51
|
Staphylococcus aureus biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing. Proc Natl Acad Sci U S A 2018; 115:7416-7421. [PMID: 29941565 DOI: 10.1073/pnas.1721949115] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial biofilms efficiently evade immune defenses, greatly complicating the prognosis of chronic infections. How methicillin-resistant Staphylococcus aureus (MRSA) biofilms evade host immune defenses is largely unknown. This study describes some of the major mechanisms required for S. aureus biofilms to evade the innate immune response and provides evidence of key virulence factors required for survival and persistence of bacteria during chronic infections. Neutrophils are the most abundant white blood cells in circulation, playing crucial roles in the control and elimination of bacterial pathogens. Specifically, here we show that, unlike single-celled populations, S. aureus biofilms rapidly skew neutrophils toward neutrophil extracellular trap (NET) formation through the combined activity of leukocidins Panton-Valentine leukocidin and γ-hemolysin AB. By eliciting this response, S. aureus was able to persist, as the antimicrobial activity of released NETs was ineffective at clearing biofilm bacteria. Indeed, these studies suggest that NETs could inadvertently potentiate biofilm infections. Last, chronic infection in a porcine burn wound model clearly demonstrated that leukocidins are required for "NETosis" and facilitate bacterial survival in vivo.
Collapse
|
52
|
Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2017; 308:607-624. [PMID: 29217333 DOI: 10.1016/j.ijmm.2017.11.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Stelzner
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
53
|
López de Armentia MM, Gauron MC, Colombo MI. Staphylococcus aureus Alpha-Toxin Induces the Formation of Dynamic Tubules Labeled with LC3 within Host Cells in a Rab7 and Rab1b-Dependent Manner. Front Cell Infect Microbiol 2017; 7:431. [PMID: 29046869 PMCID: PMC5632962 DOI: 10.3389/fcimb.2017.00431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Staphylococcus aureus is a pathogen that causes severe infectious diseases that eventually lead to septic and toxic shock. S. aureus infection is characterized by the production of virulence factors, including enzymes and toxins. After internalization S. aureus resides in a phagosome labeled with Rab7 protein. Here, we show that S. aureus generates tubular structures marked with the small GTPases Rab1b and Rab7 and by the autophagic protein LC3 at early times post-infection. As shown by live cell imaging these tubular structures are highly dynamic, extend, branch and grow in length. We have named them S. aureus induced filaments (Saf). Furthermore, we demonstrate that the formation of these filaments depends on the integrity of microtubules and the activity of the motor protein Kinesin-1 (Kif5B) and the Rab-interacting lysosomal protein (RILP). Our group has previously reported that α-hemolysin, a secreted toxin of S. aureus, is responsible of the activation of the autophagic pathway induced by the bacteria. In the present report, we demonstrate that the autophagic protein LC3 is recruited to the membrane of S. aureus induced filaments and that α-hemolysin is the toxin that induces Saf formation. Interestingly, increasing the levels of intracellular cAMP significantly inhibited Saf biogenesis. Remarkably in this report we show the formation of tubular structures that emerge from the S. aureus-containing phagosome and that these tubules generation seems to be required for efficient bacteria replication.
Collapse
Affiliation(s)
- María M López de Armentia
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Facultad de Ciencias Médicas, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María C Gauron
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Facultad de Ciencias Médicas, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Facultad de Ciencias Médicas, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
54
|
García-Betancur JC, Goñi-Moreno A, Horger T, Schott M, Sharan M, Eikmeier J, Wohlmuth B, Zernecke A, Ohlsen K, Kuttler C, Lopez D. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus. eLife 2017; 6. [PMID: 28893374 PMCID: PMC5595439 DOI: 10.7554/elife.28023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. While in hospital, patients can be unwittingly exposed to bacteria that can cause disease. These hospital-associated bacteria can lead to potentially life-threatening infections that may also complicate the treatment of the patients’ existing medical conditions. Staphylococcus aureus is one such bacterium, and it can cause several types of infection including pneumonia, blood infections and long-term infections of prosthetic devices. It is thought that S. aureus is able to cause so many different types of infection because it is capable of colonizing distinct tissues and organs in various parts of the body. Understanding the biological processes that drive the different infections is crucial to improving how these infections are treated. S. aureus lives either as an independent, free-swimming cell or as part of a community known as a biofilm. These different lifestyles dictate the type of infection the bacterium can cause, with free-swimming cells producing toxins that contribute to intense, usually short-lived, infections and biofilms promoting longer-term infections that are difficult to eradicate. However, it is not clear how a population of S. aureus cells chooses to adopt a particular lifestyle and whether there are any environmental signals that influence this decision. Here, Garcia-Betancur et al. found that S. aureus populations contain small groups of cells that have already specialized into a particular lifestyle. These groups of cells collectively influence the choice made by other cells in the population. While both lifestyles will be represented in the population, environmental factors influence the numbers of cells that initially adopt each type of lifestyle, which ultimately affects the choice made by the rest of the population. For example, if the bacteria colonize a tissue or organ that contains high levels of magnesium ions, the population is more likely to form biofilms. In the future, the findings of Garcia-Betancur et al. may help us to predict how an infection may develop in a particular patient, which may help to diagnose the infection more quickly and allow it to be treated more effectively.
Collapse
Affiliation(s)
- Juan-Carlos García-Betancur
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Angel Goñi-Moreno
- School of Computing Science, Newcastle University, Newcastle, United Kingdom
| | - Thomas Horger
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Melanie Schott
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Malvika Sharan
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Julian Eikmeier
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Barbara Wohlmuth
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Würzburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christina Kuttler
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Daniel Lopez
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany.,National Center for Biotechnology, Madrid, Spain
| |
Collapse
|
55
|
Lacoma A, Cano V, Moranta D, Regueiro V, Domínguez-Villanueva D, Laabei M, González-Nicolau M, Ausina V, Prat C, Bengoechea JA. Investigating intracellular persistence of Staphylococcus aureus within a murine alveolar macrophage cell line. Virulence 2017; 8:1761-1775. [PMID: 28762868 PMCID: PMC5810471 DOI: 10.1080/21505594.2017.1361089] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: Staphylococcus aureus is a particularly difficult pathogen to eradicate from the respiratory tract. Previous studies have highlighted the intracellular capacity of S.aureus in several phagocytic and non-phagocytic cells. The aim of this study was to define S.aureus interaction within a murine alveolar macrophage cell line. Methods: Cell line MH-S was infected with Newman strain. Molecular mechanisms involved in phagocytosis were explored. To assess whether S.aureus survives intracellularly quantitative (gentamicin protection assays and bacterial plating) and qualitative analysis (immunofluorescence microscopy) were performed. Bacterial colocalization with different markers of the endocytic pathway was examined to characterize its intracellular trafficking. Results: We found that S.aureus uptake requires host actin polymerization, microtubule assembly and activation of phosphatidylinositol 3-kinase signaling. Time course experiments showed that Newman strain was able to persist within macrophages at least until 28.5 h post infection. We observed that intracellular bacteria are located inside an acidic subcellular compartment, which co-localizes with the late endosome/lysosome markers Lamp-1, Rab7 and RILP. Colocalization counts with TMR-dextran might reflect a balance between bacterial killing and intracellular survival. Conclusions: This study indicates that S.aureus persists and replicates inside murine alveolar macrophages, representing a privileged niche that can potentially offer protection from antimicrobial activity and immunological host defense mechanisms.
Collapse
Affiliation(s)
- A Lacoma
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain.,b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - V Cano
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - D Moranta
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - V Regueiro
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - D Domínguez-Villanueva
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain
| | - M Laabei
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain
| | - M González-Nicolau
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain
| | - V Ausina
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain.,b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - C Prat
- a Servei de Microbiologia , Hospital Universitari "Germans Trias i Pujol," Institut en Ciències de la Salut "Germans Trias i Pujol," Universitat Autònoma de Barcelona , Badalona , Spain.,b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain
| | - J A Bengoechea
- b CIBER Enfermedades Respiratorias (CIBERES) , Instituto de Salud Carlos III , Madrid , Spain.,c Laboratory "Infection and Immunity," Fundación de Investigación Sanitaria de las Islas Baleares (FISIB), Instituto de Investigación Sanitaria de Palma (IdISPa) , Palma , Spain.,d Consejo Superior de Investigaciones Científicas , Madrid , Spain.,e Centre for Experimental Medicine , Queen's University Belfast , UK
| |
Collapse
|
56
|
Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin Cell Dev Biol 2017; 72:101-116. [PMID: 28445785 DOI: 10.1016/j.semcdb.2017.04.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen capable of infecting a variety of host species and tissue sites. This versatility stems from the pathogen's ability to secrete diverse host-damaging virulence factors. Among these factors, the S. aureus pore-forming toxins (PFTs) α-toxin and the bicomponent leukocidins, have garnered much attention for their ability to lyse cells at low concentrations and modulate disease severity. Although many of these toxins were discovered nearly a century ago, their host cell specificities have only been elucidated over the past five to six years, starting with the discovery of the eukaryotic receptor for α-toxin and rapidly followed by identification of the leukocidin receptors. The identification of these receptors has revealed the species- and cell type-specificity of toxin binding, and provided insight into non-lytic effects of PFT intoxication that contribute to disease pathogenesis.
Collapse
Affiliation(s)
- E Sachiko Seilie
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, United States; Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States
| | | |
Collapse
|
57
|
Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 2017; 15:435-447. [PMID: 28420883 DOI: 10.1038/nrmicro.2017.27] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is a major bacterial pathogen that causes disease worldwide. The emergence of strains that are resistant to commonly used antibiotics and the failure of vaccine development have resulted in a renewed interest in the pathophysiology of this bacterium. Staphylococcal leukocidins are a family of bi-component pore-forming toxins that are important virulence factors. During the past five years, cellular receptors have been identified for all of the bi-component leukocidins. The identification of the leukocidin receptors explains the cellular tropism and species specificity that is exhibited by these toxins, which has important biological consequences. In this Review, we summarize the recent discoveries that have reignited interest in these toxins and provide an outlook for future research.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, 430 East 29th Street, 10016 New York, USA
| |
Collapse
|
58
|
Gomes-Fernandes M, Laabei M, Pagan N, Hidalgo J, Molinos S, Villar Hernandez R, Domínguez-Villanueva D, Jenkins ATA, Lacoma A, Prat C. Accessory gene regulator (Agr) functionality in Staphylococcus aureus derived from lower respiratory tract infections. PLoS One 2017; 12:e0175552. [PMID: 28410390 PMCID: PMC5391941 DOI: 10.1371/journal.pone.0175552] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/28/2017] [Indexed: 01/09/2023] Open
Abstract
Objective Characterization of Staphylococcus aureus clinical isolates derived from lower respiratory tract infections (LRTIs), and correlation between the functionality of the accessory gene regulator (Agr) and genotypic and phenotypic characteristics, clinical variables and clinical outcome. Methods S aureus isolates derived from LRTIs and control groups (nasal carriage and bacteraemia) were genotyped using StaphyType DNA microarray. Agr activity was evaluated using the CAMP synergistic haemolysis assay and the Vesicle Lysis Test (VLT). Discordant strains were analysed by quantitative reverse-transcriptase real-time PCR (qRT-PCR). Results Agr was functional in 79.7% and 84.5% of strains according to the CAMP and VLT assays respectively. Higher concordance with RNAIII expression measured by qRT-PCR was observed with the VLT assay (76.2%) compared with the CAMP assay (23.8%). No statistically significant differences were observed in Agr functionality between the study groups, nor the phenotypical/genotypical bacterial characteristics. No association between increased mortality/respiratory complications and Agr function was observed. Conclusions Agr activity was high (82.2%) in isolates from LRTIs suggesting the importance of this global regulator in lower respiratory tract colonisation and infection. However, equally high Agr activity was observed in isolates derived from nasal carriage and bacteraemia, contradictory to previous observations. Agr functionality measured by the VLT assay was superior to CAMP assay.
Collapse
Affiliation(s)
- Meissiner Gomes-Fernandes
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Maisem Laabei
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Natalia Pagan
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jessica Hidalgo
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Sònia Molinos
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Raquel Villar Hernandez
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Dídac Domínguez-Villanueva
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Alicia Lacoma
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias, CIBER, Instituto de Salud Carlos III, Badalona, Spain
| | - Cristina Prat
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias, CIBER, Instituto de Salud Carlos III, Badalona, Spain
- * E-mail:
| |
Collapse
|
59
|
Chen CY, Yang CH, Tsai YF, Liaw CC, Chang WY, Hwang TL. Ugonin U stimulates NLRP3 inflammasome activation and enhances inflammasome-mediated pathogen clearance. Redox Biol 2016; 11:263-274. [PMID: 28012441 PMCID: PMC5198739 DOI: 10.1016/j.redox.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/10/2016] [Accepted: 12/17/2016] [Indexed: 12/12/2022] Open
Abstract
The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome contains Nod-like receptors, a subclass of pattern recognition receptors, suggesting that this complex has a prominent role in host defenses. Various structurally diverse stimulators activate the NLRP3 inflammasome through different signaling pathways. We previously reported that ugonin U (UgU), a natural flavonoid isolated from Helminthostachys zeylanica (L) Hook, directly stimulates phospholipase C (PLC) and triggers superoxide release in human neutrophils. In the present study, we showed that UgU induced NLRP3 inflammasome assembly and subsequent caspase-1 and interleukin (IL)-1β processing in lipopolysaccharide-primed human monocytes. Moreover, UgU elicited mitochondrial superoxide generation in a dose-dependent manner, and a specific scavenger of mitochondrial reactive oxygen species (ROS) diminished UgU-induced IL-1β and caspase-1 activation. UgU induced Ca2+ mobilization, which was inhibited by treatment with inhibitors of PLC or inositol triphosphate receptor (IP3R). Blocking Ca2+ mobilization, PLC, or IP3R diminished UgU-induced IL-1β release, caspase-1 activation, and mitochondrial ROS generation. These data demonstrated that UgU activated the NLPR3 inflammasome activation through Ca2+ mobilization and the production of mitochondrial ROS. We also demonstrated that UgU-dependent NLRP3 inflammasome activation enhanced the bactericidal function of human monocytes. The ability of UgU to stimulate human neutrophils and monocytes, both of which are professional phagocytes, and its capacity to activate the NLRP3 inflammasome, which is a promising molecular target for developing anti-infective medicine, indicate that UgU treatment should be considered as a possible novel therapy for treating infectious diseases. The immuno-stimulatory effects UgU in human monocytes were evaluated. UgU induces Ca2+ mobilization and eventually activates the NLRP3 inflammasome. UgU facilitates the bactericidal function of human monocytes.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chuan-Hui Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
60
|
Zhang H, Zheng Y, Gao H, Xu P, Wang M, Li A, Miao M, Xie X, Deng Y, Zhou H, Du H. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype. Front Cell Infect Microbiol 2016; 6:146. [PMID: 27917374 PMCID: PMC5114236 DOI: 10.3389/fcimb.2016.00146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC, and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC, and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus. We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital.
Collapse
Affiliation(s)
- Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Huasheng Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Ping Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Aiqing Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Minhui Miao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Yimai Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Huiqin Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| |
Collapse
|
61
|
Brinsmade SR. CodY, a master integrator of metabolism and virulence in Gram-positive bacteria. Curr Genet 2016; 63:417-425. [PMID: 27744611 DOI: 10.1007/s00294-016-0656-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
A growing body of evidence points to CodY, a global regulator in Gram-positive bacteria, as a critical link between microbial physiology and pathogenesis in diverse environments. Recent studies uncovering graded regulation of CodY gene targets reflect the true nature of this transcription factor controlled by ligands and reveal nutrient availability as a potentially critical factor in modulating pathogenesis. This review will serve to update the status of the field and raise new questions to be answered.
Collapse
|
62
|
Liu Q, Yeo WS, Bae T. The SaeRS Two-Component System of Staphylococcus aureus. Genes (Basel) 2016; 7:genes7100081. [PMID: 27706107 PMCID: PMC5083920 DOI: 10.3390/genes7100081] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022] Open
Abstract
In the Gram-positive pathogenic bacterium Staphylococcus aureus, the SaeRS twocomponent system (TCS) plays a major role in controlling the production of over 20 virulence factors including hemolysins, leukocidins, superantigens, surface proteins, and proteases. The SaeRS TCS is composed of the sensor histidine kinase SaeS, response regulator SaeR, and two auxiliary proteins SaeP and SaeQ. Since its discovery in 1994, the sae locus has been studied extensively, and its contributions to staphylococcal virulence and pathogenesis have been well documented and understood; however, the molecular mechanism by which the SaeRS TCS receives and processes cognate signals is not. In this article, therefore, we review the literature focusing on the signaling mechanism and its interaction with other global regulators.
Collapse
Affiliation(s)
- Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| |
Collapse
|
63
|
Bronesky D, Wu Z, Marzi S, Walter P, Geissmann T, Moreau K, Vandenesch F, Caldelari I, Romby P. Staphylococcus aureus RNAIII and Its Regulon Link Quorum Sensing, Stress Responses, Metabolic Adaptation, and Regulation of Virulence Gene Expression. Annu Rev Microbiol 2016; 70:299-316. [PMID: 27482744 DOI: 10.1146/annurev-micro-102215-095708] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Staphylococcus aureus RNAIII is one of the main intracellular effectors of the quorum-sensing system. It is a multifunctional RNA that encodes a small peptide, and its noncoding parts act as antisense RNAs to regulate the translation and/or the stability of mRNAs encoding transcriptional regulators, major virulence factors, and cell wall metabolism enzymes. In this review, we explain how regulatory proteins and RNAIII are embedded in complex regulatory circuits to express virulence factors in a dynamic and timely manner in response to stress and environmental and metabolic changes.
Collapse
Affiliation(s)
- Delphine Bronesky
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Philippe Walter
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Thomas Geissmann
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - Karen Moreau
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - François Vandenesch
- Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Université de Lyon, INSERM U1111, CNRS UMR 5308, CIRI, 69008 Lyon, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France;
| |
Collapse
|