z.); (M.V.W.Z.)
| | | | | | | | | | - Ravinder R. Regatte
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (A.M.); (H.L.d.M.); (X.Z.); (M.V.W.Z.)
| |
Collapse
|
63
|
Herrmann J, Afat S, Gassenmaier S, Grunz JP, Koerzdoerfer G, Lingg A, Almansour H, Nickel D, Patzer TS, Werner S. Faster Elbow MRI with Deep Learning Reconstruction-Assessment of Image Quality, Diagnostic Confidence, and Anatomy Visualization Compared to Standard Imaging. Diagnostics (Basel) 2023; 13:2747. [PMID: 37685285 PMCID: PMC10486923 DOI: 10.3390/diagnostics13172747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate a deep learning (DL) reconstruction for turbo spin echo (TSE) sequences of the elbow regarding image quality and visualization of anatomy. MATERIALS AND METHODS Between October 2020 and June 2021, seventeen participants (eight patients, nine healthy subjects; mean age: 43 ± 16 (20-70) years, eight men) were prospectively included in this study. Each patient underwent two examinations: standard MRI, including TSE sequences reconstructed with a generalized autocalibrating partial parallel acquisition reconstruction (TSESTD), and prospectively undersampled TSE sequences reconstructed with a DL reconstruction (TSEDL). Two radiologists evaluated the images concerning image quality, noise, edge sharpness, artifacts, diagnostic confidence, and delineation of anatomical structures using a 5-point Likert scale, and rated the images concerning the detection of common pathologies. RESULTS Image quality was significantly improved in TSEDL (mean 4.35, IQR 4-5) compared to TSESTD (mean 3.76, IQR 3-4, p = 0.008). Moreover, TSEDL showed decreased noise (mean 4.29, IQR 3.5-5) compared to TSESTD (mean 3.35, IQR 3-4, p = 0.004). Ratings for delineation of anatomical structures, artifacts, edge sharpness, and diagnostic confidence did not differ significantly between TSEDL and TSESTD (p > 0.05). Inter-reader agreement was substantial to almost perfect (κ = 0.628-0.904). No difference was found concerning the detection of pathologies between the readers and between TSEDL and TSESTD. Using DL, the acquisition time could be reduced by more than 35% compared to TSESTD. CONCLUSION TSEDL provided improved image quality and decreased noise while receiving equal ratings for edge sharpness, artifacts, delineation of anatomical structures, diagnostic confidence, and detection of pathologies compared to TSESTD. Providing more than a 35% reduction of acquisition time, TSEDL may be clinically relevant for elbow imaging due to increased patient comfort and higher patient throughput.
Collapse
Affiliation(s)
- Judith Herrmann
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.-P.G.); (T.S.P.)
| | - Gregor Koerzdoerfer
- MR Application Predevelopment, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (G.K.); (D.N.)
| | - Andreas Lingg
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (G.K.); (D.N.)
| | - Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, 97080 Würzburg, Germany; (J.-P.G.); (T.S.P.)
| | - Sebastian Werner
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, 72076 Tübingen, Germany (S.G.); (A.L.); (H.A.); (S.W.)
| |
Collapse
|
64
|
刘 羽, 楚 智, 张 煜. [Physical model-based cascaded generative adversarial networks for accelerating quantitative multi-parametric magnetic resonance imaging]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1402-1409. [PMID: 37712278 PMCID: PMC10505569 DOI: 10.12122/j.issn.1673-4254.2023.08.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To explore the feasibility and interpretation of physical model- based cascaded generative adversarial networks for accelerating quantitative multi-echo multi-parametric magnetic resonance imaging using raw multi-echo multicoil k-space data. METHODS A physical model-based cascaded generative adversarial network is proposed to enhance image feature information to obtain high-quality reconstructed images using joint training of multi-domain information and learning of key parameters required for image reconstruction through a system matrix and adaptively optimizing the k-space generator and image generator structures. Raw multi-echo multi-coil k-space data are used to accelerate multi-contrast multi-parametric magnetic resonance imaging. A physically driven deep learning reconstruction method is used to increase the generalization capability and improve the model performance by building a system matrix function instead of direct end-to-end training of the model. RESULTS In terms of overall image quality, the proposed model achieved significant improvements compared to other methods. On an 80- case test set, the average PSNR value of the reconstructed images was 34.13, SSIM was 0.965, and NRMSE was 0.114. In terms of multi-contrast multi-parametric image reconstruction, the model achieved PSNR values of 38.87 for PDW, 35.62 for T1W, and 34.38 for T2* Map, which were significantly better than those of other methods for quantitative evaluation. The model also produced clearer features of the brain gray matter, white matter, and cerebrospinal fluid. Furthermore, compared with the existing methods with a reconstruction time difference of less than 10%, the proposed method achieved the highest improvement of up to 20% in the metrics of PSNR, SSIM, and NRMSE. CONCLUSION Compared with other existing methods, the physical model-based cascaded generative adversarial networks can reconstruct more image details and features, thus improving the quality and accuracy of the reconstructed images.
Collapse
Affiliation(s)
- 羽轩 刘
- />南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China
| | - 智钦 楚
- />南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China
| | - 煜 张
- />南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东 广州 510515School of Biomedical Engineering, Southern Medical University//Guangdong Provincial Key Laboratory of Medical Image Processing, Guangzhou 510515, China
| |
Collapse
|
65
|
Ehmig J, Engel G, Lotz J, Lehmann W, Taheri S, Schilling AF, Seif Amir Hosseini A, Panahi B. MR-Imaging in Osteoarthritis: Current Standard of Practice and Future Outlook. Diagnostics (Basel) 2023; 13:2586. [PMID: 37568949 PMCID: PMC10417111 DOI: 10.3390/diagnostics13152586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that affects millions of people worldwide. Magnetic resonance imaging (MRI) has emerged as a powerful tool for the evaluation and monitoring of OA due to its ability to visualize soft tissues and bone with high resolution. This review aims to provide an overview of the current state of MRI in OA, with a special focus on the knee, including protocol recommendations for clinical and research settings. Furthermore, new developments in the field of musculoskeletal MRI are highlighted in this review. These include compositional MRI techniques, such as T2 mapping and T1rho imaging, which can provide additional important information about the biochemical composition of cartilage and other joint tissues. In addition, this review discusses semiquantitative joint assessment based on MRI findings, which is a widely used method for evaluating OA severity and progression in the knee. We analyze the most common scoring methods and discuss potential benefits. Techniques to reduce acquisition times and the potential impact of deep learning in MR imaging for OA are also discussed, as these technological advances may impact clinical routine in the future.
Collapse
Affiliation(s)
- Jonathan Ehmig
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Günther Engel
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Joachim Lotz
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Wolfgang Lehmann
- Clinic of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany
| | - Shahed Taheri
- Clinic of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany
| | - Arndt F. Schilling
- Clinic of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, 37075 Göttingen, Germany
| | - Ali Seif Amir Hosseini
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| | - Babak Panahi
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, 37075 Göttingen, Germany; (J.E.); (G.E.)
| |
Collapse
|
66
|
Arefeen Y, Xu J, Zhang M, Dong Z, Wang F, White J, Bilgic B, Adalsteinsson E. Latent signal models: Learning compact representations of signal evolution for improved time-resolved, multi-contrast MRI. Magn Reson Med 2023; 90:483-501. [PMID: 37093775 DOI: 10.1002/mrm.29657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE To improve time-resolved reconstructions by training auto-encoders to learn compact representations of Bloch-simulated signal evolution and inserting the decoder into the forward model. METHODS Building on model-based nonlinear and linear subspace techniques, we train auto-encoders on dictionaries of simulated signal evolution to learn compact, nonlinear, latent representations. The proposed latent signal model framework inserts the decoder portion of the auto-encoder into the forward model and directly reconstructs the latent representation. Latent signal models essentially serve as a proxy for fast and feasible differentiation through the Bloch equations used to simulate signal. This work performs experiments in the context of T2 -shuffling, gradient echo EPTI, and MPRAGE-shuffling. We compare how efficiently auto-encoders represent signal evolution in comparison to linear subspaces. Simulation and in vivo experiments then evaluate if reducing degrees of freedom by incorporating our proxy for the Bloch equations, the decoder portion of the auto-encoder, into the forward model improves reconstructions in comparison to subspace constraints. RESULTS An auto-encoder with 1 real latent variable represents single-tissue fast spin echo, EPTI, and MPRAGE signal evolution to within 0.15% normalized RMS error, enabling reconstruction problems with 3 degrees of freedom per voxel (real latent variable + complex scaling) in comparison to linear models with 4-8 degrees of freedom per voxel. In simulated/in vivo T2 -shuffling and in vivo EPTI experiments, the proposed framework achieves consistent quantitative normalized RMS error improvement over linear approaches. From qualitative evaluation, the proposed approach yields images with reduced blurring and noise amplification in MPRAGE-shuffling experiments. CONCLUSION Directly solving for nonlinear latent representations of signal evolution improves time-resolved MRI reconstructions.
Collapse
Affiliation(s)
- Yamin Arefeen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Junshen Xu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Molin Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
67
|
Bian W, Jang A, Liu F. Magnetic Resonance Parameter Mapping using Self-supervised Deep Learning with Model Reinforcement. ARXIV 2023:arXiv:2307.13211v1. [PMID: 37547657 PMCID: PMC10402181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
This paper proposes a novel self-supervised learning method, RELAX-MORE, for quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll a model-based qMRI reconstruction into a deep learning framework, enabling the generation of highly accurate and robust MR parameter maps at imaging acceleration. Unlike conventional deep learning methods requiring a large amount of training data, RELAX-MORE is a subject-specific method that can be trained on single-subject data through self-supervised learning, making it accessible and practically applicable to many qMRI studies. Using the quantitative T 1 mapping as an example at different brain, knee and phantom experiments, the proposed method demonstrates excellent performance in reconstructing MR parameters, correcting imaging artifacts, removing noises, and recovering image features at imperfect imaging conditions. Compared with other state-of-the-art conventional and deep learning methods, RELAX-MORE significantly improves efficiency, accuracy, robustness, and generalizability for rapid MR parameter mapping. This work demonstrates the feasibility of a new self-supervised learning method for rapid MR parameter mapping, with great potential to enhance the clinical translation of qMRI.
Collapse
Affiliation(s)
- Wanyu Bian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| | - Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| |
Collapse
|
68
|
van de Sande DMJ, Merkofer JP, Amirrajab S, Veta M, van Sloun RJG, Versluis MJ, Jansen JFA, van den Brink JS, Breeuwer M. A review of machine learning applications for the proton MR spectroscopy workflow. Magn Reson Med 2023. [PMID: 37402235 DOI: 10.1002/mrm.29793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
This literature review presents a comprehensive overview of machine learning (ML) applications in proton MR spectroscopy (MRS). As the use of ML techniques in MRS continues to grow, this review aims to provide the MRS community with a structured overview of the state-of-the-art methods. Specifically, we examine and summarize studies published between 2017 and 2023 from major journals in the MR field. We categorize these studies based on a typical MRS workflow, including data acquisition, processing, analysis, and artificial data generation. Our review reveals that ML in MRS is still in its early stages, with a primary focus on processing and analysis techniques, and less attention given to data acquisition. We also found that many studies use similar model architectures, with little comparison to alternative architectures. Additionally, the generation of artificial data is a crucial topic, with no consistent method for its generation. Furthermore, many studies demonstrate that artificial data suffers from generalization issues when tested on in vivo data. We also conclude that risks related to ML models should be addressed, particularly for clinical applications. Therefore, output uncertainty measures and model biases are critical to investigate. Nonetheless, the rapid development of ML in MRS and the promising results from the reviewed studies justify further research in this field.
Collapse
Affiliation(s)
- Dennis M J van de Sande
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Julian P Merkofer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sina Amirrajab
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mitko Veta
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruud J G van Sloun
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Philips Research, Philips Research, Eindhoven, The Netherlands
| | | | - Jacobus F A Jansen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Marcel Breeuwer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- MR R&D - Clinical Science, Philips Healthcare, Best, The Netherlands
| |
Collapse
|
69
|
Kim D, Coll-Font J, Lobos RA, Stäb D, Pang J, Foster A, Garrett T, Bi X, Speier P, Haldar JP, Nguyen C. Single breath-hold CINE imaging with combined simultaneous multislice and region-optimized virtual coils. Magn Reson Med 2023; 90:222-230. [PMID: 36864561 PMCID: PMC10315014 DOI: 10.1002/mrm.29620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE To investigate the feasibility of combining simultaneous multislice (SMS) and region-optimized virtual coils (ROVir) for single breath-hold CINE imaging. METHOD ROVir is a recent virtual coil approach that allows reduced-field of view (FOV) imaging by localizing the signal from a region-of-interest (ROI) and/or suppressing the signal from unwanted spatial regions. In this work, ROVir is used for reduced-FOV SMS bSSFP CINE imaging, which enables whole heart CINE with a single breath-hold acquisition. RESULTS Reduced-FOV CINE with either SMS-only or ROVir-only resulted in significant aliasing, with severely reduced image quality when compared to the full FOV reference CINE, while the visual appearance of aliasing was substantially reduced with the proposed SMS+ROVir. The end diastolic volume, end systolic volume, and ejection fraction obtained using the proposed approach were similar to the clinical reference (correlations of 0.92, 0.94, and 0.88, respectively withp < 0 . 05 $$ p<0.05 $$ in each case, and biases of 0.1, 1.6 mL, and- 0 . 6 % $$ -0.6\% $$ , respectively). No statistically significant differences for these parameters were found with a Wilcoxon rank test (p = 0.96, 0.20, and 0.40, respectively). CONCLUSION We demonstrated that reduced-FOV CINE imaging with SMS+ROVir enables single breath-hold whole-heart imaging without compromising visual image quality or quantitative cardiac function parameters.
Collapse
Affiliation(s)
- Daeun Kim
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Jaume Coll-Font
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Rodrigo A. Lobos
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Limited, Melbourne, Australia
| | - Jianing Pang
- Siemens Medical Solutions USA Inc., Los Angeles, CA
| | - Anna Foster
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Thomas Garrett
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Xiaoming Bi
- Siemens Medical Solutions USA Inc., Los Angeles, CA
| | | | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Christopher Nguyen
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
70
|
Demirel OB, Zhang C, Yaman B, Gulle M, Shenoy C, Leiner T, Kellman P, Akcakaya M. High-fidelity Database-free Deep Learning Reconstruction for Real-time Cine Cardiac MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083374 PMCID: PMC10976294 DOI: 10.1109/embc40787.2023.10340709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Real-time cine cardiac MRI provides an ECG-free free-breathing alternative to clinical gold-standard ECG-gated breath-hold segmented cine MRI for evaluation of heart function. Real-time cine MRI data acquisition during free breathing snapshot imaging enables imaging of patient cohorts that cannot be imaged with segmented or breath-hold acquisitions, but requires rapid imaging to achieve sufficient spatial-temporal resolutions. However, at high acceleration rates, conventional reconstruction techniques suffer from residual aliasing and temporal blurring, including advanced methods such as compressed sensing with radial trajectories. Recently, deep learning (DL) reconstruction has emerged as a powerful tool in MRI. However, its utility for free-breathing real-time cine MRI has been limited, as database-learning of spatio-temporal correlations with varying breathing and cardiac motion patterns across subjects has been challenging. Zero-shot self-supervised physics-guided deep learning (PG-DL) reconstruction has been proposed to overcome such challenges of database training by enabling subject-specific training. In this work, we adapt zero-shot PG-DL for real-time cine MRI with a spatio-temporal regularization. We compare our method to TGRAPPA, locally low-rank (LLR) regularized reconstruction and database-trained PG-DL reconstruction, both for retrospectively and prospectively accelerated datasets. Results on highly accelerated real-time Cartesian cine MRI show that the proposed method outperforms other reconstruction methods, both visibly in terms of noise and aliasing, and quantitatively.
Collapse
|
71
|
Wang J, Qiao L, Lv H, Lv Z. Deep Transfer Learning-Based Multi-Modal Digital Twins for Enhancement and Diagnostic Analysis of Brain MRI Image. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2407-2419. [PMID: 35439137 DOI: 10.1109/tcbb.2022.3168189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE it aims to adopt deep transfer learning combined with Digital Twins (DTs) in Magnetic Resonance Imaging (MRI) medical image enhancement. METHODS MRI image enhancement method based on metamaterial composite technology is proposed by analyzing the application status of DTs in medical direction and the principle of MRI imaging. On the basis of deep transfer learning, MRI super-resolution deep neural network structure is established. To address the problem that different medical imaging methods have advantages and disadvantages, a multi-mode medical image fusion algorithm based on adaptive decomposition is proposed and verified by experiments. RESULTS the optimal Peak Signal to Noise Ratio (PSNR) of 34.11dB can be obtained by introducing modified linear element and loss function of deep transfer learning neural network structure. The Structural Similarity Coefficient (SSIM) is 85.24%. It indicates that the MRI truthfulness and sharpness obtained by adding composite metasurface are improved greatly. The proposed medical image fusion algorithm has the highest overall score in the subjective evaluation of the six groups of fusion image results. Group III had the highest score in Magnetic Resonance Imaging- Positron Emission Computed Tomography (MRI-PET) image fusion, with a score of 4.67, close to the full score of 5. As for the objective evaluation in group I of Magnetic Resonance Imaging- Single Photon Emission Computed Tomography (MRI-SPECT) images, the Root Mean Square Error (RMSE), Relative Average Spectral Error (RASE) and Spectral Angle Mapper (SAM) are the highest, which are 39.2075, 116.688, and 0.594, respectively. Mutual Information (MI) is 5.8822. CONCLUSION the proposed algorithm has better performance than other algorithms in preserving spatial details of MRI images and color information direction of SPECT images, and the other five groups have achieved similar results.
Collapse
|
72
|
Wen J, Ahmad R, Schniter P. A Conditional Normalizing Flow for Accelerated Multi-Coil MR Imaging. PROCEEDINGS OF MACHINE LEARNING RESEARCH 2023; 202:36926-36939. [PMID: 38084206 PMCID: PMC10712023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Accelerated magnetic resonance (MR) imaging attempts to reduce acquisition time by collecting data below the Nyquist rate. As an ill-posed inverse problem, many plausible solutions exist, yet the majority of deep learning approaches generate only a single solution. We instead focus on sampling from the posterior distribution, which provides more comprehensive information for downstream inference tasks. To do this, we design a novel conditional normalizing flow (CNF) that infers the signal component in the measurement operator's nullspace, which is later combined with measured data to form complete images. Using fastMRI brain and knee data, we demonstrate fast inference and accuracy that surpasses recent posterior sampling techniques for MRI. Code is available at https://github.com/jwen307/mri_cnf.
Collapse
Affiliation(s)
- Jeffrey Wen
- Dept. of ECE, The Ohio State University, Columbus, OH 43210, USA
| | - Rizwan Ahmad
- Dept. of BME, The Ohio State University, Columbus, OH 43210, USA
| | - Philip Schniter
- Dept. of ECE, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
73
|
Lyu M, Mei L, Huang S, Liu S, Li Y, Yang K, Liu Y, Dong Y, Dong L, Wu EX. M4Raw: A multi-contrast, multi-repetition, multi-channel MRI k-space dataset for low-field MRI research. Sci Data 2023; 10:264. [PMID: 37164976 PMCID: PMC10172399 DOI: 10.1038/s41597-023-02181-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023] Open
Abstract
Recently, low-field magnetic resonance imaging (MRI) has gained renewed interest to promote MRI accessibility and affordability worldwide. The presented M4Raw dataset aims to facilitate methodology development and reproducible research in this field. The dataset comprises multi-channel brain k-space data collected from 183 healthy volunteers using a 0.3 Tesla whole-body MRI system, and includes T1-weighted, T2-weighted, and fluid attenuated inversion recovery (FLAIR) images with in-plane resolution of ~1.2 mm and through-plane resolution of 5 mm. Importantly, each contrast contains multiple repetitions, which can be used individually or to form multi-repetition averaged images. After excluding motion-corrupted data, the partitioned training and validation subsets contain 1024 and 240 volumes, respectively. To demonstrate the potential utility of this dataset, we trained deep learning models for image denoising and parallel imaging tasks and compared their performance with traditional reconstruction methods. This M4Raw dataset will be valuable for the development of advanced data-driven methods specifically for low-field MRI. It can also serve as a benchmark dataset for general MRI reconstruction algorithms.
Collapse
Affiliation(s)
- Mengye Lyu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China.
| | - Lifeng Mei
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Shoujin Huang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Sixing Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Yi Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Kexin Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Yilong Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, China
| | - Yu Dong
- Department of Neurosurgery, Shenzhen Samii Medical Center, Shenzhen, China
| | - Linzheng Dong
- Department of Neurosurgery, Shenzhen Samii Medical Center, Shenzhen, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
74
|
Wu Z, Liao W, Yan C, Zhao M, Liu G, Ma N, Li X. Deep learning based MRI reconstruction with transformer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 233:107452. [PMID: 36924533 DOI: 10.1016/j.cmpb.2023.107452] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Magnetic resonance imaging (MRI) has become one of the most powerful imaging techniques in medical diagnosis, yet the prolonged scanning time becomes a bottleneck for application. Reconstruction methods based on compress sensing (CS) have made progress in reducing this cost by acquiring fewer points in the k-space. Traditional CS methods impose restrictions from different sparse domains to regularize the optimization that always requires balancing time with accuracy. Neural network techniques enable learning a better prior from sample pairs and generating the results in an analytic way. In this paper, we propose a deep learning based reconstruction method to restore high-quality MRI images from undersampled k-space data in an end-to-end style. Unlike prior literature adopting convolutional neural networks (CNN), advanced Swin Transformer is used as the backbone of our work, which proved to be powerful in extracting deep features of the image. In addition, we combined the k-space consistency in the output and further improved the quality. We compared our models with several reconstruction methods and variants, and the experiment results proved that our model achieves the best results in samples at low sampling rates. The source code of KTMR could be acquired at https://github.com/BITwzl/KTMR.
Collapse
Affiliation(s)
- Zhengliang Wu
- School of Computer Science & Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing, 100081, China.
| | - Weibin Liao
- School of Computer Science & Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing, 100081, China
| | - Chao Yan
- School of Computer Science & Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing, 100081, China
| | - Mangsuo Zhao
- Department of Neurology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 100039, China
| | - Guowen Liu
- Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, Department of Echocardiography, Beijing, 100045, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China
| | - Ning Ma
- Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, Department of Echocardiography, Beijing, 100045, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China.
| | - Xuesong Li
- School of Computer Science & Technology, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing, 100081, China.
| |
Collapse
|
75
|
Zhou L, Zhu M, Xiong D, Ouyang L, Ouyang Y, Chen Z, Zhang X. RNLFNet: Residual non-local Fourier network for undersampled MRI reconstruction. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
76
|
Shimron E, Perlman O. AI in MRI: Computational Frameworks for a Faster, Optimized, and Automated Imaging Workflow. Bioengineering (Basel) 2023; 10:492. [PMID: 37106679 PMCID: PMC10135995 DOI: 10.3390/bioengineering10040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last decade, artificial intelligence (AI) has made an enormous impact on a wide range of fields, including science, engineering, informatics, finance, and transportation [...].
Collapse
Affiliation(s)
- Efrat Shimron
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
77
|
Waddington DEJ, Hindley N, Koonjoo N, Chiu C, Reynolds T, Liu PZY, Zhu B, Bhutto D, Paganelli C, Keall PJ, Rosen MS. Real-time radial reconstruction with domain transform manifold learning for MRI-guided radiotherapy. Med Phys 2023; 50:1962-1974. [PMID: 36646444 PMCID: PMC10809819 DOI: 10.1002/mp.16224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND MRI-guidance techniques that dynamically adapt radiation beams to follow tumor motion in real time will lead to more accurate cancer treatments and reduced collateral healthy tissue damage. The gold-standard for reconstruction of undersampled MR data is compressed sensing (CS) which is computationally slow and limits the rate that images can be available for real-time adaptation. PURPOSE Once trained, neural networks can be used to accurately reconstruct raw MRI data with minimal latency. Here, we test the suitability of deep-learning-based image reconstruction for real-time tracking applications on MRI-Linacs. METHODS We use automated transform by manifold approximation (AUTOMAP), a generalized framework that maps raw MR signal to the target image domain, to rapidly reconstruct images from undersampled radial k-space data. The AUTOMAP neural network was trained to reconstruct images from a golden-angle radial acquisition, a benchmark for motion-sensitive imaging, on lung cancer patient data and generic images from ImageNet. Model training was subsequently augmented with motion-encoded k-space data derived from videos in the YouTube-8M dataset to encourage motion robust reconstruction. RESULTS AUTOMAP models fine-tuned on retrospectively acquired lung cancer patient data reconstructed radial k-space with equivalent accuracy to CS but with much shorter processing times. Validation of motion-trained models with a virtual dynamic lung tumor phantom showed that the generalized motion properties learned from YouTube lead to improved target tracking accuracy. CONCLUSION AUTOMAP can achieve real-time, accurate reconstruction of radial data. These findings imply that neural-network-based reconstruction is potentially superior to alternative approaches for real-time image guidance applications.
Collapse
Affiliation(s)
- David E. J. Waddington
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
- Department of Medical PhysicsIngham Institute for Applied Medical ResearchLiverpoolNSWAustralia
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Nicholas Hindley
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Neha Koonjoo
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Christopher Chiu
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Tess Reynolds
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Paul Z. Y. Liu
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
- Department of Medical PhysicsIngham Institute for Applied Medical ResearchLiverpoolNSWAustralia
| | - Bo Zhu
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Danyal Bhutto
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly
| | - Paul J. Keall
- Image X Institute, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
- Department of Medical PhysicsIngham Institute for Applied Medical ResearchLiverpoolNSWAustralia
| | - Matthew S. Rosen
- A. A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of PhysicsHarvard UniversityCambridgeMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
78
|
Zhang Z, Du H, Qiu B. FFVN: An explicit feature fusion-based variational network for accelerated multi-coil MRI reconstruction. Magn Reson Imaging 2023; 97:31-45. [PMID: 36586627 DOI: 10.1016/j.mri.2022.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Magnetic Resonance Imaging (MRI) is a leading diagnostic imaging modality that supports high contrast of soft tissues with no invasiveness or radiation. Nonetheless, it suffers from long scan time owing to the inherent physics in its data acquisition process, hampering its development and applications. Traditional strategies such as Compressed Sensing (CS) and Parallel Imaging (PI) allow for MRI acceleration via sub-sampling strategy, and multiple coils, respectively. When Deep Learning (DL) joins in, both strategies get re-vitalized to achieve even faster reconstruction in various reconstruction methods, among which the variational network is a previously proposed method that combines the mathematical structure of variational models with DL for fast MRI reconstruction. However, in our study we observe that the information of MR features is either not efficiently or explicitly exploited in former works based on the variational network. Instead, we introduce a variational network with explicit feature fusion that combines the CS, PI, with DL for accelerated multi-coil MRI reconstruction. By explicitly leveraging the extra information via feature fusion following feature extraction, our proposed method achieves comparably satisfying performance to the state-of-the-art methods without too much computation overhead on a public multi-coil brain dataset under 5-fold and 10-fold acceleration.
Collapse
Affiliation(s)
- Zhenxi Zhang
- Biomedical Engineering Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongwei Du
- Biomedical Engineering Center, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Bensheng Qiu
- Biomedical Engineering Center, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
79
|
Haldar JP. On Ambiguity in Linear Inverse Problems: Entrywise Bounds on Nearly Data-Consistent Solutions and Entrywise Condition Numbers. IEEE TRANSACTIONS ON SIGNAL PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 71:1083-1092. [PMID: 37383695 PMCID: PMC10299746 DOI: 10.1109/tsp.2023.3257989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Ill-posed linear inverse problems appear frequently in various signal processing applications. It can be very useful to have theoretical characterizations that quantify the level of ill-posedness for a given inverse problem and the degree of ambiguity that may exist about its solution. Traditional measures of ill-posedness, such as the condition number of a matrix, provide characterizations that are global in nature. While such characterizations can be powerful, they can also fail to provide full insight into situations where certain entries of the solution vector are more or less ambiguous than others. In this work, we derive novel theoretical lower- and upper-bounds that apply to individual entries of the solution vector, and are valid for all potential solution vectors that are nearly data-consistent. These bounds are agnostic to the noise statistics and the specific method used to solve the inverse problem, and are also shown to be tight. In addition, our results also lead us to introduce an entrywise version of the traditional condition number, which provides a substantially more nuanced characterization of scenarios where certain elements of the solution vector are less sensitive to perturbations than others. Our results are illustrated in an application to magnetic resonance imaging reconstruction, and we include discussions of practical computation methods for large-scale inverse problems, connections between our new theory and the traditional Cramér-Rao bound under statistical modeling assumptions, and potential extensions to cases involving constraints beyond just data-consistency.
Collapse
Affiliation(s)
- Justin P Haldar
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089 USA
| |
Collapse
|
80
|
Federated End-to-End Unrolled Models for Magnetic Resonance Image Reconstruction. Bioengineering (Basel) 2023; 10:bioengineering10030364. [PMID: 36978755 PMCID: PMC10045102 DOI: 10.3390/bioengineering10030364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
Image reconstruction is the process of recovering an image from raw, under-sampled signal measurements, and is a critical step in diagnostic medical imaging, such as magnetic resonance imaging (MRI). Recently, data-driven methods have led to improved image quality in MRI reconstruction using a limited number of measurements, but these methods typically rely on the existence of a large, centralized database of fully sampled scans for training. In this work, we investigate federated learning for MRI reconstruction using end-to-end unrolled deep learning models as a means of training global models across multiple clients (data sites), while keeping individual scans local. We empirically identify a low-data regime across a large number of heterogeneous scans, where a small number of training samples per client are available and non-collaborative models lead to performance drops. In this regime, we investigate the performance of adaptive federated optimization algorithms as a function of client data distribution and communication budget. Experimental results show that adaptive optimization algorithms are well suited for the federated learning of unrolled models, even in a limited-data regime (50 slices per data site), and that client-sided personalization can improve reconstruction quality for clients that did not participate in training.
Collapse
|
81
|
Oscanoa JA, Middione MJ, Alkan C, Yurt M, Loecher M, Vasanawala SS, Ennis DB. Deep Learning-Based Reconstruction for Cardiac MRI: A Review. Bioengineering (Basel) 2023; 10:334. [PMID: 36978725 PMCID: PMC10044915 DOI: 10.3390/bioengineering10030334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Cardiac magnetic resonance (CMR) is an essential clinical tool for the assessment of cardiovascular disease. Deep learning (DL) has recently revolutionized the field through image reconstruction techniques that allow unprecedented data undersampling rates. These fast acquisitions have the potential to considerably impact the diagnosis and treatment of cardiovascular disease. Herein, we provide a comprehensive review of DL-based reconstruction methods for CMR. We place special emphasis on state-of-the-art unrolled networks, which are heavily based on a conventional image reconstruction framework. We review the main DL-based methods and connect them to the relevant conventional reconstruction theory. Next, we review several methods developed to tackle specific challenges that arise from the characteristics of CMR data. Then, we focus on DL-based methods developed for specific CMR applications, including flow imaging, late gadolinium enhancement, and quantitative tissue characterization. Finally, we discuss the pitfalls and future outlook of DL-based reconstructions in CMR, focusing on the robustness, interpretability, clinical deployment, and potential for new methods.
Collapse
Affiliation(s)
- Julio A. Oscanoa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | - Cagan Alkan
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Mahmut Yurt
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
82
|
Demirel ÖB, Zhang C, Yaman B, Gulle M, Shenoy C, Leiner T, Kellman P, Akçakaya M. High-fidelity Database-free Deep Learning Reconstruction for Real-time Cine Cardiac MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528388. [PMID: 36824797 PMCID: PMC9948950 DOI: 10.1101/2023.02.13.528388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Real-time cine cardiac MRI provides an ECG-free free-breathing alternative to clinical gold-standard ECG-gated breath-hold segmented cine MRI for evaluation of heart function. Real-time cine MRI data acquisition during free breathing snapshot imaging enables imaging of patient cohorts that cannot be imaged with segmented or breath-hold acquisitions, but requires rapid imaging to achieve sufficient spatial-temporal resolutions. However, at high acceleration rates, conventional reconstruction techniques suffer from residual aliasing and temporal blurring, including advanced methods such as compressed sensing with radial trajectories. Recently, deep learning (DL) reconstruction has emerged as a powerful tool in MRI. However, its utility for free-breathing real-time cine MRI has been limited, as database-learning of spatio-temporal correlations with varying breathing and cardiac motion patterns across subjects has been challenging. Zero-shot self-supervised physics-guided deep learning (PG-DL) reconstruction has been proposed to overcome such challenges of database training by enabling subject-specific training. In this work, we adapt zero-shot PG-DL for real-time cine MRI with a spatio-temporal regularization. We compare our method to TGRAPPA, locally low-rank (LLR) regularized reconstruction and database-trained PG-DL reconstruction, both for retrospectively and prospectively accelerated datasets. Results on highly accelerated real-time Cartesian cine MRI show that the proposed method outperforms other reconstruction methods, both visibly in terms of noise and aliasing, and quantitatively.
Collapse
Affiliation(s)
- Ömer Burak Demirel
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Chi Zhang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Burhaneddin Yaman
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Merve Gulle
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Chetan Shenoy
- Department of Medicine (Cardiology), University of Minnesota, Minneapolis, MN, USA
| | - Tim Leiner
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Peter Kellman
- National Heart-Lung and Blood Institute, Bethesda, MD, USA
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
83
|
Chaika M, Afat S, Wessling D, Afat C, Nickel D, Kannengiesser S, Herrmann J, Almansour H, Männlin S, Othman AE, Gassenmaier S. Deep learning-based super-resolution gradient echo imaging of the pancreas: Improvement of image quality and reduction of acquisition time. Diagn Interv Imaging 2023; 104:53-59. [PMID: 35843839 DOI: 10.1016/j.diii.2022.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the impact of a deep learning-based super-resolution technique on T1-weighted gradient-echo acquisitions (volumetric interpolated breath-hold examination; VIBE) on the assessment of pancreatic MRI at 1.5 T compared to standard VIBE imaging (VIBESTD). MATERIALS AND METHODS This retrospective single-center study was conducted between April 2021 and October 2021. Fifty patients with a total of 50 detectable pancreatic lesion entities were included in this study. There were 27 men and 23 women, with a mean age of 69 ± 13 (standard deviation [SD]) years (age range: 33-89 years). VIBESTD (precontrast, dynamic, postcontrast) was retrospectively processed with a deep learning-based super-resolution algorithm including a more aggressive partial Fourier setting leading to a simulated acquisition time reduction (VIBESR). Image analysis was performed by two radiologists regarding lesion detectability, noise levels, sharpness and contrast of pancreatic edges, as well as regarding diagnostic confidence using a 5-point Likert-scale with 5 being the best. RESULTS VIBESR was rated better than VIBESTD by both readers regarding lesion detectability (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5], for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5]) for reader 2; both P <0.001), noise levels (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001), sharpness and contrast of pancreatic edges (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001), as well as regarding diagnostic confidence (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001). There were no significant differences between lesion sizes as measured by the two readers on VIBESR and VIBESTD images (P > 0.05). The mean acquisition time for VIBESTD (15 ± 1 [SD] s; range: 11-16 s) was longer than that for VIBESR (13 ± 1 [SD] s; range: 11-14 s) (P < 0.001). CONCLUSION Our results indicate that the newly developed deep learning-based super-resolution algorithm adapted to partial Fourier acquisitions has a positive influence not only on shortening the examination time but also on improvement of image quality in pancreatic MRI.
Collapse
Affiliation(s)
- Maryanna Chaika
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Daniel Wessling
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Carmen Afat
- Department of Internal Medicine I, Otfried-Müller-Straße 10, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Stephan Kannengiesser
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Simon Männlin
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; Department of Neuroradiology, University Medical Center, 55131, Mainz, Germany
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
84
|
Chen Z, Pawar K, Ekanayake M, Pain C, Zhong S, Egan GF. Deep Learning for Image Enhancement and Correction in Magnetic Resonance Imaging-State-of-the-Art and Challenges. J Digit Imaging 2023; 36:204-230. [PMID: 36323914 PMCID: PMC9984670 DOI: 10.1007/s10278-022-00721-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast for clinical diagnoses and research which underpin many recent breakthroughs in medicine and biology. The post-processing of reconstructed MR images is often automated for incorporation into MRI scanners by the manufacturers and increasingly plays a critical role in the final image quality for clinical reporting and interpretation. For image enhancement and correction, the post-processing steps include noise reduction, image artefact correction, and image resolution improvements. With the recent success of deep learning in many research fields, there is great potential to apply deep learning for MR image enhancement, and recent publications have demonstrated promising results. Motivated by the rapidly growing literature in this area, in this review paper, we provide a comprehensive overview of deep learning-based methods for post-processing MR images to enhance image quality and correct image artefacts. We aim to provide researchers in MRI or other research fields, including computer vision and image processing, a literature survey of deep learning approaches for MR image enhancement. We discuss the current limitations of the application of artificial intelligence in MRI and highlight possible directions for future developments. In the era of deep learning, we highlight the importance of a critical appraisal of the explanatory information provided and the generalizability of deep learning algorithms in medical imaging.
Collapse
Affiliation(s)
- Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia.
- Department of Data Science and AI, Monash University, Melbourne, VIC, Australia.
| | - Kamlesh Pawar
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
| | - Mevan Ekanayake
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - Cameron Pain
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| | - Shenjun Zhong
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
- National Imaging Facility, Brisbane, QLD, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, 3168, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
85
|
Dawood P, Breuer F, Stebani J, Burd P, Homolya I, Oberberger J, Jakob PM, Blaimer M. Iterative training of robust k-space interpolation networks for improved image reconstruction with limited scan specific training samples. Magn Reson Med 2023; 89:812-827. [PMID: 36226661 DOI: 10.1002/mrm.29482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To evaluate an iterative learning approach for enhanced performance of robust artificial-neural-networks for k-space interpolation (RAKI), when only a limited amount of training data (auto-calibration signals [ACS]) are available for accelerated standard 2D imaging. METHODS In a first step, the RAKI model was tailored for the case of limited training data amount. In the iterative learning approach (termed iterative RAKI [iRAKI]), the tailored RAKI model is initially trained using original and augmented ACS obtained from a linear parallel imaging reconstruction. Subsequently, the RAKI convolution filters are refined iteratively using original and augmented ACS extracted from the previous RAKI reconstruction. Evaluation was carried out on 200 retrospectively undersampled in vivo datasets from the fastMRI neuro database with different contrast settings. RESULTS For limited training data (18 and 22 ACS lines for R = 4 and R = 5, respectively), iRAKI outperforms standard RAKI by reducing residual artifacts and yields better noise suppression when compared to standard parallel imaging, underlined by quantitative reconstruction quality metrics. Additionally, iRAKI shows better performance than both GRAPPA and standard RAKI in case of pre-scan calibration with varying contrast between training- and undersampled data. CONCLUSION RAKI benefits from the iterative learning approach, which preserves the noise suppression feature, but requires less original training data for the accurate reconstruction of standard 2D images thereby improving net acceleration.
Collapse
Affiliation(s)
- Peter Dawood
- Department of Physics, University of Würzburg, Würzburg, Germany
| | - Felix Breuer
- Magnetic Resonance and X-ray Imaging Department, Fraunhofer Institute for Integrated Circuits IIS, Division Development Center X-Ray Technology, Würzburg, Germany
| | - Jannik Stebani
- Magnetic Resonance and X-ray Imaging Department, Fraunhofer Institute for Integrated Circuits IIS, Division Development Center X-Ray Technology, Würzburg, Germany
| | - Paul Burd
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg, Germany
| | - István Homolya
- Brain Imaging Centre, Research Centre for Natural Sciences, Budapest, Hungary
| | - Johannes Oberberger
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Peter M Jakob
- Department of Physics, University of Würzburg, Würzburg, Germany
| | - Martin Blaimer
- Magnetic Resonance and X-ray Imaging Department, Fraunhofer Institute for Integrated Circuits IIS, Division Development Center X-Ray Technology, Würzburg, Germany
| |
Collapse
|
86
|
Hammernik K, Küstner T, Yaman B, Huang Z, Rueckert D, Knoll F, Akçakaya M. Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging. IEEE SIGNAL PROCESSING MAGAZINE 2023; 40:98-114. [PMID: 37304755 PMCID: PMC10249732 DOI: 10.1109/msp.2022.3215288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Physics-driven deep learning methods have emerged as a powerful tool for computational magnetic resonance imaging (MRI) problems, pushing reconstruction performance to new limits. This article provides an overview of the recent developments in incorporating physics information into learning-based MRI reconstruction. We consider inverse problems with both linear and non-linear forward models for computational MRI, and review the classical approaches for solving these. We then focus on physics-driven deep learning approaches, covering physics-driven loss functions, plug-and-play methods, generative models, and unrolled networks. We highlight domain-specific challenges such as real- and complex-valued building blocks of neural networks, and translational applications in MRI with linear and non-linear forward models. Finally, we discuss common issues and open challenges, and draw connections to the importance of physics-driven learning when combined with other downstream tasks in the medical imaging pipeline.
Collapse
Affiliation(s)
- Kerstin Hammernik
- Institute of AI and Informatics in Medicine, Technical University of Munich and the Department of Computing, Imperial College London
| | - Thomas Küstner
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen
| | - Burhaneddin Yaman
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, USA
| | - Zhengnan Huang
- Center for Biomedical Imaging, Department of Radiology, New York University
| | - Daniel Rueckert
- Institute of AI and Informatics in Medicine, Technical University of Munich and the Department of Computing, Imperial College London
| | - Florian Knoll
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, and Center for Magnetic Resonance Research, University of Minnesota, USA
| |
Collapse
|
87
|
Demirel OB, Yaman B, Shenoy C, Moeller S, Weingärtner S, Akçakaya M. Signal intensity informed multi-coil encoding operator for physics-guided deep learning reconstruction of highly accelerated myocardial perfusion CMR. Magn Reson Med 2023; 89:308-321. [PMID: 36128896 PMCID: PMC9617789 DOI: 10.1002/mrm.29453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/21/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To develop a physics-guided deep learning (PG-DL) reconstruction strategy based on a signal intensity informed multi-coil (SIIM) encoding operator for highly-accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI (CMR). METHODS First-pass perfusion CMR acquires highly-accelerated images with dynamically varying signal intensity/SNR following the administration of a gadolinium-based contrast agent. Thus, using PG-DL reconstruction with a conventional multi-coil encoding operator leads to analogous signal intensity variations across different time-frames at the network output, creating difficulties in generalization for varying SNR levels. We propose to use a SIIM encoding operator to capture the signal intensity/SNR variations across time-frames in a reformulated encoding operator. This leads to a more uniform/flat contrast at the output of the PG-DL network, facilitating generalizability across time-frames. PG-DL reconstruction with the proposed SIIM encoding operator is compared to PG-DL with conventional encoding operator, split slice-GRAPPA, locally low-rank (LLR) regularized reconstruction, low-rank plus sparse (L + S) reconstruction, and regularized ROCK-SPIRiT. RESULTS Results on highly accelerated free-breathing first pass myocardial perfusion CMR at three-fold SMS and four-fold in-plane acceleration show that the proposed method improves upon the reconstruction methods use for comparison. Substantial noise reduction is achieved compared to split slice-GRAPPA, and aliasing artifacts reduction compared to LLR regularized reconstruction, L + S reconstruction and PG-DL with conventional encoding. Furthermore, a qualitative reader study indicated that proposed method outperformed all methods. CONCLUSION PG-DL reconstruction with the proposed SIIM encoding operator improves generalization across different time-frames /SNRs in highly accelerated perfusion CMR.
Collapse
Affiliation(s)
- Omer Burak Demirel
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA,Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Burhaneddin Yaman
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA,Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Chetan Shenoy
- Department of Medicine (Cardiology)University of MinnesotaMinneapolisMinnesotaUSA
| | - Steen Moeller
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Mehmet Akçakaya
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA,Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
88
|
Nepal P, Bagga B, Feng L, Chandarana H. Respiratory Motion Management in Abdominal MRI: Radiology In Training. Radiology 2023; 306:47-53. [PMID: 35997609 PMCID: PMC9792710 DOI: 10.1148/radiol.220448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A 96-year-old woman had a suboptimal evaluation of liver observations at abdominal MRI due to significant respiratory motion. State-of-the-art strategies to minimize respiratory motion during clinical abdominal MRI are discussed.
Collapse
Affiliation(s)
- Pankaj Nepal
- From the Department of Radiology, Massachusetts General Hospital, 55
Fruit St, Boston, MA 02114 (P.N.); Department of Radiology, New York University
School of Medicine, New York, NY (B.B., H.C.); and Biomedical Engineering and
Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount
Sinai, New York, NY (L.F.)
| | - Barun Bagga
- From the Department of Radiology, Massachusetts General Hospital, 55
Fruit St, Boston, MA 02114 (P.N.); Department of Radiology, New York University
School of Medicine, New York, NY (B.B., H.C.); and Biomedical Engineering and
Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount
Sinai, New York, NY (L.F.)
| | - Li Feng
- From the Department of Radiology, Massachusetts General Hospital, 55
Fruit St, Boston, MA 02114 (P.N.); Department of Radiology, New York University
School of Medicine, New York, NY (B.B., H.C.); and Biomedical Engineering and
Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount
Sinai, New York, NY (L.F.)
| | - Hersh Chandarana
- From the Department of Radiology, Massachusetts General Hospital, 55
Fruit St, Boston, MA 02114 (P.N.); Department of Radiology, New York University
School of Medicine, New York, NY (B.B., H.C.); and Biomedical Engineering and
Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount
Sinai, New York, NY (L.F.)
| |
Collapse
|
89
|
Shin S, Han Y, Chung JY. A 2D-GRAPPA Algorithm with a Boomerang Kernel for 3D MRI Data Accelerated along Two Phase-Encoding Directions. SENSORS (BASEL, SWITZERLAND) 2022; 23:93. [PMID: 36616690 PMCID: PMC9823302 DOI: 10.3390/s23010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
For the reconstruction of 3D MRI data that are accelerated along the two phase-encoding directions, the 2D-generalized autocalibrating partially parallel acquisitions (GRAPPA) algorithm can be used to estimate the missing data in the k-space. We propose a new boomerang-shaped kernel based on theoretic and systemic analyses of the shape and dimensions of the kernel. The reconstruction efficiency of the 2D-GRAPPA algorithm with the proposed boomerang-shaped kernel (i.e., boomerang kernel (BK)-2D-GRAPPA) was compared with other 2D-GRAPPA algorithms that utilize different types of kernels (i.e., EX-2D-GRAPPA and SK-2D-GRAPPA) based on computer simulation, phantom and in vivo experiments. The proposed method was validated for different sets of ACS lines with acceleration factors from four to eight and various sizes of the kernels. A quantitative analysis was also performed by comparing the normalized root mean squared error (nRMSE) in the images and the undersampled edges. Computer simulation, in vivo and phantom experiments, and the quantitative analysis, showed that the proposed method could reduce aliasing artifacts without reducing the SNRs of the reconstructed images.
Collapse
Affiliation(s)
- Seonyeong Shin
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21988, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21988, Republic of Korea
| | - Yeji Han
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21988, Republic of Korea
- Department of Biomedical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21988, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21988, Republic of Korea
| |
Collapse
|
90
|
Kang J, Nam Y. [Applications of Artificial Intelligence in MR Image Acquisition and Reconstruction]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:1229-1239. [PMID: 36545429 PMCID: PMC9748458 DOI: 10.3348/jksr.2022.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Recently, artificial intelligence (AI) technology has shown potential clinical utility in a wide range of MRI fields. In particular, AI models for improving the efficiency of the image acquisition process and the quality of reconstructed images are being actively developed by the MR research community. AI is expected to further reduce acquisition times in various MRI protocols used in clinical practice when compared to current parallel imaging techniques. Additionally, AI can help with tasks such as planning, parameter optimization, artifact reduction, and quality assessment. Furthermore, AI is being actively applied to automate MR image analysis such as image registration, segmentation, and object detection. For this reason, it is important to consider the effects of protocols or devices in MR image analysis. In this review article, we briefly introduced issues related to AI application of MR image acquisition and reconstruction.
Collapse
|
91
|
Chen F, Vasanawala SS. Editorial for “G
radual
Self T
raining
via C
onfidence
and Volume Based Domain Adaptation for Multi Dataset Deep‐Learning Based Brain Metastases Detection Using Non‐Local Networks on MRI Images”. J Magn Reson Imaging 2022; 57:1741-1742. [PMID: 36282482 DOI: 10.1002/jmri.28453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Feiyu Chen
- Department of Electrical Engineering Stanford University Stanford California USA
| | | |
Collapse
|
92
|
Sundaram A, Abdel-Khalik HS, Abdo MG. Preventing Reverse Engineering of Critical Industrial Data with DIOD. NUCL TECHNOL 2022. [DOI: 10.1080/00295450.2022.2102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Arvind Sundaram
- Purdue University, 205 Gates Road, West Lafayette, Indiana 47906
| | | | - Mohammad G. Abdo
- Idaho National Laboratory, 1955 N. Fremont Road, Idaho Falls, Idaho 83415
| |
Collapse
|
93
|
Thrombus magnetic susceptibility is associated with recanalization and clinical outcome in patients with ischemic stroke. Neuroimage Clin 2022; 36:103183. [PMID: 36095890 PMCID: PMC9472059 DOI: 10.1016/j.nicl.2022.103183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
In acute ischemic stroke patients with large vessel occlusion, the characteristics of the occluding thrombus on neuroimaging may be associated with recanalization after endovascular thrombectomy (EVT); however, the relationship between magnetic susceptibility of thrombus and clinical outcome remains unclear. We utilized quantitative susceptibility mapping (QSM) MRI to assess the magnetic susceptibility of thrombus in acute ischemic stroke patients undergoing EVT, and to evaluate its relationship with recanalization and functional outcomes. Patients with documented intracranial artery occlusion were consecutively recruited from one research center of the RESCUE-RE study (a registration study for Critical Care of Acute Ischemic Stroke After Recanalization). All the recruited patients underwent a 3D multi-echo MRI scan on a 3.0 T scanner for both susceptibility-weighted imaging (SWI) and QSM quantification of the thrombus. Among 61 patients included in the analyses, 51 (75.0 %) patients achieved thrombolysis in cerebral infarction (TICI) 2b/3 and 22 (36.1 %) patients had favorable functional outcomes. Successful recanalization was significantly associated with a higher thrombus magnetic susceptibility mean value (0.27 ± 0.09 vs 0.20 ± 0.09 ppm, p = 0.020) and lower coefficient of variation (0.42 ± 0.12 vs 0.52 ± 0.19, p = 0.024). ROC curve analysis showed the optimal cutoff value for thrombus susceptibility for predicting good clinical outcomes was 0.25 ppm (sensitivity 86.4 %, specificity 69.2 %). In multivariable logistic regression analyses, increased thrombus magnetic susceptibility was independently and significantly associated with good functional outcomes (adjusted odds ratio 15.11 [95 % confidence interval 2.64-86.46], p = 0.002). This study demonstrated that the increased thrombus magnetic susceptibility is associated with successful recanalization and favorable functional outcomes for intracranial artery occluded stroke patients.
Collapse
|
94
|
Gan W, Sun Y, Eldeniz C, Liu J, An H, Kamilov US. Deformation-Compensated Learning for Image Reconstruction Without Ground Truth. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2371-2384. [PMID: 35344490 PMCID: PMC9497435 DOI: 10.1109/tmi.2022.3163018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep neural networks for medical image reconstruction are traditionally trained using high-quality ground-truth images as training targets. Recent work on Noise2Noise (N2N) has shown the potential of using multiple noisy measurements of the same object as an alternative to having a ground-truth. However, existing N2N-based methods are not suitable for learning from the measurements of an object undergoing nonrigid deformation. This paper addresses this issue by proposing the deformation-compensated learning (DeCoLearn) method for training deep reconstruction networks by compensating for object deformations. A key component of DeCoLearn is a deep registration module, which is jointly trained with the deep reconstruction network without any ground-truth supervision. We validate DeCoLearn on both simulated and experimentally collected magnetic resonance imaging (MRI) data and show that it significantly improves imaging quality.
Collapse
|
95
|
Ryu K, Alkan C, Vasanawala SS. Improving high frequency image features of deep learning reconstructions via k-space refinement with null-space kernel. Magn Reson Med 2022; 88:1263-1272. [PMID: 35426470 PMCID: PMC9246879 DOI: 10.1002/mrm.29261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Deep learning (DL) based reconstruction using unrolled neural networks has shown great potential in accelerating MRI. However, one of the major drawbacks is the loss of high-frequency details and textures in the output. The purpose of the study is to propose a novel refinement method that uses null-space kernel to refine k-space and improve blurred image details and textures. METHODS The proposed method constrains the output of the DL to comply to the linear neighborhood relationship calibrated in the auto-calibration lines. To demonstrate efficacy, we tested our refinement method on the DL reconstruction under a variety of conditions (i.e., dataset, unrolled neural networks, and under-sampling scheme). Specifically, the method was tested on three large-scale public datasets (knee and brain) from fastMRI's multi-coil track. RESULTS The proposed scheme visually reduces the structural error in the k-space domain, enhance the homogeneity of the k-space intensity. Consequently, reconstructed image shows sharper images with enhanced details and textures. The proposed method is also successful in improving high-frequency image details (SSIM, GMSD) without sacrificing overall image error (PSNR). CONCLUSION Our findings imply that refining DL output using the proposed method may generally improve DL reconstruction as tested with various large-scale dataset and networks.
Collapse
Affiliation(s)
- Kanghyun Ryu
- Department of Radiology, Stanford University, CA, USA
| | - Cagan Alkan
- Department of Electrical Engineering, Stanford University, CA, USA
| | | |
Collapse
|
96
|
Shastri SK, Ahmad R, Metzler CA, Schniter P. Denoising Generalized Expectation-Consistent Approximation for MR Image Recovery. IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY 2022; 3:528-542. [PMID: 36970644 PMCID: PMC10032362 DOI: 10.1109/jsait.2022.3207109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To solve inverse problems, plug-and-play (PnP) methods replace the proximal step in a convex optimization algorithm with a call to an application-specific denoiser, often implemented using a deep neural network (DNN). Although such methods yield accurate solutions, they can be improved. For example, denoisers are usually designed/trained to remove white Gaussian noise, but the denoiser input error in PnP algorithms is usually far from white or Gaussian. Approximate message passing (AMP) methods provide white and Gaussian denoiser input error, but only when the forward operator is sufficiently random. In this work, for Fourier-based forward operators, we propose a PnP algorithm based on generalized expectation-consistent (GEC) approximation-a close cousin of AMP-that offers predictable error statistics at each iteration, as well as a new DNN denoiser that leverages those statistics. We apply our approach to magnetic resonance (MR) image recovery and demonstrate its advantages over existing PnP and AMP methods.
Collapse
Affiliation(s)
- Saurav K Shastri
- Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43201, USA
| | - Rizwan Ahmad
- Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH 43201, USA
| | | | - Philip Schniter
- Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43201, USA
| |
Collapse
|
97
|
Gu H, Yaman B, Moeller S, Ellermann J, Ugurbil K, Akçakaya M. Revisiting [Formula: see text]-wavelet compressed-sensing MRI in the era of deep learning. Proc Natl Acad Sci U S A 2022; 119:e2201062119. [PMID: 35939712 PMCID: PMC9388129 DOI: 10.1073/pnas.2201062119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Following their success in numerous imaging and computer vision applications, deep-learning (DL) techniques have emerged as one of the most prominent strategies for accelerated MRI reconstruction. These methods have been shown to outperform conventional regularized methods based on compressed sensing (CS). However, in most comparisons, CS is implemented with two or three hand-tuned parameters, while DL methods enjoy a plethora of advanced data science tools. In this work, we revisit [Formula: see text]-wavelet CS reconstruction using these modern tools. Using ideas such as algorithm unrolling and advanced optimization methods over large databases that DL algorithms utilize, along with conventional insights from wavelet representations and CS theory, we show that [Formula: see text]-wavelet CS can be fine-tuned to a level close to DL reconstruction for accelerated MRI. The optimized [Formula: see text]-wavelet CS method uses only 128 parameters compared to >500,000 for DL, employs a convex reconstruction at inference time, and performs within <1% of a DL approach that has been used in multiple studies in terms of quantitative quality metrics.
Collapse
Affiliation(s)
- Hongyi Gu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Burhaneddin Yaman
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Jutta Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
98
|
Bao J, Feng X, Ma Y, Wang Y, Qi J, Qin C, Tan X, Tian Y. The latest application progress of radiomics in prediction and diagnosis of liver diseases. Expert Rev Gastroenterol Hepatol 2022; 16:707-719. [PMID: 35880549 DOI: 10.1080/17474124.2022.2104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Early detection and individualized treatment of patients with liver disease is the key to survival. Radiomics can extract high-throughput quantitative features by multimode imaging, which has good application prospects for the diagnosis, staging and prognosis of benign and malignant liver diseases. Therefore, this paper summarizes the current research status in the field of liver disease, in order to help these patients achieve personalized and precision medical care. AREAS COVERED This paper uses several keywords on the PubMed database to search the references, and reviews the workflow of traditional radiomics, as well as the characteristics and influencing factors of different imaging modes. At the same time, the references on the application of imaging in different benign and malignant liver diseases were also summarized. EXPERT OPINION For patients with liver disease, the traditional imaging evaluation can only provide limited information. Radiomics exploits the characteristics of high-throughput and high-dimensional extraction, enabling liver imaging capabilities far beyond the scope of traditional visual image analysis. Recent studies have demonstrated the prospect of this technology in personalized diagnosis and treatment decision in various fields of the liver. However, further clinical validation is needed in its application and practice.
Collapse
Affiliation(s)
- Jiaying Bao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Xiao Feng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Yan Ma
- Department of Ultrasound, Zibo Central Hospital, Zibo, P.R. China
| | - Yanyan Wang
- Departments of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Xu Tan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yongmei Tian
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| |
Collapse
|
99
|
Chen EZ, Wang P, Chen X, Chen T, Sun S. Pyramid Convolutional RNN for MRI Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2033-2047. [PMID: 35192462 DOI: 10.1109/tmi.2022.3153849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fast and accurate MRI image reconstruction from undersampled data is crucial in clinical practice. Deep learning based reconstruction methods have shown promising advances in recent years. However, recovering fine details from undersampled data is still challenging. In this paper, we introduce a novel deep learning based method, Pyramid Convolutional RNN (PC-RNN), to reconstruct images from multiple scales. Based on the formulation of MRI reconstruction as an inverse problem, we design the PC-RNN model with three convolutional RNN (ConvRNN) modules to iteratively learn the features in multiple scales. Each ConvRNN module reconstructs images at different scales and the reconstructed images are combined by a final CNN module in a pyramid fashion. The multi-scale ConvRNN modules learn a coarse-to-fine image reconstruction. Unlike other common reconstruction methods for parallel imaging, PC-RNN does not employ coil sensitive maps for multi-coil data and directly model the multiple coils as multi-channel inputs. The coil compression technique is applied to standardize data with various coil numbers, leading to more efficient training. We evaluate our model on the fastMRI knee and brain datasets and the results show that the proposed model outperforms other methods and can recover more details. The proposed method is one of the winner solutions in the 2019 fastMRI competition.
Collapse
|
100
|
Kay K. The risk of bias in denoising methods: Examples from neuroimaging. PLoS One 2022; 17:e0270895. [PMID: 35776751 PMCID: PMC9249232 DOI: 10.1371/journal.pone.0270895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Experimental datasets are growing rapidly in size, scope, and detail, but the value of these datasets is limited by unwanted measurement noise. It is therefore tempting to apply analysis techniques that attempt to reduce noise and enhance signals of interest. In this paper, we draw attention to the possibility that denoising methods may introduce bias and lead to incorrect scientific inferences. To present our case, we first review the basic statistical concepts of bias and variance. Denoising techniques typically reduce variance observed across repeated measurements, but this can come at the expense of introducing bias to the average expected outcome. We then conduct three simple simulations that provide concrete examples of how bias may manifest in everyday situations. These simulations reveal several findings that may be surprising and counterintuitive: (i) different methods can be equally effective at reducing variance but some incur bias while others do not, (ii) identifying methods that better recover ground truth does not guarantee the absence of bias, (iii) bias can arise even if one has specific knowledge of properties of the signal of interest. We suggest that researchers should consider and possibly quantify bias before deploying denoising methods on important research data.
Collapse
Affiliation(s)
- Kendrick Kay
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|