51
|
Zhang J, Yu D, Dian L, Hai Y, Xin Y, Wei Y. Metagenomics insights into the profiles of antibiotic resistome in combined sewage overflows from reads to metagenome assembly genomes. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128277. [PMID: 35074753 DOI: 10.1016/j.jhazmat.2022.128277] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Combined sewage overflows (CSOs) have become an important source of antibiotic resistance genes (ARGs) in the environment, while the distribution and dynamics of antibiotic resistome in the CSOs events have not been well understood. This study deciphered the profiles of antibiotic resitome in the CSOs based on metagenomics analysis from reads to metagenome assembly genomes (MAGs), and the dynamical changes of ARGs were clarified through continuous monitoring of the CSO event. Results showed that antibiotic inactivation was the dominant resistance mechanism, and sulfonamide, aminoglycoside along with multidrug resistance were the dominant antibiotic resistance types. It was speculated that the antibiotic resistome were generally determined by sewer sediment flushed out along with the CSOs not domestic sewage in the pipes. The host range and mobility of the antibiotic resistome were determined at contigs level, and the hosts mainly belonged to the Proteobacteria with the genus of Pseudomonas, Escherichia, Enterobacter and Aeromonas being dominant. The transposase (tnpA), IS91 and integrons were mobile genetic elements (MGEs) located together with ARGs, and a MAG carrying 32 ARGs and 140 VFGs was assembled. Although microbial community contributed most to the changes of antibiotic resistome in the CSOs directly, the risks caused by the MGEs should be paid more attention.
Collapse
Affiliation(s)
- Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Dian
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Hai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Xin
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
52
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
53
|
Microbial Community Structure and Bacterial Lineages Associated with Sulfonamides Resistance in Anthropogenic Impacted Larut River. WATER 2022. [DOI: 10.3390/w14071018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anthropogenic activities often contribute to antibiotic resistance in aquatic environments. Larut River Malaysia is polluted with both organic and inorganic pollutants from domestic and industrial wastewater that are probably treated inadequately. The river is characterized by high biochemical oxygen demand, chemical oxygen demand, total suspended solids, ammonia, and heavy metals. In our previous study, sulfonamides (SAs) and sulfonamide resistance genes (sul) were detected in the Larut River. Hence, in this study, we further examined the microbial community structure, diversity of sulfonamide-resistant bacteria (SARB), and their resistance genes. The study also aimed at identifying cultivable bacteria potential carriers of sul genes in the aquatic environment. Proteobacteria (22.4–66.0%), Firmicutes (0.8–41.6%), Bacteroidetes (2.0–29.4%), and Actinobacteria (5.5–27.9%) were the most dominant phyla in both the effluents and river waters. SARB isolated consisted only 4.7% of the total genera identified, with SAR Klebsiella as the most dominant (38.0–61.3%) followed by SAR Escherichia (0–22.2%) and Acinetobacter (3.2–16.0%). The majority of the SAR Klebsiella isolated from the effluents and middle downstream were positive for sul genes. Sul genes-negative SAR Escherichia and Acinetobacter were low (<20%). Canonical-correlation analysis (CCA) showed that SAs residues and inorganic nutrients exerted significant impacts on microbial community and total sul genes. Network analysis identified 11 SARB as potential sul genes bacterial carriers. These findings indicated that anthropogenic activities exerted impacts on the microbial community structure and SAs resistance in the Larut River.
Collapse
|
54
|
Abstract
Antibiotic resistance is a global concern for human, animal, and environmental health. Many studies have identified wastewater treatment plants and surface waters as major reservoirs of antibiotic resistant bacteria (ARB) and genes (ARGs). Yet their prevalence in urban karst groundwater systems remains largely unexplored. Considering the extent of karst groundwater use globally, and the growing urban areas in these regions, there is an urgent need to understand antibiotic resistance in karst systems to protect source water and human health. This study evaluated the prevalence of ARGs associated with resistance phenotypes at 10 urban karst features in Bowling Green, Kentucky weekly for 46 weeks. To expand the understanding of prevalence in urban karst, a spot sampling of 45 sites in the Tampa Bay Metropolitan area, Florida was also conducted. Specifically, this study considered tetracycline and extended spectrum beta-lactamase (ESBLs) producing, including third generation cephalosporin, resistant E. coli, and tetracycline and macrolide resistant Enterococcus spp. across the 443 Kentucky and 45 Florida samples. A consistent prevalence of clinically relevant and urban associated ARGs were found throughout the urban karst systems, regardless of varying urban development, karst geology, climate, or landuse. These findings indicate urban karst groundwater as a reservoir for antibiotic resistance, potentially threatening human health.
Collapse
|
55
|
Antimicrobial Resistance of Heterotrophic Bacteria in Drinking Water-Associated Biofilms. WATER 2022. [DOI: 10.3390/w14060944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antimicrobial resistance (AMR) is one of the major threats to human health and is becoming an environmental challenge for water resources too. Our study’s aim was: to assess the AMR of heterotrophic bacteria in drinking water-associated biofilms against six clinically important antibiotics; to compare the prevalence of antibiotic resistant bacteria (ARB) in drinking water and in the associated biofilms; to estimate biofilm formation ability of selected isolates. Culture-dependent methods were used in the population-based study of the biofilms and in assessment of the single-species biofilm formation ability and the AMR phenotype of the isolated strains. The population proportion of the bacteria resistant to each tested antibiotic significantly differed in the biofilms formed in drinking water from different sampling points. In all biofilms, the abundance of tetracycline- and ampicillin-resistant bacteria was low, and of streptomycin-resistant bacteria was high. An increased proportion of the bacteria resistant to ciprofloxacin, chloramphenicol and streptomycin was detected in the biofilms compared to those found in the drinking water. The prevalence of ARB in the biofilms implies an impact on the drinking water quality and an assessment of the attached and the planktonic bacteria is needed to clarify the prevalence of AMR in the drinking water distribution system.
Collapse
|
56
|
Grenni P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:687-714. [PMID: 35191071 DOI: 10.1002/etc.5289] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/11/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.
Collapse
Affiliation(s)
- Paola Grenni
- Water Research Institute, National Research Council of Italy, via Salaria km 29.300, Monterotondo, Rome, 00015, Italy
| |
Collapse
|
57
|
Miłobedzka A, Ferreira C, Vaz-Moreira I, Calderón-Franco D, Gorecki A, Purkrtova S, Dziewit L, Singleton CM, Nielsen PH, Weissbrodt DG, Manaia CM. Monitoring antibiotic resistance genes in wastewater environments: The challenges of filling a gap in the One-Health cycle. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127407. [PMID: 34629195 DOI: 10.1016/j.jhazmat.2021.127407] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 05/10/2023]
Abstract
Antibiotic resistance (AR) is a global problem requiring international cooperation and coordinated action. Global monitoring must rely on methods available and comparable across nations to quantify AR occurrence and identify sources and reservoirs, as well as paths of AR dissemination. Numerous analytical tools that are gaining relevance in microbiology, have the potential to be applied to AR research. This review summarizes the state of the art of AR monitoring methods, considering distinct needs, objectives and available resources. Based on the overview of distinct approaches that are used or can be adapted to monitor AR, it is discussed the potential to establish reliable and useful monitoring schemes that can be implemented in distinct contexts. This discussion places the environmental monitoring within the One-Health approach, where two types of risk, dissemination across distinct environmental compartments, and transmission to humans, must be considered. The plethora of methodological approaches to monitor AR and the variable features of the monitored sites challenge the capacity of the scientific community and policy makers to reach a common understanding. However, the dialogue between different methods and the production of action-oriented data is a priority. The review aims to warm up this discussion.
Collapse
Affiliation(s)
- Aleksandra Miłobedzka
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic; Institute of Evolutionary Biology, University of Warsaw, Warsaw, Poland.
| | - Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | | | - Adrian Gorecki
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Sabina Purkrtova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Caitlin M Singleton
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
58
|
Anversa L, Romani CD, Caria ES, Saeki EK, Nascentes GAN, Garbelotti M, Stancari RCA, Dantas STA, Rall VLM, Ruiz LS, Camargo CH, Richini-Pereira VB. Quality of dialysis water and dialysate in hemodialysis centers: highlight for occurrence of non-fermenting gram-negative bacilli. J Appl Microbiol 2022; 132:3416-3429. [PMID: 35108426 DOI: 10.1111/jam.15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the physicochemical and microbiological quality of dialysis water and dialysate samples from hemodialysis centers. METHODS AND RESULTS Samples were fortnightly collected from three hemodialysis centers in Bauru City, Brazil, between July/2017 and June/2018, at the stages of post-reverse osmosis, reuse and dialysate. Analyses included determination of conductivity, fluoride, nitrate and sulfate; test for total coliform bacteria; count of heterotrophic bacteria; count and identification of non-fermenting gram-negative bacilli (NFGNB); drug susceptibility test; biofilm formation capacity, and genetic similarity among some isolated NFGNB. Of the analyzed samples, only 4/72 (5.6%) had conductivity values ≥ 10 mS/cm, 4/216 (1.9%) presented total coliforms, and 1/216 (0.5%) had heterotrophic bacteria count > 100 CFU/mL. NFGNB were isolated from 99/216 (45.8%) samples, and the major identified microorganisms included Herbaspirillum aquaticum/huttiense, Brevundimonas aurantiaca, Cupriavidus metallidurans, Pseudomonas aeruginosa and Ralstonia insidiosa. Isolates of P. aeruginosa and Burkholderia cepacia complex were sensitive to most antimicrobials and, together with isolates of Ralstonia insidiosa and Ralstonia pickettii, showed strong biofilm formation capacity. Some isolates expressed the same electrophoretic profile on pulsed-field gel electrophoresis, indicating persistence of bacterial clones in the systems over time. CONCLUSIONS NFGNB were observed in several dialysis water and dialysate samples from all investigated centers, which may represent a risk to the health of patients. SIGNIFICANCE AND IMPACT OF THE STUDY Regular inclusion of actions for NFGNB control and monitoring in hemodialysis fluids are suggested for greater safety of the dialytic process.
Collapse
Affiliation(s)
- L Anversa
- Adolfo Lutz Institute, Regional Laboratories Center Bauru, Bauru, Brazil
| | - C D Romani
- Adolfo Lutz Institute, Regional Laboratories Center Bauru, Bauru, Brazil
| | - E S Caria
- Adolfo Lutz Institute, Regional Laboratories Center Bauru, Bauru, Brazil
| | - E K Saeki
- Adolfo Lutz Institute, Regional Laboratories Center Presidente Prudente, Presidente Prudente, Brazil
| | - G A N Nascentes
- Federal Institute of Education, Science and Technology of Triângulo Mineiro, Uberaba, Brazil
| | - M Garbelotti
- Adolfo Lutz Institute, Regional Laboratories Center Bauru, Bauru, Brazil
| | - R C A Stancari
- Adolfo Lutz Institute, Regional Laboratories Center Bauru, Bauru, Brazil
| | - S T A Dantas
- Institute of Biosciences, Department of Microbiology and Immunology, São Paulo State University (Unesp), Botucatu, Brazil
| | - V L M Rall
- Institute of Biosciences, Department of Microbiology and Immunology, São Paulo State University (Unesp), Botucatu, Brazil
| | - L S Ruiz
- Adolfo Lutz Institute, Regional Laboratories Center Bauru, Bauru, Brazil
| | - C H Camargo
- Adolfo Lutz Institute, Central Laboratory, São Paulo, Brazil
| | | |
Collapse
|
59
|
Ribeirinho-Soares S, Moreira NFF, Graça C, Pereira MFR, Silva AMT, Nunes OC. Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. WATER RESEARCH 2022; 209:117932. [PMID: 34902759 DOI: 10.1016/j.watres.2021.117932] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Improving the chemical and biological quality of treated wastewater is particularly important in world regions under water stress. In these regions, reutilization of wastewater is seen as an alternative to reduce water demand, particularly for agriculture irrigation. In a reuse scenario, the treated wastewater must have enough quality to avoid chemical and biological contamination of the receiving environment. Ozonation is among the technologies available to efficiently remove organic micropollutants and disinfect secondary effluents, being implemented in full-scale urban wastewater treatment plants worldwide. However, previous studies demonstrated that storage of ozone treated wastewater promoted the overgrowth of potentially harmful bacteria, putting at risk its reutilization, given for instance the possibility of contaminating the food-chain. Therefore, this study was designed to assess the potential beneficial role of inoculation of ozone treated wastewater with a diverse bacterial community during storage, for the control of the overgrowth of potentially hazardous bacteria, through bacterial competition. To achieve this goal, ozone treated wastewater (TWW) was diluted with river water (RW) in the same proportion, and the resulting bacterial community (RW+TWW) was compared to that of undiluted TWW over 7 days storage. As hypothesized, in contrast to TWW, where dominance of Beta- and Gammaproteobacteria, namely Pseudomonas spp. and Acinetobacter spp., was observed upon storage for 7 days, the bacterial communities of the diluted samples (RW+TWW) were diverse, resembling those of RW. Moreover, given the high abundance of antibiotic resistance genes in RW, the concentration of these genes in RW+TWW did not differ from that of the non-ozonated controls (WW, RW and RW+WW) over the storage period. These results highlight the necessity of finding a suitable pristine diverse bacterial community to be used in the future to compete with bacteria surviving ozonation, to prevent reactivation of undesirable bacteria during storage of treated wastewater.
Collapse
Affiliation(s)
- Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Nuno F F Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Cátia Graça
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| |
Collapse
|
60
|
Cáliz J, Subirats J, Triadó-Margarit X, Borrego CM, Casamayor EO. Global dispersal and potential sources of antibiotic resistance genes in atmospheric remote depositions. ENVIRONMENT INTERNATIONAL 2022; 160:107077. [PMID: 35016024 DOI: 10.1016/j.envint.2022.107077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance has become a major Global Health concern and a better understanding on the global spread mechanisms of antibiotic resistant bacteria (ARB) and intercontinental ARB exchange is needed. We measured atmospheric depositions of antibiotic resistance genes (ARGs) by quantitative (q)PCR in rain/snow collected fortnightly along 4 y. at a remote high mountain LTER (Long-Term Ecological Research) site located above the atmospheric boundary layer (free troposphere). Bacterial composition was characterized by 16S rRNA gene sequencing, and air mass provenances were determined by modelled back trajectories and rain/snow chemical composition. We hypothesize that the free troposphere may act as permanent reservoir and vector for ARB and ARGs global dispersal. We aimed to i) determine whether ARGs are long-range intercontinental and persistently dispersed through aerosols, ii) assess ARGs long-term atmospheric deposition dynamics in a remote high mountain area, and iii) unveil potential diffuse ARGs pollution sources. We showed that the ARGs sul1 (resistance to sulfonamides), tetO (resistance to tetracyclines), and intI1 (a proxy for horizontal gene transfer and anthropogenic pollution) were long-range and persistently dispersed in free troposphere aerosols. Major depositions of tetracyclines resistance matched with intensification of African dust outbreaks. Potential ARB mostly traced their origin back into agricultural soils. Our study unveils that air masses pathways are shaping ARGs intercontinental dispersal and global spread of antibiotic resistances, with potential predictability for interannual variability and remote deposition rates. Because climate regulates aerosolization and long-range air masses movement patterns, we call for a more careful evaluation of the connections between land use, climate change and ARB long-range intercontinental dispersal.
Collapse
Affiliation(s)
- Joan Cáliz
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes-Spanish Council for Research CEAB-CSIC, Blanes E-17300, Spain.
| | - Jèssica Subirats
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona E-17003, Spain
| | - Xavier Triadó-Margarit
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes-Spanish Council for Research CEAB-CSIC, Blanes E-17300, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona E-17003, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona E-17003, Spain
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Centre of Advanced Studies of Blanes-Spanish Council for Research CEAB-CSIC, Blanes E-17300, Spain.
| |
Collapse
|
61
|
Rocha J, Ferreira C, Mil-Homens D, Busquets A, Fialho AM, Henriques I, Gomila M, Manaia CM. Third generation cephalosporin-resistant Klebsiella pneumoniae thriving in patients and in wastewater: what do they have in common? BMC Genomics 2022; 23:72. [PMID: 35065607 PMCID: PMC8783465 DOI: 10.1186/s12864-021-08279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae are ubiquitous bacteria and recognized multidrug-resistant opportunistic pathogens that can be released into the environment, mainly through sewage, where they can survive even after wastewater treatment. A major question is if once released into wastewater, the selection of lineages missing clinically-relevant traits may occur. Wastewater (n = 25) and clinical (n = 34) 3rd generation cephalosporin-resistant K. pneumoniae isolates were compared based on phenotypic, genotypic and genomic analyses. RESULTS Clinical and wastewater isolates were indistinguishable based on phenotypic and genotypic characterization. The analysis of whole genome sequences of 22 isolates showed that antibiotic and metal resistance or virulence genes, were associated with mobile genetic elements, mostly transposons, insertion sequences or integrative and conjugative elements. These features were variable among isolates, according to the respective genetic lineage rather than the origin. CONCLUSIONS It is suggested that once acquired, clinically relevant features of K. pneumoniae may be preserved in wastewater, even after treatment. This evidence highlights the high capacity of K. pneumoniae for spreading through wastewater, enhancing the risks of transmission back to humans.
Collapse
Affiliation(s)
- Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Dalila Mil-Homens
- iBB-Institute of Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Antonio Busquets
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Arsénio M Fialho
- iBB-Institute of Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Isabel Henriques
- University of Coimbra, Department of Life Sciences, Faculty of Science and Technology, Coimbra, Portugal
- CESAM, University of Aveiro, Aveiro, Portugal
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
62
|
Enhancing the hydrophilicity and biofoulant removal ability of a PVDF ultrafiltration membrane via π-π interactions as measured by AFM. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
63
|
Scaccia N, Vaz-Moreira I, Manaia CM. The risk of transmitting antibiotic resistance through endophytic bacteria. TRENDS IN PLANT SCIENCE 2021; 26:1213-1226. [PMID: 34593300 DOI: 10.1016/j.tplants.2021.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance is a global human health threat distributed across humans, animals, plants, and the environment. Under the One-Health concept (humans, animals, and environment), the contamination of water bodies and soil by antibiotic-resistant bacteria cannot be dissociated from its potential transmission to humans. Edible plants can be colonized by a vast diversity of bacteria, representing an important link between the environment and humans in the One-Health triad. Based on multiple examples of bacterial groups that comprise endophytes reported in edible plants, and that have close phylogenetic proximity with human opportunistic pathogens, we argue that plants exposed to human-derived biological contamination may represent a path of transmission of antibiotic resistance to humans.
Collapse
Affiliation(s)
- Nazareno Scaccia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
64
|
Eggers S, Safdar N, Kates A, Sethi AK, Peppard PE, Kanarek MS, Malecki KMC. Urinary lead level and colonization by antibiotic resistant bacteria: Evidence from a population-based study. Environ Epidemiol 2021; 5:e175. [PMID: 34909555 PMCID: PMC8663876 DOI: 10.1097/ee9.0000000000000175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Infection by antibiotic resistant bacteria (ARB) is a global health crisis and asymptomatic colonization increases risk of infection. Nonhuman studies have linked heavy metal exposure to the selection of ARB; however, few epidemiologic studies have examined this relationship. This study analyzes the association between urinary lead level and colonization by ARB in a nonclinical human population. METHODS Data came from the Survey of the Health of Wisconsin 2016-2017, and its ancillary Wisconsin Microbiome Study. Urinary lead levels, adjusted for creatinine, were used to assess exposure. ARB included methicillin resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), fluoroquinolone resistant Gram-negative bacilli (RGNB), and Clostridium difficile (C. diff), from skin, nose, and mouth swabs, and saliva and stool samples. Logistic regression, adjusted for covariates, was used to evaluate associations between Pb and ARB. Secondary analysis investigated Pb resistance from ARB isolates. RESULTS Among 695 participants, 239 (34%) tested positive for ARB. Geometric mean urinary Pb (unadjusted) was 0.286 µg/L (95% confidence intervals [CI] = 0.263, 0.312) for ARB negative participants and 0.323 µg/L (95% CI = 0.287, 0.363) for ARB positive participants. Models adjusted for demographics, diet, and antibiotic use showed elevated odds of positive colonization for those in the 95th percentile (vs. below) of Pb exposure (odds ratio [OR] = 2.05, 95% CI = 0.95, 4.44), and associations were highest in urban residents (OR = 2.85, 95% CI = 1.07, 7.59). RGNB isolates were most resistant to Pb. DISCUSSION These novel results suggest that Pb exposure is associated with increased colonization by ARB, and that RGNB are particularly resistant to Pb.
Collapse
Affiliation(s)
- Shoshannah Eggers
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nasia Safdar
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- William S. Middleton Veterans Affairs Medical Center, Madison, WI
| | - Ashley Kates
- Division of Infectious Disease, Department of Medicine, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- William S. Middleton Veterans Affairs Medical Center, Madison, WI
| | - Ajay K. Sethi
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
| | - Paul E. Peppard
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
| | - Marty S. Kanarek
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
- Nelson Institute for Environmental Studies, University of Wisconsin—Madison, Madison, WI
| | - Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, WI
| |
Collapse
|
65
|
O'Malley K, McNamara P, McDonald W. Antibiotic resistance genes in an urban stream before and after a state fair. JOURNAL OF WATER AND HEALTH 2021; 19:885-894. [PMID: 34874897 DOI: 10.2166/wh.2021.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global spread of antibiotic resistance genes (ARGs) concomitant with a decrease in antibiotic effectiveness is a major public health issue. While research has demonstrated the impact of various urban sources, such as wastewater treatment plant (WWTP) effluent, stormwater runoff, and industrial discharge on ARG abundance in receiving waters, the impact of short-term gatherings such as state fairs is not comprehensively understood. The objective of this research was to explore the impact of a 2-week Wisconsin State Fair gathering - over 1.1 million visitors and 7,100 farm animals - on the abundance of the ARG blaTEM, the integrase of the class 1 integron (intI1), a marker for horizontal gene transfer, and the 16S rRNA gene, a marker for total biomass, in an urban stream receiving runoff from the state fair. Stream samples downstream of the state fair were taken before and after the event and quantified via a droplet digital polymerase chain reaction. The absolute abundance of all genes was significantly higher (p<0.05) following the event. This research showcases the prevalence and persistence of ARG contamination in an urban stream before and after a state fair gathering, suggesting that short-term events can be a significant source of ARGs into the environment.
Collapse
Affiliation(s)
- Kassidy O'Malley
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| | - Patrick McNamara
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| | - Walter McDonald
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA E-mail:
| |
Collapse
|
66
|
Miller JD, Workman CL, Panchang SV, Sneegas G, Adams EA, Young SL, Thompson AL. Water Security and Nutrition: Current Knowledge and Research Opportunities. Adv Nutr 2021; 12:2525-2539. [PMID: 34265039 PMCID: PMC8634318 DOI: 10.1093/advances/nmab075] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Water is an essential nutrient that has primarily been considered in terms of its physiological necessity. But reliable access to water in sufficient quantities and quality is also critical for many nutrition-related behaviors and activities, including growing and cooking diverse foods. Given growing challenges to water availability and safety, including climate change, pollution, and infrastructure degradation, a broader conceptualization of water and its diverse uses is needed to sustainably achieve global nutrition targets. Therefore, we review empirical and qualitative evidence describing the linkages between water security (the reliable availability, accessibility, and quality of water for all household uses) and nutrition. Primary linkages include water security for drinking, food production and preparation, infant and young child feeding, and limiting exposure to pathogens and environmental toxins. We then identify knowledge gaps within each linkage and propose a research agenda for studying water security and nutrition going forward, including the concurrent quantification of both food and water availability, accessibility, use, and stability. By making explicit the connections between water security and nutritional well-being, we aim to promote greater collaboration between the nutrition and water, sanitation, and hygiene sectors. Interdisciplinary policies and programs that holistically address the water-nutrition nexus, versus those that focus on water and nutrition independently, are likely to significantly advance our ability to ensure equitable access to healthy foods and safe water for all.
Collapse
Affiliation(s)
- Joshua D Miller
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cassandra L Workman
- Department of Anthropology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Sarita V Panchang
- Social Research and Evaluation Center, Louisiana State University, Baton Rouge, LA, USA
| | - Gretchen Sneegas
- Department of Geography, Texas A&M University, College Station, TX, USA
| | - Ellis A Adams
- Keough School of Global Affairs, University of Notre Dame, Notre Dame, IN, USA
| | - Sera L Young
- Department of Anthropology, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Amanda L Thompson
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
67
|
Impact of Antibiotic Therapies on Resistance Genes Dynamic and Composition of the Animal Gut Microbiota. Animals (Basel) 2021; 11:ani11113280. [PMID: 34828011 PMCID: PMC8614244 DOI: 10.3390/ani11113280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are major disruptors of the gastrointestinal microbiota, depleting bacterial species beneficial for the host health and favoring the emergence of potential pathogens. Furthermore, the intestine is a reactor of antibiotic resistance emergence, and the presence of antibiotics exacerbates the selection of resistant bacteria that can disseminate in the environment and propagate to further hosts. We reviewed studies analyzing the effect of antibiotics on the intestinal microbiota and antibiotic resistance conducted on animals, focusing on the main food-producing and companion animals. Irrespective of antibiotic classes and animal hosts, therapeutic dosage decreased species diversity and richness favoring the bloom of potential enteropathogens and the selection of antibiotic resistance. These negative effects of antibiotic therapies seem ineluctable but often were mitigated when an antibiotic was administered by parenteral route. Sub-therapeutic dosages caused the augmentation of taxa involved in sugar metabolism, suggesting a link with weight gain. This result should not be interpreted positively, considering that parallel information on antibiotic resistance selection was rarely reported and selection of antibiotic resistance is known to occur also at low antibiotic concentration. However, studies on the effect of antibiotics as growth promoters put the basis for understanding the gut microbiota composition and function in this situation. This knowledge could inspire alternative strategies to antibiotics, such as probiotics, for improving animal performance. This review encompasses the analysis of the main animal hosts and all antibiotic classes, and highlights the future challenges and gaps of knowledge that should be filled. Further studies are necessary for elucidating pharmacodynamics in animals in order to improve therapy duration, antibiotic dosages, and administration routes for mitigating negative effects of antibiotic therapies. Furthermore, this review highlights that studies on aminoglycosides are almost inexistent, and they should be increased, considering that aminoglycosides are the first most commonly used antibiotic family in companion animals. Harmonization of experimental procedures is necessary in this research field. In fact, current studies are based on different experimental set-up varying for antibiotic dosage, regimen, administration, and downstream microbiota analysis. In the future, shotgun metagenomics coupled with long-reads sequencing should become a standard experimental approach enabling to gather comprehensive knowledge on GIM in terms of composition and taxonomic functions, and of ARGs. Decorticating GIM in animals will unveil revolutionary strategies for medication and improvement of animals' health status, with positive consequences on global health.
Collapse
|
68
|
Niegowska M, Sanseverino I, Navarro A, Lettieri T. Knowledge gaps in the assessment of antimicrobial resistance in surface waters. FEMS Microbiol Ecol 2021; 97:fiab140. [PMID: 34625810 PMCID: PMC8528692 DOI: 10.1093/femsec/fiab140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
The spread of antibiotic resistance in the water environment has been widely described. However, still many knowledge gaps exist regarding the selection pressure from antibiotics, heavy metals and other substances present in surface waters as a result of anthropogenic activities, as well as the extent and impact of this phenomenon on aquatic organisms and humans. In particular, the relationship between environmental concentrations of antibiotics and the acquisition of ARGs by antibiotic-sensitive bacteria as well as the impact of heavy metals and other selective agents on antimicrobial resistance (AMR) need to be defined. Currently, established safety values are based on the effects of antibiotic toxicity neglecting the question of AMR spread. In turn, risk assessment of antibiotics in waterbodies remains a complex question implicating multiple variables and unknowns reinforced by the lack of harmonized protocols and official guidelines. In the present review, we discussed current state-of-the-art and the knowledge gaps related to pressure exerted by antibiotics and heavy metals on aquatic environments and their relationship to the spread of AMR. Along with this latter, we reflected on (i) the risk assessment in surface waters, (ii) selective pressures contributing to its transfer and propagation and (iii) the advantages of metagenomics in investigating AMR. Furthermore, the role of microplastics in co-selection for metal and antibiotic resistance, together with the need for more studies in freshwater are highlighted.
Collapse
Affiliation(s)
- Magdalena Niegowska
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Isabella Sanseverino
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Anna Navarro
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, 21027 Ispra, Italy
| |
Collapse
|
69
|
NandaKafle G, Huegen T, Potgieter SC, Steenkamp E, Venter SN, Brözel VS. Niche Preference of Escherichia coli in a Peri-Urban Pond Ecosystem. Life (Basel) 2021; 11:life11101020. [PMID: 34685391 PMCID: PMC8538306 DOI: 10.3390/life11101020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli comprises diverse strains with a large accessory genome, indicating functional diversity and the ability to adapt to a range of niches. Specific strains would display greatest fitness in niches matching their combination of phenotypic traits. Given this hypothesis, we sought to determine whether E. coli in a peri-urban pond and associated cattle pasture display niche preference. Samples were collected from water, sediment, aquatic plants, water snails associated with the pond, as well as bovine feces from cattle in an adjacent pasture. Isolates (120) were obtained after plating on Membrane Lactose Glucuronide Agar (MLGA). We used the uidA and mutS sequences for all isolates to determine phylogeny by maximum likelihood, and population structure through gene flow analysis. PCR was used to allocate isolates to phylogroups and to determine the presence of pathogenicity/virulence genes (stxI, stxII, eaeA, hlyA, ST, and LT). Antimicrobial resistance was determined using a disk diffusion assay for Tetracycline, Gentamicin, Ciprofloxacin, Meropenem, Ceftriaxone, and Azithromycin. Our results showed that isolates from water, sediment, and water plants were similar by phylogroup distribution, virulence gene distribution, and antibiotic resistance while both snail and feces populations were significantly different. Few of the feces isolates were significantly similar to aquatic ones, and most of the snail isolates were also different. Population structure analysis indicated three genetic backgrounds associated with bovine, snail, and aquatic environments. Collectively these data support niche preference of E. coli isolates occurring in this ecosystem.
Collapse
Affiliation(s)
- Gitanjali NandaKafle
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (G.N.); (T.H.)
| | - Taylor Huegen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (G.N.); (T.H.)
| | - Sarah C. Potgieter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa; (S.C.P.); (E.S.); (S.N.V.)
| | - Emma Steenkamp
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa; (S.C.P.); (E.S.); (S.N.V.)
| | - Stephanus N. Venter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa; (S.C.P.); (E.S.); (S.N.V.)
| | - Volker S. Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (G.N.); (T.H.)
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa; (S.C.P.); (E.S.); (S.N.V.)
- Correspondence:
| |
Collapse
|
70
|
Zhang B, Qin S, Guan X, Jiang K, Jiang M, Liu F. Distribution of Antibiotic Resistance Genes in Karst River and Its Ecological Risk. WATER RESEARCH 2021; 203:117507. [PMID: 34392041 DOI: 10.1016/j.watres.2021.117507] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
In recent years, karst water has been polluted by emerging pollutants such as antibiotics. In this study, the bacterial communities and antibiotic resistance genes (ARGs) in antibiotics contaminated karst river was studied in summer and winter. The concentration of antibiotics in winter karst river is higher than that in summer, and there are significant differences in structure of bacterial community and ARGs between karst river water samples. Aminoglycoside, beta-lactamase and multidrug are the main types of ARGs, and transposons play an important role in the spread of ARGs. The horizontal gene transfer (HGT) of ARGs between bacteria mediated by mobile genetic elements (MGEs) would cause the spread of ARGs and bring potential ecological risks. In addition, we found that the risk of antibiotic resistant pathogenic bacteria (ARPB) in winter was possibly higher than that in summer. It was suggested that the discharge of antibiotics, water amount and seasonal occurrence time of human intestinal diseases affect the risks caused by antibiotics contaminants. This study helps us to understand the transmission mechanism of ARGs and their potential seasonal ecological risks in complex karst water systems.
Collapse
Affiliation(s)
- Biao Zhang
- School of Ocean Sciences, China University of Geosciences, Beijing, China; The Fifth Geology Company of Hebei Geology and Minerals Bureau, Tangshan, Hebei, China
| | - Shang Qin
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, China.
| | - Kaidi Jiang
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, China
| | - Minhui Jiang
- School of Ocean Sciences, China University of Geosciences, Beijing, China
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
71
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Epidemiology of mobile colistin resistance (mcr) genes in aquatic environments. J Glob Antimicrob Resist 2021; 27:51-62. [PMID: 34438108 DOI: 10.1016/j.jgar.2021.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 07/25/2021] [Indexed: 02/05/2023] Open
Abstract
Colistin is one of the last-line therapies against multidrug-resistant Gram-negative pathogens, especially carbapenemase-producing isolates, making resistance to this compound a major global public-health crisis. Until recently, colistin resistance in Gram-negative bacteria was known to arise only by chromosomal mutations. However, a plasmid-mediated colistin resistance mechanism was described in late 2015. This mechanism is encoded by different mobile colistin resistance (mcr) genes that encode phosphoethanolamine (pEtN) transferases. These enzymes catalyse the addition of a pEtN moiety to lipid A in the bacterial outer membrane leading to colistin resistance. MCR-producing Gram-negative bacteria have been largely disseminated worldwide. However, their environmental dissemination has been underestimated. Indeed, water environments act as a connecting medium between different environments, allowing them to play a crucial role in the spread of antibiotic resistance between the natural environment and humans and other animals. For a better understanding of the role of such environments as reservoirs and/or dissemination routes of mcr genes, this review discusses primarily the various water habitats contributing to the spread of antibiotic resistance. Thereafter, we provide an overview of existing knowledge regarding the global epidemiology of mcr genes in water environments. This review confirms the global distribution of mcr genes in several water environments, including wastewater from different origins, surface water and tap water, making these environments reservoirs and dissemination routes of concern for this resistance mechanism.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
72
|
Antibiotic Resistance in Wastewater and Its Impact on a Receiving River: A Case Study of WWTP Brno-Modřice, Czech Republic. WATER 2021. [DOI: 10.3390/w13162309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance has become a global threat in which the anthropogenically influenced aquatic environment represents not only a reservoir for the spread of antibiotic resistant bacteria (ARB) among humans and animals but also an environment where resistance genes are introduced into natural microbial ecosystems. Wastewater is one of the sources of antibiotic resistance. The aim of this research was the evaluation of wastewater impact on the spread of antibiotic resistance in the water environment. In this study, qPCR was used to detect antibiotic resistance genes (ARGs)—blaCTX-M-15, blaCTX-M-32, ampC, blaTEM, sul1, tetM and mcr-1 and an integron detection primer (intl1). Detection of antibiotic resistant Escherichia coli was used as a complement to the observed qPCR results. Our results show that the process of wastewater treatment significantly reduces the abundances of ARGs and ARB. Nevertheless, treated wastewater affects the ARGs and ARB number in the receiving river.
Collapse
|
73
|
Wu L, Xie X, Li Y, Liang T, Zhong H, Ma J, Yang L, Yang J, Li L, Xi Y, Li H, Zhang J, Chen X, Ding Y, Wu Q. Metagenomics-Based Analysis of the Age-Related Cumulative Effect of Antibiotic Resistance Genes in Gut Microbiota. Antibiotics (Basel) 2021; 10:1006. [PMID: 34439056 PMCID: PMC8388928 DOI: 10.3390/antibiotics10081006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance in bacteria has become a major global health problem. One of the main reservoirs of antibiotic resistance genes is the human gut microbiota. To characterise these genes, a metagenomic approach was used. In this study, a comprehensive antibiotic resistome catalog was established using fecal samples from 246 healthy individuals from world's longevity township in Jiaoling, China. In total, 606 antibiotic resistance genes were detected. Our results indicated that antibiotic resistance genes in the human gut microbiota accumulate and become more complex with age as older groups harbour the highest abundance of these genes. Tetracycline resistance gene type tetQ was the most abundant group of antibiotic resistance genes in gut microbiota, and the main carrier of antibiotic resistance genes was Bacteroides. Antibiotic efflux, inactivation, and target alteration were found to be the dominant antimicrobial resistance mechanisms. This research may help to establish a comprehensive antibiotic resistance catalog that includes extremely long-lived healthy people such as centenarians, and may provide potential recommendations for controlling the use of antibiotics.
Collapse
Affiliation(s)
- Lei Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Tingting Liang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Haojie Zhong
- The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China;
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Juan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (L.W.); (T.L.); (J.M.); (J.Y.); (X.C.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (X.X.); (Y.L.); (L.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| |
Collapse
|
74
|
Nguyen AQ, Vu HP, Nguyen LN, Wang Q, Djordjevic SP, Donner E, Yin H, Nghiem LD. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146964. [PMID: 33866168 DOI: 10.1016/j.scitotenv.2021.146964] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 05/29/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to human and animal health. Progress in molecular biology has revealed new and significant challenges for AMR mitigation given the immense diversity of antibiotic resistance genes (ARGs), the complexity of ARG transfer, and the broad range of omnipresent factors contributing to AMR. Municipal, hospital and abattoir wastewater are collected and treated in wastewater treatment plants (WWTPs), where the presence of diverse selection pressures together with a highly concentrated consortium of pathogenic/commensal microbes create favourable conditions for the transfer of ARGs and proliferation of antibiotic resistant bacteria (ARB). The rapid emergence of antibiotic resistant pathogens of clinical and veterinary significance over the past 80 years has re-defined the role of WWTPs as a focal point in the fight against AMR. By reviewing the occurrence of ARGs in wastewater and sludge and the current technologies used to quantify ARGs and identify ARB, this paper provides a research roadmap to address existing challenges in AMR control via wastewater treatment. Wastewater treatment is a double-edged sword that can act as either a pathway for AMR spread or as a barrier to reduce the environmental release of anthropogenic AMR. State of the art ARB identification technologies, such as metagenomic sequencing and fluorescence-activated cell sorting, have enriched ARG/ARB databases, unveiled keystone species in AMR networks, and improved the resolution of AMR dissemination models. Data and information provided in this review highlight significant knowledge gaps. These include inconsistencies in ARG reporting units, lack of ARG/ARB monitoring surrogates, lack of a standardised protocol for determining ARG removal via wastewater treatments, and the inability to support appropriate risk assessment. This is due to a lack of standard monitoring targets and agreed threshold values, and paucity of information on the ARG-pathogen host relationship and risk management. These research gaps need to be addressed and research findings need to be transformed into practical guidance for WWTP operators to enable effective progress towards mitigating the evolution and spread of AMR.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Steven P Djordjevic
- Institute of Infection, Immunity and Innovation, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
75
|
Diversity of Multidrug-Resistant Bacteria in an Urbanized River: A Case Study of the Potential Risks from Combined Sewage Overflows. WATER 2021. [DOI: 10.3390/w13152122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wastewater contamination and urbanization contribute to the spread of antibiotic resistance in aquatic environments. This is a particular concern in areas receiving chronic pollution of untreated waste via combined sewer overflow (CSO) events. The goal of this study was to expand knowledge of CSO impacts, with a specific focus on multidrug resistance. We sampled a CSO-impacted segment of the James River (Virginia, USA) during both clear weather and an active overflow event and compared it to an unimpacted upstream site. Bacteria resistant to ampicillin, streptomycin, and tetracycline were isolated from all samples. Ampicillin resistance was particularly abundant, especially during the CSO event, so these isolates were studied further using disk susceptibility tests to assess multidrug resistance. During a CSO overflow event, 82% of these isolates were resistant to five or more antibiotics, and 44% were resistant to seven or more. The latter statistic contrasts starkly with the upstream reference site, where only 4% of isolates displayed resistance to more than seven antibiotics. DNA sequencing (16S rRNA gene) revealed that ~35% of our isolates were opportunistic pathogens, comprised primarily of the genera Stenotrophomonas, Pseudomonas, and Chryseobacterium. Together, these results demonstrate that CSOs can be a significant source of viable clinically-relevant bacteria to the natural environment and that multidrug resistance is an important understudied component of the environmental spread of antibiotic resistance.
Collapse
|
76
|
Moreira NFF, Ribeirinho-Soares S, Viana AT, Graça CAL, Ribeiro ARL, Castelhano N, Egas C, Pereira MFR, Silva AMT, Nunes OC. Rethinking water treatment targets: Bacteria regrowth under unprovable conditions. WATER RESEARCH 2021; 201:117374. [PMID: 34214892 DOI: 10.1016/j.watres.2021.117374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Ozonation is among the currently used technologies to remove chemical and biological contaminants from secondary treated urban wastewater (UWW). Despite its effectiveness on the abatement of organic micropollutants (OMPs) and disinfection, previous studies have shown that regrow of bacteria may occur upon storage of the ozonated UWW. This reactivation has been attributed to the high content of assimilable organic carbon after treatment. In order to investigate if ozonation by-products are the main biological regrowth drivers in stored ozonated UWW, the ozonation surviving cells were resuspended in sterile bottled mineral water (MW), simulating a pristine oligotrophic environment. After 7 days storage, organisms such as Acinetobacter, Methylobacterium, Cupriavidus, Massilia, Acidovorax and Pseudomonas were dominant in both ozonated UWW and pristine MW, demonstrating that bacterial regrowth is not strictly related to the eventual presence of ozonation by-products, but instead with the ability of the surviving cells to cope with nutrient-poor environments. The resistome of UWW before and after ozonation was analysed by metagenomic techniques. Draft metagenome assembled genomes (dMAGs), recovered from both ozonated UWW and after cell resuspension in MW, harboured genes conferring resistance to diverse antibiotics classes. Some of these antibiotic resistance genes (ARGs) were located in the vicinity of mobile genetic elements, suggesting their potential to be mobilized. Among these, dMAGs affiliated to taxa with high relative abundance in stored water, such as P. aeruginosa and Acinetobacter spp., harboured ARGs conferring resistance to 12 and 4 families of antibiotics, respectively, including those encoding carbapenem hydrolysing oxacillinases. The results herein obtained point out that the design and development of new wastewater treatment technologies should include measures to attenuate the imbalance of the bacterial communities promoted by storage of the final treated wastewater, even when applying processes with high mineralization rates.
Collapse
Affiliation(s)
- Nuno F F Moreira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Teresa Viana
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A L Graça
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Rita L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nadine Castelhano
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
77
|
Wang J, Fan H, He X, Zhang F, Xiao J, Yan Z, Feng J, Li R. Response of bacterial communities to variation in water quality and physicochemical conditions in a river-reservoir system. Glob Ecol Conserv 2021; 27:e01541. [DOI: 10.1016/j.gecco.2021.e01541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
78
|
Kotwani A, Joshi J, Kaloni D. Pharmaceutical effluent: a critical link in the interconnected ecosystem promoting antimicrobial resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14178-w. [PMID: 33929671 PMCID: PMC8086231 DOI: 10.1007/s11356-021-14178-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/26/2021] [Indexed: 05/17/2023]
Abstract
Antimicrobial resistance (AMR) is a complex global health issue and will push twenty-four million people into extreme poverty by 2030, risking the sustainable development goals (SDGs) 2, 3, 6, 9, 12, and 17 if not addressed immediately. Humans, animals, and the environment are the reservoirs that contribute and allow AMR to propagate in interconnected ecosystems. The emergence of antibiotic-resistant bacteria and antibiotic-resistant genes in the water environment has become an important environmental health issue. One of the major influencers from environment sector is the pharmaceutical industry which is growing globally to meet the ever-increasing demand of antibiotics, especially in low- and middle-income countries. The pharmaceutical effluent has a mix of large concentrations of antibiotics and antibiotic resistance genes, and these sites act as hotspots for environmental contamination and the spread of AMR. Inadequate treatment of the effluent and its irresponsible disposal leads to unprecedented antibiotic contamination in the environment and their persistent presence in the environment significantly modulates the bacterial genomes' expression that is responsible for increase and spread of AMR. However, not much interventions are suggested in the National Action Plan developed on AMR by many countries. There are no regulations across the globe till date for the level of antibiotic residues in pharmaceutical effluent for the growing pharmaceutical industry. This review put together the work done showing several detrimental effects of the antimicrobial residues in the pharmaceutical effluent which leads to rise in development of AMR. The environment risk approach and need to have indicators to measure environment risk is a way forward for all countries engage in antibiotic manufacturing. Overall, efforts to address the problem are isolated and fragmented. Policymakers, regulators, manufacturers, researchers, civil society, and the community need to collaborate so that antibiotics are produced sustainably and continue to stay effective in treating bacterial infections.
Collapse
Affiliation(s)
- Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute (VPCI), University of Delhi, Delhi, 110007, India.
| | - Jyoti Joshi
- Amity Institute of Public Health, Amity University, & Center for Disease Dynamics, Economics and Policy (CDDEP), New Delhi, India
| | - Deeksha Kaloni
- Department of Pharmacology, Vallabhbhai Patel Chest Institute (VPCI), University of Delhi, Delhi, 110007, India
| |
Collapse
|
79
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J Glob Antimicrob Resist 2021; 25:287-309. [PMID: 33895415 DOI: 10.1016/j.jgar.2021.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; and Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
80
|
Delgado-Blas JF, Ovejero CM, David S, Montero N, Calero-Caceres W, Garcillan-Barcia MP, de la Cruz F, Muniesa M, Aanensen DM, Gonzalez-Zorn B. Population genomics and antimicrobial resistance dynamics of Escherichia coli in wastewater and river environments. Commun Biol 2021; 4:457. [PMID: 33846529 PMCID: PMC8041779 DOI: 10.1038/s42003-021-01949-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Aquatic environments are key niches for the emergence, evolution and dissemination of antimicrobial resistance. However, the population diversity and the genetic elements that drive the dynamics of resistant bacteria in different aquatic environments are still largely unknown. The aim of this study was to understand the population genomics and evolutionary events of Escherichia coli resistant to clinically important antibiotics including aminoglycosides, in anthropogenic and natural water ecosystems. Here we show that less different E. coli sequence types (STs) are identified in wastewater than in rivers, albeit more resistant to antibiotics, and with significantly more plasmids/cell (6.36 vs 3.72). However, the genomic diversity within E. coli STs in both aquatic environments is similar. Wastewater environments favor the selection of conserved chromosomal structures associated with diverse flexible plasmids, unraveling promiscuous interplasmidic resistance genes flux. On the contrary, the key driver for river E. coli adaptation is a mutable chromosome along with few plasmid types shared between diverse STs harboring a limited resistance gene content.
Collapse
Affiliation(s)
- Jose F Delgado-Blas
- Antimicrobial Resistance Unit (ARU), Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Cristina M Ovejero
- Antimicrobial Resistance Unit (ARU), Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Sophia David
- Centre for Genomic Pathogen Surveillance (CGPS), Wellcome Sanger Institute, Hinxton, UK
| | - Natalia Montero
- Antimicrobial Resistance Unit (ARU), Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - William Calero-Caceres
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
- UTA RAM One Health, Faculty of Food Science, Engineering and Biotechnology, Technical University of Ambato, Ambato, Ecuador
| | - M Pilar Garcillan-Barcia
- Institute of Biomedicine and Biotechnology (IBBTEC), CSIC, University of Cantabria, Santander, Spain
| | - Fernando de la Cruz
- Institute of Biomedicine and Biotechnology (IBBTEC), CSIC, University of Cantabria, Santander, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance (CGPS), Wellcome Sanger Institute, Hinxton, UK
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit (ARU), Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
81
|
Coertze RD, Bezuidenhout CC. Relating the prevalence of plasmid-mediated AmpC beta-lactamase genes to aquatic environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144119. [PMID: 33418471 DOI: 10.1016/j.scitotenv.2020.144119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/07/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
It is important that environmental parameters that may affect the prevalence of AmpC beta-lactamase genes are investigated to devise frameworks for their surveillance, management and prevention. The aim of this study was thus to determine which environmental parameters are associated with the prevalence of clinically relevant AmpC beta-lactamase genes in aquatic systems. River water was sampled from seven sites in the Crocodile West River, South Africa. Physical-chemical parameters, metal levels and beta-lactam levels were measured. Environmental DNA was extracted from the water samples and six AmpC beta-lactamase gene groups (ACC, ACT/MIR, BIL/LAT/CMY, DHA, FOX, MOX/CMY) were quantified using quantitative PCR. Additionally, 16S rRNA gene metabarcoding analyses were performed on eDNA for each site and metabolic pathways were predicted using PICRUST2. Network analysis was performed to establish co-occurrences of AmpC genes with environmental factors. Quantification results indicated that AmpC gene copy numbers were significantly high (Kruskal Wallis H Test, p < 0.05) at Sites 1-3 of the Crocodile West River. In contrast, no significant changes regarding environmental factors were observed across the seven sites. Results of network analysis indicated that the AmpC gene groups had limited associations with all the environmental parameters, except for some key bacterial families, specifically Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. A significant positive correlation between population density and AmpC genes suggested that in more densely populated areas more faecal pollution will be prevalent which is associated with high AmpC gene levels. Areas such as these are also likely to be linked with more antibiotic use which supports the notion that pre-selection of AmpC genes occurs before entering the aquatic environment. Moreover, it was demonstrated that prevalent selectors of AmpC genes do not ensure that continuous selection occurs in an aquatic environment. This information could be vital in future detection and management of AmpC genes in aquatic systems.
Collapse
Affiliation(s)
- Roelof Dirk Coertze
- Unit for Environmental Sciences and Management, Department of Microbiology, North-West University, Potchefstroom, South Africa.
| | - Cornelius Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, Department of Microbiology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
82
|
The Role of Aquatic Ecosystems (River Tua, Portugal) as Reservoirs of Multidrug-Resistant Aeromonas spp. WATER 2021. [DOI: 10.3390/w13050698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The inappropriate use of antibiotics, one of the causes of the high incidence of antimicrobial-resistant bacteria isolated from aquatic ecosystems, represents a risk for aquatic organisms and the welfare of humans. This study aimed to determine the antimicrobial resistance rates among riverine Aeromonas spp., taken as representative of the autochthonous microbiota, to evaluate the level of antibacterial resistance in the Tua River (Douro basin). The prevalence and degree of antibiotic resistance was examined using motile aeromonads as a potential indicator of antimicrobial susceptibility for the aquatic environment. Water samples were collected from the middle sector of the river, which is most impacted area by several anthropogenic pressures. Water samples were plated on an Aeromonas-selective agar, with and without antibiotics. The activity of 19 antibiotics was studied against 30 isolates of Aeromonas spp. using the standard agar dilution susceptibility test. Antibiotic resistance rates were fosfomycin (FOS) 83.33%, nalidixic acid (NA) 60%, cefotaxime (CTX) 40%, gentamicin (CN) 26.67%, tobramycin (TOB) 26.67%, cotrimoxazole (SXT) 26.67%, chloramphenicol (C) 16.67%, and tetracycline (TE) 13.33%. Some of the nalidixic acid-resistant strains were susceptible to fluoroquinolones. Multiple resistance was also observed (83.33%). The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying antimicrobial resistance (AMR) in aquatic ecosystems. Aquatic environments may provide an ideal setting for the acquisition and dissemination of antibiotic resistance because anthropogenic activities frequently impact them. The potential risk of multi- and pan-resistant bacteria transmission between animals and humans should be considered in a “One Health—One World” concept.
Collapse
|
83
|
SIEDLECKA AGATA, WOLF-BACA MIRELAJ, PIEKARSKA KATARZYNA. Antibiotic and Disinfectant Resistance in Tap Water Strains - Insight into the Resistance of Environmental Bacteria. Pol J Microbiol 2021; 70:57-67. [PMID: 33815527 PMCID: PMC8008766 DOI: 10.33073/pjm-2021-004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Although antibiotic-resistant bacteria (ARB) have been isolated from tap water worldwide, the knowledge of their resistance patterns is still scarce. Both horizontal and vertical gene transfer has been suggested to contribute to the resistance spread among tap water bacteria. In this study, ARB were isolated from finished water collected at two independent water treatment plants (WTPs) and tap water collected at several point-of-use taps during summer and winter sampling campaigns. A total of 24 strains were identified to genus or species level and subjected to antibiotic and disinfectant susceptibility testing. The investigated tap water ARB belonged to phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. The majority of the isolates proved multidrug resistant and resistant to chemical disinfectant. Neither seasonal nor WTP-dependent variabilities in antibiotic or disinfectant resistance were found. Antibiotics most effective against the investigated isolates included imipenem, tetracyclines, erythromycin, and least effective - aztreonam, cefotaxime, amoxicillin, and ceftazidime. The most resistant strains originate from Afipia sp. and Methylobacterium sp. Comparing resistance patterns of isolated tap water ARB with literature reports concerning the same genera or species confirms intra-genus or even intra-specific variabilities of environmental bacteria. Neither species-specific nor acquired resistance can be excluded.
Collapse
Affiliation(s)
- AGATA SIEDLECKA
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | - MIRELA J. WOLF-BACA
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| | - KATARZYNA PIEKARSKA
- Department of Environmental Protection Engineering, Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
84
|
Hou L, Zhang L, Li F, Huang S, Yang J, Ma C, Zhang D, Yu CP, Hu A. Urban ponds as hotspots of antibiotic resistome in the urban environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124008. [PMID: 33265037 DOI: 10.1016/j.jhazmat.2020.124008] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
The occurrence, dissemination and assembly processes of antibiotic resistance genes (ARGs) in urban water ecosystems are far from being understood. Here, we examined the diversity and abundance of ARGs in urban water ecosystems including landscape ponds, drinking water reservoirs, influents (IFs) and effluents (EFs) of wastewater treatment plants of a coastal city, China through high-throughput quantitative PCR. A total of 237 ARGs were identified, where multidrug, aminoglycoside and beta-lactamase resistance genes were the most abundant. Urban ponds had a comparatively high diversity and large numbers of shared ARGs with IFs and EFs. The average absolute abundance of ARGs (1.38 × 107 copies/mL) and mobile genetic elements (MGEs) (4.19 × 106 copies/mL) in ponds were only one order of magnitude lower than those of IFs, but higher than those of EFs and reservoirs. Stochastic processes dominated the ARG community assembly in IFs and ponds due to the random horizontal gene transfer caused by MGEs. These results imply that urban ponds are hotspots of ARGs. We further identified 25, 3, and 11 indicator ARGs for tracing the ARG contamination from IFs, EFs and ponds, respectively. Our study represents the first to highlight the role of urban ponds in the dissemination of ARGs.
Collapse
Affiliation(s)
- Liyuan Hou
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Lanping Zhang
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijun Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Cong Ma
- Xiamen Municipal Environment Technology Co., Ltd., Xiamen 361001, China
| | - Duanxin Zhang
- General Water of Xiamen Sewage Co., Ltd., Xiamen 361001, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Anyi Hu
- CAS Key Laboratory of Urban pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
85
|
Wu D, Wang L, Su Y, Dolfing J, Xie B. Associations between human bacterial pathogens and ARGs are magnified in leachates as landfill ages. CHEMOSPHERE 2021; 264:128446. [PMID: 33038756 DOI: 10.1016/j.chemosphere.2020.128446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 05/23/2023]
Abstract
Landfills constitute the largest treatment and disposal reservoirs of anthropogenic waste on earth and they are continuously releasing antibiotic resistance genes (ARGs) to the environment for decades via leachates. Little is known about the association between ARGs and human bacterial pathogens as a function of time. Here, we quantified 10 subtypes of ARGs, integrons, and human bacterial pathogens (HBPs). Except for the ARGs encoding resistance to sulfonamides, the subtypes encoding resistance to beta-lactams, macrolides, and aminoglycosides were not related to integrons (Spearman, P > 0.05). Over time presence of ARGs became increasingly more correlated with the presence of human bacterial pathogens (Procrustes test; R = 0.81, P < 0.05), which were primarily identified as the Proteobacteria, Actinobacteria, and Firmicutes. Rather than the prevalence of integrons, dynamics of the bacterial community, including the increased nitrogen metabolism activity of Proteobacteria and decreased bacterial diversity were assumed to lead to a magnified association between HBPs and target ARGs (Varpart; > 13%).
Collapse
Affiliation(s)
- Dong Wu
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Liuhong Wang
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Yinglong Su
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jan Dolfing
- Faculty Energy and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8QH, UK
| | - Bing Xie
- Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
86
|
Liao PH, Kao CC, How CK, Yang YS, Chen MC, Hung-Tsang Yen D, Lee YT. Initial white blood cell count and revised Baux score predict subsequent bloodstream infection in burn patients: A retrospective analysis of severe burn patients from the Formosa color dust explosion of 2015. J Formos Med Assoc 2020; 120:1719-1728. [PMID: 33342706 DOI: 10.1016/j.jfma.2020.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/14/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Infections are the most common complications among hospitalized severe burn patients. However, limited literature reports early effective predictors of bloodstream infections (BSI) among burn patients. This study aimed to identify cost-effective biomarkers and valuable clinical scoring systems in the emergency department (ED) for the prediction of subsequent BSI in mass burn casualties. METHODS In 2015, a flammable cornstarch-based powder explosion resulted in 499 burn casualties in Taiwan. A total of 35 patients were admitted at Taipei Veterans General Hospital. These severe burn patients (median total body surface area [TBSA] 54%) were young and previously healthy. We assessed the potential of various parameters to predict subsequent BSI, including initial laboratory tests performed at the ED, TBSA, and multiple scoring systems. RESULTS Fourteen patients (40.0%) had subsequent BSI. The most common causative pathogen was the Acinetobacter baumannii (Ab) group, mostly carbapenem resistant and associated with a poor outcome. The area under the receiver operating characteristic curve revealed that the revised Baux score, TBSA, and initial white blood cell count had excellent discrimination ability in predicting subsequent BSI (0.898, 0.889, and 0.821, respectively). The rate of subsequent BSI differed significantly at the cut-off points of revised Baux score >76, TBSA >55%, and WBC count >16,200/mm3. CONCLUSION The initial WBC count at the ED, TBSA, and revised Baux score were good and cost-effective biomarkers for predicting subsequent BSI after burn injuries.
Collapse
Affiliation(s)
- Po-Hsiang Liao
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Chun Kao
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chorng-Kuang How
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Mei-Chun Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - David Hung-Tsang Yen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
87
|
Yu K, Li P, He Y, Zhang B, Chen Y, Yang J. Unveiling dynamics of size-dependent antibiotic resistome associated with microbial communities in full-scale wastewater treatment plants. WATER RESEARCH 2020; 187:116450. [PMID: 32998097 DOI: 10.1016/j.watres.2020.116450] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 05/25/2023]
Abstract
Serious concerns have been raised regarding antibiotic resistance genes (ARGs) with respect to their potential threat to human health. Wastewater treatment plants (WWTPs) have been considered to be hotspots for ARGs. In this study, high-throughput quantitative polymerase chain reaction (HT-qPCR) was used to profile size-dependent ARGs and mobile genetic elements (MGEs) divided by particle-associated (PA) assemblages (>3.0-μm), free-living (FL) bacteria (0.2 - 3.0-μm) and cell-free (CF) DNA (< 0.2-μm) in two full-scale WWTPs (plants A and B) and a receiving stream. The results revealed that FL-ARGs were predominant in WWTPs and the receiving stream, especially in the final effluent of both plants. More than 40 types of CF-ARGs and CF-MGEs were detected with absolute abundances ranging from 6.0 ± 0.7 × 105 to 1.0 ± 0.2 × 108 copies/mL in wastewater, and relatively high abundances were also detected in the final effluent of the two plants, suggesting that CF-ARGs were important sources spreading from the WWTPs to the receiving environment. Plant A exhibited higher log-removal of size-fractionated ARGs and MGEs than was observed for plant B, which was attributed to the enhanced settleability of PA assemblages and FL bacteria by additional macrophytes and chemical coagulants. Ultraviolet disinfection had limited effects on ARGs and MGEs of the PA and FL fractions, which was probably ascribed to the protective matrices of the particles and cell walls. The bacterial communities of the two plants were significantly different among the size fractions (p < 0.01). The variation partitioning analysis (VPA) indicated that the microbial community structures and MGEs contributed a variation of 68.2% in total to the relative abundance changes of size-fractionated ARGs. Procrustes analyses and Mantel tests showed that the relative abundances of ARGs were significantly correlated with bacterial community structures. These results suggested that the bacterial community structures and MGEs might have been the main drivers of the size-fractionated ARG disseminations. This study provides novel insights into size-fractionated ARGs and MGEs in full-scale WWTPs and may lead to the identification of key targets to control the spread of ARGs.
Collapse
Affiliation(s)
- Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Li
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.; Shanghai Institute of Pollution Control and Ecological Security, 800 Dongchuan Road, Shanghai 200240, China.
| | - Bo Zhang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 246011, China
| | - Jinghan Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, China
| |
Collapse
|
88
|
A Pilot Study Combining Ultrafiltration with Ozonation for the Treatment of Secondary Urban Wastewater: Organic Micropollutants, Microbial Load and Biological Effects. WATER 2020. [DOI: 10.3390/w12123458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ozonation followed by ultrafiltration (O3 + UF) was employed at pilot scale for the treatment of secondary urban wastewater, envisaging its safe reuse for crop irrigation. Chemical contaminants of emerging concern (CECs) and priority substances (PSs), microbial load, estrogenic activity, cell viability and cellular metabolic activity were measured before and immediately after O3 + UF treatment. The microbial load was also evaluated after one-week storage of the treated water to assess potential bacteria regrowth. Among the organic micropollutants detected, only citalopram and isoproturon were not removed below the limit of quantification. The treatment was also effective in the reduction in the bacterial loads considering current legislation in water quality for irrigation (i.e., in terms of enterobacteria and nematode eggs). However, after seven days of storage, total heterotrophs regrew to levels close to the initial, with the concomitant increase in the genes 16S rRNA and intI1. The assessment of biological effects revealed similar water quality before and after treatment, meaning that O3 + UF did not produce detectable toxic by-products. Thus, the findings of this study indicate that the wastewater treated with this technology comply with the water quality standards for irrigation, even when stored up to one week, although improvements must be made to minimise microbial overgrowth.
Collapse
|
89
|
Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Commun Biol 2020; 3:737. [PMID: 33277584 PMCID: PMC7718256 DOI: 10.1038/s42003-020-01468-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Cyanobacterial blooms are a global ecological problem that directly threatens human health and crop safety. Cyanobacteria have toxic effects on aquatic microorganisms, which could drive the selection for resistance genes. The effect of cyanobacterial blooms on the dispersal and abundance of antibiotic-resistance genes (ARGs) of concern to human health remains poorly known. We herein investigated the effect of cyanobacterial blooms on ARG composition in Lake Taihu, China. The numbers and relative abundances of total ARGs increased obviously during a Planktothrix bloom. More pathogenic microorganisms were present during this bloom than during a Planktothrix bloom or during the non-bloom period. Microcosmic experiments using additional aquatic ecosystems (an urban river and Lake West) found that a coculture of Microcystis aeruginosa and Planktothrix agardhii increased the richness of the bacterial community, because its phycosphere provided a richer microniche for bacterial colonization and growth. Antibiotic-resistance bacteria were naturally in a rich position, successfully increasing the momentum for the emergence and spread of ARGs. These results demonstrate that cyanobacterial blooms are a crucial driver of ARG diffusion and enrichment in freshwater, thus providing a reference for the ecology and evolution of ARGs and ARBs and for better assessing and managing water quality.
Collapse
|
90
|
Dias MF, de Castro GM, de Paiva MC, de Paula Reis M, Facchin S, do Carmo AO, Alves MS, Suhadolnik ML, de Moraes Motta A, Henriques I, Kalapothakis E, Lobo FP, Nascimento AMA. Exploring antibiotic resistance in environmental integron-cassettes through intI-attC amplicons deep sequencing. Braz J Microbiol 2020; 52:363-372. [PMID: 33247398 DOI: 10.1007/s42770-020-00409-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Freshwater ecosystems provide propitious conditions for the acquisition and spread of antibiotic resistance genes (ARGs), and integrons play an important role in this process. MATERIAL AND METHODS In the present study, the diversity of putative environmental integron-cassettes, as well as their potential bacterial hosts in the Velhas River (Brazil), was explored through intI-attC and 16S rRNA amplicons deep sequencing. RESULTS AND DISCUSSION: ORFs related to different biological processes were observed, from DNA integration to oxidation-reduction. ARGs-cassettes were mainly associated with class 1 mobile integrons carried by pathogenic Gammaproteobacteria, and possibly sedentary chromosomal integrons hosted by Proteobacteria and Actinobacteria. Two putative novel ARG-cassettes homologs to fosB3 and novA were detected. Regarding 16SrRNA gene analysis, taxonomic and functional profiles unveiled Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria as dominant phyla. Betaproteobacteria, Alphaproteobacteria, and Actinobacteria classes were the main contributors for KEGG orthologs associated with resistance. CONCLUSIONS Overall, these results provide new information about environmental integrons as a source of resistance determinants outside clinical settings and the bacterial community in the Velhas River.
Collapse
Affiliation(s)
- Marcela França Dias
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.,Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Giovanni Marques de Castro
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Mariana de Paula Reis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Susanne Facchin
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Anderson Oliveira do Carmo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Marta Salgueiro Alves
- Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal.,CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Maria Luíza Suhadolnik
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda de Moraes Motta
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Isabel Henriques
- CESAM, Universidade de Aveiro, Aveiro, Portugal.,Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Francisco Pereira Lobo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Andréa Maria Amaral Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
91
|
Zhang AN, Hou CJ, Negi M, Li LG, Zhang T. Online searching platform for the antibiotic resistome in bacterial tree of life and global habitats. FEMS Microbiol Ecol 2020; 96:5849002. [PMID: 32472933 DOI: 10.1093/femsec/fiaa107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Metagenomic analysis reveals that antibiotic-resistance genes (ARGs) are widely distributed in both human-associated and non-human-associated habitats. However, it is difficult to equally compare ARGs between samples without a standard method. Here, we constructed a comprehensive profile of the distribution of potential ARGs in bacterial tree of life and global habitats by investigating ARGs in 55 000 bacterial genomes, 16 000 bacterial plasmid sequences, 3000 bacterial integron sequences and 850 metagenomes using a standard pipeline. We found that >80% of all known ARGs are not carried by any plasmid or integron sequences. Among potential mobile ARGs, tetracycline and beta-lactam resistance genes (such as tetA, tetM and class A beta-lactamase gene) distribute in multiple pathogens across bacterial phyla, indicating their clinical relevance and importance. We showed that class 1 integrases (intI1) display a poor linear relationship with total ARGs in both non-human-associated and human-associated environments. Furthermore, both total ARGs and intI1 genes show little correlation with the degree of anthropogenicity. These observations highlight the need to differentiate ARGs of high clinical relevance. This profile is published on an online platform (ARGs-OSP, http://args-osp.herokuapp.com/) as a valuable resource for the most challenging topics in this field, i.e. the risk, evolution and emergence of ARGs.
Collapse
Affiliation(s)
- An Ni Zhang
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China.,Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Chen-Ju Hou
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Mishty Negi
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Li-Guan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China.,Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China.,School of Public Health, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
92
|
Daniels S, Hepworth J, Moore-Colyer M. The haybiome: Characterising the viable bacterial community profile of four different hays for horses following different pre-feeding regimens. PLoS One 2020; 15:e0242373. [PMID: 33201929 PMCID: PMC7671497 DOI: 10.1371/journal.pone.0242373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022] Open
Abstract
Respirable dust in conserved forages can pose problems with equid respiratory health, thus soaking (W) and high temperature steaming (HTS) are employed to reduce the levels in hay. The aim of this study was to characterize the viable bacterial community profile of four hays from two different locations in UK following pre-feeding wetting regimens. Hypothesis: (1) Viable microbial community profile of hays will not differ between different pre-feeding regimens. (2) Hay type and location will not influence microbial community profile. Replicates of each of the four hays were subjected to dry (D), HTS conducted in a HG600, W by submergence in 45 L tap water, 16°C for 12 hours. From each post-treated hay, 100 g samples were chopped and half (n = 36) treated with Propidium monoazide dye, the remaining half untreated. Bacterial DNA were extracted for profiling the V4-V5 region of 16S rRNA gene from all 72 samples, then sequenced on the Illumina MiSeq platform. Bioinformatics were conducted using QIIME pipeline (v1.9.1). Linear discriminate analysis effect size (LEfSe) was used to identify differences in operational taxonomic units and predicted metabolic pathways between hays and regimens. HTS reduced proportions of microbiota compared to W and D hay (P < 0.001, df 3, F 13.91), viability was reduced within regimens (P = 0.017, df 1, F 5.73). Soaking reduced diversity within and between regimens. Core bacterial communities differed between hays and regimens, however pre-feeding regimen had the greatest effect on the bacterial community profile. W and HTS reduced viable bacteria (P< 0.05) known to cause respiratory disease, for HTS both respiratory and dental disease, with the greatest reductions overall from HTS without reducing bacterial diversity. Soaking increased Gram-negative bacteria and reduced bacterial diversity. Collectively these findings add to a body of evidence that suggest HTS is the most suitable pre-feeding regimen of hay for equid health.
Collapse
Affiliation(s)
- Simon Daniels
- School of Equine Management and Science, Royal Agricultural University, Cirencester, Gloucestershire, United Kingdom
- * E-mail:
| | - Jacob Hepworth
- School of Equine Management and Science, Royal Agricultural University, Cirencester, Gloucestershire, United Kingdom
| | - Meriel Moore-Colyer
- School of Equine Management and Science, Royal Agricultural University, Cirencester, Gloucestershire, United Kingdom
| |
Collapse
|
93
|
Grehs BWN, Linton MAO, Clasen B, de Oliveira Silveira A, Carissimi E. Antibiotic resistance in wastewater treatment plants: understanding the problem and future perspectives. Arch Microbiol 2020; 203:1009-1020. [PMID: 33112995 DOI: 10.1007/s00203-020-02093-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022]
Abstract
Antibiotics residues (AR), antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) are a new class of water contaminants, due to their adverse effects on aquatic ecosystems and human health. Contamination of water bodies occurs mainly by the excretion of antibiotics incompletely metabolized by humans and animals and is considered the main source of contamination of antibiotics in the environment. Given the imminent threat, the World Health Organization (WHO) has categorized the spread of antibiotics as one of the top three threats to public health in the twenty-first century. The Urban Wastewater Treatment Plants (UWWTP) bring together AR, ARB, ARG, making the understanding of this peculiar environment fundamental for the investigation of technologies aimed at combating the spread of bacterial resistance. Several methodologies have been employed focusing on reducing the ARB and ARG loads of the effluents, however the reactivation of these microorganisms after the treatment is widely reported. This work aims to elucidate the role of UWWTPs in the spread of bacterial resistance, as well as to report the efforts that have been made so far and future perspectives to combat this important global problem.
Collapse
Affiliation(s)
- Bárbara W N Grehs
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Maria A O Linton
- Department of Biology, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CE, Santa Maria, RS, 97105-900, Brazil
| | - Barbara Clasen
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil.
- Department of Environmental Science, State University of Rio Grande Do Sul (UERGS), R. Cipriano Barata, 211, Três Passos, RS, 98600-000, Brazil.
| | - Andressa de Oliveira Silveira
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| | - Elvis Carissimi
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria (UFSM), Av. Roraima 1000, CT Lab, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
94
|
Das Kangabam R, Silla Y, Goswami G, Barooah M. Bacterial Operational Taxonomic Units Replace the Interactive Roles of Other Operational Taxonomic Units Under Strong Environmental Changes. Curr Genomics 2020; 21:512-524. [PMID: 33214767 PMCID: PMC7604743 DOI: 10.2174/1389202921999200716104355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/28/2020] [Accepted: 05/30/2020] [Indexed: 01/22/2023] Open
Abstract
Background Microorganisms are an important component of an aquatic ecosystem and play a critical role in the biogeochemical cycle which influences the circulation of the materials and maintains the balance in aquatic ecosystems. Objective The seasonal variation along with the impact of anthropogenic activities, water quality, bacterial community composition and dynamics in the Loktak Lake, the largest freshwater lake of North East India, located in the Indo-Burma hotspot region was assessed during post-monsoon and winter season through metagenome analysis. Methods Five soil samples were collected during Post-monsoon and winter season from the Loktak Lake that had undergone different anthropogenic impacts. The metagenomic DNA of the soil samples was extracted using commercial metagenomic DNA extraction kits following the manufacturer’s instruction. The extracted DNA was used to prepare the NGS library and sequenced in the Illumina MiSeq platform. Results Metagenomics analysis reveals Proteobacteria as the predominant community followed by Acidobacteria and Actinobacteria. The presence of these groups of bacteria indicates nitrogen fixation, oxidation of iron, sulfur, methane, and source of novel antibiotic candidates. The bacterial members belonging to different groups were involved in various biogeochemical processes, including fixation of carbon and nitrogen, producing streptomycin, gramicidin and perform oxidation of sulfur, sulfide, ammonia, and methane. Conclusion The outcome of this study provides a valuable dataset representing a seasonal profile across various land use and analysis, targeting at establishing an understanding of how the microbial communities vary across the land use and the role of keystone taxa. The findings may contribute to searches for microbial bio-indicators as biodiversity markers for improving the aquatic ecosystem of the Loktak Lake.
Collapse
Affiliation(s)
- Rajiv Das Kangabam
- 1Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India; 2Advanced Computational and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat-785006, India; 3DBT North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India
| | - Yumnam Silla
- 1Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India; 2Advanced Computational and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat-785006, India; 3DBT North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India
| | - Gunajit Goswami
- 1Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India; 2Advanced Computational and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat-785006, India; 3DBT North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India
| | - Madhumita Barooah
- 1Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India; 2Advanced Computational and Data Sciences Division, CSIR- North East Institute of Science and Technology, Jorhat-785006, India; 3DBT North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat-785013, India
| |
Collapse
|
95
|
Sidhu JPS, Gupta VVSR, Stange C, Ho J, Harris N, Barry K, Gonzalez D, Van Nostrand JD, Zhou J, Page D, Tiehm A, Toze S. Prevalence of antibiotic resistance and virulence genes in the biofilms from an aquifer recharged with stormwater. WATER RESEARCH 2020; 185:116269. [PMID: 32798893 DOI: 10.1016/j.watres.2020.116269] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
An improved understanding of the diversity and composition of microbial communities carrying antibiotic resistance genes (ARGs) and virulence genes (VGs) in aquifers recharged with stormwater is essential to comprehend potential human health risks from water reuse. A high-throughput functional gene array was used to study the prevalence of ARGs and VGs in aquifer biofilms (n = 27) taken from three boreholes over three months. Bacterial genera annotated as opportunistic pathogens such as Aeromonas, Burkholderia, Pseudomonas, Shewanella, and Vibrio were ubiquitous and abundant in all biofilms. Bacteria from clinically relevant genera, Campylobacter, Enterobacter, Klebsiella, Mycobacterium, Mycoplasma, and Salmonella were detected in biofilms. The mean travel time of stormwater from the injection well to P1 and P3 boreholes was 260 and 360 days respectively. The presence of ARGs and VGs in the biofilms from these boreholes suggest a high spatial movement of ARGs and VGs in the aquifer. The ARGs with the highest abundance were small multidrug resistance efflux pumps (SMR) and multidrug efflux (Mex) followed by β-lactamase C genes. β- lactamase C encoding genes were primarily detected in Enterobacteriaceae, Pseudomonadaceae, Bacillaceae, and Rhodobacteraceae families. The VGs encoding siderophores, including aerobactin (iro and iuc genes), followed by pilin, hemolysin, and type III secretion were ubiquitous. Canonical correspondence analysis suggested that Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), turbidity, and Fe concentration has a significant impact on the microbial community structure of bacteria carrying ARGs and VGs. Post abstraction treatment of groundwater may be prudent to improve water security and reduce potential health risks.
Collapse
Affiliation(s)
- J P S Sidhu
- CSIRO Oceans and Atmosphere, Ecoscience Precinct, 41 Boggo Road, Brisbane 4102, Australia.
| | - V V S R Gupta
- CSIRO Agriculture and Food, Locked Bag No. 2, Glen Osmond, SA 5064, Australia
| | - C Stange
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Street 84, D-76139 Karlsruhe, Germany
| | - J Ho
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Street 84, D-76139 Karlsruhe, Germany
| | - N Harris
- CSIRO Agriculture and Food, Locked Bag No. 2, Glen Osmond, SA 5064, Australia
| | - K Barry
- CSIRO Land and Water Private Bag 2, Glen Osmond, SA 5064, Australia
| | - D Gonzalez
- CSIRO Land and Water Private Bag 2, Glen Osmond, SA 5064, Australia
| | - J D Van Nostrand
- Institute of Environmental Genomics, University of Oklahoma, Norman, OK 73019, USA
| | - J Zhou
- Institute of Environmental Genomics, University of Oklahoma, Norman, OK 73019, USA
| | - D Page
- CSIRO Land and Water Private Bag 2, Glen Osmond, SA 5064, Australia
| | - A Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Street 84, D-76139 Karlsruhe, Germany
| | - S Toze
- CSIRO Land and Water, Ecoscience Precinct, 41 Boggo Road, Brisbane 4102, Australia
| |
Collapse
|
96
|
Su Z, Huang B, Mu Q, Wen D. Evaluating the Potential Antibiotic Resistance Status in Environment Based on the Trait of Microbial Community. Front Microbiol 2020; 11:575707. [PMID: 33123107 PMCID: PMC7573184 DOI: 10.3389/fmicb.2020.575707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023] Open
Abstract
The overuse of antibiotics has promoted the propagation and dissemination of antibiotic resistance genes (ARGs) in environment. Due to the dense human population and intensive activities in coastal areas, the health risk of ARGs in coastal environment is becoming a severe problem. To date, there still lacks of a quantitative method to assess properly the gross antibiotic resistance at microbial community level. Here, we collected sediment samples from Hangzhou Bay (HB), Taizhou Bay (TB), and Xiangshan Bay (XB) of the East China Sea for community-level ARGs analysis. Based on the 16S rRNA genes and predictive metagenomics, we predicted the composition of intrinsic ARGs (piARGs) and some related functional groups. Firstly, a total of 40 piARG subtypes, belonging to nine drug classes and five resistance mechanisms, were obtained, among which the piARGs encoding multidrug efflux pumps were the most dominant in the three bays. Secondly, XB had higher relative abundances of piARGs and pathogens than the other two bays, which posed higher potential health risk and implied the heavier impact of long-term maricultural activities in this bay. Thirdly, the co-occurrence network analysis identified that there were more connections between piARGs and some potential pathogenic bacteria. Several piARG subtypes (e.g., tetA, aacA, aacC, and aadK) distributed widely in the microbial communities. And finally, the microbial diversity correlated negatively with the relative abundance of piARGs. Oil, salinity, and arsenic had significant effects on the variations of piARGs and potential pathogenic bacteria. The abundance-weighted average ribosomal RNA operon (rrn) copy number of microbial communities could be regarded as an indicator to evaluate the antibiotic resistance status. In conclusion, this study provides a new insight on how to evaluate antibiotic resistance status and their potential risk in environment based on a quantitative analysis of microbial communities.
Collapse
Affiliation(s)
- Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
97
|
Rodríguez EA, Aristizábal-Hoyos AM, Morales-Zapata S, Arias L, Jiménez JN. High frequency of gram-negative bacilli harboring bla KPC-2 in the different stages of wastewater treatment plant: A successful mechanism of resistance to carbapenems outside the hospital settings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111046. [PMID: 32778323 DOI: 10.1016/j.jenvman.2020.111046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/09/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Wastewater treatment plants (WWTPs) are considered to be a reservoir and a source of bacterial resistance. Worryingly, the presence of carbapenem-resistant Gram-negative bacilli (CRGNB) in WWTPs has recently been reported, but there are still many research gaps regarding its emergence and impact. The distribution of CRGNB in the different stages of a WWTP in Colombia and the relationship between the physicochemical factors involved with their presence are described in this paper. Additionally, given the impact on public health, the CRGNB detected were compared with isolates previously found in hospital patients. Residual water samples were taken from five different stages of a WWTP between January and July 2017. A total of 390 GNB were isolated, and a significant frequency of CRGNB harboring blaKPC-2 (38.2%, n = 149/390) was detected, of which 57% were Enterobacteriaceae, 41.6% Aeromonadaceae, and 1.3% Pseudomonadaceae. The Enterobacteriaceae were more frequent in the raw effluent compared to the Aeromonadaceae, which in turn were more prevalent in the recycled activated sludge and final effluent. Environmental variables such as pH, oxygen, chemical oxygen demand, and temperature were significantly correlated with the quantification of carbapenem-resistant Enterobacteriaceae (CRE) at specific points in the WWTP. Interestingly, isolated K. pneumoniae harboring blaKPC-2 from the WWTPs were diverse and did not relate genetically to the hospital strains with which they were compared. In conclusion, these results confirm the worrying scenario of the dissemination and persistence of emerging contaminants such as CRGNB harboring blaKPC-2, and reinforce the need to establish strategies aimed at containing this problem using multifocal interventions.
Collapse
Affiliation(s)
- E A Rodríguez
- Línea de Epidemiología Molecular y Resistencia Bacteriana. Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia. Postal code: 050010, Medellín, Colombia.
| | - A M Aristizábal-Hoyos
- Línea de Epidemiología Molecular y Resistencia Bacteriana. Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia. Postal code: 050010, Medellín, Colombia
| | - S Morales-Zapata
- Línea de Epidemiología Molecular y Resistencia Bacteriana. Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia. Postal code: 050010, Medellín, Colombia
| | - L Arias
- Grupo de Bioprocesos Microbianos, Escuela de Microbiología, Universidad de Antioquia, Postal code: 050010, Medellín, Colombia
| | - J N Jiménez
- Línea de Epidemiología Molecular y Resistencia Bacteriana. Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia. Postal code: 050010, Medellín, Colombia.
| |
Collapse
|
98
|
Spatiotemporal Changes of Antibiotic Resistance and Bacterial Communities in Drinking Water Distribution System in Wrocław, Poland. WATER 2020. [DOI: 10.3390/w12092601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibiotic resistance of bacteria is an emerging problem in drinking water treatment. This paper presents the comparison of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) prevalence during the summer and winter season in a full-scale drinking water distribution system (DWDS) supplied by two water treatment plants (WTPs). The effect of distance from WTP and physical–chemical water parameters on its microbial properties was also tested. Bacterial consortia dwelling in bulk tap water were additionally compared by means of denaturating gradient gel electrophoresis (DGGE). The results showed that among ARB, bacteria resistant to ceftazidime (CAZ) were the most abundant, followed by bacteria resistant to amoxicillin (AML), ciprofloxacin (CIP), and tetracycline (TE). Numerous ARGs were detected in tested tap water samples. Only CAZ resistant bacteria were more prevalent in the season of increased antibiotic consumption, and only AML resistant bacteria relative abundances increase was statistically significant with the distance from a WTP. The investigated tap water meets all legal requirements. It is therefore safe to drink according to the law. Nevertheless, because antibiotic resistance could pose a threat to consumer health, it should be further monitored in DWDSs.
Collapse
|
99
|
Pérez-Etayo L, González D, Leiva J, Vitas AI. Multidrug-Resistant Bacteria Isolated from Different Aquatic Environments in the North of Spain and South of France. Microorganisms 2020; 8:E1425. [PMID: 32947947 PMCID: PMC7565385 DOI: 10.3390/microorganisms8091425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Due to the global progress of antimicrobial resistance, the World Health Organization (WHO) published the list of the antibiotic-resistant "priority pathogens" in order to promote research and development of new antibiotics to the families of bacteria that cause severe and often deadly infections. In the framework of the One Health approach, the surveillance of these pathogens in different environments should be implemented in order to analyze their spread and the potential risk of transmission of antibiotic resistances by food and water. Therefore, the objective of this work was to determine the presence of high and critical priority pathogens included in the aforementioned list in different aquatic environments in the POCTEFA area (North Spain-South France). In addition to these pathogens, detection of colistin-resistant Enterobacteriaceae was included due its relevance as being the antibiotic of choice to treat infections caused by multidrug resistant bacteria (MDR). From the total of 80 analyzed samples, 100% of the wastewater treatment plants (WWTPs) and collectors (from hospitals and slaughterhouses) and 96.4% of the rivers, carried antibiotic resistant bacteria (ARB) against the tested antibiotics. Fifty-five (17.7%) of the isolates were identified as target microorganisms (high and critical priority pathogens of WHO list) and 58.2% (n = 32) of them came from WWTPs and collectors. Phenotypic and genotypic characterization showed that 96.4% were MDR and resistance to penicillins/cephalosporins was the most widespread. The presence of bla genes, KPC-type carbapenemases, mcr-1 and vanB genes has been confirmed. In summary, the presence of clinically relevant MDR bacteria in the studied aquatic environments demonstrates the need to improve surveillance and treatments of wastewaters from slaughterhouses, hospitals and WWTPs, in order to minimize the dispersion of resistance through the effluents of these areas.
Collapse
Affiliation(s)
- Lara Pérez-Etayo
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
| | - David González
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - José Leiva
- Microbiology Service, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Ana Isabel Vitas
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
100
|
Qiu Q, Li G, Dai Y, Xu Y, Bao P. Removal of antibiotic resistant microbes by Fe(II)-activated persulfate oxidation. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122733. [PMID: 32361624 DOI: 10.1016/j.jhazmat.2020.122733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Sewage in WWTPs is one of main way to spread antibiotic resistant microbes (ARMs), and beach bay water is in direct contact with human skin. It is necessary to pay attention to remove the ARMs in WWTP sewage and bay water. Our results showed that ARMs and total microbes (TMs) can be effectively removed by S2O82-/Fe2+ in the effluent stage of WWTPs and bay water. Quenching experiments using tert-butyl alcohol, dimethyl sulfoxide and Al2O3 as scavengers confirmed that the primary reactive oxidants responsible for microbes removal during the Fe(II)-activated persulfate oxidation process might be SO4•- and Fe(IV), rather than •OH. The bacterial community shifted and the alpha diversity significantly reduced after treatment. In WWTP group, relative abundance of Firmicutes increased to 8.56%, and potential pathogens such as genus Vibrio decreased to 0.03% in bay water after treatment. The ecological toxicity to the environment of S2O82-/Fe2+ further illustrated that the mortality of indicator species Oryzias latipes did not increase after treatment, and the dosage of 60/30 μM can be potentially ideal dosage of S2O82-/Fe2+. This study revealed Fe(II)-activated persulfate oxidation as an eco-friendly and economical method could reduce TMs and ARMs in WWTP sewage and bay water.
Collapse
Affiliation(s)
- Qianlinglin Qiu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, P.R. China
| | - Guoxiang Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China; University of Chinese Academy of Sciences, Beijing, 100049, P.R. China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, P.R. China; Center for Applied Geosciences (ZAG), Eberhard Karls University Tuebingen, Sigwartstrasse 10, Tuebingen, 72076, Germany
| | - Yi Dai
- Ningbo Beilun Water Affairs Limited, Ningbo, 315800, P.R. China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, P.R. China
| | - Peng Bao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, P.R. China.
| |
Collapse
|