51
|
Jiao X, Zhang Y, Liu X, Zhang Q, Zhang S, Zhao ZK. Developing a CRISPR/Cas9 System for Genome Editing in the Basidiomycetous Yeast Rhodosporidium toruloides. Biotechnol J 2019; 14:e1900036. [PMID: 31066204 DOI: 10.1002/biot.201900036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Indexed: 12/25/2022]
Abstract
The basidiomycetous yeast Rhodosporidium toruloides (R. toruloides) has been explored as a promising host for the production of lipids and carotenoids. However, the rational manipulation of this yeast remains difficult due to lack of efficient genetic tools. Here, the development of a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas9) system for genome editing in R. toruloides is described. First, R. toruloides strains are generated with sufficient production of the Cas9 protein of Staphylococcus aureus origin by integrating a cassette containing a codon-optimized Cas9 gene into the genome. In parallel, two U6 genes are identified, predicting two U6 promoters and confirming better transcription of single-guide RNA (sgRNA) with the U6b promoter. Next, sgRNA cassettes are designed targeting CRTI, CAR2, and CLYBL gene, respectively, transforming into those Cas9-expressed strains, and finding over 60% transformants with successful insertion and deletion (indel) mutations. Furthermore, when the sgRNA cassette includes donor DNA flanked by two homologous arms of the gene CRTI, gene knockout occurs via homologous recombination. Thus, the CRISPR/Cas9 system is now established as a powerful genome-editing tool in R. toruloides, which should facilitate functional genomic study and advanced cell factory development.
Collapse
Affiliation(s)
- Xiang Jiao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangjian Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qi Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sufang Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
52
|
Nora LC, Wehrs M, Kim J, Cheng JF, Tarver A, Simmons BA, Magnuson J, Harmon-Smith M, Silva-Rocha R, Gladden JM, Mukhopadhyay A, Skerker JM, Kirby J. A toolset of constitutive promoters for metabolic engineering of Rhodosporidium toruloides. Microb Cell Fact 2019; 18:117. [PMID: 31255171 PMCID: PMC6599526 DOI: 10.1186/s12934-019-1167-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Rhodosporidium toruloides is a promising host for the production of bioproducts from lignocellulosic biomass. A key prerequisite for efficient pathway engineering is the availability of robust genetic tools and resources. However, there is a lack of characterized promoters to drive expression of heterologous genes for strain engineering in R. toruloides. RESULTS This data describes a set of native R. toruloides promoters, characterized over time in four different media commonly used for cultivation of this yeast. The promoter sequences were selected using transcriptional analysis and several of them were found to drive expression bidirectionally. Promoter expression strength was determined by measurement of EGFP and mRuby2 reporters by flow cytometry. A total of 20 constitutive promoters (12 monodirectional and 8 bidirectional) were found, and are expected to be of potential value for genetic engineering of R. toruloides. CONCLUSIONS A set of robust and constitutive promoters to facilitate genetic engineering of R. toruloides is presented here, ranging from a promoter previously used for this purpose (P7, glyceraldehyde 3-phosphate dehydrogenase, GAPDH) to stronger monodirectional (e.g., P15, mitochondrial adenine nucleotide translocator, ANT) and bidirectional (e.g., P9 and P9R, histones H3 and H4, respectively) promoters. We also identified promoters that may be useful for specific applications such as late-stage expression (e.g., P3, voltage-dependent anion channel protein 2, VDAC2). This set of characterized promoters significantly expands the range of engineering tools available for this yeast and can be applied in future metabolic engineering studies.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Prêto, São Paulo CEP 14049-900 Brazil
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Maren Wehrs
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Institut für Genetik, Technische Universität Braunschweig, 38106 Brunswick, Germany
| | - Joonhoon Kim
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354 USA
| | - Jan-Fang Cheng
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Angela Tarver
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Blake A. Simmons
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Jon Magnuson
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354 USA
| | - Miranda Harmon-Smith
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Prêto, São Paulo CEP 14049-900 Brazil
| | - John M. Gladden
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550 USA
| | - Aindrila Mukhopadhyay
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Jeffrey M. Skerker
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- QB3-Berkeley, University of California, Berkeley, CA 94720 USA
| | - James Kirby
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550 USA
| |
Collapse
|
53
|
Tiukova IA, Brandenburg J, Blomqvist J, Sampels S, Mikkelsen N, Skaugen M, Arntzen MØ, Nielsen J, Sandgren M, Kerkhoven EJ. Proteome analysis of xylose metabolism in Rhodotorula toruloides during lipid production. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:137. [PMID: 31171938 PMCID: PMC6547517 DOI: 10.1186/s13068-019-1478-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/25/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Rhodotorula toruloides is a promising platform organism for production of lipids from lignocellulosic substrates. Little is known about the metabolic aspects of lipid production from the lignocellolosic sugar xylose by oleaginous yeasts in general and R. toruloides in particular. This study presents the first proteome analysis of the metabolism of R. toruloides during conversion of xylose to lipids. RESULTS Rhodotorula toruloides cultivated on either glucose or xylose was subjected to comparative analysis of its growth dynamics, lipid composition, fatty acid profiles and proteome. The maximum growth and sugar uptake rate of glucose-grown R. toruloides cells were almost twice that of xylose-grown cells. Cultivation on xylose medium resulted in a lower final biomass yield although final cellular lipid content was similar between glucose- and xylose-grown cells. Analysis of lipid classes revealed the presence of monoacylglycerol in the early exponential growth phase as well as a high proportion of free fatty acids. Carbon source-specific changes in lipid profiles were only observed at early exponential growth phase, where C18 fatty acids were more saturated in xylose-grown cells. Proteins involved in sugar transport, initial steps of xylose assimilation and NADPH regeneration were among the proteins whose levels increased the most in xylose-grown cells across all time points. The levels of enzymes involved in the mevalonate pathway, phospholipid biosynthesis and amino acids biosynthesis differed in response to carbon source. In addition, xylose-grown cells contained higher levels of enzymes involved in peroxisomal beta-oxidation and oxidative stress response compared to cells cultivated on glucose. CONCLUSIONS The results obtained in the present study suggest that sugar import is the limiting step during xylose conversion by R. toruloides into lipids. NADPH appeared to be regenerated primarily through pentose phosphate pathway although it may also involve malic enzyme as well as alcohol and aldehyde dehydrogenases. Increases in enzyme levels of both fatty acid biosynthesis and beta-oxidation in xylose-grown cells was predicted to result in a futile cycle. The results presented here are valuable for the development of lipid production processes employing R. toruloides on xylose-containing substrates.
Collapse
Affiliation(s)
- Ievgeniia A. Tiukova
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jule Brandenburg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanna Blomqvist
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Sabine Sampels
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nils Mikkelsen
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Morten Skaugen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Magnus Ø. Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jens Nielsen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
54
|
Li L, Liu X, Wei K, Lu Y, Jiang W. Synthetic biology approaches for chromosomal integration of genes and pathways in industrial microbial systems. Biotechnol Adv 2019; 37:730-745. [PMID: 30951810 DOI: 10.1016/j.biotechadv.2019.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Industrial biotechnology is reliant on native pathway engineering or foreign pathway introduction for efficient biosynthesis of target products. Chromosomal integration, with intrinsic genetic stability, is an indispensable step for reliable expression of homologous or heterologous genes and pathways in large-scale and long-term fermentation. With advances in synthetic biology and CRISPR-based genome editing approaches, a wide variety of novel enabling technologies have been developed for single-step, markerless, multi-locus genomic integration of large biochemical pathways, which significantly facilitate microbial overproduction of chemicals, pharmaceuticals and other value-added biomolecules. Notably, the newly discovered homology-mediated end joining strategy could be widely applicable for high-efficiency genomic integration in a number of homologous recombination-deficient microbes. In this review, we explore the fundamental principles and characteristics of genomic integration, and highlight the development and applications of targeted integration approaches in the three representative industrial microbial systems, including Escherichia coli, actinomycetes and yeasts.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaocao Liu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Wei
- Department of Biochemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201210, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 200232, China.
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
55
|
Abstract
Microbial production of biofuels and bioproducts offers a sustainable and economic alternative to petroleum-based fuels and chemicals. The basidiomycete yeast Rhodosporidium toruloides is a promising platform organism for generating bioproducts due to its ability to consume a broad spectrum of carbon sources (including those derived from lignocellulosic biomass) and to naturally accumulate high levels of lipids and carotenoids, two biosynthetic pathways that can be leveraged to produce a wide range of bioproducts. While R. toruloides has great potential, it has a more limited set of tools for genetic engineering relative to more advanced yeast platform organisms such as Yarrowia lipolytica and Saccharomyces cerevisiae Significant advancements in the past few years have bolstered R. toruloides' engineering capacity. Here we expand this capacity by demonstrating the first use of CRISPR-Cas9-based gene disruption in R. toruloides Transforming a Cas9 expression cassette harboring nourseothricin resistance and selecting transformants on this antibiotic resulted in strains of R. toruloides exhibiting successful targeted disruption of the native URA3 gene. While editing efficiencies were initially low (0.002%), optimization of the cassette increased efficiencies 364-fold (to 0.6%). Applying these optimized design conditions enabled disruption of another native gene involved in carotenoid biosynthesis, CAR2, with much greater success; editing efficiencies of CAR2 deletion reached roughly 50%. Finally, we demonstrated efficient multiplexed genome editing by disrupting both CAR2 and URA3 in a single transformation. Together, our results provide a framework for applying CRISPR-Cas9 to R. toruloides that will facilitate rapid and high-throughput genome engineering in this industrially relevant organism.IMPORTANCE Microbial biofuel and bioproduct platforms provide access to clean and renewable carbon sources that are more sustainable and environmentally friendly than petroleum-based carbon sources. Furthermore, they can serve as useful conduits for the synthesis of advanced molecules that are difficult to produce through strictly chemical means. R. toruloides has emerged as a promising potential host for converting renewable lignocellulosic material into valuable fuels and chemicals. However, engineering efforts to improve the yeast's production capabilities have been impeded by a lack of advanced tools for genome engineering. While this is rapidly changing, one key tool remains unexplored in R. toruloides: CRISPR-Cas9. The results outlined here demonstrate for the first time how effective multiplexed CRISPR-Cas9 gene disruption provides a framework for other researchers to utilize this revolutionary genome-editing tool effectively in R. toruloides.
Collapse
|
56
|
Zhuang X, Kilian O, Monroe E, Ito M, Tran-Gymfi MB, Liu F, Davis RW, Mirsiaghi M, Sundstrom E, Pray T, Skerker JM, George A, Gladden JM. Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microb Cell Fact 2019; 18:54. [PMID: 30885220 PMCID: PMC6421710 DOI: 10.1186/s12934-019-1099-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to their high energy density and compatible physical properties, several monoterpenes have been investigated as potential renewable transportation fuels, either as blendstocks with petroleum or as drop-in replacements for use in vehicles (both heavy and light-weight) or in aviation. Sustainable microbial production of these biofuels requires the ability to utilize cheap and readily available feedstocks such as lignocellulosic biomass, which can be depolymerized into fermentable carbon sources such as glucose and xylose. However, common microbial production platforms such as the yeast Saccharomyces cerevisiae are not naturally capable of utilizing xylose, hence requiring extensive strain engineering and optimization to efficiently utilize lignocellulosic feedstocks. In contrast, the oleaginous red yeast Rhodosporidium toruloides is capable of efficiently metabolizing both xylose and glucose, suggesting that it may be a suitable host for the production of lignocellulosic bioproducts. In addition, R. toruloides naturally produces several carotenoids (C40 terpenoids), indicating that it may have a naturally high carbon flux through its mevalonate (MVA) pathway, providing pools of intermediates for the production of a wide range of heterologous terpene-based biofuels and bioproducts from lignocellulose. RESULTS Sixteen terpene synthases (TS) originating from plants, bacteria and fungi were evaluated for their ability to produce a total of nine different monoterpenes in R. toruloides. Eight of these TS were functional and produced several different monoterpenes, either as individual compounds or as mixtures, with 1,8-cineole, sabinene, ocimene, pinene, limonene, and carene being produced at the highest levels. The 1,8-cineole synthase HYP3 from Hypoxylon sp. E74060B produced the highest titer of 14.94 ± 1.84 mg/L 1,8-cineole in YPD medium and was selected for further optimization and fuel properties study. Production of 1,8-cineole from lignocellulose was also demonstrated in a 2L batch fermentation, and cineole production titers reached 34.6 mg/L in DMR-EH (Deacetylated, Mechanically Refined, Enzymatically Hydorlized) hydrolysate. Finally, the fuel properties of 1,8-cineole were examined, and indicate that it may be a suitable petroleum blend stock or drop-in replacement fuel for spark ignition engines. CONCLUSION Our results demonstrate that Rhodosporidium toruloides is a suitable microbial platform for the production of non-native monoterpenes with biofuel applications from lignocellulosic biomass.
Collapse
Affiliation(s)
- Xun Zhuang
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Oliver Kilian
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Eric Monroe
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Masakazu Ito
- Energy Bioscience Institute, 2151 Berkeley Way, Berkeley, CA, 94704, USA
| | - Mary Bao Tran-Gymfi
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Fang Liu
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Ryan W Davis
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA
| | - Mona Mirsiaghi
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Eric Sundstrom
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Todd Pray
- Advanced Biofuels Process Development Unit (ABPDU), Lawrence Berkeley National Laboratory, 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Jeffrey M Skerker
- Energy Bioscience Institute, 2151 Berkeley Way, Berkeley, CA, 94704, USA.,Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Anthe George
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA. .,Deconstruction Division, Joint BioEnergy Institute/Sandia National Laboratories, 5885 Hollis St, Emeryville, CA, 94608, USA.
| | - John M Gladden
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA, 94551, USA. .,Deconstruction Division, Joint BioEnergy Institute/Sandia National Laboratories, 5885 Hollis St, Emeryville, CA, 94608, USA.
| |
Collapse
|
57
|
Bao R, Gao N, Lv J, Ji C, Liang H, Li S, Yu C, Wang Z, Lin X. Enhancement of Torularhodin Production in Rhodosporidium toruloides by Agrobacterium tumefaciens-Mediated Transformation and Culture Condition Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1156-1164. [PMID: 30607946 DOI: 10.1021/acs.jafc.8b04667] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nine transformants of Rhodosporidium toruloides with significant changes in the carotenoid profile were obtained by Agrobacterium tumefaciens-mediated transformation, including a white, three red, and four yellow mutants. A red mutant A1-15-BRQ that showed a high torularhodin production was selected for culture condition optimization. Results indicated that the torularhodin yield was boosted with glucose as the carbon source, at a carbon/nitrogen ratio of 22, a loading volume of 75 mL, and 28 °C. The torularhodin yield of 21.3 mg/L consisting of 94.4% total carotenoids was obtained by Box-Behnken design experiments. The torularhodin yield was 17.0-fold higher than that of the wild type, with time shortened from 9 to 3 days. This study reports an effective strategy for improving torularhodin production and provides a candidate R. toruloides strain for highly selective production of torularhodin.
Collapse
Affiliation(s)
- Ruiqi Bao
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Ning Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian , Liaoning 116023 , People's Republic of China
| | - Jing Lv
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Chaofan Ji
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Huipeng Liang
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Shengjie Li
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| | - Xinping Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , 1 Qinggongyuan , Dalian , Liaoning 116034 , People's Republic of China
| |
Collapse
|
58
|
Camiolo S, Toome-Heller M, Aime MC, Haridas S, Grigoriev IV, Porceddu A, Mannazzu I. An analysis of codon bias in six red yeast species. Yeast 2018; 36:53-64. [PMID: 30264407 DOI: 10.1002/yea.3359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 11/11/2022] Open
Abstract
Red yeasts, primarily species of Rhodotorula, Sporobolomyces, and other genera of Pucciniomycotina, are traditionally considered proficient systems for lipid and terpene production, and only recently have also gained consideration for the production of a wider range of molecules of biotechnological potential. Improvements of transgene delivery protocols and regulated gene expression systems have been proposed, but a dearth of information on compositional and/or structural features of genes has prevented transgene sequence optimization efforts for high expression levels. Here, the codon compositional features of genes in six red yeast species were characterized, and the impact that evolutionary forces may have played in shaping this compositional bias was dissected by using several computational approaches. Results obtained are compatible with the hypothesis that mutational bias, although playing a significant role, cannot alone explain synonymous codon usage bias of genes. Nevertheless, several lines of evidences indicated a role for translational selection in driving the synonymous codons that allow high expression efficiency. These optimal synonymous codons are identified for each of the six species analyzed. Moreover, the presence of intragenic patterns of codon usage, which are thought to facilitate polyribosome formation, was highlighted. The information presented should be taken into consideration for transgene design for optimal expression in red yeast species.
Collapse
Affiliation(s)
- Salvatore Camiolo
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Merje Toome-Heller
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Andrea Porceddu
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italy
| |
Collapse
|
59
|
Jiao X, Zhang Q, Zhang S, Yang X, Wang Q, Zhao ZK. Efficient co-expression of multiple enzymes from a single promoter mediated by virus 2A sequence in the oleaginous yeast Rhodosporidium toruloides. FEMS Yeast Res 2018; 18:5061629. [DOI: 10.1093/femsyr/foy086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/29/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Xiang Jiao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Lu, Beijing 100049, China
| | - Qi Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Lu, Beijing 100049, China
| | - Sufang Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Xiaobing Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Qian Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| | - Zongbao Kent Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
60
|
Pi HW, Anandharaj M, Kao YY, Lin YJ, Chang JJ, Li WH. Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Sci Rep 2018; 8:10850. [PMID: 30022171 PMCID: PMC6052021 DOI: 10.1038/s41598-018-29194-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023] Open
Abstract
Rhodotorula glutinis, an oleaginous red yeast, intrinsically produces several bio-products (i.e., lipids, carotenoids and enzymes) and is regarded as a potential host for biorefinery. In view of the limited available genetic engineering tools for this yeast, we have developed a useful genetic transformation method and transformed the β-carotene biosynthesis genes (crtI, crtE, crtYB and tHMG1) and cellulase genes (CBHI, CBHII, EgI, EgIII, EglA and BGS) into R. glutinis genome. The transformant P4-10-9-63Y-14B produced significantly higher β-carotene (27.13 ± 0.66 mg/g) than the wild type and also exhibited cellulase activity. Furthermore, the lipid production and salt tolerance ability of the transformants were unaffected. This is the first study to engineer the R. glutinis for simultaneous β-carotene and cellulase production. As R. glutinis can grow in sea water and can be engineered to utilize the cheaper substrates (i.e. biomass) for the production of biofuels or valuable compounds, it is a promising host for biorefinery.
Collapse
Affiliation(s)
- Hong-Wei Pi
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Marimuthu Anandharaj
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yi-Ying Kao
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 402, Taiwan.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Nankang, Taipei, 11529, Taiwan. .,Biotechnology center, National Chung Hsing University, Taichung, 40227, Taiwan. .,Department of Ecology and Evolution, University of Chicago, Chicago, 60637, USA.
| |
Collapse
|
61
|
Developing a flippase-mediated maker recycling protocol for the oleaginous yeast Rhodosporidium toruloides. Biotechnol Lett 2018; 40:933-940. [DOI: 10.1007/s10529-018-2542-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/20/2018] [Indexed: 11/25/2022]
|
62
|
Liu Y, Koh CMJ, Yap SA, Du M, Hlaing MM, Ji L. Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome-wide insertional mutagenesis. BMC Microbiol 2018; 18:14. [PMID: 29466942 PMCID: PMC5822628 DOI: 10.1186/s12866-018-1151-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/30/2018] [Indexed: 01/15/2023] Open
Abstract
Background Rhodotorula toruloides is an outstanding producer of lipids and carotenoids. Currently, information on the key metabolic pathways and their molecular basis of regulation remains scarce, severely limiting efforts to engineer it as an industrial host. Results We have adapted Agrobacterium tumefaciens-mediated transformation (ATMT) as a gene-tagging tool for the identification of novel genes in R. toruloides. Multiple factors affecting transformation efficiency in several species in the Pucciniomycotina subphylum were optimized. The Agrobacterium transfer DNA (T-DNA) showed predominantly single-copy chromosomal integrations in R. toruloides, which were trackable by high efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). To demonstrate the application of random T-DNA insertions for strain improvement and gene hunting, 3 T-DNA insertional libraries were screened against cerulenin, nile red and tetrazolium violet respectively, resulting in the identification of 22 mutants with obvious phenotypes in fatty acid or lipid metabolism. Similarly, 5 carotenoid biosynthetic mutants were obtained through visual screening of the transformants. To further validate the gene tagging strategy, one of the carotenoid production mutants, RAM5, was analyzed in detail. The mutant had a T-DNA inserted at the putative phytoene desaturase gene CAR1. Deletion of CAR1 by homologous recombination led to a phenotype similar to RAM5 and it could be genetically complemented by re-introduction of the wild-type CAR1 genome sequence. Conclusions T-DNA insertional mutagenesis is an efficient forward genetic tool for gene discovery in R. toruloides and related oleaginous yeast species. It is also valuable for metabolic engineering in these hosts. Further analysis of the 27 mutants identified in this study should augment our knowledge of the lipid and carotenoid biosynthesis, which may be exploited for oil and isoprenoid metabolic engineering. Electronic supplementary material The online version of this article (10.1186/s12866-018-1151-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanbin Liu
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| | - Chong Mei John Koh
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sihui Amy Yap
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Minge Du
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Mya Myintzu Hlaing
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
63
|
Díaz T, Fillet S, Campoy S, Vázquez R, Viña J, Murillo J, Adrio JL. Combining evolutionary and metabolic engineering in Rhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates. Appl Microbiol Biotechnol 2018; 102:3287-3300. [DOI: 10.1007/s00253-018-8810-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/28/2022]
|
64
|
Yang X, Sun W, Shen H, Zhang S, Jiao X, Zhao ZK. Expression of phosphotransacetylase in Rhodosporidium toruloides leading to improved cell growth and lipid production. RSC Adv 2018; 8:24673-24678. [PMID: 35539198 PMCID: PMC9082159 DOI: 10.1039/c8ra03028f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Microbial lipids (MLs) are potential alternatives to vegetable oils and animal fats for production of biofuels and oleochemicals. It remains critical to improve ML production efficiency and costs for further commercial development. In the present study, we overexpressed a gene encoding phosphotransacetylase (Pta) in the oleaginous yeast Rhodosporidium toruloides for enhanced cell growth and lipid production. Compared with the parental strain R. toruloides NP11, the engineered strain NP-Pta-15 showed significant improvement in glucose consumption, cell growth and lipid accumulation when cultivated under nitrogen limited conditions in an Erlenmeyer flask as well as a stirred tank bioreactor. The introduction of Pta may establish an additional acetyl-CoA formation route by utilization of acetylphosphate. Our results should inspire more engineering efforts to facilitate the economic viability of ML technology. Microbial lipids (MLs) are potential alternatives to vegetable oils and animal fats for production of biofuels and oleochemicals.![]()
Collapse
Affiliation(s)
- Xiaobing Yang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Wenyi Sun
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Hongwei Shen
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Sufang Zhang
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Xiang Jiao
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| | - Zongbao K. Zhao
- Division of Biotechnology
- Dalian Institute of Chemical Physics
- CAS
- Dalian 116023
- PR China
| |
Collapse
|
65
|
Wang Y, Zhang S, Zhu Z, Shen H, Lin X, Jin X, Jiao X, Zhao ZK. Systems analysis of phosphate-limitation-induced lipid accumulation by the oleaginous yeast Rhodosporidium toruloides. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:148. [PMID: 29849765 PMCID: PMC5968551 DOI: 10.1186/s13068-018-1134-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/28/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lipid accumulation by oleaginous microorganisms is of great scientific interest and biotechnological potential. While nitrogen limitation has been routinely employed, low-cost raw materials usually contain rich nitrogenous components, thus preventing from efficient lipid production. Inorganic phosphate (Pi) limitation has been found sufficient to promote conversion of sugars into lipids, yet the molecular basis of cellular response to Pi limitation and concurrent lipid accumulation remains elusive. RESULTS Here, we performed multi-omic analyses of the oleaginous yeast Rhodosporidium toruloides to shield lights on Pi-limitation-induced lipid accumulation. Samples were prepared under Pi-limited as well as Pi-repleted chemostat conditions, and subjected to analysis at the transcriptomic, proteomic, and metabolomic levels. In total, 7970 genes, 4212 proteins, and 123 metabolites were identified. Results showed that Pi limitation facilitates up-regulation of Pi-associated metabolism, RNA degradation, and triacylglycerol biosynthesis while down-regulation of ribosome biosynthesis and tricarboxylic acid cycle. Pi limitation leads to dephosphorylation of adenosine monophosphate and the allosteric activator of isocitrate dehydrogenase key to lipid biosynthesis. It was found that NADPH, the key cofactor for fatty acid biosynthesis, is limited due to reduced flux through the pentose phosphate pathway and transhydrogenation cycle and that this can be overcome by over-expression of an endogenous malic enzyme. These phenomena are found distinctive from those under nitrogen limitation. CONCLUSIONS Our data suggest that Pi limitation activates Pi-related metabolism, RNA degradation, and TAG biosynthesis while inhibits ribosome biosynthesis and TCA cycle, leading to enhanced carbon fluxes into lipids. The information greatly enriches our understanding on microbial oleaginicity and Pi-related metabolism. Importantly, systems data may facilitate designing advanced cell factories for production of lipids and related oleochemicals.
Collapse
Affiliation(s)
- Yanan Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Sufang Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Zhiwei Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Hongwei Shen
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034 People’s Republic of China
| | - Xiang Jin
- Beijing Bio-Fly Bioscience Co. Ltd., Beijing, 100080 People’s Republic of China
| | - Xiang Jiao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Zongbao Kent Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| |
Collapse
|
66
|
Landolfo S, Ianiri G, Camiolo S, Porceddu A, Mulas G, Chessa R, Zara G, Mannazzu I. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa. Microbiology (Reading) 2018; 164:78-87. [DOI: 10.1099/mic.0.000588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sara Landolfo
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Via Francesco de Sanctis, 86100 Campobasso, Italy
- Present address: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Salvatore Camiolo
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Andrea Porceddu
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giuliana Mulas
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Rossella Chessa
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| |
Collapse
|
67
|
Park YK, Nicaud JM, Ledesma-Amaro R. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends Biotechnol 2017; 36:304-317. [PMID: 29132754 DOI: 10.1016/j.tibtech.2017.10.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/30/2022]
Abstract
Moving our society towards a bioeconomy requires efficient and sustainable microbial production of chemicals and fuels. Rhodotorula (Rhodosporidium) toruloides is a yeast that naturally synthesizes substantial amounts of specialty chemicals and has been recently engineered to (i) enhance its natural production of lipids and carotenoids, and (ii) produce novel industrially relevant compounds. The use of R. toruloides by companies and research groups has exponentially increased in recent years as a result of recent improvements in genetic engineering techniques and the availability of multiomics information on its genome and metabolism. This review focuses on recent engineering approaches in R. toruloides for bioproduction and explores its potential as a biotechnological chassis.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | |
Collapse
|
68
|
Shi S, Zhao H. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals. Front Microbiol 2017; 8:2185. [PMID: 29167664 PMCID: PMC5682390 DOI: 10.3389/fmicb.2017.02185] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023] Open
Abstract
Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.
Collapse
Affiliation(s)
- Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
| | - Huimin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
69
|
Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 2017; 4:6. [PMID: 28955474 PMCID: PMC5615635 DOI: 10.1186/s40694-017-0035-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/18/2017] [Indexed: 11/10/2022] Open
Abstract
The implementation of Agrobacterium tumefaciens as a transformation tool revolutionized approaches to discover and understand gene functions in a large number of fungal species. A. tumefaciens mediated transformation (AtMT) is one of the most transformative technologies for research on fungi developed in the last 20 years, a development arguably only surpassed by the impact of genomics. AtMT has been widely applied in forward genetics, whereby generation of strain libraries using random T-DNA insertional mutagenesis, combined with phenotypic screening, has enabled the genetic basis of many processes to be elucidated. Alternatively, AtMT has been fundamental for reverse genetics, where mutant isolates are generated with targeted gene deletions or disruptions, enabling gene functional roles to be determined. When combined with concomitant advances in genomics, both forward and reverse approaches using AtMT have enabled complex fungal phenotypes to be dissected at the molecular and genetic level. Additionally, in several cases AtMT has paved the way for the development of new species to act as models for specific areas of fungal biology, particularly in plant pathogenic ascomycetes and in a number of basidiomycete species. Despite its impact, the implementation of AtMT has been uneven in the fungi. This review provides insight into the dynamics of expansion of new research tools into a large research community and across multiple organisms. As such, AtMT in the fungi, beyond the demonstrated and continuing power for gene discovery and as a facile transformation tool, provides a model to understand how other technologies that are just being pioneered, e.g. CRISPR/Cas, may play roles in fungi and other eukaryotic species.
Collapse
Affiliation(s)
- Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Timothy C. Cairns
- Department of Applied and Molecular Microbiology, Technische Universität Berlin, Berlin, Germany
| | - Candace E. Elliott
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Giuseppe Ianiri
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, USA
| | - Junhyun Jeon
- College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
70
|
Fillet S, Ronchel C, Callejo C, Fajardo MJ, Moralejo H, Adrio JL. Engineering Rhodosporidium toruloides for the production of very long-chain monounsaturated fatty acid-rich oils. Appl Microbiol Biotechnol 2017; 101:7271-7280. [DOI: 10.1007/s00253-017-8461-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/03/2017] [Accepted: 07/30/2017] [Indexed: 12/26/2022]
|
71
|
Liu H, Jiao X, Wang Y, Yang X, Sun W, Wang J, Zhang S, Zhao ZK. Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation. FEMS Yeast Res 2017; 17:3089757. [PMID: 28369336 DOI: 10.1093/femsyr/fox017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Metabolic engineering of Rhodosporidium toruloides, a robust lipid and caroteinoid producer, is of great importance for oleochemicals and carotenoids production. However, the Agrobacterium-mediated gene transformation is tedious and time consuming. Here, we described a fast and efficient genetic transformation of R. toruloides using electroporation with linear DNA fragments, and the process was optimized. The results showed that 2 × 103 transformants can be obtained at 0.7 kV/μg linear DNA by using hygromycin and bleomycin as selection markers after the competent cells pretreated with 25 mM DTT and 100 mM LiAc. Our results would facilitate mutant library construction and metabolic engineering of R. toruloides for production of oleochemicals and carotenoids. We further demonstrated that all transformants arose due to illegitimate integration of transforming DNA fragments by colony PCR.
Collapse
Affiliation(s)
- Hongdi Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.,Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiang Jiao
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Yanan Wang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiaobing Yang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Wenyi Sun
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China
| | - Jihui Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Sufang Zhang
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Zongbao Kent Zhao
- Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian 116023, PR China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
72
|
Dai Z, Deng S, Culley DE, Bruno KS, Magnuson JK. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species. Appl Microbiol Biotechnol 2017. [DOI: 10.1007/s00253-017-8357-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
73
|
Lin X, Gao N, Liu S, Zhang S, Song S, Ji C, Dong X, Su Y, Zhao ZK, Zhu B. Characterization the carotenoid productions and profiles of threeRhodosporidiumtoruloidesmutants fromAgrobacterium tumefaciens-mediated transformation. Yeast 2017; 34:335-342. [DOI: 10.1002/yea.3236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Xinping Lin
- School of Food Science and Technology; Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 People's Republic of China
| | - Ning Gao
- School of Food Science and Technology; Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 People's Republic of China
| | - Sasa Liu
- School of Food Science and Technology; Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 People's Republic of China
| | - Sufang Zhang
- Division of Biotechnology; Dalian Institute of Chemical Physics; Dalian 116023 People's Republic of China
| | - Shuang Song
- School of Food Science and Technology; Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 People's Republic of China
| | - Chaofan Ji
- School of Food Science and Technology; Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 People's Republic of China
| | - Xiuping Dong
- School of Food Science and Technology; Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 People's Republic of China
| | - Yichen Su
- Seafood Research and Education Center; Oregon State University; Astoria Oregon 97103 USA
| | - Zongbao Kent Zhao
- Division of Biotechnology; Dalian Institute of Chemical Physics; Dalian 116023 People's Republic of China
| | - Beiwei Zhu
- School of Food Science and Technology; Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 People's Republic of China
| |
Collapse
|
74
|
Lin X, Liu S, Bao R, Gao N, Zhang S, Zhu R, Zhao ZK. Development of an Agrobacterium-Mediated Transformation Method and Evaluation of Two Exogenous Constitutive Promoters in Oleaginous Yeast Lipomyces starkeyi. Appl Biochem Biotechnol 2017; 183:867-875. [DOI: 10.1007/s12010-017-2469-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/29/2017] [Indexed: 01/13/2023]
|
75
|
Sun W, Yang X, Wang X, Lin X, Wang Y, Zhang S, Luan Y, Zhao ZK. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation. Biotechnol Lett 2017; 39:1001-1007. [PMID: 28337556 DOI: 10.1007/s10529-017-2324-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method. RESULTS The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11. CONCLUSIONS Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.
Collapse
Affiliation(s)
- Wenyi Sun
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.,Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China.,School of Life Sciences, Jilin Normal University, 1301 Haifeng Street, Siping, 136000, China
| | - Xiaobing Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Xueying Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, 1 Qinggongyuan, Dalian, 116034, China
| | - Yanan Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Sufang Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
76
|
Xu J, Liu D. Exploitation of genus Rhodosporidium for microbial lipid production. World J Microbiol Biotechnol 2017; 33:54. [DOI: 10.1007/s11274-017-2225-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/09/2017] [Indexed: 11/25/2022]
|
77
|
Yaegashi J, Kirby J, Ito M, Sun J, Dutta T, Mirsiaghi M, Sundstrom ER, Rodriguez A, Baidoo E, Tanjore D, Pray T, Sale K, Singh S, Keasling JD, Simmons BA, Singer SW, Magnuson JK, Arkin AP, Skerker JM, Gladden JM. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:241. [PMID: 29075325 PMCID: PMC5651578 DOI: 10.1186/s13068-017-0927-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/10/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. RESULTS In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. CONCLUSIONS This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.
Collapse
Affiliation(s)
- Junko Yaegashi
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354 USA
| | - James Kirby
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720 USA
| | - Masakazu Ito
- Energy Biosciences Institute, 2151 Berkeley Way, Berkeley, CA 94704 USA
| | - Jian Sun
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Tanmoy Dutta
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Mona Mirsiaghi
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Eric R. Sundstrom
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Alberto Rodriguez
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Edward Baidoo
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Deepti Tanjore
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Todd Pray
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Kenneth Sale
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Seema Singh
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Blake A. Simmons
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Steven W. Singer
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Jon K. Magnuson
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354 USA
| | - Adam P. Arkin
- Energy Biosciences Institute, 2151 Berkeley Way, Berkeley, CA 94704 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jeffrey M. Skerker
- Energy Biosciences Institute, 2151 Berkeley Way, Berkeley, CA 94704 USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - John M. Gladden
- Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, Livermore, CA 94551 USA
| |
Collapse
|
78
|
Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species. Microb Cell Fact 2016; 15:200. [PMID: 27887615 PMCID: PMC5124236 DOI: 10.1186/s12934-016-0600-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/19/2016] [Indexed: 01/07/2023] Open
Abstract
Background Red yeast species in the Rhodotorula/Rhodosporidium genus are outstanding producers of triacylglyceride and cell biomass. Metabolic engineering is expected to further enhance the productivity and versatility of these hosts for the production of biobased chemicals and fuels. Promoters with strong activity during oil-accumulation stage are critical tools for metabolic engineering of these oleaginous yeasts. Results The upstream DNA sequences of 6 genes involved in lipid biosynthesis or accumulation in Rhodotorula toruloides were studied by luciferase reporter assay. The promoter of perilipin/lipid droplet protein 1 gene (LDP1) displayed much stronger activity (4–11 folds) than that of glyceraldehyde-3-phosphate dehydrogenase gene (GPD1), one of the strongest promoters known in yeasts. Depending on the stage of cultivation, promoter of acetyl-CoA carboxylase gene (ACC1) and fatty acid synthase β subunit gene (FAS1) exhibited intermediate strength, displaying 50–160 and 20–90% levels of GPD1 promoter, respectively. Interestingly, introns significantly modulated promoter strength at high frequency. The incorporation of intron 1 and 2 of LDP1 (LDP1in promoter) enhanced its promoter activity by 1.6–3.0 folds. Similarly, the strength of ACC1 promoter was enhanced by 1.5–3.2 folds if containing intron 1. The intron 1 sequences of ACL1 and FAS1 also played significant regulatory roles. When driven by the intronic promoters of ACC1 and LDP1 (ACC1in and LDP1in promoter, respectively), the reporter gene expression were up-regulated by nitrogen starvation, independent of de novo oil biosynthesis and accumulation. As a proof of principle, overexpression of the endogenous acyl-CoA-dependent diacylglycerol acyltransferase 1 gene (DGA1) by LDP1in promoter was significantly more efficient than GPD1 promoter in enhancing lipid accumulation. Conclusion Intronic sequences play an important role in regulating gene expression in R. toruloides. Three intronic promoters, LDP1in, ACC1in and FAS1in, are excellent promoters for metabolic engineering in the oleaginous and carotenogenic yeast, R. toruloides. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0600-x) contains supplementary material, which is available to authorized users.
Collapse
|
79
|
Johns AMB, Love J, Aves SJ. Four Inducible Promoters for Controlled Gene Expression in the Oleaginous Yeast Rhodotorula toruloides. Front Microbiol 2016; 7:1666. [PMID: 27818654 PMCID: PMC5073140 DOI: 10.3389/fmicb.2016.01666] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/05/2016] [Indexed: 01/24/2023] Open
Abstract
Rhodotorula (Rhodosporidium) toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70% of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3, and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides.
Collapse
Affiliation(s)
| | - John Love
- Department of Biosciences, University of Exeter Exeter, UK
| | - Stephen J Aves
- Department of Biosciences, University of Exeter Exeter, UK
| |
Collapse
|
80
|
Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Appl Microbiol Biotechnol 2016; 100:9393-9405. [PMID: 27678117 DOI: 10.1007/s00253-016-7815-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/10/2016] [Accepted: 08/14/2016] [Indexed: 10/20/2022]
Abstract
Natural lipids can be used to make biodiesel and many other value-added compounds. In this work, we explored a number of different metabolic engineering strategies for increasing lipid production in the oleaginous yeast Rhodosporidium toruloides IFO0880. These included increasing the expression of enzymes involved in different aspects of lipid biosynthesis-malic enzyme (ME), pyruvate carboxylase (PYC1), glycerol-3-P dehydrogenase (GPD), and stearoyl-CoA desaturase (SCD)-and deleting the gene PEX10, required for peroxisome biogenesis. Only malic enzyme and stearoyl-CoA desaturase, when overexpressed, were found to significantly increase lipid production. Only stearoyl-CoA desaturase, when overexpressed, further increased lipid production in a strain previously engineered to overexpress acetyl-CoA carboxylase (ACC1) and diacylglycerol acyltransferase (DGA1). Our best strain produced 27.4 g/L lipid with an average productivity of 0.31 g/L/h during batch growth on glucose and 89.4 g/L lipid with an average productivity of 0.61 g/L/h during fed-batch growth on glucose. These results further establish R. toruloides as a platform organism for the production of lipids and potentially other lipid-derived compounds from sugars.
Collapse
|
81
|
Microbial production of fatty alcohols. World J Microbiol Biotechnol 2016; 32:152. [PMID: 27465852 DOI: 10.1007/s11274-016-2099-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022]
Abstract
Fatty alcohols have numerous commercial applications, including their use as lubricants, surfactants, solvents, emulsifiers, plasticizers, emollients, thickeners, and even fuels. Fatty alcohols are currently produced by catalytic hydrogenation of fatty acids from plant oils or animal fats. Microbial production of fatty alcohols may be a more direct and environmentally-friendly strategy since production is carried out by heterologous enzymes, called fatty acyl-CoA reductases, able to reduce different acyl-CoA molecules to their corresponding primary alcohols. Successful examples of metabolic engineering have been reported in Saccharomyces cerevisiae and Escherichia coli in which the production of fatty alcohols ranged from 1.2 to 1.9 g/L, respectively. Due to their metabolic advantages, oleaginous yeasts are considered the best hosts for production of fatty acid-derived chemicals. Some of these species can naturally produce, under specific growth conditions, lipids at high titers (>50 g/L) and therefore provide large amounts of fatty acyl-CoAs or fatty acids as precursors. Very recently, taking advantage of such features, over 8 g/L of C16-C18 fatty alcohols have been produced in Rhodosporidium toruloides. In this review we summarize the different metabolic engineering strategies, hosts and cultivation conditions used to date. We also point out some future trends and challenges for the microbial production of fatty alcohols.
Collapse
|
82
|
Wang Y, Zhang S, Pötter M, Sun W, Li L, Yang X, Jiao X, Zhao ZK. Overexpression of Δ12-Fatty Acid Desaturase in the Oleaginous Yeast Rhodosporidium toruloides for Production of Linoleic Acid-Rich Lipids. Appl Biochem Biotechnol 2016; 180:1497-1507. [DOI: 10.1007/s12010-016-2182-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/23/2016] [Indexed: 01/13/2023]
|
83
|
Tsai YY, Ohashi T, Kanazawa T, Polburee P, Misaki R, Limtong S, Fujiyama K. Development of a sufficient and effective procedure for transformation of an oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Curr Genet 2016; 63:359-371. [DOI: 10.1007/s00294-016-0629-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 01/18/2023]
|
84
|
Cloning and evaluation of different constitutive promoters in the oleaginous yeastRhodosporidium toruloides. Yeast 2016; 33:99-106. [DOI: 10.1002/yea.3145] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 11/04/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
|
85
|
Chen L, Lee J, Ning Chen W. The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in Saccharomyces cerevisiae: a review. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
86
|
Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV. Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 2015; 113:1056-66. [PMID: 26479039 DOI: 10.1002/bit.25864] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022]
Abstract
Oleaginous yeast are promising organisms for the production of lipid-based chemicals and fuels from simple sugars. In this work, we explored Rhodosporidium toruloides for the production of lipid-based products. This oleaginous yeast natively produces lipids at high titers and can grow on glucose and xylose. As a first step, we sequenced the genomes of two strains, IFO0880, and IFO0559, and generated draft assemblies and annotations. We then used this information to engineer two R. toruloides strains for increased lipid production by over-expressing the native acetyl-CoA carboxylase and diacylglycerol acyltransferase genes using Agrobacterium tumefaciens mediated transformation. Our best strain, derived from IFO0880, was able to produce 16.4 ± 1.1 g/L lipid from 70 g/L glucose and 9.5 ± 1.3 g/L lipid from 70 g/L xylose in shake-flask experiments. This work represents one of the first examples of metabolic engineering in R. toruloides and establishes this yeast as a new platform for production of fatty-acid derived products.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jeffrey M Skerker
- Department of Bioengineering, University of California, Berkeley, California
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Charles D Rutter
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew J Maurer
- Department of Bioengineering, University of California, Berkeley, California
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, California.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
87
|
Liu Y, Koh CMJ, Ngoh ST, Ji L. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species. Microb Cell Fact 2015; 14:170. [PMID: 26502730 PMCID: PMC4624585 DOI: 10.1186/s12934-015-0357-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/07/2015] [Indexed: 12/05/2022] Open
Abstract
Background Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. Results We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a d-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named PDAO1-in1m1, showed very similar luciferase activity to the wild-type promoter upon induction with d-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. Conclusion The intron 1-containing DAO1 promoters coupled with a DAO1 null mutant makes an efficient and tight d-amino acid-inducible gene expression system in Rhodosporidium and Rhodotorula genera. The system will be a valuable tool for metabolic engineering and enzyme expression in these yeast hosts. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0357-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanbin Liu
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Chong Mei John Koh
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Si Te Ngoh
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
88
|
Mannazzu I, Landolfo S, Lopes da Silva T, Buzzini P. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 2015; 31:1665-73. [PMID: 26335057 DOI: 10.1007/s11274-015-1927-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/14/2015] [Indexed: 01/20/2023]
Abstract
Carotenoids are one of the most common classes of pigments that occur in nature. Due to their biological properties, they are widely used in phytomedicine and in the chemical, pharmaceutical, cosmetic, food and feed industries. Accordingly, their global market is continuously growing, and it is expected to reach about US$1.4 billion in 2018. Carotenoids can be easily produced by chemical synthesis, although their biotechnological production is rapidly becoming an appealing alternative to the chemical route, partly due to consumer concerns against synthetic pigments. Among the yeasts, and apart from the pigmented species Phaffia rhodozyma (and its teleomorph Xanthophyllomyces dendrorhous), a handful of species of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus are well known carotenoid producers. These are known as 'red yeasts', and their ability to synthesize mixtures of carotenoids from low-cost carbon sources has been broadly studied recently. Here, in agreement with the renewed interest in microbial carotenoids, the recent literature is reviewed regarding the taxonomy of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus, the stress factors that influence their carotenogenesis, and the most advanced analytical tools for evaluation of carotenoid production. Moreover, a synopsis of the molecular and "-omic" tools available for elucidation of the metabolic pathways of the microbial carotenoids is reported.
Collapse
Affiliation(s)
- Ilaria Mannazzu
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, Sassari, Italy.
| | - Sara Landolfo
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, Sassari, Italy
| | - Teresa Lopes da Silva
- Unidade de Bioenergia, Laboratorio Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, Lisbon, Portugal
| | - Pietro Buzzini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Collezione dei Lieviti Industriali (DBVPG), Università di Perugia, Borgo XX Giugno 74, Perugia, Italy
| |
Collapse
|
89
|
Fillet S, Gibert J, Suárez B, Lara A, Ronchel C, Adrio JL. Fatty alcohols production by oleaginous yeast. J Ind Microbiol Biotechnol 2015; 42:1463-72. [PMID: 26318028 PMCID: PMC4607723 DOI: 10.1007/s10295-015-1674-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023]
Abstract
We have engineered Rhodosporidium toruloides to produce fatty alcohols by expressing a fatty acyl-CoA reductase from Marinobacter aquaeolei VT8. Production of fatty alcohols in flasks was achieved in different fermentation media at titers ranging from 0.2 to 2 g/L. In many of the conditions tested, more than 80 % of fatty alcohols were secreted into the cultivation broth. Through fed-batch fermentation in 7 L bioreactors, over 8 g/L of C16–C18 fatty alcohols were produced using sucrose as the substrate. This is the highest titer ever reported on microbial production of fatty alcohols to date.
Collapse
Affiliation(s)
- Sandy Fillet
- Neol Biosolutions SA, Avda. Innovación, 1, Edificio BIC-213, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Jordi Gibert
- Neol Biosolutions SA, Avda. Innovación, 1, Edificio BIC-213, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Beatriz Suárez
- Neol Biosolutions SA, Avda. Innovación, 1, Edificio BIC-213, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Armando Lara
- Neol Biosolutions SA, Avda. Innovación, 1, Edificio BIC-213, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Carmen Ronchel
- Neol Biosolutions SA, Avda. Innovación, 1, Edificio BIC-213, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - José L Adrio
- Neol Biosolutions SA, Avda. Innovación, 1, Edificio BIC-213, Parque Tecnológico de La Salud, 18016, Granada, Spain.
| |
Collapse
|
90
|
Kurtzman CP, Mateo RQ, Kolecka A, Theelen B, Robert V, Boekhout T. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Res 2015; 15:fov050. [PMID: 26136514 DOI: 10.1093/femsyr/fov050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2015] [Indexed: 01/02/2023] Open
Abstract
Detection, identification and classification of yeasts have undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of the nuclear large subunit rRNA gene and from ITS now permits many laboratories to identify species quickly and accurately, thus replacing the laborious and often inaccurate phenotypic tests previously used. Phylogenetic analysis of gene sequences is leading to a major revision of yeast systematics that will result in redefinition of nearly all genera. This new understanding of species relationships has prompted a change of rules for naming and classifying yeasts and other fungi, and these new rules are presented in the recently implemented International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). The use of molecular methods for species identification and the impact of Code changes on classification will be discussed, as will use of phylogeny for prediction of biotechnological applications.
Collapse
Affiliation(s)
- Cletus P Kurtzman
- Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Raquel Quintilla Mateo
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Anna Kolecka
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| | - Bart Theelen
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| | - Vincent Robert
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| | - Teun Boekhout
- CBS Fungal Biodiversity Centre (CBS-KNAW), 3584 CT Utrecht, the Netherlands
| |
Collapse
|
91
|
Bommareddy RR, Sabra W, Maheshwari G, Zeng AP. Metabolic network analysis and experimental study of lipid production in Rhodosporidium toruloides grown on single and mixed substrates. Microb Cell Fact 2015; 14:36. [PMID: 25888986 PMCID: PMC4377193 DOI: 10.1186/s12934-015-0217-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/24/2015] [Indexed: 01/04/2023] Open
Abstract
Background Microbial lipids (triacylglycerols, TAG) have received large attention for a sustainable production of oleochemicals and biofuels. Rhodosporidium toruloides can accumulate lipids up to 70% of its cell mass under certain conditions. However, our understanding of lipid production in this yeast is still much limited, especially for growth with mixed substrates at the level of metabolic network. In this work, the potentials of several important carbon sources for TAG production in R.toruloides are first comparatively studied in silico by means of elementary mode analysis followed by experimental validation. Results A simplified metabolic network of R.toruloides was reconstructed based on a combination of genome and proteome annotations. Optimal metabolic space was studied using elementary mode analysis for growth on glycerol, glucose, xylose and arabinose or in mixtures. The in silico model predictions of growth and lipid production are in agreement with experimental results. Both the in silico and experimental studies revealed that glycerol is an attractive substrate for lipid synthesis in R. toruloides either alone or in blend with sugars. A lipid yield as high as 0.53 (C-mol TAG/C-mol) has been experimentally obtained for growth on glycerol, compared to a theoretical maximum of 0.63 (C-mol TAG/C-mol). The lipid yield on glucose is much lower (0.29 (experimental) vs. 0.58 (predicted) C-mol TAG/C-mol). The blend of glucose with glycerol decreased the lipid yield on substrate but can significantly increase the overall volumetric productivity. Experimental studies revealed catabolite repression of glycerol by the presence of glucose for the first time. Significant influence of oxygen concentration on the yield and composition of lipids were observed which have not been quantitatively studied before. Conclusions This study provides for the first time a simplified metabolic model of R.toruloides and its detailed in silico analysis for growth on different carbon sources for their potential of TAG synthesis. Experimental studies revealed the phenomenon of catabolite repression of glycerol by glucose and the importance of oxygen supply on the yield and composition of lipids. More systematic studies are needed to understand the mechanisms which should help to further optimize the lipid production in this strain of industrial interest. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0217-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rajesh Reddy Bommareddy
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| | - Wael Sabra
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| | - Garima Maheshwari
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073, Hamburg, Germany.
| |
Collapse
|
92
|
Ianiri G, Abhyankar R, Kihara A, Idnurm A. Phs1 and the synthesis of very long chain Fatty acids are required for ballistospore formation. PLoS One 2014; 9:e105147. [PMID: 25148260 PMCID: PMC4141788 DOI: 10.1371/journal.pone.0105147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
The production and dissemination of spores by members of the fungal kingdom is a major reason for the success of this eukaryotic lineage in colonizing most terrestrial ecosystems. Ballistospores are a type of spore produced by basidiomycete fungi, such as the mushrooms and plant pathogenic rusts. These spores are forcefully discharged through a unique liquid-drop fusion mechanism, enabling the aerosolization of these particles that can contribute to plant disease and human allergies. The genes responsible for this process are unknown due to technical challenges in studying many of the fungi that produce ballistospores. Here, we applied newly-developed techniques in a forward genetic screen to identify genes required for ballistospore formation or function in a tractable red yeast, a species of Sporobolomyces. One strain bearing a mutation in the PHS1 gene was identified as a mirror mutant. PHS1 encodes 3-hydroxyacyl-CoA dehydratase required for the third step in very long chain fatty acid biosynthesis. The Sporobolomyces PHS1 gene complements the essential functions of a S. cerevisiae phs1 mutant. The Sporobolomyces phs1 mutant strain has less dehydratase activity and a reduction in very long chain fatty acids compared to wild type. The mutant strain also exhibits sensitivity to cell wall stress agents and loss of shooting due to a delay in ballistospore formation, indicating that the role of Phs1 in spore dissemination may be primarily in cellular integrity.
Collapse
Affiliation(s)
- Giuseppe Ianiri
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- Dipartimento di Agricoltura, Ambiente e Alimenti, Facoltà di Agraria, Università degli Studi del Molise, Campobasso, Italy
| | - Ritika Abhyankar
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- Pembroke Hill School, Kansas City, Missouri, United States of America
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Alexander Idnurm
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- School of Botany, University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
93
|
Nicaud JM, Coq AMCL, Rossignol T, Morin N. Protocols for Monitoring Growth and Lipid Accumulation in Oleaginous Yeasts. SPRINGER PROTOCOLS HANDBOOKS 2014. [DOI: 10.1007/8623_2014_40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
94
|
Enabling technologies to advance microbial isoprenoid production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 148:143-60. [PMID: 25549781 DOI: 10.1007/10_2014_284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microbial production of isoprenoids provides an attractive alternative to biomass extraction and chemical synthesis. Although widespread research aims for isoprenoid biosynthesis, it is still in its infancy in terms of delivering commercial products. Large barriers remain in realizing a cost-competitive process, for example, developing an optimal microbial cell factory. Here, we summarize the many tools and methods that have been developed in the metabolic engineering of isoprenoid production, with the advent of systems biology and synthetic biology, and discuss how these technologies advance to accelerate the design-build-test engineering cycle to obtain optimum microbial systems. It is anticipated that innovative combinations of new and existing technologies will continue to emerge, which will enable further development of microbial cell factories for commercial isoprenoid production.
Collapse
|