51
|
Heckel R, Jacob M, Chaudhari A, Perlman O, Shimron E. Deep learning for accelerated and robust MRI reconstruction. MAGMA (NEW YORK, N.Y.) 2024; 37:335-368. [PMID: 39042206 DOI: 10.1007/s10334-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024]
Abstract
Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a critical tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction, and focuses on various DL approaches and architectures designed to improve image quality, accelerate scans, and address data-related challenges. It explores end-to-end neural networks, pre-trained and generative models, and self-supervised methods, and highlights their contributions to overcoming traditional MRI limitations. It also discusses the role of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling biases. Drawing on the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices.
Collapse
Affiliation(s)
- Reinhard Heckel
- Department of computer engineering, Technical University of Munich, Munich, Germany
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa, 52242, IA, USA
| | - Akshay Chaudhari
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, CA, USA
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shimron
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa, 3200004, Israel.
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200004, Israel.
| |
Collapse
|
52
|
Liu Y, Sun K, Li C, Li Q, Cui Z, Cheng J, Liang D. Adaptive High-frequency Enhancement Network with Equilibrated Mechanism for MR Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039914 DOI: 10.1109/embc53108.2024.10782846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Unrolling is a promising deep learning (DL)-based technique in accelerating Magnetic Resonance (MR) imaging. It incorporates deep learning networks into the iterative optimization algorithm, enabling the flexible and adaptive learning of undefined parameters or functions. However, unrolling methods employ a limited number of iterations owing to memory constraints and exhibit detail loss, which hinders their overall performance and practical applications. In this work, we propose a novel network that adaptively improves the high-frequency feature representation and integrates a deep equilibrium model for fixed-point iteration to enhance the robustness of the reconstruction. Experimental results demonstrate superior performance of the proposed method in detail preservation, generalization across various test datasets, and robustness against noise interference and number of iterations.
Collapse
|
53
|
Yoo RE, Choi SH. Deep Learning-based Image Enhancement Techniques for Fast MRI in Neuroimaging. Magn Reson Med Sci 2024; 23:341-351. [PMID: 38684425 PMCID: PMC11234952 DOI: 10.2463/mrms.rev.2023-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Despite its superior soft tissue contrast and non-invasive nature, MRI requires long scan times due to its intrinsic signal acquisition principles, a main drawback which technological advancements in MRI have been focused on. In particular, scan time reduction is a natural requirement in neuroimaging due to detailed structures requiring high resolution imaging and often volumetric (3D) acquisitions, and numerous studies have recently attempted to harness deep learning (DL) technology in enabling scan time reduction and image quality improvement. Various DL-based image reconstruction products allow for additional scan time reduction on top of existing accelerated acquisition methods without compromising the image quality.
Collapse
Affiliation(s)
- Roh-Eul Yoo
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| |
Collapse
|
54
|
Bian W, Jang A, Liu F. Improving quantitative MRI using self-supervised deep learning with model reinforcement: Demonstration for rapid T1 mapping. Magn Reson Med 2024; 92:98-111. [PMID: 38342980 PMCID: PMC11055673 DOI: 10.1002/mrm.30045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE This paper proposes a novel self-supervised learning framework that uses model reinforcement, REference-free LAtent map eXtraction with MOdel REinforcement (RELAX-MORE), for accelerated quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll an iterative model-based qMRI reconstruction into a deep learning framework, enabling accelerated MR parameter maps that are highly accurate and robust. METHODS Unlike conventional deep learning methods which require large amounts of training data, RELAX-MORE is a subject-specific method that can be trained on single-subject data through self-supervised learning, making it accessible and practically applicable to many qMRI studies. Using quantitativeT 1 $$ {\mathrm{T}}_1 $$ mapping as an example, the proposed method was applied to the brain, knee and phantom data. RESULTS The proposed method generates high-quality MR parameter maps that correct for image artifacts, removes noise, and recovers image features in regions of imperfect image conditions. Compared with other state-of-the-art conventional and deep learning methods, RELAX-MORE significantly improves efficiency, accuracy, robustness, and generalizability for rapid MR parameter mapping. CONCLUSION This work demonstrates the feasibility of a new self-supervised learning method for rapid MR parameter mapping, that is readily adaptable to the clinical translation of qMRI.
Collapse
Affiliation(s)
- Wanyu Bian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Xu D, Miao X, Liu H, Scholey JE, Yang W, Feng M, Ohliger M, Lin H, Lao Y, Yang Y, Sheng K. Paired conditional generative adversarial network for highly accelerated liver 4D MRI. Phys Med Biol 2024; 69:10.1088/1361-6560/ad5489. [PMID: 38838679 PMCID: PMC11212820 DOI: 10.1088/1361-6560/ad5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Purpose.4D MRI with high spatiotemporal resolution is desired for image-guided liver radiotherapy. Acquiring densely sampling k-space data is time-consuming. Accelerated acquisition with sparse samples is desirable but often causes degraded image quality or long reconstruction time. We propose the Reconstruct Paired Conditional Generative Adversarial Network (Re-Con-GAN) to shorten the 4D MRI reconstruction time while maintaining the reconstruction quality.Methods.Patients who underwent free-breathing liver 4D MRI were included in the study. Fully- and retrospectively under-sampled data at 3, 6 and 10 times (3×, 6× and 10×) were first reconstructed using the nuFFT algorithm. Re-Con-GAN then trained input and output in pairs. Three types of networks, ResNet9, UNet and reconstruction swin transformer (RST), were explored as generators. PatchGAN was selected as the discriminator. Re-Con-GAN processed the data (3D +t) as temporal slices (2D +t). A total of 48 patients with 12 332 temporal slices were split into training (37 patients with 10 721 slices) and test (11 patients with 1611 slices). Compressed sensing (CS) reconstruction with spatiotemporal sparsity constraint was used as a benchmark. Reconstructed image quality was further evaluated with a liver gross tumor volume (GTV) localization task using Mask-RCNN trained from a separate 3D static liver MRI dataset (70 patients; 103 GTV contours).Results.Re-Con-GAN consistently achieved comparable/better PSNR, SSIM, and RMSE scores compared to CS/UNet models. The inference time of Re-Con-GAN, UNet and CS are 0.15, 0.16, and 120 s. The GTV detection task showed that Re-Con-GAN and CS, compared to UNet, better improved the dice score (3× Re-Con-GAN 80.98%; 3× CS 80.74%; 3× UNet 79.88%) of unprocessed under-sampled images (3× 69.61%).Conclusion.A generative network with adversarial training is proposed with promising and efficient reconstruction results demonstrated on an in-house dataset. The rapid and qualitative reconstruction of 4D liver MR has the potential to facilitate online adaptive MR-guided radiotherapy for liver cancer.
Collapse
Affiliation(s)
- Di Xu
- Department of Radiation Oncology, University of California, San Francisco
| | | | - Hengjie Liu
- Department of Radiation Oncology, University of California, Los Angeles
| | - Jessica E. Scholey
- Department of Radiation Oncology, University of California, San Francisco
| | - Wensha Yang
- Department of Radiation Oncology, University of California, San Francisco
| | - Mary Feng
- Department of Radiation Oncology, University of California, San Francisco
| | - Michael Ohliger
- Department of Radiology and Biomedical Engineering, University of California, San Francisco
| | - Hui Lin
- Department of Radiation Oncology, University of California, San Francisco
| | - Yi Lao
- Department of Radiation Oncology, University of California, Los Angeles
| | - Yang Yang
- Department of Radiology and Biomedical Engineering, University of California, San Francisco
| | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco
| |
Collapse
|
56
|
Tan F, Delfino JG, Zeng R. Evaluating Machine Learning-Based MRI Reconstruction Using Digital Image Quality Phantoms. Bioengineering (Basel) 2024; 11:614. [PMID: 38927849 PMCID: PMC11200466 DOI: 10.3390/bioengineering11060614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Quantitative and objective evaluation tools are essential for assessing the performance of machine learning (ML)-based magnetic resonance imaging (MRI) reconstruction methods. However, the commonly used fidelity metrics, such as mean squared error (MSE), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR), often fail to capture fundamental and clinically relevant MR image quality aspects. To address this, we propose evaluation of ML-based MRI reconstruction using digital image quality phantoms and automated evaluation methods. Our phantoms are based upon the American College of Radiology (ACR) large physical phantom but created in k-space to simulate their MR images, and they can vary in object size, signal-to-noise ratio, resolution, and image contrast. Our evaluation pipeline incorporates evaluation metrics of geometric accuracy, intensity uniformity, percentage ghosting, sharpness, signal-to-noise ratio, resolution, and low-contrast detectability. We demonstrate the utility of our proposed pipeline by assessing an example ML-based reconstruction model across various training and testing scenarios. The performance results indicate that training data acquired with a lower undersampling factor and coils of larger anatomical coverage yield a better performing model. The comprehensive and standardized pipeline introduced in this study can help to facilitate a better understanding of the performance and guide future development and advancement of ML-based reconstruction algorithms.
Collapse
Affiliation(s)
| | | | - Rongping Zeng
- Division of Imaging, Diagnostics and Software Reliability (DIDSR), Office of Science and Engineering Laboratories (OSEL), Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration (U.S. FDA), Silver Spring, MD 20993, USA; (F.T.); (J.G.D.)
| |
Collapse
|
57
|
Zhou X, Balachandra AR, Romano MF, Chin SP, Au R, Kolachalama VB. Adversarial Learning for MRI Reconstruction and Classification of Cognitively Impaired Individuals. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:83169-83182. [PMID: 39148927 PMCID: PMC11326336 DOI: 10.1109/access.2024.3408840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Game theory-inspired deep learning using a generative adversarial network provides an environment to competitively interact and accomplish a goal. In the context of medical imaging, most work has focused on achieving single tasks such as improving image resolution, segmenting images, and correcting motion artifacts. We developed a dual-objective adversarial learning framework that simultaneously 1) reconstructs higher quality brain magnetic resonance images (MRIs) that 2) retain disease-specific imaging features critical for predicting progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD). We obtained 3-Tesla, T1-weighted brain MRIs of participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI, N=342) and the National Alzheimer's Coordinating Center (NACC, N = 190) datasets. We simulated MRIs with missing data by removing 50% of sagittal slices from the original scans (i.e., diced scans). The generator was trained to reconstruct brain MRIs using the diced scans as input. We introduced a classifier into the GAN architecture to discriminate between stable (i.e., sMCI) and progressive MCI (i.e., pMCI) based on the generated images to facilitate encoding of disease-related information during reconstruction. The framework was trained using ADNI data and externally validated on NACC data. In the NACC cohort, generated images had better image quality than the diced scans (Structural similarity (SSIM) index: 0.553 ± 0.116 versus 0.348 ± 0.108). Furthermore, a classifier utilizing the generated images distinguished pMCI from sMCI more accurately than with the diced scans (F1-score: 0.634 ± 0.019 versus 0.573 ± 0.028). Competitive deep learning has potential to facilitate disease-oriented image reconstruction in those at risk of developing Alzheimer's disease.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Akshara R Balachandra
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael F Romano
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
| | - Sang Peter Chin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Boston University Alzheimer's Disease Research Center, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Vijaya B Kolachalama
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Boston University Alzheimer's Disease Research Center, Boston, MA 02118, USA
- Department of Computer Science, Faculty of Computing and Data Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
58
|
Tan J, Zhang X, Qing C, Xu X. Fourier Domain Robust Denoising Decomposition and Adaptive Patch MRI Reconstruction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7299-7311. [PMID: 37015441 DOI: 10.1109/tnnls.2022.3222394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The sparsity of the Fourier transform domain has been applied to magnetic resonance imaging (MRI) reconstruction in k -space. Although unsupervised adaptive patch optimization methods have shown promise compared to data-driven-based supervised methods, the following challenges exist in MRI reconstruction: 1) in previous k -space MRI reconstruction tasks, MRI with noise interference in the acquisition process is rarely considered. 2) Differences in transform domains should be resolved to achieve the high-quality reconstruction of low undersampled MRI data. 3) Robust patch dictionary learning problems are usually nonconvex and NP-hard, and alternate minimization methods are often computationally expensive. In this article, we propose a method for Fourier domain robust denoising decomposition and adaptive patch MRI reconstruction (DDAPR). DDAPR is a two-step optimization method for MRI reconstruction in the presence of noise and low undersampled data. It includes the low-rank and sparse denoising reconstruction model (LSDRM) and the robust dictionary learning reconstruction model (RDLRM). In the first step, we propose LSDRM for different domains. For the optimization solution, the proximal gradient method is used to optimize LSDRM by singular value decomposition and soft threshold algorithms. In the second step, we propose RDLRM, which is an effective adaptive patch method by introducing a low-rank and sparse penalty adaptive patch dictionary and using a sparse rank-one matrix to approximate the undersampled data. Then, the block coordinate descent (BCD) method is used to optimize the variables. The BCD optimization process involves valid closed-form solutions. Extensive numerical experiments show that the proposed method has a better performance than previous methods in image reconstruction based on compressed sensing or deep learning.
Collapse
|
59
|
Zhao X, Yang T, Li B, Yang A, Yan Y, Jiao C. DiffGAN: An adversarial diffusion model with local transformer for MRI reconstruction. Magn Reson Imaging 2024; 109:108-119. [PMID: 38492787 DOI: 10.1016/j.mri.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Magnetic resonance imaging (MRI) is non-invasive and crucial for clinical diagnosis, but it has long acquisition time and aliasing artifacts. Accelerated imaging techniques can effectively reduce the scanning time of MRI, thereby decreasing the anxiety and discomfort of patients. Vision Transformer (ViT) based methods have greatly improved MRI image reconstruction, but their computational complexity and memory requirements for the self-attention mechanism grow quadratically with image resolution, which limits their use for high resolution images. In addition, the current generative adversarial networks in MRI reconstruction are difficult to train stably. To address these problems, we propose a Local Vision Transformer (LVT) based adversarial Diffusion model (Diff-GAN) for accelerating MRI reconstruction. We employ a generative adversarial network (GAN) as the reverse diffusion model to enable large diffusion steps. In the forward diffusion module, we use a diffusion process to generate Gaussian mixture distribution noise, which mitigates the gradient vanishing issue in GAN training. This network leverages the LVT module with the local self-attention, which can capture high-quality local features and detailed information. We evaluate our method on four datasets: IXI, MICCAI 2013, MRNet and FastMRI, and demonstrate that Diff-GAN can outperform several state-of-the-art GAN-based methods for MRI reconstruction.
Collapse
Affiliation(s)
- Xiang Zhao
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Tiejun Yang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China; Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, China; Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), Zhengzhou, Henan, China.
| | - Bingjie Li
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Aolin Yang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanghui Yan
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chunxia Jiao
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
60
|
Wang B, Lian Y, Xiong X, Zhou H, Liu Z, Zhou X. DCT-net: Dual-domain cross-fusion transformer network for MRI reconstruction. Magn Reson Imaging 2024; 107:69-79. [PMID: 38237693 DOI: 10.1016/j.mri.2024.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Current challenges in Magnetic Resonance Imaging (MRI) include long acquisition times and motion artifacts. To address these issues, under-sampled k-space acquisition has gained popularity as a fast imaging method. However, recovering fine details from under-sampled data remains challenging. In this study, we introduce a pioneering deep learning approach, namely DCT-Net, designed for dual-domain MRI reconstruction. DCT-Net seamlessly integrates information from the image domain (IRM) and frequency domain (FRM), utilizing a novel Cross Attention Block (CAB) and Fusion Attention Block (FAB). These innovative blocks enable precise feature extraction and adaptive fusion across both domains, resulting in a significant enhancement of the reconstructed image quality. The adaptive interaction and fusion mechanisms of CAB and FAB contribute to the method's effectiveness in capturing distinctive features and optimizing image reconstruction. Comprehensive ablation studies have been conducted to assess the contributions of these modules to reconstruction quality and accuracy. Experimental results on the FastMRI (2023) and Calgary-Campinas datasets (2021) demonstrate the superiority of our MRI reconstruction framework over other typical methods (most are illustrated in 2023 or 2022) in both qualitative and quantitative evaluations. This holds for knee and brain datasets under 4× and 8× accelerated imaging scenarios.
Collapse
Affiliation(s)
- Bin Wang
- National Institute of Metrology, Beijing 100029, China; Key Laboratory of Metrology Digitalization and Digital Metrology for State Market Regulation, Beijing 100029, China; School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yusheng Lian
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Xingchuang Xiong
- National Institute of Metrology, Beijing 100029, China; Key Laboratory of Metrology Digitalization and Digital Metrology for State Market Regulation, Beijing 100029, China.
| | - Han Zhou
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zilong Liu
- National Institute of Metrology, Beijing 100029, China; Key Laboratory of Metrology Digitalization and Digital Metrology for State Market Regulation, Beijing 100029, China.
| | - Xiaohao Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.
| |
Collapse
|
61
|
Huang J, Ferreira PF, Wang L, Wu Y, Aviles-Rivero AI, Schönlieb CB, Scott AD, Khalique Z, Dwornik M, Rajakulasingam R, De Silva R, Pennell DJ, Nielles-Vallespin S, Yang G. Deep learning-based diffusion tensor cardiac magnetic resonance reconstruction: a comparison study. Sci Rep 2024; 14:5658. [PMID: 38454072 PMCID: PMC10920645 DOI: 10.1038/s41598-024-55880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
In vivo cardiac diffusion tensor imaging (cDTI) is a promising Magnetic Resonance Imaging (MRI) technique for evaluating the microstructure of myocardial tissue in living hearts, providing insights into cardiac function and enabling the development of innovative therapeutic strategies. However, the integration of cDTI into routine clinical practice poses challenging due to the technical obstacles involved in the acquisition, such as low signal-to-noise ratio and prolonged scanning times. In this study, we investigated and implemented three different types of deep learning-based MRI reconstruction models for cDTI reconstruction. We evaluated the performance of these models based on the reconstruction quality assessment, the diffusion tensor parameter assessment as well as the computational cost assessment. Our results indicate that the models discussed in this study can be applied for clinical use at an acceleration factor (AF) of × 2 and × 4 , with the D5C5 model showing superior fidelity for reconstruction and the SwinMR model providing higher perceptual scores. There is no statistical difference from the reference for all diffusion tensor parameters at AF × 2 or most DT parameters at AF × 4 , and the quality of most diffusion tensor parameter maps is visually acceptable. SwinMR is recommended as the optimal approach for reconstruction at AF × 2 and AF × 4 . However, we believe that the models discussed in this study are not yet ready for clinical use at a higher AF. At AF × 8 , the performance of all models discussed remains limited, with only half of the diffusion tensor parameters being recovered to a level with no statistical difference from the reference. Some diffusion tensor parameter maps even provide wrong and misleading information.
Collapse
Grants
- Wellcome Trust
- RG/19/1/34160 British Heart Foundation
- This study was supported in part by the UKRI Future Leaders Fellowship (MR/V023799/1), BHF (RG/19/1/34160), the ERC IMI (101005122), the H2020 (952172), the MRC (MC/PC/21013), the Royal Society (IEC/NSFC/211235), the NVIDIA Academic Hardware Grant Program, EPSRC (EP/V029428/1, EP/S026045/1, EP/T003553/1, EP/N014588/1, EP/T017961/1), and the Cambridge Mathematics of Information in Healthcare Hub (CMIH) Partnership Fund.
Collapse
Affiliation(s)
- Jiahao Huang
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK.
- Bioengineering Department and Imperial-X, Imperial College London, London, W12 7SL, UK.
| | - Pedro F Ferreira
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Lichao Wang
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Department of Computing, Imperial College London, London, UK
| | - Yinzhe Wu
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Angelica I Aviles-Rivero
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Andrew D Scott
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Zohya Khalique
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Maria Dwornik
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Ramyah Rajakulasingam
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Ranil De Silva
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Dudley J Pennell
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Sonia Nielles-Vallespin
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK.
- Bioengineering Department and Imperial-X, Imperial College London, London, W12 7SL, UK.
| |
Collapse
|
62
|
Li B, Hu W, Feng CM, Li Y, Liu Z, Xu Y. Multi-Contrast Complementary Learning for Accelerated MR Imaging. IEEE J Biomed Health Inform 2024; 28:1436-1447. [PMID: 38157466 DOI: 10.1109/jbhi.2023.3348328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Thanks to its powerful ability to depict high-resolution anatomical information, magnetic resonance imaging (MRI) has become an essential non-invasive scanning technique in clinical practice. However, excessive acquisition time often leads to the degradation of image quality and psychological discomfort among subjects, hindering its further popularization. Besides reconstructing images from the undersampled protocol itself, multi-contrast MRI protocols bring promising solutions by leveraging additional morphological priors for the target modality. Nevertheless, previous multi-contrast techniques mainly adopt a simple fusion mechanism that inevitably ignores valuable knowledge. In this work, we propose a novel multi-contrast complementary information aggregation network named MCCA, aiming to exploit available complementary representations fully to reconstruct the undersampled modality. Specifically, a multi-scale feature fusion mechanism has been introduced to incorporate complementary-transferable knowledge into the target modality. Moreover, a hybrid convolution transformer block was developed to extract global-local context dependencies simultaneously, which combines the advantages of CNNs while maintaining the merits of Transformers. Compared to existing MRI reconstruction methods, the proposed method has demonstrated its superiority through extensive experiments on different datasets under different acceleration factors and undersampling patterns.
Collapse
|
63
|
Maramraju S, Kowalczewski A, Kaza A, Liu X, Singaraju JP, Albert MV, Ma Z, Yang H. AI-organoid integrated systems for biomedical studies and applications. Bioeng Transl Med 2024; 9:e10641. [PMID: 38435826 PMCID: PMC10905559 DOI: 10.1002/btm2.10641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024] Open
Abstract
In this review, we explore the growing role of artificial intelligence (AI) in advancing the biomedical applications of human pluripotent stem cell (hPSC)-derived organoids. Stem cell-derived organoids, these miniature organ replicas, have become essential tools for disease modeling, drug discovery, and regenerative medicine. However, analyzing the vast and intricate datasets generated from these organoids can be inefficient and error-prone. AI techniques offer a promising solution to efficiently extract insights and make predictions from diverse data types generated from microscopy images, transcriptomics, metabolomics, and proteomics. This review offers a brief overview of organoid characterization and fundamental concepts in AI while focusing on a comprehensive exploration of AI applications in organoid-based disease modeling and drug evaluation. It provides insights into the future possibilities of AI in enhancing the quality control of organoid fabrication, label-free organoid recognition, and three-dimensional image reconstruction of complex organoid structures. This review presents the challenges and potential solutions in AI-organoid integration, focusing on the establishment of reliable AI model decision-making processes and the standardization of organoid research.
Collapse
Affiliation(s)
- Sudhiksha Maramraju
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Texas Academy of Mathematics and ScienceUniversity of North TexasDentonTexasUSA
| | - Andrew Kowalczewski
- Department of Biomedical & Chemical EngineeringSyracuse UniversitySyracuseNew YorkUSA
- BioInspired Institute for Material and Living SystemsSyracuse UniversitySyracuseNew YorkUSA
| | - Anirudh Kaza
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Texas Academy of Mathematics and ScienceUniversity of North TexasDentonTexasUSA
| | - Xiyuan Liu
- Department of Mechanical & Aerospace EngineeringSyracuse UniversitySyracuseNew YorkUSA
| | - Jathin Pranav Singaraju
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Texas Academy of Mathematics and ScienceUniversity of North TexasDentonTexasUSA
| | - Mark V. Albert
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Department of Computer Science and EngineeringUniversity of North TexasDentonTexasUSA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse UniversitySyracuseNew YorkUSA
- BioInspired Institute for Material and Living SystemsSyracuse UniversitySyracuseNew YorkUSA
| | - Huaxiao Yang
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
| |
Collapse
|
64
|
Vega F, Addeh A, Ganesh A, Smith EE, MacDonald ME. Image Translation for Estimating Two-Dimensional Axial Amyloid-Beta PET From Structural MRI. J Magn Reson Imaging 2024; 59:1021-1031. [PMID: 37921361 DOI: 10.1002/jmri.29070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Amyloid-beta and brain atrophy are hallmarks for Alzheimer's Disease that can be targeted with positron emission tomography (PET) and MRI, respectively. MRI is cheaper, less-invasive, and more available than PET. There is a known relationship between amyloid-beta and brain atrophy, meaning PET images could be inferred from MRI. PURPOSE To build an image translation model using a Conditional Generative Adversarial Network able to synthesize Amyloid-beta PET images from structural MRI. STUDY TYPE Retrospective. POPULATION Eight hundred eighty-two adults (348 males/534 females) with different stages of cognitive decline (control, mild cognitive impairment, moderate cognitive impairment, and severe cognitive impairment). Five hundred fifty-two subjects for model training and 331 for testing (80%:20%). FIELD STRENGTH/SEQUENCE 3 T, T1-weighted structural (T1w). ASSESSMENT The testing cohort was used to evaluate the performance of the model using the Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR), comparing the likeness of the overall synthetic PET images created from structural MRI with the overall true PET images. SSIM was computed in the overall image to include the luminance, contrast, and structural similarity components. Experienced observers reviewed the images for quality, performance and tried to determine if they could tell the difference between real and synthetic images. STATISTICAL TESTS Pixel wise Pearson correlation was significant, and had an R2 greater than 0.96 in example images. From blinded readings, a Pearson Chi-squared test showed that there was no significant difference between the real and synthetic images by the observers (P = 0.68). RESULTS A high degree of likeness across the evaluation set, which had a mean SSIM = 0.905 and PSNR = 2.685. The two observers were not able to determine the difference between the real and synthetic images, with accuracies of 54% and 46%, respectively. CONCLUSION Amyloid-beta PET images can be synthesized from structural MRI with a high degree of similarity to the real PET images. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Fernando Vega
- Department of Biomedical, University of Calgary, Calgary, Alberta, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Abdoljalil Addeh
- Department of Biomedical, University of Calgary, Calgary, Alberta, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aravind Ganesh
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Eric E Smith
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - M Ethan MacDonald
- Department of Biomedical, University of Calgary, Calgary, Alberta, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
65
|
Oh C, Chung JY, Han Y. Domain transformation learning for MR image reconstruction from dual domain input. Comput Biol Med 2024; 170:108098. [PMID: 38330825 DOI: 10.1016/j.compbiomed.2024.108098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Medical images are acquired through diverse imaging systems, with each system employing specific image reconstruction techniques to transform sensor data into images. In MRI, sensor data (i.e., k-space data) is encoded in the frequency domain, and fully sampled k-space data is transformed into an image using the inverse Fourier Transform. However, in efforts to reduce acquisition time, k-space is often subsampled, necessitating a sophisticated image reconstruction method beyond a simple transform. The proposed approach addresses this challenge by training a model to learn domain transform, generating the final image directly from undersampled k-space input. Significantly, to improve the stability of reconstruction from randomly subsampled k-space data, folded images are incorporated as supplementary inputs in the dual-input ETER-net. Moreover, modifications are made to the formation of inputs for the bi-RNN stages to accommodate non-fixed k-space trajectories. Experimental validation, encompassing both regular and irregular sampling trajectories, validates the method's effectiveness. The results demonstrated superior performance, measured by PSNR, SSIM, and VIF, across acceleration factors of 4 and 8. In summary, the dual-input ETER-net emerges as an effective both regular and irregular sampling trajectories, and accommodating diverse acceleration factors.
Collapse
Affiliation(s)
- Changheun Oh
- Neuroscience Research Institute, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea
| | - Jun-Young Chung
- Neuroscience Research Institute, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon, 21565, Republic of Korea.
| | - Yeji Han
- Neuroscience Research Institute, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea; Department of Biomedical Engineering, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
66
|
Avidan N, Freiman M. MA-RECON: Mask-aware deep-neural-network for robust fast MRI k-space interpolation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107942. [PMID: 38039921 DOI: 10.1016/j.cmpb.2023.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE High-quality reconstruction of MRI images from under-sampled 'k-space' data, which is in the Fourier domain, is crucial for shortening MRI acquisition times and ensuring superior temporal resolution. Over recent years, a wealth of deep neural network (DNN) methods have emerged, aiming to tackle the complex, ill-posed inverse problem linked to this process. However, their instability against variations in the acquisition process and anatomical distribution exposes a deficiency in the generalization of relevant physical models within these DNN architectures. The goal of our work is to enhance the generalization capabilities of DNN methods for k-space interpolation by introducing 'MA-RECON', an innovative mask-aware DNN architecture and associated training method. METHODS Unlike preceding approaches, our 'MA-RECON' architecture encodes not only the observed data but also the under-sampling mask within the model structure. It implements a tailored training approach that leverages data generated with a variety of under-sampling masks to stimulate the model's generalization of the under-sampled MRI reconstruction problem. Therefore, effectively represents the associated inverse problem, akin to the classical compressed sensing approach. RESULTS The benefits of our MA-RECON approach were affirmed through rigorous testing with the widely accessible fastMRI dataset. Compared to standard DNN methods and DNNs trained with under-sampling mask augmentation, our approach demonstrated superior generalization capabilities. This resulted in a considerable improvement in robustness against variations in both the acquisition process and anatomical distribution, especially in regions with pathology. CONCLUSION In conclusion, our mask-aware strategy holds promise for enhancing the generalization capacity and robustness of DNN-based methodologies for MRI reconstruction from undersampled k-space data. Code is available in the following link: https://github.com/nitzanavidan/PD_Recon.
Collapse
Affiliation(s)
- Nitzan Avidan
- Faculty of Biomedical Engineering, Technion IIT, Haifa, Israel.
| | - Moti Freiman
- Faculty of Biomedical Engineering, Technion IIT, Haifa, Israel.
| |
Collapse
|
67
|
Hossain MB, Shinde RK, Oh S, Kwon KC, Kim N. A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction. SENSORS (BASEL, SWITZERLAND) 2024; 24:753. [PMID: 38339469 PMCID: PMC10856856 DOI: 10.3390/s24030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Deep learning (DL) in magnetic resonance imaging (MRI) shows excellent performance in image reconstruction from undersampled k-space data. Artifact-free and high-quality MRI reconstruction is essential for ensuring accurate diagnosis, supporting clinical decision-making, enhancing patient safety, facilitating efficient workflows, and contributing to the validity of research studies and clinical trials. Recently, deep learning has demonstrated several advantages over conventional MRI reconstruction methods. Conventional methods rely on manual feature engineering to capture complex patterns and are usually computationally demanding due to their iterative nature. Conversely, DL methods use neural networks with hundreds of thousands of parameters and automatically learn relevant features and representations directly from the data. Nevertheless, there are some limitations to DL-based techniques concerning MRI reconstruction tasks, such as the need for large, labeled datasets, the possibility of overfitting, and the complexity of model training. Researchers are striving to develop DL models that are more efficient, adaptable, and capable of providing valuable information for medical practitioners. We provide a comprehensive overview of the current developments and clinical uses by focusing on state-of-the-art DL architectures and tools used in MRI reconstruction. This study has three objectives. Our main objective is to describe how various DL designs have changed over time and talk about cutting-edge tactics, including their advantages and disadvantages. Hence, data pre- and post-processing approaches are assessed using publicly available MRI datasets and source codes. Secondly, this work aims to provide an extensive overview of the ongoing research on transformers and deep convolutional neural networks for rapid MRI reconstruction. Thirdly, we discuss several network training strategies, like supervised, unsupervised, transfer learning, and federated learning for rapid and efficient MRI reconstruction. Consequently, this article provides significant resources for future improvement of MRI data pre-processing and fast image reconstruction.
Collapse
Affiliation(s)
- Md. Biddut Hossain
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Rupali Kiran Shinde
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Sukhoon Oh
- Research Equipment Operation Department, Korea Basic Science Institute, Cheongju-si 28119, Chungcheongbuk-do, Republic of Korea;
| | - Ki-Chul Kwon
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Nam Kim
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| |
Collapse
|
68
|
Zhang F, Shuai Z, Kuang K, Wu F, Zhuang Y, Xiao J. Unified fair federated learning for digital healthcare. PATTERNS (NEW YORK, N.Y.) 2024; 5:100907. [PMID: 38264718 PMCID: PMC10801255 DOI: 10.1016/j.patter.2023.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
Federated learning (FL) is a promising approach for healthcare institutions to train high-quality medical models collaboratively while protecting sensitive data privacy. However, FL models encounter fairness issues at diverse levels, leading to performance disparities across different subpopulations. To address this, we propose Federated Learning with Unified Fairness Objective (FedUFO), a unified framework consolidating diverse fairness levels within FL. By leveraging distributionally robust optimization and a unified uncertainty set, it ensures consistent performance across all subpopulations and enhances the overall efficacy of FL in healthcare and other domains while maintaining accuracy levels comparable with those of existing methods. Our model was validated by applying it to four digital healthcare tasks using real-world datasets in federated settings. Our collaborative machine learning paradigm not only promotes artificial intelligence in digital healthcare but also fosters social equity by embodying fairness.
Collapse
Affiliation(s)
- Fengda Zhang
- Zhejiang University, 38 Zheda Road, Hangzhou 310058, Zhejiang, China
| | - Zitao Shuai
- Zhejiang University, 38 Zheda Road, Hangzhou 310058, Zhejiang, China
| | - Kun Kuang
- Zhejiang University, 38 Zheda Road, Hangzhou 310058, Zhejiang, China
| | - Fei Wu
- Zhejiang University, 38 Zheda Road, Hangzhou 310058, Zhejiang, China
| | - Yueting Zhuang
- Zhejiang University, 38 Zheda Road, Hangzhou 310058, Zhejiang, China
| | - Jun Xiao
- Zhejiang University, 38 Zheda Road, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
69
|
Ekanayake M, Pawar K, Harandi M, Egan G, Chen Z. McSTRA: A multi-branch cascaded swin transformer for point spread function-guided robust MRI reconstruction. Comput Biol Med 2024; 168:107775. [PMID: 38061154 DOI: 10.1016/j.compbiomed.2023.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Deep learning MRI reconstruction methods are often based on Convolutional neural network (CNN) models; however, they are limited in capturing global correlations among image features due to the intrinsic locality of the convolution operation. Conversely, the recent vision transformer models (ViT) are capable of capturing global correlations by applying self-attention operations on image patches. Nevertheless, the existing transformer models for MRI reconstruction rarely leverage the physics of MRI. In this paper, we propose a novel physics-based transformer model titled, the Multi-branch Cascaded Swin Transformers (McSTRA) for robust MRI reconstruction. McSTRA combines several interconnected MRI physics-related concepts with the Swin transformers: it exploits global MRI features via the shifted window self-attention mechanism; it extracts MRI features belonging to different spectral components via a multi-branch setup; it iterates between intermediate de-aliasing and data consistency via a cascaded network with intermediate loss computations; furthermore, we propose a point spread function-guided positional embedding generation mechanism for the Swin transformers which exploit the spread of the aliasing artifacts for effective reconstruction. With the combination of all these components, McSTRA outperforms the state-of-the-art methods while demonstrating robustness in adversarial conditions such as higher accelerations, noisy data, different undersampling protocols, out-of-distribution data, and abnormalities in anatomy.
Collapse
Affiliation(s)
- Mevan Ekanayake
- Monash Biomedical Imaging, Monash University, Australia; Department of Electrical and Computer Systems Engineering, Monash University, Australia.
| | - Kamlesh Pawar
- Monash Biomedical Imaging, Monash University, Australia
| | - Mehrtash Harandi
- Department of Electrical and Computer Systems Engineering, Monash University, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Australia; School of Psychological Sciences, Monash University, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Australia; Department of Data Science and AI, Monash University, Australia
| |
Collapse
|
70
|
Cao C, Huang W, Hu F, Gao X. Hierarchical neural architecture search with adaptive global-local feature learning for Magnetic Resonance Image reconstruction. Comput Biol Med 2024; 168:107774. [PMID: 38039897 DOI: 10.1016/j.compbiomed.2023.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Neural architecture search (NAS) has been introduced into the design of deep neural network architectures for Magnetic Resonance Imaging (MRI) reconstruction since NAS-based methods can acquire the complex network architecture automatically without professional designing experience and improve the model's generalization ability. However, current NAS-based MRI reconstruction methods suffer from a lack of efficient operators in the search space, which leads to challenges in effectively recovering high-frequency details. This limitation is primarily due to the prevalent use of convolution operators in the current search space, which struggle to capture both global and local features of MR images simultaneously, resulting in insufficient information utilization. To address this issue, a generative adversarial network (GAN) based model is proposed to reconstruct the MR image from under-sampled K-space data. Firstly, parameterized global and local feature learning modules at multiple scales are added into the search space to improve the capability of recovering high-frequency details. Secondly, to mitigate the increased search time caused by the augmented search space, a hierarchical NAS is designed to learn the global-local feature learning modules that enable the reconstruction network to learn global and local information of MR images at different scales adaptively. Thirdly, to reduce the number of network parameters and computational complexity, the standard operations in global-local feature learning modules are replaced with lightweight operations. Finally, experiments on several publicly available brain MRI image datasets evaluate the performance of the proposed method. Compared to the state-of-the-art MRI reconstruction methods, the proposed method yields better reconstruction results in terms of peak signal-to-noise ratio and structural similarity at a lower computational cost. Additionally, our reconstruction results are validated through a brain tumor classification task, affirming the practicability of the proposed method. Our code is available at https://github.com/wwHwo/HNASMRI.
Collapse
Affiliation(s)
- Chunhong Cao
- MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, 411100, China
| | - Wenwei Huang
- MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, 411100, China
| | - Fang Hu
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, Chenzhou, 423043, China.
| | - Xieping Gao
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
71
|
Li Z, Xiao S, Wang C, Li H, Zhao X, Zhou Q, Rao Q, Fang Y, Xie J, Shi L, Ye C, Zhou X. Complementation-reinforced network for integrated reconstruction and segmentation of pulmonary gas MRI with high acceleration. Med Phys 2024; 51:378-393. [PMID: 37401205 DOI: 10.1002/mp.16591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/17/2023] [Accepted: 06/10/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Hyperpolarized (HP) gas MRI enables the clear visualization of lung structure and function. Clinically relevant biomarkers, such as ventilated defect percentage (VDP) derived from this modality can quantify lung ventilation function. However, long imaging time leads to image quality degradation and causes discomfort to the patients. Although accelerating MRI by undersampling k-space data is available, accurate reconstruction and segmentation of lung images are quite challenging at high acceleration factors. PURPOSE To simultaneously improve the performance of reconstruction and segmentation of pulmonary gas MRI at high acceleration factors by effectively utilizing the complementary information in different tasks. METHODS A complementation-reinforced network is proposed, which takes the undersampled images as input and outputs both the reconstructed images and the segmentation results of lung ventilation defects. The proposed network comprises a reconstruction branch and a segmentation branch. To effectively exploit the complementary information, several strategies are designed in the proposed network. Firstly, both branches adopt the encoder-decoder architecture, and their encoders are designed to share convolutional weights for facilitating knowledge transfer. Secondly, a designed feature-selecting block discriminately feeds shared features into decoders of both branches, which can adaptively pick suitable features for each task. Thirdly, the segmentation branch incorporates the lung mask obtained from the reconstructed images to enhance the accuracy of the segmentation results. Lastly, the proposed network is optimized by a tailored loss function that efficiently combines and balances these two tasks, in order to achieve mutual benefits. RESULTS Experimental results on the pulmonary HP 129 Xe MRI dataset (including 43 healthy subjects and 42 patients) show that the proposed network outperforms state-of-the-art methods at high acceleration factors (4, 5, and 6). The peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and Dice score of the proposed network are enhanced to 30.89, 0.875, and 0.892, respectively. Additionally, the VDP obtained from the proposed network has good correlations with that obtained from fully sampled images (r = 0.984). At the highest acceleration factor of 6, the proposed network promotes PSNR, SSIM, and Dice score by 7.79%, 5.39%, and 9.52%, respectively, in comparison to the single-task models. CONCLUSION The proposed method effectively enhances the reconstruction and segmentation performance at high acceleration factors up to 6. It facilitates fast and high-quality lung imaging and segmentation, and provides valuable support in the clinical diagnosis of lung diseases.
Collapse
Affiliation(s)
- Zimeng Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuchao Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Qiuchen Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Yuan Fang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Junshuai Xie
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Lei Shi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaohui Ye
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| |
Collapse
|
72
|
Feuerriegel GC, Weiss K, Tu Van A, Leonhardt Y, Neumann J, Gassert FT, Haas Y, Schwarz M, Makowski MR, Woertler K, Karampinos DC, Gersing AS. Deep-learning-based image quality enhancement of CT-like MR imaging in patients with suspected traumatic shoulder injury. Eur J Radiol 2024; 170:111246. [PMID: 38056345 DOI: 10.1016/j.ejrad.2023.111246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE To evaluate the diagnostic performance of CT-like MR images reconstructed with an algorithm combining compressed sense (CS) with deep learning (DL) in patients with suspected osseous shoulder injury compared to conventional CS-reconstructed images. METHODS Thirty-two patients (12 women, mean age 46 ± 14.9 years) with suspected traumatic shoulder injury were prospectively enrolled into the study. All patients received MR imaging of the shoulder, including a CT-like 3D T1-weighted gradient-echo (T1 GRE) sequence and in case of suspected fracture a conventional CT. An automated DL-based algorithm, combining CS and DL (CS DL) was used to reconstruct images of the same k-space data as used for CS reconstructions. Two musculoskeletal radiologists assessed the images for osseous pathologies, image quality and visibility of anatomical landmarks using a 5-point Likert scale. Moreover, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. RESULTS Compared to CT, all acute fractures (n = 23) and osseous pathologies were detected accurately on the CS only and CS DL images with almost perfect agreement between the CS DL and CS only images (κ 0.95 (95 %confidence interval 0.82-1.00). Image quality as well as the visibility of the fracture lines, bone fragments and glenoid borders were overall rated significantly higher for the CS DL reconstructions than the CS only images (CS DL range 3.7-4.9 and CS only range 3.2-3.8, P = 0.01-0.04). Significantly higher SNR and CNR values were observed for the CS DL reconstructions (P = 0.02-0.03). CONCLUSION Evaluation of traumatic shoulder pathologies is feasible using a DL-based algorithm for reconstruction of high-resolution CT-like MR imaging.
Collapse
Affiliation(s)
- Georg C Feuerriegel
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | | | - Anh Tu Van
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Yannik Leonhardt
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Jan Neumann
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Musculoskeletal Radiology Section, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Florian T Gassert
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Yannick Haas
- Department of Trauma Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Markus Schwarz
- Department of Trauma Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Marcus R Makowski
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Klaus Woertler
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Musculoskeletal Radiology Section, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Dimitrios C Karampinos
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Alexandra S Gersing
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Neuroradiology, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
73
|
Bran Lorenzana M, Chandra SS, Liu F. AliasNet: Alias artefact suppression network for accelerated phase-encode MRI. Magn Reson Imaging 2024; 105:17-28. [PMID: 37839621 DOI: 10.1016/j.mri.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Sparse reconstruction is an important aspect of MRI, helping to reduce acquisition time and improve spatial-temporal resolution. Popular methods are based mostly on compressed sensing (CS), which relies on the random sampling of k-space to produce incoherent (noise-like) artefacts. Due to hardware constraints, 1D Cartesian phase-encode under-sampling schemes are popular for 2D CS-MRI. However, 1D under-sampling limits 2D incoherence between measurements, yielding structured aliasing artefacts (ghosts) that may be difficult to remove assuming a 2D sparsity model. Reconstruction algorithms typically deploy direction-insensitive 2D regularisation for these direction-associated artefacts. Recognising that phase-encode artefacts can be separated into contiguous 1D signals, we develop two decoupling techniques that enable explicit 1D regularisation and leverage the excellent 1D incoherence characteristics. We also derive a combined 1D + 2D reconstruction technique that takes advantage of spatial relationships within the image. Experiments conducted on retrospectively under-sampled brain and knee data demonstrate that combination of the proposed 1D AliasNet modules with existing 2D deep learned (DL) recovery techniques leads to an improvement in image quality. We also find AliasNet enables a superior scaling of performance compared to increasing the size of the original 2D network layers. AliasNet therefore improves the regularisation of aliasing artefacts arising from phase-encode under-sampling, by tailoring the network architecture to account for their expected appearance. The proposed 1D + 2D approach is compatible with any existing 2D DL recovery technique deployed for this application.
Collapse
Affiliation(s)
- Marlon Bran Lorenzana
- School of Electrical Engineering and Computer Science, University of Queensland, Australia.
| | - Shekhar S Chandra
- School of Electrical Engineering and Computer Science, University of Queensland, Australia
| | - Feng Liu
- School of Electrical Engineering and Computer Science, University of Queensland, Australia
| |
Collapse
|
74
|
Li Z, Wang Y, Zhang J, Wu W, Yu H. Two-and-a-half order score-based model for solving 3D ill-posed inverse problems. Comput Biol Med 2024; 168:107819. [PMID: 38064853 DOI: 10.1016/j.compbiomed.2023.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are crucial technologies in the field of medical imaging. Score-based models demonstrated effectiveness in addressing different inverse problems encountered in the field of CT and MRI, such as sparse-view CT and fast MRI reconstruction. However, these models face challenges in achieving accurate three dimensional (3D) volumetric reconstruction. The existing score-based models predominantly concentrate on reconstructing two-dimensional (2D) data distributions, resulting in inconsistencies between adjacent slices in the reconstructed 3D volumetric images. To overcome this limitation, we propose a novel two-and-a-half order score-based model (TOSM). During the training phase, our TOSM learns data distributions in 2D space, simplifying the training process compared to working directly on 3D volumes. However, during the reconstruction phase, the TOSM utilizes complementary scores along three directions (sagittal, coronal, and transaxial) to achieve a more precise reconstruction. The development of TOSM is built on robust theoretical principles, ensuring its reliability and efficacy. Through extensive experimentation on large-scale sparse-view CT and fast MRI datasets, our method achieved state-of-the-art (SOTA) results in solving 3D ill-posed inverse problems, averaging a 1.56 dB peak signal-to-noise ratio (PSNR) improvement over existing sparse-view CT reconstruction methods across 29 views and 0.87 dB PSNR improvement over existing fast MRI reconstruction methods with × 2 acceleration. In summary, TOSM significantly addresses the issue of inconsistency in 3D ill-posed problems by modeling the distribution of 3D data rather than 2D distribution which has achieved remarkable results in both CT and MRI reconstruction tasks.
Collapse
Affiliation(s)
- Zirong Li
- Department of Biomedical Engineering, Sun-Yat-sen University, Shenzhen Campus, Shenzhen, China
| | - Yanyang Wang
- Department of Biomedical Engineering, Sun-Yat-sen University, Shenzhen Campus, Shenzhen, China
| | - Jianjia Zhang
- Department of Biomedical Engineering, Sun-Yat-sen University, Shenzhen Campus, Shenzhen, China
| | - Weiwen Wu
- Department of Biomedical Engineering, Sun-Yat-sen University, Shenzhen Campus, Shenzhen, China.
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| |
Collapse
|
75
|
Gao M, Fessler JA, Chan HP. Model-based deep CNN-regularized reconstruction for digital breast tomosynthesis with a task-based CNN image assessment approach. Phys Med Biol 2023; 68:245024. [PMID: 37988758 PMCID: PMC10719554 DOI: 10.1088/1361-6560/ad0eb4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Objective. Digital breast tomosynthesis (DBT) is a quasi-three-dimensional breast imaging modality that improves breast cancer screening and diagnosis because it reduces fibroglandular tissue overlap compared with 2D mammography. However, DBT suffers from noise and blur problems that can lower the detectability of subtle signs of cancers such as microcalcifications (MCs). Our goal is to improve the image quality of DBT in terms of image noise and MC conspicuity.Approach. We proposed a model-based deep convolutional neural network (deep CNN or DCNN) regularized reconstruction (MDR) for DBT. It combined a model-based iterative reconstruction (MBIR) method that models the detector blur and correlated noise of the DBT system and the learning-based DCNN denoiser using the regularization-by-denoising framework. To facilitate the task-based image quality assessment, we also proposed two DCNN tools for image evaluation: a noise estimator (CNN-NE) trained to estimate the root-mean-square (RMS) noise of the images, and an MC classifier (CNN-MC) as a DCNN model observer to evaluate the detectability of clustered MCs in human subject DBTs.Main results. We demonstrated the efficacies of CNN-NE and CNN-MC on a set of physical phantom DBTs. The MDR method achieved low RMS noise and the highest detection area under the receiver operating characteristic curve (AUC) rankings evaluated by CNN-NE and CNN-MC among the reconstruction methods studied on an independent test set of human subject DBTs.Significance. The CNN-NE and CNN-MC may serve as a cost-effective surrogate for human observers to provide task-specific metrics for image quality comparisons. The proposed reconstruction method shows the promise of combining physics-based MBIR and learning-based DCNNs for DBT image reconstruction, which may potentially lead to lower dose and higher sensitivity and specificity for MC detection in breast cancer screening and diagnosis.
Collapse
Affiliation(s)
- Mingjie Gao
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jeffrey A Fessler
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Heang-Ping Chan
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
76
|
He Z, Zhu YN, Chen Y, Chen Y, He Y, Sun Y, Wang T, Zhang C, Sun B, Yan F, Zhang X, Sun QF, Yang GZ, Feng Y. A deep unrolled neural network for real-time MRI-guided brain intervention. Nat Commun 2023; 14:8257. [PMID: 38086851 PMCID: PMC10716161 DOI: 10.1038/s41467-023-43966-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Accurate navigation and targeting are critical for neurological interventions including biopsy and deep brain stimulation. Real-time image guidance further improves surgical planning and MRI is ideally suited for both pre- and intra-operative imaging. However, balancing spatial and temporal resolution is a major challenge for real-time interventional MRI (i-MRI). Here, we proposed a deep unrolled neural network, dubbed as LSFP-Net, for real-time i-MRI reconstruction. By integrating LSFP-Net and a custom-designed, MR-compatible interventional device into a 3 T MRI scanner, a real-time MRI-guided brain intervention system is proposed. The performance of the system was evaluated using phantom and cadaver studies. 2D/3D real-time i-MRI was achieved with temporal resolutions of 80/732.8 ms, latencies of 0.4/3.66 s including data communication, processing and reconstruction time, and in-plane spatial resolution of 1 × 1 mm2. The results demonstrated that the proposed method enables real-time monitoring of the remote-controlled brain intervention, and showed the potential to be readily integrated into diagnostic scanners for image-guided neurosurgery.
Collapse
Affiliation(s)
- Zhao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Nan Zhu
- School of Mathematical Sciences, MOE-LSC and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuchen He
- Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Wang
- Department of Neurosurgery, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengcheng Zhang
- Department of Neurosurgery, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoqun Zhang
- School of Mathematical Sciences, MOE-LSC and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China
| | - Qing-Fang Sun
- Department of Neurosurgery, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Guang-Zhong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuan Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Radiology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
77
|
Guan Y, Li Y, Liu R, Meng Z, Li Y, Ying L, Du YP, Liang ZP. Subspace Model-Assisted Deep Learning for Improved Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3833-3846. [PMID: 37682643 DOI: 10.1109/tmi.2023.3313421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Image reconstruction from limited and/or sparse data is known to be an ill-posed problem and a priori information/constraints have played an important role in solving the problem. Early constrained image reconstruction methods utilize image priors based on general image properties such as sparsity, low-rank structures, spatial support bound, etc. Recent deep learning-based reconstruction methods promise to produce even higher quality reconstructions by utilizing more specific image priors learned from training data. However, learning high-dimensional image priors requires huge amounts of training data that are currently not available in medical imaging applications. As a result, deep learning-based reconstructions often suffer from two known practical issues: a) sensitivity to data perturbations (e.g., changes in data sampling scheme), and b) limited generalization capability (e.g., biased reconstruction of lesions). This paper proposes a new method to address these issues. The proposed method synergistically integrates model-based and data-driven learning in three key components. The first component uses the linear vector space framework to capture global dependence of image features; the second exploits a deep network to learn the mapping from a linear vector space to a nonlinear manifold; the third is an unrolling-based deep network that captures local residual features with the aid of a sparsity model. The proposed method has been evaluated with magnetic resonance imaging data, demonstrating improved reconstruction in the presence of data perturbation and/or novel image features. The method may enhance the practical utility of deep learning-based image reconstruction.
Collapse
|
78
|
Aggarwal K, Manso Jimeno M, Ravi KS, Gonzalez G, Geethanath S. Developing and deploying deep learning models in brain magnetic resonance imaging: A review. NMR IN BIOMEDICINE 2023; 36:e5014. [PMID: 37539775 DOI: 10.1002/nbm.5014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Magnetic resonance imaging (MRI) of the brain has benefited from deep learning (DL) to alleviate the burden on radiologists and MR technologists, and improve throughput. The easy accessibility of DL tools has resulted in a rapid increase of DL models and subsequent peer-reviewed publications. However, the rate of deployment in clinical settings is low. Therefore, this review attempts to bring together the ideas from data collection to deployment in the clinic, building on the guidelines and principles that accreditation agencies have espoused. We introduce the need for and the role of DL to deliver accessible MRI. This is followed by a brief review of DL examples in the context of neuropathologies. Based on these studies and others, we collate the prerequisites to develop and deploy DL models for brain MRI. We then delve into the guiding principles to develop good machine learning practices in the context of neuroimaging, with a focus on explainability. A checklist based on the United States Food and Drug Administration's good machine learning practices is provided as a summary of these guidelines. Finally, we review the current challenges and future opportunities in DL for brain MRI.
Collapse
Affiliation(s)
- Kunal Aggarwal
- Accessible MR Laboratory, Biomedical Engineering and Imaging Institute, Department of Diagnostic, Molecular and Interventional Radiology, Mount Sinai Hospital, New York, USA
- Department of Electrical and Computer Engineering, Technical University Munich, Munich, Germany
| | - Marina Manso Jimeno
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
- Columbia Magnetic Resonance Research Center, Columbia University in the City of New York, New York, New York, USA
| | - Keerthi Sravan Ravi
- Department of Biomedical Engineering, Columbia University in the City of New York, New York, New York, USA
- Columbia Magnetic Resonance Research Center, Columbia University in the City of New York, New York, New York, USA
| | - Gilberto Gonzalez
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sairam Geethanath
- Accessible MR Laboratory, Biomedical Engineering and Imaging Institute, Department of Diagnostic, Molecular and Interventional Radiology, Mount Sinai Hospital, New York, USA
| |
Collapse
|
79
|
Yan Y, Yang T, Zhao X, Jiao C, Yang A, Miao J. DC-SiamNet: Deep contrastive Siamese network for self-supervised MRI reconstruction. Comput Biol Med 2023; 167:107619. [PMID: 37925909 DOI: 10.1016/j.compbiomed.2023.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Reconstruction methods based on deep learning have greatly shortened the data acquisition time of magnetic resonance imaging (MRI). However, these methods typically utilize massive fully sampled data for supervised training, restricting their application in certain clinical scenarios and posing challenges to the reconstruction effect when high-quality MR images are unavailable. Recently, self-supervised methods have been developed that only undersampled MRI images participate in the network training. Nevertheless, due to the lack of complete referable MR image data, self-supervised reconstruction is prone to produce incorrect structure contents, such as unnatural texture details and over-smoothed tissue sites. To solve this problem, we propose a self-supervised Deep Contrastive Siamese Network (DC-SiamNet) for fast MR imaging. First, DC-SiamNet performs the reconstruction with a Siamese unrolled structure and obtains visual representations in different iterative phases. Particularly, an attention-weighted average pooling module is employed at the bottleneck layer of the U-shape regularization unit, which can effectively aggregate valuable local information of the underlying feature map in the generated representation vector. Then, a novel hybrid loss function is designed to drive the self-supervised reconstruction and contrastive learning simultaneously by forcing the output consistency across different branches in the frequency domain, the image domain, and the latent space. The proposed method is extensively evaluated with different sampling patterns on the IXI brain dataset and the MRINet knee dataset. Experimental results show that DC-SiamNet can achieve 0.93 in structural similarity and 33.984 dB in peak signal-to-noise ratio on the IXI brain dataset under 8x acceleration. It has better reconstruction accuracy than other methods, and the performance is close to the corresponding model trained with full supervision, especially when the sampling rate is low. In addition, generalization experiments verify that our method has a strong cross-domain reconstruction ability for different contrast brain images.
Collapse
Affiliation(s)
- Yanghui Yan
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Tiejun Yang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China; Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, China; Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), Zhengzhou, Henan, China.
| | - Xiang Zhao
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Chunxia Jiao
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Aolin Yang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianyu Miao
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
80
|
Lee EJ, Hwang J, Park S, Bae SH, Lim J, Chang YW, Hong SS, Oh E, Nam BD, Jeong J, Sung JK, Nickel D. Utility of accelerated T2-weighted turbo spin-echo imaging with deep learning reconstruction in female pelvic MRI: a multi-reader study. Eur Radiol 2023; 33:7697-7706. [PMID: 37314472 DOI: 10.1007/s00330-023-09781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To determine the clinical feasibility of T2-weighted turbo spin-echo (T2-TSE) imaging with deep learning reconstruction (DLR) in female pelvic MRI compared with conventional T2 TSE in terms of image quality and scan time. METHODS Between May 2021 and September 2021, 52 women (mean age, 44 years ± 12) who underwent 3-T pelvic MRI with additional T2-TSE using a DLR algorithm were included in this single-center prospective study with patient's informed consents. Conventional, DLR, and DLR T2-TSE images with reduced scan times were independently assessed and compared by four radiologists. The overall image quality, differentiation of anatomic details, lesion conspicuity, and artifacts were evaluated using a 5-point scale. Inter-observer agreement of the qualitative scores was compared and reader protocol preferences were then evaluated. RESULTS In the qualitative analysis of all readers, fast DLR T2-TSE showed significantly better overall image quality, differentiation of anatomic regions, lesion conspicuity, and lesser artifacts than conventional T2-TSE and DLR T2-TSE, despite approximately 50% reduction in scan time (all p < 0.05). The inter-reader agreement for the qualitative analysis was moderate to good. All readers preferred DLR over conventional T2-TSE regardless of scan time and preferred fast DLR T2-TSE (57.7-78.8%), except for one who preferred DLR over fast DLR T2-TSE (53.8% vs. 46.1%). CONCLUSION In female pelvic MRI, image quality and accelerated image acquisition for T2-TSE can be significantly improved by using DLR compared to conventional T2-TSE. Fast DLR T2-TSE was non-inferior to DLR T2-TSE in terms of reader preference and image quality. CLINICAL RELEVANCE STATEMENT DLR of T2-TSE in female pelvic MRI enables fast imaging along with maintaining optimal image quality compared with parallel imaging-based conventional T2-TSE. KEY POINTS • Conventional T2 turbo spin-echo based on parallel imaging has limitations for accelerated image acquisition while maintaining good image quality. • Deep learning image reconstruction showed better image quality in both images obtained using the same or accelerated image acquisition parameters compared with conventional T2 turbo spin-echo in female pelvic MRI. • Deep learning image reconstruction enables accelerated image acquisition while maintaining good image quality in the T2-TSE of female pelvic MRI.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesakwan-Ro, Yongsan-Ku, Seoul, 04401, Korea
| | - Jiyoung Hwang
- Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesakwan-Ro, Yongsan-Ku, Seoul, 04401, Korea.
| | - Suyeon Park
- Department of Biostatistics, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Sung Hwan Bae
- Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesakwan-Ro, Yongsan-Ku, Seoul, 04401, Korea
| | - Jiyun Lim
- Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesakwan-Ro, Yongsan-Ku, Seoul, 04401, Korea
| | - Yun-Woo Chang
- Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesakwan-Ro, Yongsan-Ku, Seoul, 04401, Korea
| | - Seong Sook Hong
- Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesakwan-Ro, Yongsan-Ku, Seoul, 04401, Korea
| | - Eunsun Oh
- Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesakwan-Ro, Yongsan-Ku, Seoul, 04401, Korea
| | - Bo Da Nam
- Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesakwan-Ro, Yongsan-Ku, Seoul, 04401, Korea
| | - Jewon Jeong
- Department of Radiology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesakwan-Ro, Yongsan-Ku, Seoul, 04401, Korea
| | | | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| |
Collapse
|
81
|
Liu H, Deng D, Zeng W, Huang Y, Zheng C, Li X, Li H, Xie C, He H, Xu G. AI-assisted compressed sensing and parallel imaging sequences for MRI of patients with nasopharyngeal carcinoma: comparison of their capabilities in terms of examination time and image quality. Eur Radiol 2023; 33:7686-7696. [PMID: 37219618 PMCID: PMC10598173 DOI: 10.1007/s00330-023-09742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE To compare examination time and image quality between artificial intelligence (AI)-assisted compressed sensing (ACS) technique and parallel imaging (PI) technique in MRI of patients with nasopharyngeal carcinoma (NPC). METHODS Sixty-six patients with pathologically confirmed NPC underwent nasopharynx and neck examination using a 3.0-T MRI system. Transverse T2-weighted fast spin-echo (FSE) sequence, transverse T1-weighted FSE sequence, post-contrast transverse T1-weighted FSE sequence, and post-contrast coronal T1-weighted FSE were obtained by both ACS and PI techniques, respectively. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and duration of scanning of both sets of images analyzed by ACS and PI techniques were compared. The images from the ACS and PI techniques were scored for lesion detection, margin sharpness of lesions, artifacts, and overall image quality using the 5-point Likert scale. RESULTS The examination time with ACS technique was significantly shorter than that with PI technique (p < 0.0001). The comparison of SNR and CNR showed that ACS technique was significantly superior with PI technique (p < 0.005). Qualitative image analysis showed that the scores of lesion detection, margin sharpness of lesions, artifacts, and overall image quality were higher in the ACS sequences than those in the PI sequences (p < 0.0001). Inter-observer agreement was evaluated for all qualitative indicators for each method, in which the results showed satisfactory-to-excellent agreement (p < 0.0001). CONCLUSION Compared with the PI technique, the ACS technique for MR examination of NPC can not only shorten scanning time but also improve image quality. CLINICAL RELEVANCE STATEMENT The artificial intelligence (AI)-assisted compressed sensing (ACS) technique shortens examination time for patients with nasopharyngeal carcinoma, while improving the image quality and examination success rate, which will benefit more patients. KEY POINTS • Compared with the parallel imaging (PI) technique, the artificial intelligence (AI)-assisted compressed sensing (ACS) technique not only reduced examination time, but also improved image quality. • Artificial intelligence (AI)-assisted compressed sensing (ACS) pulls the state-of-the-art deep learning technique into the reconstruction procedure and helps find an optimal balance of imaging speed and image quality.
Collapse
Affiliation(s)
- Haibin Liu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Dele Deng
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Weilong Zeng
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yingyi Huang
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chunling Zheng
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xinyang Li
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Hui Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chuanmiao Xie
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Haoqiang He
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Guixiao Xu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
82
|
Wang CJ, Rost NS, Golland P. Spatial-Intensity Transforms for Medical Image-to-Image Translation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3362-3373. [PMID: 37285247 PMCID: PMC10651358 DOI: 10.1109/tmi.2023.3283948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Image-to-image translation has seen major advances in computer vision but can be difficult to apply to medical images, where imaging artifacts and data scarcity degrade the performance of conditional generative adversarial networks. We develop the spatial-intensity transform (SIT) to improve output image quality while closely matching the target domain. SIT constrains the generator to a smooth spatial transform (diffeomorphism) composed with sparse intensity changes. SIT is a lightweight, modular network component that is effective on various architectures and training schemes. Relative to unconstrained baselines, this technique significantly improves image fidelity, and our models generalize robustly to different scanners. Additionally, SIT provides a disentangled view of anatomical and textural changes for each translation, making it easier to interpret the model's predictions in terms of physiological phenomena. We demonstrate SIT on two tasks: predicting longitudinal brain MRIs in patients with various stages of neurodegeneration, and visualizing changes with age and stroke severity in clinical brain scans of stroke patients. On the first task, our model accurately forecasts brain aging trajectories without supervised training on paired scans. On the second task, it captures associations between ventricle expansion and aging, as well as between white matter hyperintensities and stroke severity. As conditional generative models become increasingly versatile tools for visualization and forecasting, our approach demonstrates a simple and powerful technique for improving robustness, which is critical for translation to clinical settings. Source code is available at github.com/clintonjwang/spatial-intensity-transforms.
Collapse
|
83
|
Hong GS, Jang M, Kyung S, Cho K, Jeong J, Lee GY, Shin K, Kim KD, Ryu SM, Seo JB, Lee SM, Kim N. Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning. Korean J Radiol 2023; 24:1061-1080. [PMID: 37724586 PMCID: PMC10613849 DOI: 10.3348/kjr.2023.0393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.
Collapse
Affiliation(s)
- Gil-Sun Hong
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Miso Jang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sunggu Kyung
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyungjin Cho
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiheon Jeong
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Grace Yoojin Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Keewon Shin
- Laboratory for Biosignal Analysis and Perioperative Outcome Research, Biomedical Engineering Center, Asan Institute of Lifesciences, Asan Medical Center, Seoul, Republic of Korea
| | - Ki Duk Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Min Ryu
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
84
|
Yi Q, Fang F, Zhang G, Zeng T. Frequency Learning via Multi-Scale Fourier Transformer for MRI Reconstruction. IEEE J Biomed Health Inform 2023; 27:5506-5517. [PMID: 37656654 DOI: 10.1109/jbhi.2023.3311189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Since Magnetic Resonance Imaging (MRI) requires a long acquisition time, various methods were proposed to reduce the time, but they ignored the frequency information and non-local similarity, so that they failed to reconstruct images with a clear structure. In this article, we propose Frequency Learning via Multi-scale Fourier Transformer for MRI Reconstruction (FMTNet), which focuses on repairing the low-frequency and high-frequency information. Specifically, FMTNet is composed of a high-frequency learning branch (HFLB) and a low-frequency learning branch (LFLB). Meanwhile, we propose a Multi-scale Fourier Transformer (MFT) as the basic module to learn the non-local information. Unlike normal Transformers, MFT adopts Fourier convolution to replace self-attention to efficiently learn global information. Moreover, we further introduce a multi-scale learning and cross-scale linear fusion strategy in MFT to interact information between features of different scales and strengthen the representation of features. Compared with normal Transformers, the proposed MFT occupies fewer computing resources. Based on MFT, we design a Residual Multi-scale Fourier Transformer module as the main component of HFLB and LFLB. We conduct several experiments under different acceleration rates and different sampling patterns on different datasets, and the experiment results show that our method is superior to the previous state-of-the-art method.
Collapse
|
85
|
Zhang Q, Cukur T, Greenspan H, Yang G. Editorial: Generative adversarial networks in cardiovascular research. Front Cardiovasc Med 2023; 10:1307812. [PMID: 37937290 PMCID: PMC10627220 DOI: 10.3389/fcvm.2023.1307812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 11/09/2023] Open
Affiliation(s)
- Qiang Zhang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Tolga Cukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Türkiye
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Türkiye
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Department of Radiology, Icahn School of Medicine, Mount Sinai, New York, NY, United States
| | - Guang Yang
- Bioengineering Department and Imperial-X, Imperial College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Cardiovascular Research Centre, Royal Brompton Hospital, London, United Kingdom
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
86
|
Noordman CR, Yakar D, Bosma J, Simonis FFJ, Huisman H. Complexities of deep learning-based undersampled MR image reconstruction. Eur Radiol Exp 2023; 7:58. [PMID: 37789241 PMCID: PMC10547669 DOI: 10.1186/s41747-023-00372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/01/2023] [Indexed: 10/05/2023] Open
Abstract
Artificial intelligence has opened a new path of innovation in magnetic resonance (MR) image reconstruction of undersampled k-space acquisitions. This review offers readers an analysis of the current deep learning-based MR image reconstruction methods. The literature in this field shows exponential growth, both in volume and complexity, as the capabilities of machine learning in solving inverse problems such as image reconstruction are explored. We review the latest developments, aiming to assist researchers and radiologists who are developing new methods or seeking to provide valuable feedback. We shed light on key concepts by exploring the technical intricacies of MR image reconstruction, highlighting the importance of raw datasets and the difficulty of evaluating diagnostic value using standard metrics.Relevance statement Increasingly complex algorithms output reconstructed images that are difficult to assess for robustness and diagnostic quality, necessitating high-quality datasets and collaboration with radiologists.Key points• Deep learning-based image reconstruction algorithms are increasing both in complexity and performance.• The evaluation of reconstructed images may mistake perceived image quality for diagnostic value.• Collaboration with radiologists is crucial for advancing deep learning technology.
Collapse
Affiliation(s)
- Constant Richard Noordman
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands.
| | - Derya Yakar
- Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands
| | - Joeran Bosma
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | | | - Henkjan Huisman
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, 7030, Norway
| |
Collapse
|
87
|
Lyu J, Tian Y, Cai Q, Wang C, Qin J. Adaptive channel-modulated personalized federated learning for magnetic resonance image reconstruction. Comput Biol Med 2023; 165:107330. [PMID: 37611426 DOI: 10.1016/j.compbiomed.2023.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Magnetic resonance imaging (MRI) is extensively utilized in clinical practice for diagnostic purposes, owing to its non-invasive nature and remarkable ability to provide detailed characterization of soft tissues. However, its drawback lies in the prolonged scanning time. To accelerate MR imaging, how to reconstruct MR images from under-sampled data quickly and accurately has drawn intensive research interest; it, however, remains a challenging task. While some deep learning models have achieved promising performance in MRI reconstruction, these models usually require a substantial quantity of paired data for training, which proves challenging to gather and share owing to high scanning costs and data privacy concerns. Federated learning (FL) is a potential tool to alleviate these difficulties. It enables multiple clinical clients to collaboratively train a global model without compromising privacy. However, it is extremely challenging to fit a single model to diverse data distributions of different clients. Moreover, existing FL algorithms treat the features of each channel equally, lacking discriminative learning ability across feature channels, and hence hindering their representational capability. In this study, we propose a novel Adaptive Channel-Modulated Federal learning framework for personalized MRI reconstruction, dubbed as ACM-FedMRI. Specifically, considering each local client may focus on features in different channels, we first design a client-specific hypernetwork to guide the channel selection operation in order to optimize the extracted features. Additionally, we introduce a performance-based channel decoupling scheme, which dynamically separates the global model at the channel level to facilitate personalized adjustments based on the performance of individual clients. This approach eliminates the need for heuristic design of specific personalization layers. Extensive experiments on four datasets under two different settings show that our ACM-FedMRI achieves outstanding results compared to other cutting-edge federated learning techniques in the field of MRI reconstruction.
Collapse
Affiliation(s)
- Jun Lyu
- School of Nursing, The Hong Kong Polytechnic University, HongKong.
| | - Yapeng Tian
- Department of Computer Science, The University of Texas at Dallas, Richardson, TX, USA.
| | - Qing Cai
- School of Information Science and Engineering, Ocean University of China, Qingdao, Shandong, China.
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Jing Qin
- School of Nursing, The Hong Kong Polytechnic University, HongKong.
| |
Collapse
|
88
|
Xu W, Jia S, Cui ZX, Zhu Q, Liu X, Liang D, Cheng J. Joint Image Reconstruction and Super-Resolution for Accelerated Magnetic Resonance Imaging. Bioengineering (Basel) 2023; 10:1107. [PMID: 37760209 PMCID: PMC10525692 DOI: 10.3390/bioengineering10091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Magnetic resonance (MR) image reconstruction and super-resolution are two prominent techniques to restore high-quality images from undersampled or low-resolution k-space data to accelerate MR imaging. Combining undersampled and low-resolution acquisition can further improve the acceleration factor. Existing methods often treat the techniques of image reconstruction and super-resolution separately or combine them sequentially for image recovery, which can result in error propagation and suboptimal results. In this work, we propose a novel framework for joint image reconstruction and super-resolution, aiming to efficiently image recovery and enable fast imaging. Specifically, we designed a framework with a reconstruction module and a super-resolution module to formulate multi-task learning. The reconstruction module utilizes a model-based optimization approach, ensuring data fidelity with the acquired k-space data. Moreover, a deep spatial feature transform is employed to enhance the information transition between the two modules, facilitating better integration of image reconstruction and super-resolution. Experimental evaluations on two datasets demonstrate that our proposed method can provide superior performance both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Wei Xu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.X.); (S.J.); (Z.-X.C.); (Q.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Sen Jia
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.X.); (S.J.); (Z.-X.C.); (Q.Z.); (X.L.)
| | - Zhuo-Xu Cui
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.X.); (S.J.); (Z.-X.C.); (Q.Z.); (X.L.)
| | - Qingyong Zhu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.X.); (S.J.); (Z.-X.C.); (Q.Z.); (X.L.)
| | - Xin Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.X.); (S.J.); (Z.-X.C.); (Q.Z.); (X.L.)
| | - Dong Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.X.); (S.J.); (Z.-X.C.); (Q.Z.); (X.L.)
| | - Jing Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.X.); (S.J.); (Z.-X.C.); (Q.Z.); (X.L.)
| |
Collapse
|
89
|
Li X, Zhang H, Yang H, Li TQ. CS-MRI Reconstruction Using an Improved GAN with Dilated Residual Networks and Channel Attention Mechanism. SENSORS (BASEL, SWITZERLAND) 2023; 23:7685. [PMID: 37765747 PMCID: PMC10537966 DOI: 10.3390/s23187685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Compressed sensing (CS) MRI has shown great potential in enhancing time efficiency. Deep learning techniques, specifically generative adversarial networks (GANs), have emerged as potent tools for speedy CS-MRI reconstruction. Yet, as the complexity of deep learning reconstruction models increases, this can lead to prolonged reconstruction time and challenges in achieving convergence. In this study, we present a novel GAN-based model that delivers superior performance without the model complexity escalating. Our generator module, built on the U-net architecture, incorporates dilated residual (DR) networks, thus expanding the network's receptive field without increasing parameters or computational load. At every step of the downsampling path, this revamped generator module includes a DR network, with the dilation rates adjusted according to the depth of the network layer. Moreover, we have introduced a channel attention mechanism (CAM) to distinguish between channels and reduce background noise, thereby focusing on key information. This mechanism adeptly combines global maximum and average pooling approaches to refine channel attention. We conducted comprehensive experiments with the designed model using public domain MRI datasets of the human brain. Ablation studies affirmed the efficacy of the modified modules within the network. Incorporating DR networks and CAM elevated the peak signal-to-noise ratios (PSNR) of the reconstructed images by about 1.2 and 0.8 dB, respectively, on average, even at 10× CS acceleration. Compared to other relevant models, our proposed model exhibits exceptional performance, achieving not only excellent stability but also outperforming most of the compared networks in terms of PSNR and SSIM. When compared with U-net, DR-CAM-GAN's average gains in SSIM and PSNR were 14% and 15%, respectively. Its MSE was reduced by a factor that ranged from two to seven. The model presents a promising pathway for enhancing the efficiency and quality of CS-MRI reconstruction.
Collapse
Affiliation(s)
- Xia Li
- College of Information Engineering, China Jiliang University, Hangzhou 310018, China
| | - Hui Zhang
- College of Information Engineering, China Jiliang University, Hangzhou 310018, China
| | - Hao Yang
- College of Information Engineering, China Jiliang University, Hangzhou 310018, China
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, 14186 Stockholm, Sweden
- Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
90
|
Singh D, Monga A, de Moura HL, Zhang X, Zibetti MVW, Regatte RR. Emerging Trends in Fast MRI Using Deep-Learning Reconstruction on Undersampled k-Space Data: A Systematic Review. Bioengineering (Basel) 2023; 10:1012. [PMID: 37760114 PMCID: PMC10525988 DOI: 10.3390/bioengineering10091012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides excellent soft-tissue contrast and high-resolution images of the human body, allowing us to understand detailed information on morphology, structural integrity, and physiologic processes. However, MRI exams usually require lengthy acquisition times. Methods such as parallel MRI and Compressive Sensing (CS) have significantly reduced the MRI acquisition time by acquiring less data through undersampling k-space. The state-of-the-art of fast MRI has recently been redefined by integrating Deep Learning (DL) models with these undersampled approaches. This Systematic Literature Review (SLR) comprehensively analyzes deep MRI reconstruction models, emphasizing the key elements of recently proposed methods and highlighting their strengths and weaknesses. This SLR involves searching and selecting relevant studies from various databases, including Web of Science and Scopus, followed by a rigorous screening and data extraction process using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. It focuses on various techniques, such as residual learning, image representation using encoders and decoders, data-consistency layers, unrolled networks, learned activations, attention modules, plug-and-play priors, diffusion models, and Bayesian methods. This SLR also discusses the use of loss functions and training with adversarial networks to enhance deep MRI reconstruction methods. Moreover, we explore various MRI reconstruction applications, including non-Cartesian reconstruction, super-resolution, dynamic MRI, joint learning of reconstruction with coil sensitivity and sampling, quantitative mapping, and MR fingerprinting. This paper also addresses research questions, provides insights for future directions, and emphasizes robust generalization and artifact handling. Therefore, this SLR serves as a valuable resource for advancing fast MRI, guiding research and development efforts of MRI reconstruction for better image quality and faster data acquisition.
Collapse
Affiliation(s)
- Dilbag Singh
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (A.M.); (H.L.d.M.); (X.Z.); (M.V.W.Z.)
| | | | | | | | | | - Ravinder R. Regatte
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (A.M.); (H.L.d.M.); (X.Z.); (M.V.W.Z.)
| |
Collapse
|
91
|
Li T, Wang J, Yang Y, Glide-Hurst CK, Wen N, Cai J. Multi-parametric MRI for radiotherapy simulation. Med Phys 2023; 50:5273-5293. [PMID: 36710376 PMCID: PMC10382603 DOI: 10.1002/mp.16256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023] Open
Abstract
Magnetic resonance imaging (MRI) has become an important imaging modality in the field of radiotherapy (RT) in the past decade, especially with the development of various novel MRI and image-guidance techniques. In this review article, we will describe recent developments and discuss the applications of multi-parametric MRI (mpMRI) in RT simulation. In this review, mpMRI refers to a general and loose definition which includes various multi-contrast MRI techniques. Specifically, we will focus on the implementation, challenges, and future directions of mpMRI techniques for RT simulation.
Collapse
Affiliation(s)
- Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jihong Wang
- Department of Radiation Physics, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Yingli Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Carri K Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ning Wen
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- The Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
92
|
Liao J, Yang S, Zhang T, Li C, Huang Z. Fast optical coherence tomography angiography image acquisition and reconstruction pipeline for skin application. BIOMEDICAL OPTICS EXPRESS 2023; 14:3899-3913. [PMID: 37799685 PMCID: PMC10549725 DOI: 10.1364/boe.486933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 10/07/2023]
Abstract
Traditional high-quality OCTA images require multi-repeated scans (e.g., 4-8 repeats) in the same position, which may cause the patient to be uncomfortable. We propose a deep-learning-based pipeline that can extract high-quality OCTA images from only two-repeat OCT scans. The performance of the proposed image reconstruction U-Net (IRU-Net) outperforms the state-of-the-art UNet vision transformer and UNet in OCTA image reconstruction from a two-repeat OCT signal. The results demonstrated a mean peak-signal-to-noise ratio increased from 15.7 to 24.2; the mean structural similarity index measure improved from 0.28 to 0.59, while the OCT data acquisition time was reduced from 21 seconds to 3.5 seconds (reduced by 83%).
Collapse
Affiliation(s)
- Jinpeng Liao
- School of Science and Engineering,
University of Dundee, DD1 4HN, Scotland, UK
| | - Shufan Yang
- Engineering and Built Environment, Edinburgh Napier University, Edinburgh, UK
- Research Department of Orthopaedics and Musculoskeletal Science, University College London, UK
| | - Tianyu Zhang
- School of Science and Engineering,
University of Dundee, DD1 4HN, Scotland, UK
| | - Chunhui Li
- School of Science and Engineering,
University of Dundee, DD1 4HN, Scotland, UK
| | - Zhihong Huang
- School of Science and Engineering,
University of Dundee, DD1 4HN, Scotland, UK
| |
Collapse
|
93
|
Chen Y, Yan Y, Wang X, Zheng Y. IoT-Enabled Few-Shot Image Generation for Power Scene Defect Detection Based on Self-Attention and Global-Local Fusion. SENSORS (BASEL, SWITZERLAND) 2023; 23:6531. [PMID: 37514825 PMCID: PMC10383857 DOI: 10.3390/s23146531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Defect detection in power scenarios is a critical task that plays a significant role in ensuring the safety, reliability, and efficiency of power systems. The existing technology requires enhancement in its learning ability from large volumes of data to achieve ideal detection effect results. Power scene data involve privacy and security issues, and there is an imbalance in the number of samples across different defect categories, all of which will affect the performance of defect detection models. With the emergence of the Internet of Things (IoT), the integration of IoT with machine learning offers a new direction for defect detection in power equipment. Meanwhile, a generative adversarial network based on multi-view fusion and self-attention is proposed for few-shot image generation, named MVSA-GAN. The IoT devices capture real-time data from the power scene, which are then used to train the MVSA-GAN model, enabling it to generate realistic and diverse defect data. The designed self-attention encoder focuses on the relevant features of different parts of the image to capture the contextual information of the input image and improve the authenticity and coherence of the image. A multi-view feature fusion module is proposed to capture the complex structure and texture of the power scene through the selective fusion of global and local features, and improve the authenticity and diversity of generated images. Experiments show that the few-shot image generation method proposed in this paper can generate real and diverse defect data for power scene defects. The proposed method achieved FID and LPIPS scores of 67.87 and 0.179, surpassing SOTA methods, such as FIGR and DAWSON.
Collapse
Affiliation(s)
- Yi Chen
- College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yunfeng Yan
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xianbo Wang
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yi Zheng
- College of Electrical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
94
|
Liao S, Mo Z, Zeng M, Wu J, Gu Y, Li G, Quan G, Lv Y, Liu L, Yang C, Wang X, Huang X, Zhang Y, Cao W, Dong Y, Wei Y, Zhou Q, Xiao Y, Zhan Y, Zhou XS, Shi F, Shen D. Fast and low-dose medical imaging generation empowered by hybrid deep-learning and iterative reconstruction. Cell Rep Med 2023; 4:101119. [PMID: 37467726 PMCID: PMC10394257 DOI: 10.1016/j.xcrm.2023.101119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023]
Abstract
Fast and low-dose reconstructions of medical images are highly desired in clinical routines. We propose a hybrid deep-learning and iterative reconstruction (hybrid DL-IR) framework and apply it for fast magnetic resonance imaging (MRI), fast positron emission tomography (PET), and low-dose computed tomography (CT) image generation tasks. First, in a retrospective MRI study (6,066 cases), we demonstrate its capability of handling 3- to 10-fold under-sampled MR data, enabling organ-level coverage with only 10- to 100-s scan time; second, a low-dose CT study (142 cases) shows that our framework can successfully alleviate the noise and streak artifacts in scans performed with only 10% radiation dose (0.61 mGy); and last, a fast whole-body PET study (131 cases) allows us to faithfully reconstruct tumor-induced lesions, including small ones (<4 mm), from 2- to 4-fold-accelerated PET acquisition (30-60 s/bp). This study offers a promising avenue for accurate and high-quality image reconstruction with broad clinical value.
Collapse
Affiliation(s)
- Shu Liao
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Zhanhao Mo
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Mengsu Zeng
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Wu
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yuning Gu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Guobin Li
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201800, China
| | - Guotao Quan
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201800, China
| | - Yang Lv
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201800, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Chun Yang
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xinglie Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Xiaoqian Huang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yang Zhang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Wenjing Cao
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201800, China
| | - Yun Dong
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai 201800, China
| | - Ying Wei
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Qing Zhou
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yongqin Xiao
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Yiqiang Zhan
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Xiang Sean Zhou
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China.
| | - Dinggang Shen
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai 200232, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 200122, China.
| |
Collapse
|
95
|
Zhou Y, Wang H, Liu C, Liao B, Li Y, Zhu Y, Hu Z, Liao J, Liang D. Recent advances in highly accelerated 3D MRI. Phys Med Biol 2023; 68:14TR01. [PMID: 36863026 DOI: 10.1088/1361-6560/acc0cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/01/2023] [Indexed: 03/04/2023]
Abstract
Three-dimensional MRI has gained increasing popularity in various clinical applications due to its improved through-plane spatial resolution, which enhances the detection of subtle abnormalities and provides valuable clinical information. However, the long data acquisition time and high computational cost pose significant challenges for 3D MRI. In this comprehensive review article, we aim to summarize the latest advancements in accelerated 3D MR techniques. Covering over 200 remarkable research studies conducted over the past 20 years, we explore the development of MR signal excitation and encoding, advancements in reconstruction algorithms, and potential clinical applications. We hope that this survey serves as a valuable resource, providing insights into the current state of the field and serving as a guide for future research in accelerated 3D MRI.
Collapse
Affiliation(s)
- Yihang Zhou
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Research Department, Hong Kong Sanatorium and Hospital, Hong Kong SAR, People's Republic of China
| | - Haifeng Wang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Congcong Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Binyu Liao
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
| | - Ye Li
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Zhangqi Hu
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Dong Liang
- Research Centre for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, People's Republic of China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
96
|
Palla A, Ramanarayanan S, Ram K, Sivaprakasam M. Generalizable Deep Learning Method for Suppressing Unseen and Multiple MRI Artifacts Using Meta-learning. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082950 DOI: 10.1109/embc40787.2023.10341123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Magnetic Resonance (MR) images suffer from various types of artifacts due to motion, spatial resolution, and under-sampling. Conventional deep learning methods deal with removing a specific type of artifact, leading to separately trained models for each artifact type that lack the shared knowledge generalizable across artifacts. Moreover, training a model for each type and amount of artifact is a tedious process that consumes more training time and storage of models. On the other hand, the shared knowledge learned by jointly training the model on multiple artifacts might be inadequate to generalize under deviations in the types and amounts of artifacts. Model-agnostic meta-learning (MAML), a nested bi-level optimization framework is a promising technique to learn common knowledge across artifacts in the outer level of optimization, and artifact-specific restoration in the inner level. We propose curriculum-MAML (CMAML), a learning process that integrates MAML with curriculum learning to impart the knowledge of variable artifact complexity to adaptively learn restoration of multiple artifacts during training. Comparative studies against Stochastic Gradient Descent and MAML, using two cardiac datasets reveal that CMAML exhibits (i) better generalization with improved PSNR for 83% of unseen types and amounts of artifacts and improved SSIM in all cases, and (ii) better artifact suppression in 4 out of 5 cases of composite artifacts (scans with multiple artifacts).Clinical relevance- Our results show that CMAML has the potential to minimize the number of artifact-specific models; which is essential to deploy deep learning models for clinical use. Furthermore, we have also taken another practical scenario of an image affected by multiple artifacts and show that our method performs better in 80% of cases.
Collapse
|
97
|
Fan X, Yang Y, Chen K, Zhang J, Dong K. An interpretable MRI reconstruction network with two-grid-cycle correction and geometric prior distillation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
98
|
Feuerriegel GC, Weiss K, Kronthaler S, Leonhardt Y, Neumann J, Wurm M, Lenhart NS, Makowski MR, Schwaiger BJ, Woertler K, Karampinos DC, Gersing AS. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain. Eur Radiol 2023; 33:4875-4884. [PMID: 36806569 PMCID: PMC10289918 DOI: 10.1007/s00330-023-09472-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES To evaluate the diagnostic performance of an automated reconstruction algorithm combining MR imaging acquired using compressed SENSE (CS) with deep learning (DL) in order to reconstruct denoised high-quality images from undersampled MR images in patients with shoulder pain. METHODS Prospectively, thirty-eight patients (14 women, mean age 40.0 ± 15.2 years) with shoulder pain underwent morphological MRI using a pseudo-random, density-weighted k-space scheme with an acceleration factor of 2.5 using CS only. An automated DL-based algorithm (CS DL) was used to create reconstructions of the same k-space data as used for CS reconstructions. Images were analyzed by two radiologists and assessed for pathologies, image quality, and visibility of anatomical landmarks using a 4-point Likert scale. RESULTS Overall agreement for the detection of pathologies between the CS DL reconstructions and CS images was substantial to almost perfect (κ 0.95 (95% confidence interval 0.82-1.00)). Image quality and the visibility of the rotator cuff, articular cartilage, and axillary recess were overall rated significantly higher for CS DL images compared to CS (p < 0.03). Contrast-to-noise ratios were significantly higher for cartilage/fluid (CS DL 198 ± 24.3, CS 130 ± 32.2, p = 0.02) and ligament/fluid (CS DL 184 ± 17.3, CS 141 ± 23.5, p = 0.03) and SNR values were significantly higher for ligaments and muscle of the CS DL reconstructions (p < 0.04). CONCLUSION Evaluation of shoulder pathologies was feasible using a DL-based algorithm for MRI reconstruction and denoising. In clinical routine, CS DL may be beneficial in particular for reducing image noise and may be useful for the detection and better discrimination of discrete pathologies. Assessment of shoulder pathologies was feasible with improved image quality as well as higher SNR using a compressed sensing deep learning-based framework for image reconstructions and denoising. KEY POINTS • Automated deep learning-based reconstructions showed a significant increase in signal-to-noise ratio and contrast-to-noise ratio (p < 0.04) with only a slight increase of reconstruction time of 40 s compared to CS. • All pathologies were accurately detected with no loss of diagnostic information or prolongation of the scan time. • Significant improvements of the image quality as well as the visibility of the rotator cuff, articular cartilage, and axillary recess were detected.
Collapse
Affiliation(s)
- Georg C Feuerriegel
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.
| | | | - Sophia Kronthaler
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Yannik Leonhardt
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Jan Neumann
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
- Musculoskeletal Radiology Section, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Markus Wurm
- Department of Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Nicolas S Lenhart
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Marcus R Makowski
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Benedikt J Schwaiger
- Department of Neuroradiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Klaus Woertler
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
- Musculoskeletal Radiology Section, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Alexandra S Gersing
- Department of Radiology, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
- Department of Neuroradiology, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
99
|
Bi W, Xv J, Song M, Hao X, Gao D, Qi F. Linear fine-tuning: a linear transformation based transfer strategy for deep MRI reconstruction. Front Neurosci 2023; 17:1202143. [PMID: 37409107 PMCID: PMC10318193 DOI: 10.3389/fnins.2023.1202143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Fine-tuning (FT) is a generally adopted transfer learning method for deep learning-based magnetic resonance imaging (MRI) reconstruction. In this approach, the reconstruction model is initialized with pre-trained weights derived from a source domain with ample data and subsequently updated with limited data from the target domain. However, the direct full-weight update strategy can pose the risk of "catastrophic forgetting" and overfitting, hindering its effectiveness. The goal of this study is to develop a zero-weight update transfer strategy to preserve pre-trained generic knowledge and reduce overfitting. Methods Based on the commonality between the source and target domains, we assume a linear transformation relationship of the optimal model weights from the source domain to the target domain. Accordingly, we propose a novel transfer strategy, linear fine-tuning (LFT), which introduces scaling and shifting (SS) factors into the pre-trained model. In contrast to FT, LFT only updates SS factors in the transfer phase, while the pre-trained weights remain fixed. Results To evaluate the proposed LFT, we designed three different transfer scenarios and conducted a comparative analysis of FT, LFT, and other methods at various sampling rates and data volumes. In the transfer scenario between different contrasts, LFT outperforms typical transfer strategies at various sampling rates and considerably reduces artifacts on reconstructed images. In transfer scenarios between different slice directions or anatomical structures, LFT surpasses the FT method, particularly when the target domain contains a decreasing number of training images, with a maximum improvement of up to 2.06 dB (5.89%) in peak signal-to-noise ratio. Discussion The LFT strategy shows great potential to address the issues of "catastrophic forgetting" and overfitting in transfer scenarios for MRI reconstruction, while reducing the reliance on the amount of data in the target domain. Linear fine-tuning is expected to shorten the development cycle of reconstruction models for adapting complicated clinical scenarios, thereby enhancing the clinical applicability of deep MRI reconstruction.
Collapse
Affiliation(s)
- Wanqing Bi
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianan Xv
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Mengdie Song
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaohan Hao
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
- Fuqing Medical Co., Ltd., Hefei, Anhui, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Fulang Qi
- The Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
100
|
Güngör A, Dar SU, Öztürk Ş, Korkmaz Y, Bedel HA, Elmas G, Ozbey M, Çukur T. Adaptive diffusion priors for accelerated MRI reconstruction. Med Image Anal 2023; 88:102872. [PMID: 37384951 DOI: 10.1016/j.media.2023.102872] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Deep MRI reconstruction is commonly performed with conditional models that de-alias undersampled acquisitions to recover images consistent with fully-sampled data. Since conditional models are trained with knowledge of the imaging operator, they can show poor generalization across variable operators. Unconditional models instead learn generative image priors decoupled from the operator to improve reliability against domain shifts related to the imaging operator. Recent diffusion models are particularly promising given their high sample fidelity. Nevertheless, inference with a static image prior can perform suboptimally. Here we propose the first adaptive diffusion prior for MRI reconstruction, AdaDiff, to improve performance and reliability against domain shifts. AdaDiff leverages an efficient diffusion prior trained via adversarial mapping over large reverse diffusion steps. A two-phase reconstruction is executed following training: a rapid-diffusion phase that produces an initial reconstruction with the trained prior, and an adaptation phase that further refines the result by updating the prior to minimize data-consistency loss. Demonstrations on multi-contrast brain MRI clearly indicate that AdaDiff outperforms competing conditional and unconditional methods under domain shifts, and achieves superior or on par within-domain performance.
Collapse
Affiliation(s)
- Alper Güngör
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; ASELSAN Research Center, Ankara 06200, Turkey
| | - Salman Uh Dar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Şaban Öztürk
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Department of Electrical and Electronics Engineering, Amasya University, Amasya 05100, Turkey
| | - Yilmaz Korkmaz
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Hasan A Bedel
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Gokberk Elmas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Muzaffer Ozbey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Tolga Çukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Neuroscience Program, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|