51
|
Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G. Tumor-Associated Macrophage Status in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12071987. [PMID: 32708142 PMCID: PMC7409350 DOI: 10.3390/cancers12071987] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the most abundant innate immune cells in tumors. TAMs, exhibiting anti-inflammatory phenotype, are key players in cancer progression, metastasis and resistance to therapy. A high TAM infiltration is generally associated with poor prognosis, but macrophages are highly plastic cells that can adopt either proinflammatory/antitumor or anti-inflammatory/protumor features in response to tumor microenvironment stimuli. In the context of cancer therapy, many anticancer therapeutics, apart from their direct effect on tumor cells, display different effects on TAM activation status and density. In this review, we aim to evaluate the indirect effects of anticancer therapies in the modulation of TAM phenotypes and pro/antitumor activity.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| | - Simona Pisanti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Sarah Di Somma
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| |
Collapse
|
52
|
Huang X, He C, Hua X, Kan A, Mao Y, Sun S, Duan F, Wang J, Huang P, Li S. Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clin Transl Med 2020; 10:e41. [PMID: 32508052 PMCID: PMC7403727 DOI: 10.1002/ctm2.41] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are among the most prominent cells during the desmoplastic reaction in pancreatic ductal adenocarcinoma (PDAC). However, CAFs are heterogeneous and the precise origins are not fully elucidated. This study aimed to explore whether monocytes can transdifferentiate into fibroblasts in PDAC and evaluate the clinical significance of this event. METHODS CD14+ monocytes were freshly isolated from human peripheral blood. Immunofluorescence, reverse transcription-quantitative PCR, western blot, flow cytometry and enzyme-linked immunosorbent assay were used to detect the expression of αSMA, fibronectin, and other relevant molecules. In addition, latex beads with a mean particle size of 2.0 µm were used to assess the phagocytic capacity. Moreover, RNA sequencing (RNA-seq) was performed to identify the differences induced by H2 O2 and the underlying mechanisms. RESULTS Immunofluorescence identified αSMA and fibroblast-specific protein 1 expression by tumor-associated macrophages in PDAC. The in vitro experiment revealed that oxidative stress (H2 O2 or radiation) induced monocyte-to-myofibroblast transdifferentiation (MMT), as identified by upregulated αSMA expression at both the RNA and protein levels. In addition, compared with freshly isolated monocytes, human monocyte-derived macrophages increased fibronectin expression. RNA-seq analysis identified p53 activation and other signatures accompanying this transdifferentiation; however, the p53 stabilizer nutlin-3 induced αSMA expression through reactive oxygen species generation but not through the p53 transcription/mitochondria-dependent pathway, whereas the p38 inhibitor SB203580 could partially inhibit αSMA expression. Finally, MMT produced a unique subset of CAFs with reduced phagocytic capacity that could promote the proliferation of pancreatic cancer cells. CONCLUSIONS Oxidative stress in the tumor microenvironment could induce MMT in PDAC, thus inducing reactive stroma, modulating immunosuppression, and promoting tumor progression. Reducing oxidative stress may be a promising future therapeutic regimen.
Collapse
Affiliation(s)
- Xin Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Chaobin He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Xin Hua
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Anna Kan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Hepatic SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Yize Mao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shuxin Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Fangting Duan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Jun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
- Department of Pancreatobiliary SurgerySun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
53
|
Tumor microenvironment, immune response and post-radiotherapy tumor clearance. Clin Transl Oncol 2020; 22:2196-2205. [PMID: 32445035 DOI: 10.1007/s12094-020-02378-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy is the treatment of choice for many cancer patients. Residual tumor leads to local recurrence after a period of an equilibrium created between proliferating, quiescent and dying cancer cells. The tumor microenvironment is a main obstacle for the efficacy of radiotherapy, as impaired blood flow leads to hypoxia, acidity and reduced accessibility of radiosensitizers. Eradication of remnant disease is an intractable clinical quest. After more than a century of research, anti-tumor immunity has gained a dominant position in oncology research and therapy. Immune cells play a significant role in the eradication of tumors during and after the completion of radiotherapy. The tumor equilibrium reached in the irradiated tumor may shift towards cancer cell eradication if the immune response is appropriately modulated. In the modern immunotherapy era, clinical trials are urged to standardize immunotherapy schemes that could be safely applied to improve clearance of the post-radiotherapy remnant disease.
Collapse
|
54
|
Pandey VK, Shankar BS. Radiation-induced augmentation in dendritic cell function is mediated by apoptotic bodies/STAT5/Zbtb46 signaling. Int J Radiat Biol 2020; 96:988-998. [PMID: 32396024 DOI: 10.1080/09553002.2020.1767818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To evaluate the effect of ionizing radiation (IR) exposure on differentiation and maturation of dendritic cells (DC).Materials and methods: Bone marrow progenitor cells irradiated in vitro or isolated from mice exposed to whole body or localized tumor irradiation were differentiated into DC. Phenotypic maturation of DC was characterized by labeling with specific antibodies and flow cytometry analysis. Cytokines were estimated by ELISA.Results: Splenic and bone marrow-derived DC (BMDC) from tumor-bearing mice exposed to localized irradiation showed abrogation of tumor-induced immunosuppression. This was not due to the effect of radiation on tumor cells as DC derived from normal mice exposed to whole-body irradiation (WBI) also showed increase in immune-activating potential of DC. This was observed in terms of increased phenotypic and functional activation of DCs. This phenomenon was also recapitulated if DC were differentiated from in vitro irradiated progenitor cells and was found to be due to STAT5/Zbtb46 signaling mediated by the irradiation-induced apoptotic bodies (ABs). When these ABs were depleted using annexin-beads, these effects were reversed confirming the involvement of this pathway. The role of ABs was further validated in DC derived from mice exposed to WBI in adaptive response experiments with 0.1 Gy priming dose prior to 2 Gy challenge dose. A corresponding reduction in DC maturation markers was observed with decrease in apoptosis in vivo. Further, these DCs derived from irradiated progenitors (IP) could resist the suppressive effects of tumor conditioned medium (TCM) and had increased immune-activating potential as seen in the tumor-bearing mice.Conclusions: Though radiation is the most commonly used therapeutic modality for cancer, its effects on dendritic cell differentiation is not completely understood. We demonstrate here for the first time that exposure to select doses of IR can increase immune-activating potential of DC through ABs. This can have implications in selection of appropriate doses of IR during radiotherapy of cancer patients.
Collapse
Affiliation(s)
- Vipul K Pandey
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
55
|
Lara PC, Nguyen NP, Macias-Verde D, Burgos-Burgos J, Arenas M, Zamagni A, Vinh-Hung V, Baumert BG, Motta M, Myint AS, Bonet M, Popescu T, Vuong T, Appalanaido GK, Trigo L, Karlsson U, Thariat J. Whole-lung Low Dose Irradiation for SARS-Cov2 Induced Pneumonia in the Geriatric Population: An Old Effective Treatment for a New Disease? Recommendation of the International Geriatric Radiotherapy Group. Aging Dis 2020; 11:489-493. [PMID: 32489696 PMCID: PMC7220282 DOI: 10.14336/ad.2020.0506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
A cytokine storm induced by SARS-Cov2 may produce pneumonitis which may be fatal for older patients with underlying lung disease. Hyper-elevation of Interleukin1 (IL-1), Tumor necrosis factor-1alfa (TNF-1 alfa), and Interleukin 6 (IL-6) produced by inflammatory macrophage M1 may damage the lung alveoli leading to severe pneumonitis, decreased oxygenation, and potential death despite artificial ventilation. Older patients may not be suitable candidates for pharmaceutical intervention targeting IL-1/6 blockade or artificial ventilation. Low dose total lung (LDTL) irradiation at a single dose of 50 cGy may stop this cytokine cascade, thus preventing, and/or reversing normal organs damage. This therapy has been proven in the past to be effective against pneumonitis of diverse etiology and could be used to prevent death of older infected patients. Thus, LDRT radiotherapy may be a cost-effective treatment for this frail patient population whom radiation -induced malignancy is not a concern because of their advanced age. This hypothesis should be tested in future prospective trials.
Collapse
Affiliation(s)
- Pedro C Lara
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Nam P Nguyen
- Department of Radiation Oncology, Howard University, Washington D.C., USA.
| | - David Macias-Verde
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Javier Burgos-Burgos
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Meritxell Arenas
- Department of Radiation Oncology, Sant Joan de Reus University, University Rovira I Virgili, Tarragona, Spain.
| | - Alice Zamagni
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, University Hospital of Martinique, Martinique, France.
| | - Brigitta G Baumert
- Institute of Radiation Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland.
| | - Micaela Motta
- Department of Radiation Oncology, ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Arthur Sun Myint
- Department of Radiation Oncology, Clatterbridge Cancer Center, Liverpool, United Kingdom.
| | - Marta Bonet
- Department of Radiation Oncology, Arnau de Vilanova University Hospital, Lleida, Spain.
| | - Tiberiu Popescu
- Department of Radiation Oncology, Prof. Dr. Ion Chricuta Oncology Institute, Cluj-Napoca, Romania.
| | - Te Vuong
- Department Of Radiation Oncology, McGill University, Montreal, Canada.
| | | | - Lurdes Trigo
- Department of Radiation Oncology, Instituto Portuges de Oncologia Porto Francisco Gentil E.P.E, Porto, Portugal.
| | - Ulf Karlsson
- Department of Radiation Oncology, International Geriatric Group, Washington D.C., USA.
| | - Juliette Thariat
- Department of Radiation Oncology, Baclesse Cancer Center, Caen, France.
| |
Collapse
|
56
|
Tubin S, Yan W, Mourad WF, Fossati P, Khan MK. The future of radiation-induced abscopal response: beyond conventional radiotherapy approaches. Future Oncol 2020; 16:1137-1151. [PMID: 32338046 DOI: 10.2217/fon-2020-0063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in the immunological pharmaceuticals, such as checkpoint inhibitors and agonists, have positive implications for the future of the radiotherapy abscopal response. A once rare phenomenon, whereby distant nonirradiated tumor sites regressed after radiotherapy alone, may become more common when combined with the immune modulating agents. Radiotherapy can increase neoantigen expression, increased tumor PD-L1 expression, increase MHC class I expression, reverse exhausted CD8 T cells and increase tumor-infiltrating tumors within the tumor microenvironment. These changes in the tumor and the tumor microenvironment after radiotherapy could potentiate responses to anti-CTL-4, anti-PD-L1/PD-1 and other immunotherapy agents. Thus, advances in checkpoint inhibitors have increased interest in re-evaluation of the role of conventional radiotherapy approaches on the immune system. We reviewed newer nonconventional approaches such as SBRT-PATHY, GRID, FLASH, carbon ion and proton therapy and their role in eliciting immune responses. We believe that combining these novel radiation methods may enhance the outcome with the newly US FDA approved immune modulating agents.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Center for Ion Therapy and Research, Marie Curie Strasse 5, A-2700 Wiener Neustadt, Austria
| | - Weisi Yan
- Department of Radiation Oncology, Thomas Jefferson University, 11th St, Philadelphia, PA 19107, USA
| | - Waleed F Mourad
- Department of Radiation Medicine, Markey Cancer Center, University of Kentucky, Medical Center, MN 150 - Lexington, KY 40536-0298, USA
| | - Piero Fossati
- MedAustron Center for Ion Therapy and Research, Marie Curie Strasse 5, A-2700 Wiener Neustadt, Austria
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365-C Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
57
|
El-Ghazaly MA, Fadel NA, Abdel-Naby DH, Abd El-Rehim HA, Zaki HF, Kenawy SA. Amelioration of adjuvant-induced arthritis by exposure to low dose gamma radiation and resveratrol administration in rats. Int J Radiat Biol 2020; 96:857-867. [PMID: 32216648 DOI: 10.1080/09553002.2020.1748911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose: Low dose radiation has been reported as an effective treatment for rheumatoid arthritis via multiple dose exposures. The present study was designed to increase the therapeutic efficacy of low dose radiation with the minimum exposure level in arthritic rats by concurrent administration of resveratrol (RSV) as an adjunctive therapy with anti-inflammatory properties.Materials and methods: Rats were rendered arthritic by sub-plantar injection of Freund's complete adjuvant (FCA) and exposed to low dose radiation at a total exposure level of 0.5 Gy (2 × 0.25). During the exposure course, RSV (50 mg/kg) was orally administered once daily for two weeks. Diclofenac (3 mg/kg) was administered as a standard anti-inflammatory drug. Paw volume was measured every 4 days. After 28 days of induction, rats were sacrificed and serum was collected for estimation of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), thiobarbituric acid reactive substances (TBARS), and total nitrate/nitrite (NOx). Furthermore, paws were dissected for histopathological examinations and immuno-histochemical estimation of nuclear factor-kappa B p65 (NF-κB p65) expression.Results: Administration of RSV during the low dose radiation exposure course produced a significant decrease in the paw swelling and a potentiated inhibition in the serum levels of TNF-α, IL-1β, TBARs, and NOx. The dual treatment strategy alleviated the histopathological damage to a greater extent than that produced by each treatment. Moreover, a pronounced suppression of NF-κB p65 expression in the synovial tissue was observed in the combination group. The combination treatment showed a nearly similar potency to that observed in the diclofenac treated group.Conclusion: Administration of RSV augmented the modulatory activity of low dose radiation with minimum exposure level on the disease progression.
Collapse
Affiliation(s)
- Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Noha A Fadel
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Doaa H Abdel-Naby
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hassan A Abd El-Rehim
- Department of Polymers, National Centre for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sanaa A Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
58
|
Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2020; 21:E1250. [PMID: 32070025 PMCID: PMC7072974 DOI: 10.3390/ijms21041250] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/08/2023] Open
Abstract
The increasing extension in life expectancy of human beings in developed countries is accompanied by a progressively greater rate of degenerative diseases associated with lifestyle and aging, most of which are still waiting for effective, not merely symptomatic, therapies. Accordingly, at present, the recommendations aimed at reducing the prevalence of these conditions in the population are limited to a safer lifestyle including physical/mental exercise, a reduced caloric intake, and a proper diet in a convivial environment. The claimed health benefits of the Mediterranean and Asian diets have been confirmed in many clinical trials and epidemiological surveys. These diets are characterized by several features, including low meat consumption, the intake of oils instead of fats as lipid sources, moderate amounts of red wine, and significant amounts of fresh fruit and vegetables. In particular, the latter have attracted popular and scientific attention for their content, though in reduced amounts, of a number of molecules increasingly investigated for their healthy properties. Among the latter, plant polyphenols have raised remarkable interest in the scientific community; in fact, several clinical trials have confirmed that many health benefits of the Mediterranean/Asian diets can be traced back to the presence of significant amounts of these molecules, even though, in some cases, contradictory results have been reported, which highlights the need for further investigation. In light of the results of these trials, recent research has sought to provide information on the biochemical, molecular, epigenetic, and cell biology modifications by plant polyphenols in cell, organismal, animal, and human models of cancer, metabolic, and neurodegenerative pathologies, notably Alzheimer's and Parkinson disease. The findings reported in the last decade are starting to help to decipher the complex relations between plant polyphenols and cell homeostatic systems including metabolic and redox equilibrium, proteostasis, and the inflammatory response, establishing an increasingly solid molecular basis for the healthy effects of these molecules. Taken together, the data currently available, though still incomplete, are providing a rationale for the possible use of natural polyphenols, or their molecular scaffolds, as nutraceuticals to contrast aging and to combat many associated pathologies.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, 50139 Florence, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.B.); (M.S.)
| |
Collapse
|
59
|
Radiobiological Principles of Radiotherapy for Benign Diseases. Radiat Oncol 2020. [DOI: 10.1007/978-3-319-52619-5_133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
60
|
Radiotherapy as a Backbone for Novel Concepts in Cancer Immunotherapy. Cancers (Basel) 2019; 12:cancers12010079. [PMID: 31905723 PMCID: PMC7017108 DOI: 10.3390/cancers12010079] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation-induced immunogenic cell death has been described to contribute to the efficacy of external beam radiotherapy in local treatment of solid tumors. It is well established that radiation therapy can induce immunogenic cell death in cancer cells under certain conditions. Initial clinical studies combining radiotherapy with immunotherapies suggest a synergistic potential of this approach. Improving our understanding of how radiation reconditions the tumor immune microenvironment should pave the way for designing rational and robust combinations with immunotherapeutic drugs that enhance both local and systemic anti-cancer immune effects. In this review, we summarize irradiation-induced types of immunogenic cell death and their effects on the tumor microenvironment. We discuss preclinical insights on mechanisms and benefits of combining radiotherapy with immunotherapy, focusing on immune checkpoint inhibitors. In addition, we elaborate how these observations were translated into clinical studies and which parameters may be optimized to achieve best results in future clinical trials.
Collapse
|
61
|
Low-Dose Irradiation Differentially Impacts Macrophage Phenotype in Dependence of Fibroblast-Like Synoviocytes and Radiation Dose. J Immunol Res 2019; 2019:3161750. [PMID: 31485459 PMCID: PMC6710796 DOI: 10.1155/2019/3161750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease whose main hallmark is inflammation and destruction of the joints. Two cell types within the synovium that play an important role in RA are fibroblast-like synoviocytes (FLS) and macrophages. The latter innate immune cells show a high plasticity in their phenotype and are central in inflammatory processes. Low-dose radiotherapy (LD-RT) with particularly a single dose of 0.5 Gy has been demonstrated to have a positive impact on pain, inflammation, and bone in inflamed joints. We now examined for the first time how LD-RT influences FLS and bone marrow-derived macrophages in co-culture systems of an experimental model of RA to reveal further mechanisms of immune modulatory effects of low and intermediate dose of ionizing radiation. For this, the bone marrow of hTNF-α tg mice was differentiated either with cytokines to obtain key macrophage phenotypes (M0, M1, and M2) or with supernatants (SN) of untreated or irradiated FLS. Flow cytometry analyses were used to analyse the impact of radiation (0.1, 0.5, 1.0, and 2.0 Gy) on the phenotype of macrophages in the presence or absence of SN of FLS. LD-RT had no impact on cytokine-mediated macrophage polarization in M0, M1, or M2 macrophages. However, SN of irradiated FLS particularly reduced CD206 expression on macrophages. Macrophage phenotype was stable when being in contact with SN of nonirradiated FLS, but significantly increased surface expression of CD206 and slightly decreased CD80 and CD86 expression were observed when macrophage themselves were irradiated with 0.5 Gy under these microenvironmental conditions, again highlighting discontinuous dose dependencies in the low and intermediate dose range. One can conclude that FLS-dependent microenvironmental conditions have a slight influence on the modulation of macrophage phenotype under radiation exposure conditions. Future studies are needed to reveal the impact of radiation exposure on the functions of treated macrophages under such microenvironmental conditions.
Collapse
|
62
|
Deutsch E, Chargari C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol 2019; 20:e452-e463. [DOI: 10.1016/s1470-2045(19)30171-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/19/2022]
|
63
|
Lippitz BE, Harris RA. A translational concept of immuno-radiobiology. Radiother Oncol 2019; 140:116-124. [PMID: 31271996 DOI: 10.1016/j.radonc.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traditional concepts of radiobiology model the direct radiation-induced cellular cytotoxicity but are not focused on late and sustained effects of radiation. Recent experimental data show the close involvement of immunological processes. METHODS Based on systematic PubMed searches, experimental data on immunological radiation effects are summarized and analyzed in a non-quantitative descriptive manner to provide a translational perspective on the immuno-modulatory impact of radiation in cancer. RESULTS Novel experimental findings document that sustained radiation effects are ultimately mediated through systemic factors such as cytotoxic CD8+ T cells and involve a local immuno-stimulation. Increased tumor infiltration of CD8+ T cell is a prerequisite for long-term radiation effects. CD8+ T cell depletion induces radio-resistance in experimental tumors. The proposed sequence of events involves radiation-damaged cells that release HMGB1, which activates macrophages via TLR4 to a local immuno-stimulation via TNF, which contributes to maturation of DCs. The mature DCs migrate to lymph nodes where they trigger effective CD8+ T cell responses. Radiation effects are boosted, when the physiological self-terminating negative feedback of immune reactions is antagonised via blocking of TGF-β or via checkpoint inhibition with involvement of CD8+ T cells as common denominator. CONCLUSION The concept of immuno-radiobiology emphasizes the necessity for a functional integrity of APCs and T cells for the long-term effects of radiotherapy. Local irradiation at higher doses induces tumor infiltration of CD8+ T cells, which can be boosted by immunotherapy. More systematic research is warranted to better understand the immunological effects of escalating radiation doses.
Collapse
Affiliation(s)
- Bodo E Lippitz
- Dept. of Clinical Neuroscience, Karolinska Institute, Centre for Molecular Medicine L8:04, Karolinska University Hospital, Stockholm, Sweden; Interdisciplinary Centre for Radiosurgery (ICERA), Hamburg, Germany.
| | - Robert A Harris
- Dept. of Clinical Neuroscience, Karolinska Institute, Centre for Molecular Medicine L8:04, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
64
|
Boustani J, Grapin M, Laurent PA, Apetoh L, Mirjolet C. The 6th R of Radiobiology: Reactivation of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E860. [PMID: 31226866 PMCID: PMC6627091 DOI: 10.3390/cancers11060860] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Historically, the 4Rs and then the 5Rs of radiobiology explained the effect of radiation therapy (RT) fractionation on the treatment efficacy. These 5Rs are: Repair, Redistribution, Reoxygenation, Repopulation and, more recently, intrinsic Radiosensitivity. Advances in radiobiology have demonstrated that RT is able to modify the tumor micro environment (TME) and to induce a local and systemic (abscopal effect) immune response. Conversely, RT is able to increase some immunosuppressive barriers, which can lead to tumor radioresistance. Fractionation and dose can affect the immunomodulatory properties of RT. Here, we review how fractionation, dose and timing shape the RT-induced anti-tumor immune response and the therapeutic effect of RT. We discuss how immunomodulators targeting immune checkpoint inhibitors and the cGAS/STING (cyclic GMP-AMP Synthase/Stimulator of Interferon Genes) pathway can be successfully combined with RT. We then review current trials evaluating the RT/Immunotherapy combination efficacy and suggest new innovative associations of RT with immunotherapies currently used in clinic or in development with strategic schedule administration (fractionation, dose, and timing) to reverse immune-related radioresistance. Overall, our work will present the existing evidence supporting the claim that the reactivation of the anti-tumor immune response can be regarded as the 6th R of Radiobiology.
Collapse
Affiliation(s)
- Jihane Boustani
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
| | - Mathieu Grapin
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
| | - Pierre-Antoine Laurent
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
| | | | - Céline Mirjolet
- Department of Radiation Oncology, Unicancer-Georges-Francois Leclerc Cancer Center, Dijon, France.
- INSERM, U1231 Dijon, France.
| |
Collapse
|
65
|
Bryant J, Shields L, Hynes C, Howe O, McCleanc B, Lynga F. DNA Damage and Cytokine Production in Non-Target Irradiated Lymphocytes. Radiat Res 2019; 191:545-555. [DOI: 10.1667/rr15165.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jane Bryant
- Radiation and Environmental Science Centre, FOCAS Institute
| | - Laura Shields
- Medical Physics Department, St. Luke's Radiation Oncology Centre, Rathgar, Dublin, Ireland
| | | | - Orla Howe
- School of Biological Sciences, Technological University Dublin, Dublin 8, Ireland
| | - Brendan McCleanc
- Medical Physics Department, St. Luke's Radiation Oncology Centre, Rathgar, Dublin, Ireland
| | - Fiona Lynga
- Radiation and Environmental Science Centre, FOCAS Institute
| |
Collapse
|
66
|
Guéguen Y, Bontemps A, Ebrahimian TG. Adaptive responses to low doses of radiation or chemicals: their cellular and molecular mechanisms. Cell Mol Life Sci 2019; 76:1255-1273. [PMID: 30535789 PMCID: PMC11105647 DOI: 10.1007/s00018-018-2987-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022]
Abstract
This article reviews the current knowledge on the mechanisms of adaptive response to low doses of ionizing radiation or chemical exposure. A better knowledge of these mechanisms is needed to improve our understanding of health risks at low levels of environmental or occupational exposure and their involvement in cancer or non-cancer diseases. This response is orchestrated through a multifaceted cellular program involving the concerted action of diverse stress response pathways. These evolutionary highly conserved defense mechanisms determine the cellular response to chemical and physical aggression. They include DNA damage repair (p53, ATM, PARP pathways), antioxidant response (Nrf2 pathway), immune/inflammatory response (NF-κB pathway), cell survival/death pathway (apoptosis), endoplasmic response to stress (UPR response), and other cytoprotective processes including autophagy, cell cycle regulation, and the unfolded protein response. The coordinated action of these processes induced by low-dose radiation or chemicals produces biological effects that are currently estimated with the linear non-threshold model. These effects are controversial. They are difficult to detect because of their low magnitude, the scarcity of events in humans, and the difficulty of corroborating associations over the long term. Improving our understanding of these biological consequences should help humans and their environment by enabling better risk estimates, the revision of radiation protection standards, and possible therapeutic advances.
Collapse
Affiliation(s)
- Yann Guéguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France.
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRSI, Fontenay-aux-Roses, France.
| | - Alice Bontemps
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Teni G Ebrahimian
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-SANTE, SESANE, LRTOX, B.P. no 17, 92262, Fontenay-aux-Roses Cedex, France
| |
Collapse
|
67
|
Kullmann M, Rühle PF, Harrer A, Donaubauer A, Becker I, Sieber R, Klein G, Fournier C, Fietkau R, Gaipl US, Frey B. Temporarily increased TGFβ following radon spa correlates with reduced pain while serum IL-18 is a general predictive marker for pain sensitivity. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:129-135. [PMID: 30456560 DOI: 10.1007/s00411-018-0768-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/12/2018] [Indexed: 05/03/2023]
Abstract
Sustained pain relief following radon spa therapy in patients suffering from chronic painful diseases has been well described. But still, the underlying mechanisms are not fully understood. We conducted the prospective and explorative RAD-ON01 study which included 103 patients who suffered from chronic painful musculoskeletal disorders of the spine and/or joints and present here the data of the examination of pro- and anti-inflammatory cytokines in the serum of the patients before and at weeks 6, 12 and 30 after therapy. While TNFα, IL-1β, IFNγ, IL-1Ra and IL-10 were not altered, TGFβ was temporarily significantly (p = 0.013) elevated 6 weeks after therapy. Importantly, this elevation positively correlated with lowered pain sensitivity (r = 0.41). Further, the amount of IL-18 in the serum positively correlated with lowered pain sensitivity. Therefore, IL-18 can be considered as predictive marker for pain sensitivity of radon spa patients. We conclude that alterations in TGFβ and general IL-18 levels in serum have prognostic and predictive value in situations of lowered pain by exposure of patients to very low-doses of radiation as it is the case in radon spa.
Collapse
Affiliation(s)
- Miriam Kullmann
- Department of Radiation Oncology, Radiation Immunobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Paul F Rühle
- Department of Radiation Oncology, Radiation Immunobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Alexandra Harrer
- Department of Radiation Oncology, Radiation Immunobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Anna Donaubauer
- Department of Radiation Oncology, Radiation Immunobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Ina Becker
- Department of Radiation Oncology, Radiation Immunobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Renate Sieber
- Department of Radiation Oncology, Radiation Immunobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | | | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Radiation Immunobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Radiation Immunobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany.
| | - Benjamin Frey
- Department of Radiation Oncology, Radiation Immunobiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054, Erlangen, Germany
| |
Collapse
|
68
|
Immune Modulatory Effects of Radiotherapy. Radiat Oncol 2019. [DOI: 10.1007/978-3-319-52619-5_106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
69
|
Wang SJ, Haffty B. Radiotherapy as a New Player in Immuno-Oncology. Cancers (Basel) 2018; 10:cancers10120515. [PMID: 30558196 PMCID: PMC6315809 DOI: 10.3390/cancers10120515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
Recent development in radiation biology has revealed potent immunogenic properties of radiotherapy in cancer treatments. However, antitumor immune effects of radiotherapy are limited by the concomitant induction of radiation-dependent immunosuppressive effects. In the growing era of immunotherapy, combining radiotherapy with immunomodulating agents has demonstrated enhancement of radiation-induced antitumor immune activation that correlated with improved treatment outcomes. Yet, how to optimally deliver combination therapy regarding dose-fractionation and timing of radiotherapy is largely unknown. Future prospective testing to fine-tune this promising combination of radiotherapy and immunotherapy is warranted.
Collapse
Affiliation(s)
- Shang-Jui Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| | - Bruce Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany St., New Brunswick, NJ 08901, USA.
| |
Collapse
|
70
|
de Andrade Carvalho H, Villar RC. Radiotherapy and immune response: the systemic effects of a local treatment. Clinics (Sao Paulo) 2018; 73:e557s. [PMID: 30540123 PMCID: PMC6257057 DOI: 10.6061/clinics/2018/e557s] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Technological developments have allowed improvements in radiotherapy delivery, with higher precision and better sparing of normal tissue. For many years, it has been well known that ionizing radiation has not only local action but also systemic effects by triggering many molecular signaling pathways. There is still a lack of knowledge of this issue. This review focuses on the current literature about the effects of ionizing radiation on the immune system, either suppressing or stimulating the host reactions against the tumor, and the factors that interact with these responses, such as the radiation dose and dose / fraction effects in the tumor microenvironment and vasculature. In addition, some implications of these effects in cancer treatment, mainly in combined strategies, are addressed from the perspective of their interactions with the more advanced technology currently available, such as heavy ion therapy and nanotechnology.
Collapse
Affiliation(s)
- Heloisa de Andrade Carvalho
- Departamento de Radiologia e Oncologia, Divisao de Radioterapia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Servico de Radioterapia, Centro de Oncologia, Hospital Sirio-Libanes, Sao Paulo, SP, BR
| | - Rosangela Correa Villar
- Departamento de Radiologia e Oncologia, Divisao de Radioterapia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Servico de Radioterapia, Centro Infantil Boldrini, Campinas, SP, BR
| |
Collapse
|
71
|
Kumar S, Kumar R. Role of acemannan O-acetyl group in murine radioprotection. Carbohydr Polym 2018; 207:460-470. [PMID: 30600029 DOI: 10.1016/j.carbpol.2018.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 10/21/2018] [Accepted: 12/03/2018] [Indexed: 11/27/2022]
Abstract
Present study was designed to investigate the role of acemannan acetyl group in murine radioprotection. Acemannan, extracted from Aloe vera gel, has molecular weight of 1.02 × 106 Da and mainly composed of mannose (84.9%), glucose (7.2%), and galactose (3.9%), with backbone of (1→4)-linked mannose and glucose. Acemannan was over-acetylated and deacetylated to investigate the role of acetyl group. Acetylation enhances acemannan viscosity and thermal stability. Free radicals scavenging and Fenton reaction inhibition was mediated by acemannan acetyl and hydroxyl group respectively. Native or over-acetylated or deacetylated acemannan pre-treatment to mice has shown to reduce the γ-radiation-induced oxidative damage, and hematopoietic injuries by free radical scavenging and microphage activation (secretes pro-hematopoietic factors through TLR-4) respectively. Over-acetylated acemannan has stronger effects on immunomodulation/radioprotection. In summary, acemannan acetyl-group modulates immune system, while hydroxyl-group participate in free radical scavenging, and present finding can be employed in food and pharma industries for enhancing polysaccharide bioactivity.
Collapse
Affiliation(s)
- Sumit Kumar
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Raj Kumar
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
72
|
Calabrese EJ, Giordano JJ, Kozumbo WJ, Leak RK, Bhatia TN. Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacol Res 2018; 137:236-249. [DOI: 10.1016/j.phrs.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
73
|
Deloch L, Rückert M, Fietkau R, Frey B, Gaipl US. Low-Dose Radiotherapy Has No Harmful Effects on Key Cells of Healthy Non-Inflamed Joints. Int J Mol Sci 2018; 19:ijms19103197. [PMID: 30332826 PMCID: PMC6214021 DOI: 10.3390/ijms19103197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
Low-dose radiotherapy (LD-RT) for benign inflammatory and/or bone destructive diseases has been used long. Therefore, mechanistic investigations on cells being present in joints are mostly made in an inflammatory setting. This raises the question whether similar effects of LD-RT are also seen in healthy tissue and thus might cause possible harmful effects. We performed examinations on the functionality and phenotype of key cells within the joint, namely on fibroblast-like synoviocytes (FLS), osteoclasts and osteoblasts, as well as on immune cells. Low doses of ionizing radiation showed only a minor impact on cytokine release by healthy FLS as well as on molecules involved in cartilage and bone destruction and had no significant impact on cell death and migration properties. The bone resorbing abilities of healthy osteoclasts was slightly reduced following LD-RT and a positive impact on bone formation of healthy osteoblasts was observed after in particular exposure to 0.5 Gray (Gy). Cell death rates of bone-marrow cells were only marginally increased and immune cell composition of the bone marrow showed a slight shift from CD8+ to CD4+ T cell subsets. Taken together, our results indicate that LD-RT with particularly a single dose of 0.5 Gy has no harmful effects on cells of healthy joints.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
74
|
Deloch L, Derer A, Hueber AJ, Herrmann M, Schett GA, Wölfelschneider J, Hahn J, Rühle PF, Stillkrieg W, Fuchs J, Fietkau R, Frey B, Gaipl US. Low-Dose Radiotherapy Ameliorates Advanced Arthritis in hTNF-α tg Mice by Particularly Positively Impacting on Bone Metabolism. Front Immunol 2018; 9:1834. [PMID: 30279685 PMCID: PMC6153886 DOI: 10.3389/fimmu.2018.01834] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022] Open
Abstract
Inflammation and bone erosion are central in rheumatoid arthritis (RA). Even though effective medications for control and treatment of RA are available, remission is only seen in a subset of patients. Treatment with low-dose radiotherapy (LD-RT) which has been already successfully used for amelioration of symptoms in benign diseases should be a promising approach to reduce pain, inflammation, and particularly bone erosion in patients with RA. Even though anti-inflammatory effects of LD-RT are already described with non-linear dose response relationships, and pain-reducing effects have been clinically observed, the underlying mechanisms are widely unknown. Besides immune cells many other cell types, such as fibroblast-like synoviocytes (FLS), osteoclasts, and osteoblast are present in the affected joint and might be modulated by LD-RT. For this study, these cell types were obtained from human tumor necrosis factor-α transgenic (hTNF-α tg) mice and were consecutively exposed to different doses of ionizing radiation (0.1, 0.5, 1.0, and 2.0 Gy, respectively) in vitro. In order to study the in vivo effects of LD-RT within the arthritic joint, hind paws of arthritic hTNF-α tg mice were locally irradiated with 0.5 Gy, a single dose per fraction that is known for good clinical responses. Starting at a dose of 0.5 Gy, proliferation of FLS was reduced and apoptosis significantly enhanced with no changes in necrosis. Further, expression of RANK-L was slightly reduced following irradiation with particularly 0.5 Gy. Starting from 0.5 Gy, the numbers of differentiated osteoclasts were significantly reduced, and a lower bone resorbing activity of treated osteoclasts was also observed, as monitored via pit formation and Cross Laps presence. LD-RT had further a positive effect on osteoblast-induced mineralization in a discontinuous dose response relationship with 0.5 Gy being most efficient. An increase of the gene expression ratio of OPG/RANK-L at 0.1 and 0.5 Gy and of production of OPG at 0.5 and 1.0 Gy was observed. In vivo, LD-RT resulted in less severe arthritis in arthritic hTNF-α tg mice and in significant reduction of inflammatory and erosive area with reduced osteoclasts and neutrophils. Locally applied LD-RT can, therefore, induce a beneficial micro-environment within arthritic joints by predominantly positively impacting on bone metabolism.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Axel J Hueber
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Erlangen, Germany
| | - Georg Andreas Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Erlangen, Germany
| | - Jens Wölfelschneider
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jonas Hahn
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Erlangen, Germany
| | - Paul-Friedrich Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Willi Stillkrieg
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jana Fuchs
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
75
|
Wunderlich R, Rühle PF, Deloch L, Rödel F, Fietkau R, Gaipl US, Frey B. Ionizing radiation reduces the capacity of activated macrophages to induce T-cell proliferation, but does not trigger dendritic cell-mediated non-targeted effects. Int J Radiat Biol 2018; 95:33-43. [DOI: 10.1080/09553002.2018.1490037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Roland Wunderlich
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Paul Friedrich Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
76
|
Martinez-Zubiaurre I, Chalmers AJ, Hellevik T. Radiation-Induced Transformation of Immunoregulatory Networks in the Tumor Stroma. Front Immunol 2018; 9:1679. [PMID: 30105016 PMCID: PMC6077256 DOI: 10.3389/fimmu.2018.01679] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/09/2018] [Indexed: 12/27/2022] Open
Abstract
The implementation of novel cancer immunotherapies in the form of immune checkpoint blockers represents a major advancement in the treatment of cancer, and has renewed enthusiasm for identifying new ways to induce antitumor immune responses in patients. Despite the proven efficacy of neutralizing antibodies that target immune checkpoints in some refractory cancers, many patients do not experience therapeutic benefit, possibly owing to a lack of antitumor immune recognition, or to the presence of dominant immunosuppressive mechanisms in the tumor microenvironment (TME). Recent developments in this field have revealed that local radiotherapy (RT) can transform tumors into in situ vaccines, and may help to overcome some of the barriers to tumor-specific immune rejection. RT has the potential to ignite tumor immune recognition by generating immunogenic signals and releasing neoantigens, but the multiple immunosuppressive forces in the TME continue to represent important barriers to successful tumor rejection. In this article, we review the radiation-induced changes in the stromal compartments of tumors that could have an impact on tumor immune attack. Since different RT regimens are known to mediate strikingly different effects on the multifarious elements of the tumor stroma, special emphasis is given to different RT schedules, and the time after treatment at which the effects are measured. A better understanding of TME remodeling following specific RT regimens and the window of opportunity offered by RT will enable optimization of the design of novel treatment combinations.
Collapse
Affiliation(s)
- Inigo Martinez-Zubiaurre
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Anthony J Chalmers
- Institute of Cancer Sciences, Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, United Kingdom
| | - Turid Hellevik
- Department of Radiation Oncology, University Hospital of Northern Norway, Tromsø, Norway
| |
Collapse
|
77
|
Frey B, Rückert M, Deloch L, Rühle PF, Derer A, Fietkau R, Gaipl US. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev 2018; 280:231-248. [PMID: 29027224 DOI: 10.1111/imr.12572] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ionizing radiation is often regarded as an element of danger. But, danger responses on the cellular and molecular level are often beneficial with regard to the induction of anti-tumor immunity and for amelioration of inflammation. We outline how in dependence of radiation dose and fraction, radiation itself-and especially in combination with immune modulators-impacts on the innate and adaptive immune system. Focus is set on radiation-induced changes of the tumor cell phenotype and the cellular microenvironment including immunogenic cancer cell death. Mechanisms how anti-tumor immune responses are triggered by radiotherapy in combination with hyperthermia, inhibition of apoptosis, the adjuvant AnnexinA5, or vaccination with high hydrostatic pressure-killed autologous tumor cells are discussed. Building on this, feasible multimodal radio-immunotherapy concepts are reviewed including overcoming immune suppression by immune checkpoint inhibitors and by targeting TGF-β. Since radiation-induced tissue damage, inflammation, and anti-tumor immune responses are interconnected, the impact of lower doses of radiation on amelioration of inflammation is outlined. Closely meshed immune monitoring concepts based on the liquid biopsy blood are suggested for prognosis and prediction of cancer and non-cancer inflammatory diseases. Finally, challenges and visions for the design of cancer radio-immunotherapies and for treatment of benign inflammatory diseases are given.
Collapse
Affiliation(s)
- Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paul F Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
78
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
79
|
Rückert M, Deloch L, Fietkau R, Frey B, Hecht M, Gaipl US. Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlenther Onkol 2018; 194:509-519. [PMID: 29500551 DOI: 10.1007/s00066-018-1287-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Radiotherapy (RT) has been known for decades as a local treatment modality for malign and benign disease. In order to efficiently exploit the therapeutic potential of RT, an understanding of the immune modulatory properties of ionizing radiation is mandatory. These should be used for improvement of radioimmunotherapies for cancer in particular. METHODS We here summarize the latest research and review articles about immune modulatory properties of RT, with focus on radiation dose and on combination of RT with selected immunotherapies. Based on the knowledge of the manifold immune mechanisms that are triggered by RT, thought-provoking impulse for multimodal radioimmunotherapies is provided. RESULTS It has become obvious that ionizing radiation induces various forms of cell death and associated processes via DNA damage initiation and triggering of cellular stress responses. Immunogenic cell death (ICD) is of special interest since it activates the immune system via release of danger signals and via direct activation of immune cells. While RT with higher single doses in particular induces ICD, RT with a lower dose is mainly responsible for immune cell recruitment and for attenuation of an existing inflammation. The counteracting immunosuppression emanating from tumor cells can be overcome by combining RT with selected immunotherapies such as immune checkpoint inhibition, TGF-β inhibitors, and boosting of immunity with vaccination. CONCLUSION In order to exploit the full power of RT and thereby develop efficient radioimmunotherapies, the dose per fraction used in RT protocols, the fractionation, the quality, and the quantity of certain immunotherapies need to be qualitatively and chronologically well-matched to the individual immune status of the patient.
Collapse
Affiliation(s)
- Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstr. 27, 91054, Erlangen, Germany.
| |
Collapse
|
80
|
Ebrahimian TG, Beugnies L, Surette J, Priest N, Gueguen Y, Gloaguen C, Benderitter M, Jourdain JR, Tack K. Chronic Exposure to External Low-Dose Gamma Radiation Induces an Increase in Anti-inflammatory and Anti-oxidative Parameters Resulting in Atherosclerotic Plaque Size Reduction in ApoE -/- Mice. Radiat Res 2017; 189:187-196. [PMID: 29227739 DOI: 10.1667/rr14823.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Populations living in radiation-contaminated territories, such as Chernobyl and Fukushima, are chronically exposed to external gamma radiation and internal radionuclide contamination due to the large amount of 137Cs released in the environment. The effect of chronic low-dose exposure on the development of cardiovascular diseases remains unclear. Previously reported studies have shown that low-dose radiation exposure could lead to discrepancies according to dose rate. In this study, we examined the effect of very low-dose and dose-rate chronic external exposure on atherosclerosis development. ApoE-/- mice were chronically irradiated with a gamma source for 8 months at two different dose rates, 12 and 28 μGy/h, equivalent to dose rates measured in contaminated territories, with a cumulative dose of 67 and 157 mGy, respectively. We evaluated plaque size and phenotype, inflammatory profile and oxidative stress status. The results of this study showed a decrease in plaque sizes and an increase in collagen content in ApoE-/- mice exposed to 28 μGy/h for 8 months compared to nonexposed animals. The plaque phenotype was associated with an increase in anti-inflammatory and anti-oxidative gene expression. These results suggest that chronic low-dose gamma irradiation induces an upregulation of organism defenses leading to a decrease in inflammation and plaque size. To our knowledge, this is the first study to describe the possible effect of chronic external very low-dose ionizing radiation exposure for 8 months. This work could help to identify the potential existence of a dose threshold, below that which harmful effects are not exhibited and beneficial effects are potentially observed. Furthermore, these findings permit consideration of the importance of dose rate in radiation protection.
Collapse
Affiliation(s)
- T G Ebrahimian
- a Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, Fontenay-aux-Roses, France; and
| | - L Beugnies
- a Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, Fontenay-aux-Roses, France; and
| | - J Surette
- b Radiobiology and Health, Canadian Nuclear Laboratories, Chalk-River, Ontario K0J 1J0, Canada
| | - N Priest
- b Radiobiology and Health, Canadian Nuclear Laboratories, Chalk-River, Ontario K0J 1J0, Canada
| | - Y Gueguen
- a Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, Fontenay-aux-Roses, France; and
| | - C Gloaguen
- a Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, Fontenay-aux-Roses, France; and
| | - M Benderitter
- a Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, Fontenay-aux-Roses, France; and
| | - J R Jourdain
- a Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, Fontenay-aux-Roses, France; and
| | - K Tack
- a Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, Fontenay-aux-Roses, France; and
| |
Collapse
|
81
|
Leblond MM, Pérès EA, Helaine C, Gérault AN, Moulin D, Anfray C, Divoux D, Petit E, Bernaudin M, Valable S. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget 2017; 8:72597-72612. [PMID: 29069812 PMCID: PMC5641155 DOI: 10.18632/oncotarget.19994] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/23/2017] [Indexed: 01/07/2023] Open
Abstract
In some highly inflammatory tumors, such as glioblastoma (GB), macrophages (MΦ) represent the most abundant population of reactive cells. MΦ, initially denoted as M0 MΦ, can be polarized into two further phenotypes: the antitumor M1 MΦ, and the protumor M2 MΦ. The three phenotypes can reside simultaneously in the tumor mass and various external factors may influence MΦ polarization. Radiotherapy is a common modality of cancer treatment aiming to target tumor cells. However, the specific effects of X-ray radiation on the inflammatory cells are, so far, controversial and not fully understood. In the present investigation, we have first analyzed, in vivo, the effect of X-ray radiation on MΦ present in GB tumors. We have observed a decrease in MΦ number paralleled by an increase in the proportion of M2 MΦ. To understand this phenomenon, we then evaluated, in vitro, the effects of X-rays on the MΦ phenotypes and survival. We have found that X-ray radiation failed to modify the phenotype of the different MΦ. However, M1 MΦ were more sensitive to ionizing radiation than M2 MΦ, both in normoxia and in hypoxia, which could explain the in vivo observations. To conclude, M2 MΦ are more radioresistant than M0 and M1 MΦ and the present study allows us to propose that X-ray radiotherapy could contribute, along with other phenomena, to the increased density in the protumor M2 MΦ in GB.
Collapse
Affiliation(s)
- Marine M. Leblond
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| | - Elodie A. Pérès
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| | - Charly Helaine
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| | - Aurélie N. Gérault
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| | - Damien Moulin
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| | - Clément Anfray
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| | - Didier Divoux
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| | - Edwige Petit
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| | - Myriam Bernaudin
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| | - Samuel Valable
- Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, 14000 Caen, France
| |
Collapse
|
82
|
Wu Q, Allouch A, Martins I, Modjtahedi N, Deutsch E, Perfettini JL. Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomed J 2017; 40:200-211. [PMID: 28918908 PMCID: PMC6136289 DOI: 10.1016/j.bj.2017.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/01/2017] [Accepted: 06/11/2017] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.
Collapse
Affiliation(s)
- Qiuji Wu
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France; Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Awatef Allouch
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Isabelle Martins
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Nazanine Modjtahedi
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France.
| |
Collapse
|
83
|
Genard G, Lucas S, Michiels C. Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol 2017; 8:828. [PMID: 28769933 PMCID: PMC5509958 DOI: 10.3389/fimmu.2017.00828] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a central role in tumor progression, metastasis, and recurrence after treatment. Macrophage plasticity and diversity allow their classification along a M1–M2 polarization axis. Tumor-associated macrophages usually display a M2-like phenotype, associated with pro-tumoral features whereas M1 macrophages exert antitumor functions. Targeting the reprogramming of TAMs toward M1-like macrophages would thus be an efficient way to promote tumor regression. This can be achieved through therapies including chemotherapy, immunotherapy, and radiotherapy (RT). In this review, we first describe how chemo- and immunotherapies can target TAMs and, second, we detail how RT modifies macrophage phenotype and present the molecular pathways that may be involved. The identification of irradiation dose inducing macrophage reprogramming and of the underlying mechanisms could lead to the design of novel therapeutic strategies and improve synergy in combined treatments.
Collapse
Affiliation(s)
- Géraldine Genard
- URBC - NARILIS, University of Namur, Namur, Belgium.,Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | | |
Collapse
|
84
|
Feliciano CP, Tsuboi K, Suzuki K, Kimura H, Nagasaki Y. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials 2017; 129:68-82. [DOI: 10.1016/j.biomaterials.2017.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 01/08/2023]
|
85
|
Erbeldinger N, Rapp F, Ktitareva S, Wendel P, Bothe AS, Dettmering T, Durante M, Friedrich T, Bertulat B, Meyer S, Cardoso MC, Hehlgans S, Rödel F, Fournier C. Measuring Leukocyte Adhesion to (Primary) Endothelial Cells after Photon and Charged Particle Exposure with a Dedicated Laminar Flow Chamber. Front Immunol 2017; 8:627. [PMID: 28620384 PMCID: PMC5451490 DOI: 10.3389/fimmu.2017.00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelium interacts with all types of blood cells and is a key modulator of local and systemic inflammatory processes, for example, in the adhesion of blood leukocytes to endothelial cells (EC) and the following extravasation into the injured tissue. The endothelium is constantly exposed to mechanical forces caused by blood flow, and the resulting shear stress is essential for the maintenance of endothelial function. Changes in local hemodynamics are sensed by EC, leading to acute or persistent changes. Therefore, in vitro assessment of EC functionality should include shear stress as an essential parameter. Parallel-plate flow chambers with adjustable shear stress can be used to study EC properties. However, commercially available systems are not suitable for radiation experiments, especially with charged particles, which are increasingly used in radiotherapy of tumors. Therefore, research on charged-particle-induced vascular side effects is needed. In addition, α-particle emitters (e.g., radon) are used to treat inflammatory diseases at low doses. In the present study, we established a flow chamber system, applicable for the investigation of radiation induced changes in the adhesion of lymphocytes to EC as readout for the onset of an inflammatory reaction or the modification of a pre-existing inflammatory state. In this system, primary human EC are cultured under physiological laminar shear stress, subjected to a proinflammatory treatment and/or irradiation with X-rays or charged particles, followed by a coincubation with primary human lymphocytes (peripheral blood lymphocytes (PBL)). Analysis is performed by semiautomated quantification of fluorescent staining in microscopic pictures. First results obtained after irradiation with X-rays or helium ions indicate decreased adhesion of PBL to EC under laminar conditions for both radiation qualities, whereas adhesion of PBL under static conditions is not clearly affected by irradiation. Under static conditions, no radiation-induced changes in surface expression of adhesion molecules and activation of nuclear factor kappa B (NF-κB) signaling were observed after single cell-based high-throughput analysis. In subsequent studies, these investigations will be extended to laminar conditions.
Collapse
Affiliation(s)
- Nadine Erbeldinger
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.,Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Svetlana Ktitareva
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Philipp Wendel
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Anna S Bothe
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Till Dettmering
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Bianca Bertulat
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Stephanie Meyer
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - M C Cardoso
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| |
Collapse
|
86
|
Rödel F, Fournier C, Wiedemann J, Merz F, Gaipl US, Frey B, Keilholz L, Seegenschmiedt MH, Rödel C, Hehlgans S. Basics of Radiation Biology When Treating Hyperproliferative Benign Diseases. Front Immunol 2017; 8:519. [PMID: 28515727 PMCID: PMC5413517 DOI: 10.3389/fimmu.2017.00519] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023] Open
Abstract
For decades, low- and moderate-dose radiation therapy (RT) has been shown to exert a beneficial therapeutic effect in a multitude of non-malignant conditions including painful degenerative muscoloskeletal and hyperproliferative disorders. Dupuytren and Ledderhose diseases are benign fibroproliferative diseases of the hand/foot with fibrotic nodules and fascial cords, which determine debilitating contractures and deformities of fingers/toes, while keloids are exuberant scar formations following burn damage, surgery, and trauma. Although RT has become an established and effective option in the management of these diseases, experimental studies to illustrate cellular composites and factors involved remain to be elucidated. More recent findings, however, indicate the involvement of radiation-sensitive targets like mitotic fibroblasts/myofibroblasts as well as inflammatory cells. Radiation-related molecular mechanisms affecting these target cells include the production of free radicals to hamper proliferative activity and interference with growth factors and cytokines. Moreover, an impairment of activated immune cells involved in both myofibroblast proliferative and inflammatory processes may further contribute to the clinical effects. We here aim at briefly describing mechanisms contributing to a modulation of proliferative and inflammatory processes and to summarize current concepts of treating hyperproliferative diseases by low and moderate doses of ionizing radiation.
Collapse
Affiliation(s)
- Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital of Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Julia Wiedemann
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Felicitas Merz
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ludwig Keilholz
- Department of Radiotherapy, Clinical Center Bayreuth, Bayreuth, Germany
| | | | - Claus Rödel
- Department of Radiotherapy and Oncology, University Hospital of Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital of Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
87
|
Chatterjee A, Kosmacek EA, Oberley-Deegan RE. MnTE-2-PyP Treatment, or NOX4 Inhibition, Protects against Radiation-Induced Damage in Mouse Primary Prostate Fibroblasts by Inhibiting the TGF-Beta 1 Signaling Pathway. Radiat Res 2017; 187:367-381. [PMID: 28225655 DOI: 10.1667/rr14623.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate cancer patients who undergo radiotherapy frequently suffer from side effects caused by radiation-induced damage to normal tissues adjacent to the tumor. Exposure of these normal cells during radiation treatment can result in tissue fibrosis and cellular senescence, which ultimately leads to postirradiation-related chronic complications including urinary urgency and frequency, erectile dysfunction, urethral stricture and incontinence. Radiation-induced reactive oxygen species (ROS) have been reported as the most potent causative factor for radiation damage to normal tissue. While MnTE-2-PyP, a ROS scavenger, protects normal cells from radiation-induced damage, it does not protect cancer cells during radiation treatment. However, the mechanism by which MnTE-2-PyP provides protection from radiation-induced fibrosis has been unclear. Our current study reveals the underlying molecular mechanism of radiation protection by MnTE-2-PyP in normal mouse prostate fibroblast cells. To investigate the role of MnTE-2-PyP in normal tissue protection after irradiation, primary prostate fibroblasts from C57BL/6 mice were cultured in the presence or absence of MnTE-2-PyP and exposed to 2 Gy of X rays. We found that MnTE-2-PyP could protect primary prostate fibroblasts from radiation-induced activation, as measured by the contraction of collagen discs, and senescence, detected by beta-galactosidase staining. We observed that MnTE-2-PyP inhibited the TGF-β-mediated fibroblast activation pathway by downregulating the expression of TGF-β receptor 2, which in turn reduced the activation and/or expression of SMAD2, SMAD3 and SMAD4. As a result, SMAD2/3-mediated transcription of profibrotic markers was reduced by MnTE-2-PyP. Due to the inhibition of the TGF-β pathway, fibroblasts treated with MnTE-2-PyP could resist radiation-induced activation and senescence. NADPH oxidase 4 (NOX4) expression is upregulated after irradiation and produces ROS. As was observed with MnTE-2-PyP treatment, NOX4-/- fibroblasts were protected from radiation-induced fibroblast activation and senescence. However, NOX4-/- fibroblasts had reduced levels of active TGF-β1, which resulted in decreased TGF-β signaling. Therefore, our data suggest that reduction of ROS levels, either by MnTE-2-PyP treatment or by eliminating NOX4 activity, significantly protects normal prostate tissues from radiation-induced tissue damage, but that these approaches work on different components of the TGF-β signaling pathway. This study proposes a crucial insight into the molecular mechanism executed by MnTE-2-PyP when utilized as a radioprotector. An understanding of how this molecule works as a radioprotector will lead to a better controlled mode of treatment for post therapy complications in prostate cancer patients.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Elizabeth A Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
88
|
Rühle PF, Wunderlich R, Deloch L, Fournier C, Maier A, Klein G, Fietkau R, Gaipl US, Frey B. Modulation of the peripheral immune system after low-dose radon spa therapy: Detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 2017; 50:133-140. [DOI: 10.1080/08916934.2017.1284819] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Paul F. Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Roland Wunderlich
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
- Research Unit of Radiation Cytogenetics, Helmholtz Center Munich, Neuherberg, Germany,
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Claudia Fournier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany, and
| | - Andreas Maier
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany, and
| | | | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,
| |
Collapse
|
89
|
Eckert F, Gaipl U, Niedermann G, Hettich M, Schilbach K, Huber S, Zips D. Beyond checkpoint inhibition - Immunotherapeutical strategies in combination with radiation. Clin Transl Radiat Oncol 2017; 2:29-35. [PMID: 29657997 PMCID: PMC5893529 DOI: 10.1016/j.ctro.2016.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
The revival of cancer immunotherapy has taken place with the clinical success of immune checkpoint inhibition. However, the spectrum of immunotherapeutic approaches is much broader encompassing T cell engaging strategies, tumour-specific vaccination, antibodies or immunocytokines. This review focuses on the immunological effects of irradiation and the evidence available on combination strategies with immunotherapy. The available data suggest great potential of combined treatments, yet also poses questions about dose, fractionation, timing and most promising multimodal strategies.
Collapse
Key Words
- Bispecific antibodies
- CAR, chimeric antigen receptor
- CAR-T-cells
- CDN, cyclic dinucleotides
- CTL, cytotoxic T lymphocyte
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- GM-CSF, granulocyte-monocyte colony stimulating factor
- IR, irradiation
- Immunocytokines
- Immunotherapy
- PD-1, Programmed cell death protein 1 receptor
- PD-L1, PD-1 ligand
- Radiotherapy
- TCR, T cell receptor
- Treg, regulatory T cells
- Vaccination
- bsAb, bispecific antibody
- scFv, single chain variable fragment
Collapse
Affiliation(s)
- F. Eckert
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - U.S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - G. Niedermann
- Department of Radiation Oncology, Medical Center – University of Freiburg, Freiburg, Germany
| | - M. Hettich
- Department of Radiation Oncology, Medical Center – University of Freiburg, Freiburg, Germany
| | - K. Schilbach
- Department of General Pediatrics/Pediatric Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - S.M. Huber
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - D. Zips
- Department of Radiation Oncology, Universitaetsklinikum Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| |
Collapse
|
90
|
Park SH, Lee JE. Radiotherapy, a New Treatment Option for Non-malignant Disorders: Radiobiological Mechanisms, Clinical Applications, and Radiation Risk. JOURNAL OF RHEUMATIC DISEASES 2017. [DOI: 10.4078/jrd.2017.24.2.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shin-Hyung Park
- Department of Radiation Oncology, Kyungpook National University Medical Center, Daegu, Korea
| | - Jeong Eun Lee
- Department of Radiation Oncology, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
91
|
Valduvieco I, Biete A, Moreno LA, Gallart X, Rovirosa A, Saez J, Plana C, Peris P. Is anti-inflammatory radiotherapy an effective treatment in trochanteritis? Br J Radiol 2016; 90:20160520. [PMID: 27885851 DOI: 10.1259/bjr.20160520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To evaluate the analgesic efficacy of low-dose radiotherapy in refractory cases of trochanteritis. METHODS We evaluated a total of 60 consecutive patients who received low-dose radiotherapy to achieve an anti-inflammatory and analgesic effect for recurrent trochanteritis following scarce response to conventional therapy. All patients were evaluated at baseline (prior to radiotherapy) and at 1 and 4 months after radiotherapy and then yearly thereafter for pain assessment using a visual analogue scale (VAS) and to determine the administration of analgesic treatment. RESULTS An improvement in the symptomatology was observed in 62% of the patients with a significant reduction in the VAS (8 ± 2 vs 4 ± 2; p < 0.0001), which was largely maintained until the second evaluation at 4 months. In the cases responding to radiotherapy, the probability of maintaining improvement beyond 24 months was 70%. CONCLUSION Low-dose anti-inflammatory radiation may be used in the treatment of the recurrent cases of relapse or no response of trochanteritis to conventional treatments, with a high probability of remission of pain. These preliminary results indicate the need for evaluating the use of radiotherapy in patients with trochanteritis refractory to conventional treatment in a long-term controlled study. Advances in knowledge: Radiotherapy provides effective analgesic treatment for patients refractory to standard treatment for trochanteritis.
Collapse
Affiliation(s)
- Izaskun Valduvieco
- 1 Department of Radiation Oncology, Hospital Clínic, Institute of Haematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Albert Biete
- 1 Department of Radiation Oncology, Hospital Clínic, Institute of Haematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Luis A Moreno
- 2 Surgical Area, Anesthesia Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Xavier Gallart
- 3 Traumatology Service, Hospital Clínic, Institute of Medical and Surgical Specialties, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Angels Rovirosa
- 1 Department of Radiation Oncology, Hospital Clínic, Institute of Haematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jordi Saez
- 2 Surgical Area, Anesthesia Service, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Carlos Plana
- 4 Department of Rheumatology, Hospital Clínic, Institute of Medical and Surgical Specialties, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Pilar Peris
- 4 Department of Rheumatology, Hospital Clínic, Institute of Medical and Surgical Specialties, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
92
|
Calabrese V, Giordano J, Ruggieri M, Berritta D, Trovato A, Ontario M, Bianchini R, Calabrese E. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J Neurosci Res 2016; 94:1488-1498. [DOI: 10.1002/jnr.23893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
Affiliation(s)
- V. Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - J. Giordano
- Department of Clinical and Experimental Medicine, School of Medicine; University of Catania; Catania Italy
| | - M. Ruggieri
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
| | - D. Berritta
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - A. Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - M.L. Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - R. Bianchini
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
- Service of Child Neuropsychiatry, ASP Siracusa, Italy
| | - E.J. Calabrese
- Environmental Health Sciences Division, School of Public Health; University of Massachusetts; Amherst Massachusetts
| |
Collapse
|
93
|
Derer A, Frey B, Fietkau R, Gaipl US. Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother 2016; 65:779-86. [PMID: 26590829 PMCID: PMC11028616 DOI: 10.1007/s00262-015-1771-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/30/2015] [Indexed: 01/13/2023]
Abstract
Radiotherapy (RT) utilizes the DNA-damaging properties of ionizing radiation to control tumor growth and ultimately kill tumor cells. By modifying the tumor cell phenotype and the tumor microenvironment, it may also modulate the immune system. However, out-of-field reactions of RT mostly assume further immune activation. Here, the sequence of the applications of RT and immunotherapy is crucial, just as the dose and fractionation may be. Lower single doses may impact on tumor vascularization and immune cell infiltration in particular, while higher doses may impact on intratumoral induction and production of type I interferons. The induction of immunogenic cancer cell death seems in turn to be a common mechanism for most RT schemes. Dendritic cells (DCs) are activated by the released danger signals and by taking up tumor peptides derived from irradiated cells. DCs subsequently activate T cells, a process that has to be tightly controlled to ensure tolerance. Inhibitory pathways known as immune checkpoints exist for this purpose and are exploited by tumors to inhibit immune responses. Cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) on T cells are two major checkpoints. The biological concepts behind the findings that RT in combination with anti-CTLA-4 and/or anti-PD-L1 blockade stimulates CD8+ T cell-mediated anti-tumor immunity are reviewed in detail. On this basis, we suggest clinically significant combinations and sequences of RT and immune checkpoint inhibition. We conclude that RT and immune therapies complement one another.
Collapse
Affiliation(s)
- Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, 91054, Erlangen, Germany.
| |
Collapse
|
94
|
Deloch L, Derer A, Hartmann J, Frey B, Fietkau R, Gaipl US. Modern Radiotherapy Concepts and the Impact of Radiation on Immune Activation. Front Oncol 2016; 6:141. [PMID: 27379203 PMCID: PMC4913083 DOI: 10.3389/fonc.2016.00141] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
Even though there is extensive research carried out in radiation oncology, most of the clinical studies focus on the effects of radiation on the local tumor tissue and deal with normal tissue side effects. The influence of dose fractionation and timing particularly with regard to immune activation is not satisfactorily investigated so far. This review, therefore, summarizes current knowledge on concepts of modern radiotherapy (RT) and evaluates the potential of RT for immune activation. Focus is set on radiation-induced forms of tumor cell death and consecutively the immunogenicity of the tumor cells. The so-called non-targeted, abscopal effects can contribute to anti-tumor responses in a specific and systemic manner and possess the ability to target relapsing tumor cells as well as metastases. The impact of distinct RT concepts on immune activation is outlined and pre-clinical evidence and clinical observations on RT-induced immunity will be discussed. Knowledge on the radiosensitivity of immune cells as well as clinical evidence for enhanced immunity after RT will be considered. While stereotactic ablative body radiotherapy seem to have a beneficial outcome over classical RT fractionation in pre-clinical animal models, in vitro model systems suggest an advantage for classical fractionated RT for immune activation. Furthermore, the optimal approach may differ based on the tumor site and/or genetic signature. These facts highlight that clinical trials are urgently needed to identify whether high-dose RT is superior to induce anti-tumor immune responses compared to classical fractionated RT and in particular how the outcome is when RT is combined with immunotherapy in selected tumor entities.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Josefin Hartmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
95
|
Nikitaki Z, Mavragani IV, Laskaratou DA, Gika V, Moskvin VP, Theofilatos K, Vougas K, Stewart RD, Georgakilas AG. Systemic mechanisms and effects of ionizing radiation: A new 'old' paradigm of how the bystanders and distant can become the players. Semin Cancer Biol 2016; 37-38:77-95. [PMID: 26873647 DOI: 10.1016/j.semcancer.2016.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/01/2016] [Accepted: 02/07/2016] [Indexed: 12/26/2022]
Abstract
Exposure of cells to any form of ionizing radiation (IR) is expected to induce a variety of DNA lesions, including double strand breaks (DSBs), single strand breaks (SSBs) and oxidized bases, as well as loss of bases, i.e., abasic sites. The damaging potential of IR is primarily related to the generation of electrons, which through their interaction with water produce free radicals. In their turn, free radicals attack DNA, proteins and lipids. Damage is induced also through direct deposition of energy. These types of IR interactions with biological materials are collectively called 'targeted effects', since they refer only to the irradiated cells. Earlier and sometimes 'anecdotal' findings were pointing to the possibility of IR actions unrelated to the irradiated cells or area, i.e., a type of systemic response with unknown mechanistic basis. Over the last years, significant experimental evidence has accumulated, showing a variety of radiation effects for 'out-of-field' areas (non-targeted effects-NTE). The NTE involve the release of chemical and biological mediators from the 'in-field' area and thus the communication of the radiation insult via the so called 'danger' signals. The NTE can be separated in two major groups: bystander and distant (systemic). In this review, we have collected a detailed list of proteins implicated in either bystander or systemic effects, including the clinically relevant abscopal phenomenon, using improved text-mining and bioinformatics tools from the literature. We have identified which of these genes belong to the DNA damage response and repair pathway (DDR/R) and made protein-protein interaction (PPi) networks. Our analysis supports that the apoptosis, TLR-like and NOD-like receptor signaling pathways are the main pathways participating in NTE. Based on this analysis, we formulate a biophysical hypothesis for the regulation of NTE, based on DNA damage and apoptosis gradients between the irradiation point and various distances corresponding to bystander (5mm) or distant effects (5cm). Last but not least, in order to provide a more realistic support for our model, we calculate the expected DSB and non-DSB clusters along the central axis of a representative 200.6MeV pencil beam calculated using Monte Carlo DNA damage simulation software (MCDS) based on the actual beam energy-to-depth curves used in therapy.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Ifigeneia V Mavragani
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Danae A Laskaratou
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Violeta Gika
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vadim P Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Konstantinos Vougas
- Proteomics Research Unit, Center of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, USA
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece.
| |
Collapse
|
96
|
Teresa Pinto A, Laranjeiro Pinto M, Patrícia Cardoso A, Monteiro C, Teixeira Pinto M, Filipe Maia A, Castro P, Figueira R, Monteiro A, Marques M, Mareel M, Dos Santos SG, Seruca R, Adolfo Barbosa M, Rocha S, José Oliveira M. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep 2016; 6:18765. [PMID: 26735768 PMCID: PMC4702523 DOI: 10.1038/srep18765] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
In order to improve the efficacy of conventional radiotherapy, attention has been paid to immune cells, which not only modulate cancer cell response to therapy but are also highly recruited to tumours after irradiation. Particularly, the effect of ionizing radiation on macrophages, using therapeutically relevant doses, is not well understood. To evaluate how radiotherapy affects macrophage behaviour and macrophage-mediated cancer cell activity, human monocyte derived-macrophages were subjected, for a week, to cumulative ionizing radiation doses, as used during cancer treatment (2 Gy/fraction/day). Irradiated macrophages remained viable and metabolically active, despite DNA damage. NF-kappaB transcription activation and increased Bcl-xL expression evidenced the promotion of pro-survival activity. A significant increase of pro-inflammatory macrophage markers CD80, CD86 and HLA-DR, but not CCR7, TNF and IL1B was observed after 10 Gy cumulative doses, while anti-inflammatory markers CD163, MRC1, VCAN and IL-10 expression decreased, suggesting the modulation towards a more pro-inflammatory phenotype. Moreover, ionizing radiation induced macrophage morphological alterations and increased their phagocytic rate, without affecting matrix metalloproteases (MMP)2 and MMP9 activity. Importantly, irradiated macrophages promoted cancer cell-invasion and cancer cell-induced angiogenesis. Our work highlights macrophage ability to sustain cancer cell activities as a major concern that needs to be addressed to improve radiotherapy efficacy.
Collapse
Affiliation(s)
- Ana Teresa Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,FEUP-Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Marta Laranjeiro Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Ana Patrícia Cardoso
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,FEUP-Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Cátia Monteiro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Marta Teixeira Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal
| | - André Filipe Maia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC-Institute for Molecular and Cell Biology, University of Porto, Porto, 4200-465, Portugal
| | - Patrícia Castro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, B-9000, Belgium
| | - Susana Gomes Dos Santos
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Raquel Seruca
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| | - Mário Adolfo Barbosa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Sónia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Maria José Oliveira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
97
|
Kumari A, Simon SS, Moody TD, Garnett-Benson C. Immunomodulatory effects of radiation: what is next for cancer therapy? Future Oncol 2015; 12:239-56. [PMID: 26621553 DOI: 10.2217/fon.15.300] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite its former reputation as being immunosuppressive, it has become evident that radiation therapy can enhance antitumor immune responses. This quality can be harnessed by utilizing radiation as an adjuvant to cancer immunotherapies. Most studies combine the standard radiation dose and regimens indicated for the given disease state, with novel cancer immunotherapies. It has become apparent that low-dose radiation, as well as doses within the hypofractionated range, can modulate tumor cells making them better targets for immune cell reactivity. Herein, we describe the range of phenotypic changes induced in tumor cells by radiation, and explore the diverse mechanisms of immunogenic modulation reported at these doses. We also review the impact of these doses on the immune cell function of cytotoxic cells in vivo and in vitro.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Biology, Georgia State University, 161 Jesse Hill Jr Dr, Atlanta, GA, USA
| | - Samantha S Simon
- Department of Biology, Georgia State University, 161 Jesse Hill Jr Dr, Atlanta, GA, USA
| | - Tomika D Moody
- Department of Biology, Georgia State University, 161 Jesse Hill Jr Dr, Atlanta, GA, USA
| | | |
Collapse
|
98
|
Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases. Cancer Lett 2015; 368:230-7. [DOI: 10.1016/j.canlet.2015.04.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
|
99
|
Rutten MJ, Laraway B, Gregory CR, Xie H, Renken C, Keese C, Gregory KW. Rapid assay of stem cell functionality and potency using electric cell-substrate impedance sensing. Stem Cell Res Ther 2015; 6:192. [PMID: 26438432 PMCID: PMC4594964 DOI: 10.1186/s13287-015-0182-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 07/30/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Regenerative medicine studies using autologous bone marrow mononuclear cells (BM-MNCs) have shown improved clinical outcomes that correlate to in vitro BM-MNC invasive capacity. The current Boyden-chamber assay for testing invasive capacity is labor-intensive, provides only a single time point, and takes 36 hours to collect data and results, which is not practical from a clinical cell delivery perspective. To develop a rapid, sensitive and reproducible invasion assay, we employed Electric Cell-substrate Impedance Sensing (ECIS) technology. Chemokine-directed BM-MNC cell invasion across a Matrigel-coated Transwell filter was measurable within minutes using the ECIS system we developed. This ECIS-Transwell chamber system provides a rapid and sensitive test of stem and progenitor cell invasive capacity for evaluation of stem cell functionality to provide timely clinical data for selection of patients likely to realize clinical benefit in regenerative medicine treatments. This device could also supply robust unambiguous, reproducible and cost effective data as a potency assay for cell product release and regulatory strategies.
Collapse
Affiliation(s)
- Michael J Rutten
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Bryan Laraway
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Cynthia R Gregory
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA. .,VA Portland Health Care System, 3710 SW US Veterans Hospital Road, 97239, Portland, OR, USA. .,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Hua Xie
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Christian Renken
- Applied BioPhysics, Inc., 185 Jordan Road, 12180, Troy, NY, USA.
| | - Charles Keese
- Applied BioPhysics, Inc., 185 Jordan Road, 12180, Troy, NY, USA.
| | - Kenton W Gregory
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA. .,Department of Biomedical Engineering, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| |
Collapse
|
100
|
Abstract
The discrepancy between the in vitro and in vivo response to radiation is readily explained by the fact that tumors do not exist independently of the host organism; cancer cells grow in the context of a complex microenvironment composed of stromal cells, vasculature, and elements of the immune system. As the antitumor effect of radiotherapy depends in part on the immune system, and myeloid-derived cells in the tumor microenvironment modulate the immune response to tumors, it follows that understanding the effect of radiation on myeloid cells in the tumor is likely to be essential for comprehending the antitumor effects of radiotherapy. In this review, we describe the phenotype and function of these myeloid-derived cells, and stress the complexity of studying this important cell compartment owing to its intrinsic plasticity. With regard to the response to radiation of myeloid cells in the tumor, evidence has emerged demonstrating that it is both model and dose dependent. Deciphering the effects of myeloid-derived cells in tumors, particularly in irradiated tumors, is key for attempting to pharmacologically modulate their actions in the clinic as part of cancer therapy.
Collapse
Affiliation(s)
- Ralph E Vatner
- Department of Radiation Oncology, New York University School of Medicine, New York, NY
| | - Silvia C Formenti
- Department of Radiation Oncology, New York University School of Medicine, New York, NY.
| |
Collapse
|