51
|
Pepe G, Carrino C, Parca L, Helmer-Citterich M. Dissecting the Genome for Drug Response Prediction. Methods Mol Biol 2022; 2449:187-196. [PMID: 35507263 DOI: 10.1007/978-1-0716-2095-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The prediction of the cancer cell lines sensitivity to a specific treatment is one of the current challenges in precision medicine. With omics and pharmacogenomics data being available for over 1000 cancer cell lines, several machine learning and deep learning algorithms have been proposed for drug sensitivity prediction. However, deciding which omics data to use and which computational methods can efficiently incorporate data from different sources is the challenge which several research groups are working on. In this review, we summarize recent advances in the representative computational methods that have been developed in the last 2 years on three public datasets: COSMIC, CCLE, NCI-60. These methods aim to improve the prediction of the cancer cell lines sensitivity to a given treatment by incorporating drug's chemical information in the input or using a priori feature selection. Finally, we discuss the latest published method which aims to improve the prediction of clinical drug response of real patients starting from cancer cell line molecular profiles.
Collapse
Affiliation(s)
- Gerardo Pepe
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Carrino
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Parca
- Italian Space Agency, Via del Politecnico snc, Rome, Italy
| | - Manuela Helmer-Citterich
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
52
|
Liu X, Song C, Huang F, Fu H, Xiao W, Zhang W. GraphCDR: a graph neural network method with contrastive learning for cancer drug response prediction. Brief Bioinform 2021; 23:6415314. [PMID: 34727569 DOI: 10.1093/bib/bbab457] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/25/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022] Open
Abstract
Predicting the response of a cancer cell line to a therapeutic drug is an important topic in modern oncology that can help personalized treatment for cancers. Although numerous machine learning methods have been developed for cancer drug response (CDR) prediction, integrating diverse information about cancer cell lines, drugs and their known responses still remains a great challenge. In this paper, we propose a graph neural network method with contrastive learning for CDR prediction. GraphCDR constructs a graph neural network based on multi-omics profiles of cancer cell lines, the chemical structure of drugs and known cancer cell line-drug responses for CDR prediction, while a contrastive learning task is presented as a regularizer within a multi-task learning paradigm to enhance the generalization ability. In the computational experiments, GraphCDR outperforms state-of-the-art methods under different experimental configurations, and the ablation study reveals the key components of GraphCDR: biological features, known cancer cell line-drug responses and contrastive learning are important for the high-accuracy CDR prediction. The experimental analyses imply the predictive power of GraphCDR and its potential value in guiding anti-cancer drug selection.
Collapse
Affiliation(s)
- Xuan Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Congzhi Song
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Huang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haitao Fu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjie Xiao
- Information School, University of Washington, Washington, 98105, USA
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
53
|
Zhang F, Song H, Zeng M, Wu FX, Li Y, Pan Y, Li M. A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based Information. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2208-2217. [PMID: 31985440 DOI: 10.1109/tcbb.2020.2968882] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Knowledge of protein functions plays an important role in biology and medicine. With the rapid development of high-throughput technologies, a huge number of proteins have been discovered. However, there are a great number of proteins without functional annotations. A protein usually has multiple functions and some functions or biological processes require interactions of a plurality of proteins. Additionally, Gene Ontology provides a useful classification for protein functions and contains more than 40,000 terms. We propose a deep learning framework called DeepGOA to predict protein functions with protein sequences and protein-protein interaction (PPI) networks. For protein sequences, we extract two types of information: sequence semantic information and subsequence-based features. We use the word2vec technique to numerically represent protein sequences, and utilize a Bi-directional Long and Short Time Memory (Bi-LSTM) and multi-scale convolutional neural network (multi-scale CNN) to obtain the global and local semantic features of protein sequences, respectively. Additionally, we use the InterPro tool to scan protein sequences for extracting subsequence-based information, such as domains and motifs. Then, the information is plugged into a neural network to generate high-quality features. For the PPI network, the Deepwalk algorithm is applied to generate its embedding information of PPI. Then the two types of features are concatenated together to predict protein functions. To evaluate the performance of DeepGOA, several different evaluation methods and metrics are utilized. The experimental results show that DeepGOA outperforms DeepGO and BLAST.
Collapse
|
54
|
Koras K, Kizling E, Juraeva D, Staub E, Szczurek E. Interpretable deep recommender system model for prediction of kinase inhibitor efficacy across cancer cell lines. Sci Rep 2021; 11:15993. [PMID: 34362938 PMCID: PMC8346627 DOI: 10.1038/s41598-021-94564-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/06/2021] [Indexed: 01/02/2023] Open
Abstract
Computational models for drug sensitivity prediction have the potential to significantly improve personalized cancer medicine. Drug sensitivity assays, combined with profiling of cancer cell lines and drugs become increasingly available for training such models. Multiple methods were proposed for predicting drug sensitivity from cancer cell line features, some in a multi-task fashion. So far, no such model leveraged drug inhibition profiles. Importantly, multi-task models require a tailored approach to model interpretability. In this work, we develop DEERS, a neural network recommender system for kinase inhibitor sensitivity prediction. The model utilizes molecular features of the cancer cell lines and kinase inhibition profiles of the drugs. DEERS incorporates two autoencoders to project cell line and drug features into 10-dimensional hidden representations and a feed-forward neural network to combine them into response prediction. We propose a novel interpretability approach, which in addition to the set of modeled features considers also the genes and processes outside of this set. Our approach outperforms simpler matrix factorization models, achieving R [Formula: see text] 0.82 correlation between true and predicted response for the unseen cell lines. The interpretability analysis identifies 67 biological processes that drive the cell line sensitivity to particular compounds. Detailed case studies are shown for PHA-793887, XMD14-99 and Dabrafenib.
Collapse
Affiliation(s)
- Krzysztof Koras
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Ewa Kizling
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Dilafruz Juraeva
- Oncology Bioinformatics, Translational Medicine, Merck Healthcare KGaA, Darmstadt, Germany
| | - Eike Staub
- Oncology Bioinformatics, Translational Medicine, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ewa Szczurek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
55
|
Jin I, Nam H. HiDRA: Hierarchical Network for Drug Response Prediction with Attention. J Chem Inf Model 2021; 61:3858-3867. [PMID: 34342985 DOI: 10.1021/acs.jcim.1c00706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding differences in drug responses between patients is crucial for delivering effective cancer treatment. We describe an interpretable AI model for use in predicting drug responses in cancer cells at the gene, molecular pathway, and drug level, which we have called the hierarchical network for drug response prediction with attention. We found that the model shows better accuracy in predicting drugs having efficacy against a given cell line than other state-of-the-art methods, with a root mean squared error of 1.0064, a Pearson's correlation coefficient of 0.9307, and an R2 value of 0.8647. We also confirmed that the model gives high attention to drug-target genes and cancer-related pathways when predicting a response. The validity of predicted results was proven by in vitro cytotoxicity assay. Overall, we propose that our hierarchical and interpretable AI-based model is capable of interpreting intrinsic characteristics of cancer cells and drugs for accurate prediction of cancer-drug responses.
Collapse
Affiliation(s)
- Iljung Jin
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.,AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
56
|
Lee Y, Nam S. Performance Comparisons of AlexNet and GoogLeNet in Cell Growth Inhibition IC50 Prediction. Int J Mol Sci 2021; 22:7721. [PMID: 34299341 PMCID: PMC8305019 DOI: 10.3390/ijms22147721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Drug responses in cancer are diverse due to heterogenous genomic profiles. Drug responsiveness prediction is important in clinical response to specific cancer treatments. Recently, multi-class drug responsiveness models based on deep learning (DL) models using molecular fingerprints and mutation statuses have emerged. However, for multi-class models for drug responsiveness prediction, comparisons between convolution neural network (CNN) models (e.g., AlexNet and GoogLeNet) have not been performed. Therefore, in this study, we compared the two CNN models, GoogLeNet and AlexNet, along with the least absolute shrinkage and selection operator (LASSO) model as a baseline model. We constructed the models by taking drug molecular fingerprints of drugs and cell line mutation statuses, as input, to predict high-, intermediate-, and low-class for half-maximal inhibitory concentration (IC50) values of the drugs in the cancer cell lines. Additionally, we compared the models in breast cancer patients as well as in an independent gastric cancer cell line drug responsiveness data. We measured the model performance based on the area under receiver operating characteristic (ROC) curves (AUROC) value. In this study, we compared CNN models for multi-class drug responsiveness prediction. The AlexNet and GoogLeNet showed better performances in comparison to LASSO. Thus, DL models will be useful tools for precision oncology in terms of drug responsiveness prediction.
Collapse
Affiliation(s)
- Yeeun Lee
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Korea;
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Korea;
- College of Medicine, Gachon University, Incheon 21565, Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon 21565, Korea
- Department of Life Sciences, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
57
|
Rafique R, Islam SR, Kazi JU. Machine learning in the prediction of cancer therapy. Comput Struct Biotechnol J 2021; 19:4003-4017. [PMID: 34377366 PMCID: PMC8321893 DOI: 10.1016/j.csbj.2021.07.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
Resistance to therapy remains a major cause of cancer treatment failures, resulting in many cancer-related deaths. Resistance can occur at any time during the treatment, even at the beginning. The current treatment plan is dependent mainly on cancer subtypes and the presence of genetic mutations. Evidently, the presence of a genetic mutation does not always predict the therapeutic response and can vary for different cancer subtypes. Therefore, there is an unmet need for predictive models to match a cancer patient with a specific drug or drug combination. Recent advancements in predictive models using artificial intelligence have shown great promise in preclinical settings. However, despite massive improvements in computational power, building clinically useable models remains challenging due to a lack of clinically meaningful pharmacogenomic data. In this review, we provide an overview of recent advancements in therapeutic response prediction using machine learning, which is the most widely used branch of artificial intelligence. We describe the basics of machine learning algorithms, illustrate their use, and highlight the current challenges in therapy response prediction for clinical practice.
Collapse
Affiliation(s)
| | - S.M. Riazul Islam
- Department of Computer Science and Engineering, Sejong University, Seoul, South Korea
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Corresponding author at: Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon village Building 404:C3, Scheelevägen 8, 22363 Lund, Sweden.
| |
Collapse
|
58
|
Park S, Soh J, Lee H. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. BMC Bioinformatics 2021; 22:269. [PMID: 34034645 PMCID: PMC8152321 DOI: 10.1186/s12859-021-04146-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Predicting the drug response of a patient is important for precision oncology. In recent studies, multi-omics data have been used to improve the prediction accuracy of drug response. Although multi-omics data are good resources for drug response prediction, the large dimension of data tends to hinder performance improvement. In this study, we aimed to develop a new method, which can effectively reduce the large dimension of data, based on the supervised deep learning model for predicting drug response. RESULTS We proposed a novel method called Supervised Feature Extraction Learning using Triplet loss (Super.FELT) for drug response prediction. Super.FELT consists of three stages, namely, feature selection, feature encoding using a supervised method, and binary classification of drug response (sensitive or resistant). We used multi-omics data including mutation, copy number aberration, and gene expression, and these were obtained from cell lines [Genomics of Drug Sensitivity in Cancer (GDSC), Cancer Cell Line Encyclopedia (CCLE), and Cancer Therapeutics Response Portal (CTRP)], patient-derived tumor xenografts (PDX), and The Cancer Genome Atlas (TCGA). GDSC was used for training and cross-validation tests, and CCLE, CTRP, PDX, and TCGA were used for external validation. We performed ablation studies for the three stages and verified that the use of multi-omics data guarantees better performance of drug response prediction. Our results verified that Super.FELT outperformed the other methods at external validation on PDX and TCGA and was good at cross-validation on GDSC and external validation on CCLE and CTRP. In addition, through our experiments, we confirmed that using multi-omics data is useful for external non-cell line data. CONCLUSION By separating the three stages, Super.FELT achieved better performance than the other methods. Through our results, we found that it is important to train encoders and a classifier independently, especially for external test on PDX and TCGA. Moreover, although gene expression is the most powerful data on cell line data, multi-omics promises better performance for external validation on non-cell line data than gene expression data. Source codes of Super.FELT are available at https://github.com/DMCB-GIST/Super.FELT .
Collapse
Affiliation(s)
- Sejin Park
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jihee Soh
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Hyunju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea.
- Graduate School of Artificial Intelligence, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| |
Collapse
|
59
|
Tan X, Yu Y, Duan K, Zhang J, Sun P, Sun H. Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction. Curr Top Med Chem 2021; 20:1858-1867. [PMID: 32648840 DOI: 10.2174/1568026620666200710101307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Anticancer drug screening can accelerate drug discovery to save the lives of cancer patients, but cancer heterogeneity makes this screening challenging. The prediction of anticancer drug sensitivity is useful for anticancer drug development and the identification of biomarkers of drug sensitivity. Deep learning, as a branch of machine learning, is an important aspect of in silico research. Its outstanding computational performance means that it has been used for many biomedical purposes, such as medical image interpretation, biological sequence analysis, and drug discovery. Several studies have predicted anticancer drug sensitivity based on deep learning algorithms. The field of deep learning has made progress regarding model performance and multi-omics data integration. However, deep learning is limited by the number of studies performed and data sources available, so it is not perfect as a pre-clinical approach for use in the anticancer drug screening process. Improving the performance of deep learning models is a pressing issue for researchers. In this review, we introduce the research of anticancer drug sensitivity prediction and the use of deep learning in this research area. To provide a reference for future research, we also review some common data sources and machine learning methods. Lastly, we discuss the advantages and disadvantages of deep learning, as well as the limitations and future perspectives regarding this approach.
Collapse
Affiliation(s)
- Xian Tan
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Yang Yu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Kaiwen Duan
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Jingbo Zhang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Pingping Sun
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Hui Sun
- College of Humanities and Sciences of Northeast Normal University, Changchun 130117, China
| |
Collapse
|
60
|
Vatansever S, Schlessinger A, Wacker D, Kaniskan HÜ, Jin J, Zhou M, Zhang B. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Med Res Rev 2021; 41:1427-1473. [PMID: 33295676 PMCID: PMC8043990 DOI: 10.1002/med.21764] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 01/11/2023]
Abstract
Neurological disorders significantly outnumber diseases in other therapeutic areas. However, developing drugs for central nervous system (CNS) disorders remains the most challenging area in drug discovery, accompanied with the long timelines and high attrition rates. With the rapid growth of biomedical data enabled by advanced experimental technologies, artificial intelligence (AI) and machine learning (ML) have emerged as an indispensable tool to draw meaningful insights and improve decision making in drug discovery. Thanks to the advancements in AI and ML algorithms, now the AI/ML-driven solutions have an unprecedented potential to accelerate the process of CNS drug discovery with better success rate. In this review, we comprehensively summarize AI/ML-powered pharmaceutical discovery efforts and their implementations in the CNS area. After introducing the AI/ML models as well as the conceptualization and data preparation, we outline the applications of AI/ML technologies to several key procedures in drug discovery, including target identification, compound screening, hit/lead generation and optimization, drug response and synergy prediction, de novo drug design, and drug repurposing. We review the current state-of-the-art of AI/ML-guided CNS drug discovery, focusing on blood-brain barrier permeability prediction and implementation into therapeutic discovery for neurological diseases. Finally, we discuss the major challenges and limitations of current approaches and possible future directions that may provide resolutions to these difficulties.
Collapse
Affiliation(s)
- Sezen Vatansever
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Avner Schlessinger
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Daniel Wacker
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - H. Ümit Kaniskan
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jian Jin
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Therapeutics DiscoveryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ming‐Ming Zhou
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological Sciences, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Bin Zhang
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mount Sinai Center for Transformative Disease ModelingIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
61
|
Zhang H, Chen Y, Li F. Predicting Anticancer Drug Response With Deep Learning Constrained by Signaling Pathways. FRONTIERS IN BIOINFORMATICS 2021; 1:639349. [PMID: 36303766 PMCID: PMC9581064 DOI: 10.3389/fbinf.2021.639349] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Thanks to the availability of multiomics data of individual cancer patients, precision medicine or personalized medicine is becoming a promising treatment for individual cancer patients. However, the association patterns, that is, the mechanism of response (MoR) between large-scale multiomics features and drug response are complex and heterogeneous and remain unclear. Although there are existing computational models for predicting drug response using the high-dimensional multiomics features, it remains challenging to uncover the complex molecular mechanism of drug responses. To reduce the number of predictors/features and make the model more interpretable, in this study, 46 signaling pathways were used to build a deep learning model constrained by signaling pathways, consDeepSignaling, for anti–drug response prediction. Multiomics data, like gene expression and copy number variation, of individual genes can be integrated naturally in this model. The signaling pathway–constrained deep learning model was evaluated using the multiomics data of ∼1000 cancer cell lines in the Broad Institute Cancer Cell Line Encyclopedia (CCLE) database and the corresponding drug–cancer cell line response data set in the Genomics of Drug Sensitivity in Cancer (GDSC) database. The evaluation results showed that the proposed model outperformed the existing deep neural network models. Also, the model interpretation analysis indicated the distinctive patterns of importance of signaling pathways in anticancer drug response prediction.
Collapse
Affiliation(s)
- Heming Zhang
- Department of Computer Science, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Heming Zhang, ; Yixin Chen, ; Fuhai Li,
| | - Yixin Chen
- Department of Computer Science, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Heming Zhang, ; Yixin Chen, ; Fuhai Li,
| | - Fuhai Li
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Heming Zhang, ; Yixin Chen, ; Fuhai Li,
| |
Collapse
|
62
|
Wang Y, Yang Y, Chen S, Wang J. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Brief Bioinform 2021; 22:6210072. [PMID: 33822890 DOI: 10.1093/bib/bbab048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/16/2021] [Accepted: 01/30/2021] [Indexed: 12/11/2022] Open
Abstract
Recent pharmacogenomic studies that generate sequencing data coupled with pharmacological characteristics for patient-derived cancer cell lines led to large amounts of multi-omics data for precision cancer medicine. Among various obstacles hindering clinical translation, lacking effective methods for multimodal and multisource data integration is becoming a bottleneck. Here we proposed DeepDRK, a machine learning framework for deciphering drug response through kernel-based data integration. To transfer information among different drugs and cancer types, we trained deep neural networks on more than 20 000 pan-cancer cell line-anticancer drug pairs. These pairs were characterized by kernel-based similarity matrices integrating multisource and multi-omics data including genomics, transcriptomics, epigenomics, chemical properties of compounds and known drug-target interactions. Applied to benchmark cancer cell line datasets, our model surpassed previous approaches with higher accuracy and better robustness. Then we applied our model on newly established patient-derived cancer cell lines and achieved satisfactory performance with AUC of 0.84 and AUPRC of 0.77. Moreover, DeepDRK was used to predict clinical response of cancer patients. Notably, the prediction of DeepDRK correlated well with clinical outcome of patients and revealed multiple drug repurposing candidates. In sum, DeepDRK provided a computational method to predict drug response of cancer cells from integrating pharmacogenomic datasets, offering an alternative way to prioritize repurposing drugs in precision cancer treatment. The DeepDRK is freely available via https://github.com/wangyc82/DeepDRK.
Collapse
Affiliation(s)
- Yongcui Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota at Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China
| | - Yingxi Yang
- Department of Chemical and Biological Engineering at The Hong Kong University of Science and Technology, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota at Institute of Sanjiangyuan National Park, Chinese Academy of Sciences, China
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience at The Hong Kong University of Science and Technology, China
| |
Collapse
|
63
|
Lloyd JP, Soellner MB, Merajver SD, Li JZ. Impact of between-tissue differences on pan-cancer predictions of drug sensitivity. PLoS Comput Biol 2021; 17:e1008720. [PMID: 33630864 PMCID: PMC7906305 DOI: 10.1371/journal.pcbi.1008720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/18/2021] [Indexed: 11/24/2022] Open
Abstract
Increased availability of drug response and genomics data for many tumor cell lines has accelerated the development of pan-cancer prediction models of drug response. However, it is unclear how much between-tissue differences in drug response and molecular characteristics may contribute to pan-cancer predictions. Also unknown is whether the performance of pan-cancer models could vary by cancer type. Here, we built a series of pan-cancer models using two datasets containing 346 and 504 cell lines, each with MEK inhibitor (MEKi) response and mRNA expression, point mutation, and copy number variation data, and found that, while the tissue-level drug responses are accurately predicted (between-tissue ρ = 0.88–0.98), only 5 of 10 cancer types showed successful within-tissue prediction performance (within-tissue ρ = 0.11–0.64). Between-tissue differences make substantial contributions to the performance of pan-cancer MEKi response predictions, as exclusion of between-tissue signals leads to a decrease in Spearman’s ρ from a range of 0.43–0.62 to 0.30–0.51. In practice, joint analysis of multiple cancer types usually has a larger sample size, hence greater power, than for one cancer type; and we observe that higher accuracy of pan-cancer prediction of MEKi response is almost entirely due to the sample size advantage. Success of pan-cancer prediction reveals how drug response in different cancers may invoke shared regulatory mechanisms despite tissue-specific routes of oncogenesis, yet predictions in different cancer types require flexible incorporation of between-cancer and within-cancer signals. As most datasets in genome sciences contain multiple levels of heterogeneity, careful parsing of group characteristics and within-group, individual variation is essential when making robust inference. One of the central goals for precision oncology is to tailor treatment of individual tumors by their molecular characteristics. While drug response predictions have traditionally been sought within each cancer type, it has long been hoped to develop more robust predictions by jointly considering diverse cancer types. While such pan-cancer approaches have improved in recent years, it remains unclear whether between-tissue differences are contributing to the reported pan-cancer prediction performance. This concern stems from the observation that, when cancer types differ in both molecular features and drug response, strong predictive information can come mainly from differences among tissue types. Our study finds that both between- and within-cancer type signals provide substantial contributions to pan-cancer drug response prediction models, and about half of the cancer types examined are poorly predicted despite strong overall performance across all cancer types. We also find that pan-cancer prediction models perform similarly or better than cancer type-specific models, and in many cases the advantage of pan-cancer models is due to the larger number of samples available for pan-cancer analysis. Our results highlight tissue-of-origin as a key consideration for pan-cancer drug response prediction models, and recommend cancer type-specific considerations when translating pan-cancer prediction models for clinical use.
Collapse
Affiliation(s)
- John P Lloyd
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew B Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
64
|
Tang YC, Gottlieb A. Explainable drug sensitivity prediction through cancer pathway enrichment. Sci Rep 2021; 11:3128. [PMID: 33542382 PMCID: PMC7862690 DOI: 10.1038/s41598-021-82612-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Computational approaches to predict drug sensitivity can promote precision anticancer therapeutics. Generalizable and explainable models are of critical importance for translation to guide personalized treatment and are often overlooked in favor of prediction performance. Here, we propose PathDSP: a pathway-based model for drug sensitivity prediction that integrates chemical structure information with enrichment of cancer signaling pathways across drug-associated genes, gene expression, mutation and copy number variation data to predict drug response on the Genomics of Drug Sensitivity in Cancer dataset. Using a deep neural network, we outperform state-of-the-art deep learning models, while demonstrating good generalizability a separate dataset of the Cancer Cell Line Encyclopedia as well as provide explainable results, demonstrated through case studies that are in line with current knowledge. Additionally, our pathway-based model achieved a good performance when predicting unseen drugs and cells, with potential utility for drug development and for guiding individualized medicine.
Collapse
Affiliation(s)
- Yi-Ching Tang
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
65
|
Kamada M, Okuno Y. AIM in Genomic Basis of Medicine: Applications. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
66
|
Ahmed KT, Park S, Jiang Q, Yeu Y, Hwang T, Zhang W. Network-based drug sensitivity prediction. BMC Med Genomics 2020; 13:193. [PMID: 33371891 PMCID: PMC7771088 DOI: 10.1186/s12920-020-00829-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural network models. However, the modular relations among genomic features have been largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug sensitivity prediction is investigated in this study. Methods In this paper, we first introduce a network-based method to identify representative features for drug response prediction by using the gene co-expression network. Then, two graph-based neural network models are proposed and both models integrate gene network information directly into neural network for outcome prediction. Next, we present a large-scale comparative study among the proposed network-based methods, canonical prediction algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study are available at https://github.com/compbiolabucf/drug-sensitivity-prediction. Results In the comparison of different feature selection methods and prediction methods on a non-small cell lung cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the network-based feature selection method improves the prediction performance compared to Pearson correlation coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network models; (3) the proposed graph-based neural network models show better prediction performance compared to deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug’s mechanism of action. Conclusions Network-based feature selection method and prediction models improve the performance of the drug response prediction. The relations between the genomic features are more robust and stable compared to the correlation between each individual genomic feature and the drug response in high dimension and low sample size genomic datasets.
Collapse
Affiliation(s)
- Khandakar Tanvir Ahmed
- Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA
| | - Sunho Park
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9211 Euclid Ave, Cleveland, OH, 44106, USA
| | - Qibing Jiang
- Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA
| | - Yunku Yeu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9211 Euclid Ave, Cleveland, OH, 44106, USA
| | - TaeHyun Hwang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9211 Euclid Ave, Cleveland, OH, 44106, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA.
| |
Collapse
|