51
|
Olovo CV, Wiredu Ocansey DK, Ji Y, Huang X, Xu M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 2024; 16:2341670. [PMID: 38666762 PMCID: PMC11057571 DOI: 10.1080/19490976.2024.2341670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating condition of relapsing and remitting inflammation in the gastrointestinal tract. Conventional therapeutic approaches for IBD have shown limited efficacy and detrimental side effects, leading to the quest for novel and effective treatment options for the disease. Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing processes from both Gram-negative and Gram-positive bacteria. These vesicles, known to carry bioactive components, are facsimiles of the parent bacterium and have been implicated in the onset and progression, as well as in the amelioration of IBD. This review discusses the overview of MVs and their impact in the pathogenesis, diagnosis, and treatment of IBD. We further discuss the technical challenges facing this research area and possible research questions addressing these challenges. We summarize recent advances in the diverse relationship between IBD and MVs, and the application of this knowledge as a viable and potent therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Chinasa Valerie Olovo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
52
|
Verbunt J, Jocken J, Blaak E, Savelkoul P, Stassen F. Gut-bacteria derived membrane vesicles and host metabolic health: a narrative review. Gut Microbes 2024; 16:2359515. [PMID: 38808455 PMCID: PMC11141482 DOI: 10.1080/19490976.2024.2359515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
The intestinal microbiota, consisting of an estimated 10^10-10^11 organisms, regulate physiological processes involved in digestion, metabolism, and immunity. Surprisingly, these intestinal microorganisms have been found to influence tissues that are not directly in contact with the gut, such as adipose tissue, the liver, skeletal muscle, and the brain. This interaction takes place even when intestinal barrier function is uncompromised. An increasing body of evidence suggests that bacterial membrane vesicles (bMVs), in addition to bacterial metabolites such as short-chain fatty acids, are able to mediate effects of the microbiota on these host tissues. The ability of bMVs to dissipate from the intestinal lumen into systemic circulation hereby facilitates the transport and presentation of bacterial components and metabolites to host organs. Importantly, there are indications that the interaction between bMVs and tissues or immune cells may play a role in the etiology of (chronic metabolic) disease. For example, the gut-derived bMV-mediated induction of insulin resistance in skeletal muscle cells and pro-inflammatory signaling by adipocytes possibly underlies diseases such as type 2 diabetes and obesity. Here, we review the current knowledge on bMVs in the microbiota's effects on host energy/substrate metabolism with a focus on etiological roles in the onset and progression of metabolic disease. We furthermore illustrate that vesicle production by bacterial microbiota could potentially be modulated through lifestyle intervention to improve host metabolism.
Collapse
Affiliation(s)
- Jari Verbunt
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Johan Jocken
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ellen Blaak
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul Savelkoul
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Frank Stassen
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
53
|
Xie J, Li Q, Nie S. Bacterial extracellular vesicles: An emerging postbiotic. Trends Food Sci Technol 2024; 143:104275. [DOI: 10.1016/j.tifs.2023.104275] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
54
|
Weng Z, Yang N, Shi S, Xu Z, Chen Z, Liang C, Zhang X, Du X. Outer Membrane Vesicles from Acinetobacter baumannii: Biogenesis, Functions, and Vaccine Application. Vaccines (Basel) 2023; 12:49. [PMID: 38250862 PMCID: PMC10818702 DOI: 10.3390/vaccines12010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review focuses on Acinetobacter baumannii, a Gram-negative bacterium that causes various infections and whose multidrug resistance has become a significant challenge in clinical practices. There are multiple bacterial mechanisms in A. baumannii that participate in bacterial colonization and immune responses. It is believed that outer membrane vesicles (OMVs) budding from the bacteria play a significant role in mediating bacterial survival and the subsequent attack against the host. Most OMVs originate from the bacterial membranes and molecules are enveloped in them. Elements similar to the pathogen endow OMVs with robust virulence, which provides a new direction for exploring the pathogenicity of A. baumannii and its therapeutic pathways. Although extensive research has been carried out on the feasibility of OMV-based vaccines against pathogens, no study has yet summarized the bioactive elements, biological activity, and vaccine applicability of A. baumannii OMVs. This review summarizes the components, biogenesis, and function of OMVs that contribute to their potential as vaccine candidates and the preparation methods and future directions for their development.
Collapse
Affiliation(s)
- Zheqi Weng
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Ning Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China;
| | - Shujun Shi
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Zining Xu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Zixu Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Chen Liang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Xingran Du
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
55
|
Sirisaengtaksin N, O'Donoghue EJ, Jabbari S, Roe AJ, Krachler AM. Bacterial outer membrane vesicles provide an alternative pathway for trafficking of Escherichia coli O157 type III secreted effectors to epithelial cells. mSphere 2023; 8:e0052023. [PMID: 37929984 PMCID: PMC10732017 DOI: 10.1128/msphere.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Bacteria can package protein cargo into nanosized membrane blebs that are shed from the bacterial membrane and released into the environment. Here, we report that a type of pathogenic bacteria called enterohemorrhagic Escherichia coli O157 (EHEC) uses their membrane blebs (outer membrane vesicles) to package components of their type 3 secretion system and send them into host cells, where they can manipulate host signaling pathways including those involved in infection response, such as immunity. Usually, EHEC use a needle-like apparatus to inject these components into host cells, but packaging them into membrane blebs that get taken up by host cells is another way of delivery that can bypass the need for a functioning injection system.
Collapse
Affiliation(s)
- Natalie Sirisaengtaksin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eloise J. O'Donoghue
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sara Jabbari
- School of Mathematics, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew J. Roe
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
56
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
57
|
Ji N, Wang F, Wang M, Zhang W, Liu H, Su J. Engineered bacterial extracellular vesicles for central nervous system diseases. J Control Release 2023; 364:46-60. [PMID: 37866404 DOI: 10.1016/j.jconrel.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The prevalence of central nervous system (CNS) diseases is on the rise as the population ages. The presence of various obstacles, particularly the blood-brain barrier (BBB), poses a challenge for drug delivery to the CNS. An expanding body of study suggests that gut microbiota (GM) plays an important role in CNS diseases. The communication between GM and CNS diseases has received increasing attention. Accumulating evidence indicates that the GM can modulate host signaling pathways to regulate distant organ functions by delivering bioactive substances to host cells via bacterial extracellular vesicles (BEVs). BEVs have emerged as a promising platform for the treatment of CNS diseases due to their nanostructure, ability to penetrate the BBB, as well as their low toxicity, high biocompatibility, ease of modification and large-scale culture. Here, we discuss the biogenesis, internalization mechanism and engineering modification methods of BEVs. We then focus on the use and potential role of BEVs in the treatment of CNS diseases. Finally, we outline the main challenges and future prospects for the application of BEVs in CNS diseases. We hope that the comprehensive understanding of the BEVs-based gut-brain axis will provide new insights into the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ning Ji
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Miaomiao Wang
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangdong, Guangzhou 510630, China.
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
58
|
Torabian P, Singh N, Crawford J, Gonzalez G, Burgado N, Videva M, Miller A, Perdue J, Dinu M, Pietropaoli A, Gaborski T, Michel LV. The effect of clinically relevant beta-lactam, aminoglycoside, and quinolone antibiotics on bacterial extracellular vesicle release from E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568081. [PMID: 38045295 PMCID: PMC10690228 DOI: 10.1101/2023.11.22.568081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Sepsis, a leading cause of death in hospitals, can be defined as a dysregulated host inflammatory response to infection, which can lead to tissue damage, organ failure, and cardiovascular complications. Although there is no cure for sepsis, the condition is typically managed with broad spectrum antibiotics to eliminate any potential bacterial source of infection. However, a potential side-effect of antibiotic treatment is the enhanced release of bacterial extracellular vesicles (BEVs). BEVs are membrane-bound nanoparticles produced by a variety of mechanisms, one of which includes the pinching-off of the outer membrane (in Gram-negative bacteria) to enclose proteins and other biological molecules for transport and intercellular communication. Some of the Gram-negative EV cargo, including Peptidoglycan associated lipoprotein (Pal) and Outer membrane protein A (OmpA), have been shown to induce both acute and chronic inflammation in host tissue. We hypothesize that antibiotic concentration and its mechanism of action can have an effect on the amount of released BEVs, which could potentially exacerbate the host inflammatory response. In this study, we evaluated nine clinically relevant antibiotics for their effect on EV release from Escherichia coli. EVs were characterized using immunoblotting, nanoparticle tracking analysis, and transmission electron microscopy. Several beta-lactam antibiotics caused significantly more EV release, while quinolone and aminoglycosides caused relatively less vesiculation. Further study is warranted to corroborate the correlation between an antibiotic's mechanism of action and its effect on EV release, but these results underline the importance of antibiotic choice when treating sepsis patients.
Collapse
Affiliation(s)
- Panteha Torabian
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - Navraj Singh
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - James Crawford
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Gabriela Gonzalez
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Nicholas Burgado
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Martina Videva
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Aidan Miller
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Janai Perdue
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Milena Dinu
- School of Chemistry and Materials Science, Rochester Institute of Technology
| | - Anthony Pietropaoli
- Department of Medicine, Pulmonary Diseases and Critical Care, University of Rochester
| | - Thomas Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology
| | - Lea Vacca Michel
- School of Chemistry and Materials Science, Rochester Institute of Technology
| |
Collapse
|
59
|
Khan A, Sardar A, Tarafdar PK, Mallick AI. Heterogeneity and Compositional Diversities of Campylobacter jejuni Outer Membrane Vesicles (OMVs) Drive Multiple Cellular Uptake Processes. ACS Infect Dis 2023; 9:2325-2339. [PMID: 37802046 DOI: 10.1021/acsinfecdis.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Naturally secreted outer membrane vesicles (OMVs) from gut microbes carry diverse cargo, including proteins, nucleic acids, toxins, and many unidentified secretory factors. Bacterial OMVs can shuttle molecules across different cell types as a generalized secretion system, facilitating bacterial pathogenicity and self-survival. Numerous mucosal pathogens, including Campylobacter jejuni (C. jejuni), share a mechanism of harmonized secretion of major virulence factors. Intriguingly, as a common gut pathogen, C. jejuni lacks some classical virulence-associated secretion systems; alternatively, it often employs nanosized lipid-bound OMVs as an intensive strategy to deliver toxins, including secretory proteins, into the target cells. To better understand how the biophysical and compositional attributes of natural OMVs of C. jejuni regulate their cellular interactions to induce a biologically relevant host response, we conducted an in-depth morphological and compositional analysis of naturally secreted OMVs of C. jejuni. Next, we focused on understanding the mechanism of host cell-specific OMVs uptake from the extracellular milieu. We showed that intracellular perfusion of OMVs is mediated by cytosolic as well as multiple endocytic uptake processes due to the heterogenic nature, abundance of surface proteins, and membrane phospholipids acquired from the source bacteria. Furthermore, we used human and avian cells as two different host targets to provide evidence of target cell-specific preferential uptake of OMVs. Together, the present study provides insight into the unique functionality of natural OMVs of C. jejuni at the cellular interface, upholding their potential for multimodal use as prophylactic and therapeutic carriers.
Collapse
Affiliation(s)
- Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Avijit Sardar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Amirul I Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
60
|
Meng R, Zeng M, Ji Y, Huang X, Xu M. The potential role of gut microbiota outer membrane vesicles in colorectal cancer. Front Microbiol 2023; 14:1270158. [PMID: 38029123 PMCID: PMC10661380 DOI: 10.3389/fmicb.2023.1270158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant digestive tract tumor in colorectal regions. Considerable evidence now shows that the gut microbiota have essential roles in CRC occurrence and development. Most Gram-negative bacteria release outer membrane vesicles (OMVs) via outer membrane blistering, which contain specific cargoes which interact with host cells via intercellular communications, host immune regulation, and gut microbiota homeostasis. Studies have also shown that OMVs selectively cluster near tumor cells, thus cancer treatment strategies based on OMVs have attracted considerable research attention. However, little is known about the possible impact of gut microbiota OMVs in CRC pathophysiology. Therefore, in this review, we summarize the research progress on molecular composition and function of OMV, and review the microbial dysbiosis in CRC. We then focus on the potential role of gut microbiota OMVs in CRC. Finally, we examine the clinical potential of OMVs in CRC treatment, and their main advantages and challenges in tumor therapy.
Collapse
Affiliation(s)
- Ran Meng
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Minmin Zeng
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
61
|
Martínez-Ruiz S, Sáez-Fuertes L, Casanova-Crespo S, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Badia J, Baldoma L. Microbiota-Derived Extracellular Vesicles Promote Immunity and Intestinal Maturation in Suckling Rats. Nutrients 2023; 15:4701. [PMID: 37960354 PMCID: PMC10649425 DOI: 10.3390/nu15214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Microbiota-host communication is primarily achieved by secreted factors that can penetrate the mucosal surface, such as extracellular membrane vesicles (EVs). The EVs released by the gut microbiota have been extensively studied in cellular and experimental models of human diseases. However, little is known about their in vivo effects in early life, specifically regarding immune and intestinal maturation. This study aimed to investigate the effects of daily administration of EVs from probiotic and commensal E. coli strains in healthy suckling rats during the first 16 days of life. On days 8 and 16, we assessed various intestinal and systemic variables in relation to animal growth, humoral and cellular immunity, epithelial barrier maturation, and intestinal architecture. On day 16, animals given probiotic/microbiota EVs exhibited higher levels of plasma IgG, IgA, and IgM and a greater proportion of Tc, NK, and NKT cells in the spleen. In the small intestine, EVs increased the villi area and modulated the expression of genes related to immune function, inflammation, and intestinal permeability, shifting towards an anti-inflammatory and barrier protective profile from day 8. In conclusion, interventions involving probiotic/microbiota EVs may represent a safe postbiotic strategy to stimulate immunity and intestinal maturation in early life.
Collapse
Affiliation(s)
- Sergio Martínez-Ruiz
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Sáez-Fuertes
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Sergi Casanova-Crespo
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María J. Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Josefa Badia
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldoma
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| |
Collapse
|
62
|
Lara B, Loureiro I, Gliosca L, Castagnola L, Merech F, Gallino L, Calo G, Sassot M, Ramhorst R, Vota D, Pérez Leirós C, Hauk V. Porphyromonas gingivalis outer membrane vesicles shape trophoblast cell metabolism impairing functions associated to adverse pregnancy outcome. J Cell Physiol 2023; 238:2679-2691. [PMID: 37842869 DOI: 10.1002/jcp.31138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Periodontitis is proposed as a risk factor for preterm delivery, fetal growth restriction, and preeclampsia with severe consequences for maternal and neonatal health, but the biological mechanisms involved are elusive. Porphyromonas gingivalis gain access to the placental bed and impair trophoblast cell function, as assessed in murine and human pregnancy, suggesting a pathogenic role in adverse pregnancy and neonatal outcomes. P. gingivalis releases outer membrane vesicles (P. gingivalis OMV) during growth that spread to distant tissues and are internalized in host cells as described in metabolic, neurological, and vascular systemic diseases. Here we tested the hypothesis that P. gingivalis OMV internalized in trophoblast cells disrupt their metabolism leading to trophoblast and placenta dysfunction and adverse pregnancy outcomes. An in vitro design with human trophoblast cells incubated with P. gingivalis OMV was used together with ex vivo and in vivo approaches in pregnant mice treated with P. gingivalis OMV. P. gingivalis OMV modulated human trophoblast cell metabolism by reducing glycolytic pathways and decreasing total reactive oxygen species with sustained mitochondrial activity. Metabolic changes induced by P. gingivalis OMV did not compromise cell viability; instead, it turned trophoblast cells into a metabolic resting state where central functions such as migration and invasion were reduced. The effects of P. gingivalis OMV on human trophoblast cells were corroborated ex vivo in mouse whole placenta and in vivo in pregnant mice: P. gingivalis OMV reduced glycolytic pathways in the placenta and led to lower placental and fetal weight gain in vivo with reduced placental expression of the glucose transporter GLUT1. The present results point to OMV as a key component of P. gingivalis involved in adverse pregnancy outcomes, and even more, unveil a metabolic cue in the deleterious effect of P. gingivalis OMV on trophoblast cells and mouse pregnancy, providing new clues to understand pathogenic mechanisms in pregnancy complications and other systemic diseases.
Collapse
Affiliation(s)
- Brenda Lara
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Iñaki Loureiro
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Laura Gliosca
- Universidad de Buenos Aires - Facultad de Odontología, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Lara Castagnola
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Fátima Merech
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Lucila Gallino
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Guillermina Calo
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Matías Sassot
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Daiana Vota
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| | - Vanesa Hauk
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Laboratorio de Inmunofarmacología, Buenos Aires, Argentina
| |
Collapse
|
63
|
Pennetzdorfer N, Popescu MC, Haddock NL, Dupuy F, Kaber G, Hargil A, Johansson PK, Enejder A, Bollyky PL. Bacterial outer membrane vesicles bound to bacteriophages modulate neutrophil responses to bacterial infection. Front Cell Infect Microbiol 2023; 13:1250339. [PMID: 37965262 PMCID: PMC10641230 DOI: 10.3389/fcimb.2023.1250339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Pseudomonas aeruginosa is a major human pathogen, particularly effective at colonizing the airways of patients with cystic fibrosis. Bacteriophages are highly abundant at infection sites, but their impact on mammalian immunity remains unclear. We previously showed that Pf4, a temperate filamentous bacteriophage produced by P. aeruginosa, modifies the innate immune response to P. aeruginosa infections via TLR3 signaling, but the underlying mechanisms remained unclear. Notably, Pf4 is a single-stranded DNA and lysogenic phage, and its production does not typically result in lysis of its bacterial host. We identified previously that internalization of Pf4 by human or murine immune cells triggers maladaptive viral pattern recognition receptors and resulted in bacterial persistence based on the presence of phage RNA. We report now that Pf4 phage dampens inflammatory responses to bacterial endotoxin and that this is mediated in part via bacterial vesicles attached to phage particles. Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and play a key role in host pathogen interaction. Recently, evidence has emerged that OMVs differentially package small RNAs. In this study, we show that Pf4 are decorated with OMVs that remain affixed to Pf4 despite of purification steps. These phages are endocytosed by human cells and delivered to endosomal vesicles. We demonstrate that short RNAs within the OMVs form hairpin structures that trigger TLR3-dependent type I interferon production and antagonize production of antibacterial cytokines and chemokines. In particular, Pf4 phages inhibit CXCL5, preventing efficient neutrophil chemotaxis in response to endotoxin. Moreover, blocking IFNAR or TLR3 signaling abrogates the effect of Pf4 bound to OMVs on macrophage activation. In a murine acute pneumonia model, mice treated with Pf4 associated with OMVs show significantly less neutrophil infiltration in BAL fluid than mice treated with purified Pf4. These changes in macrophage phenotype are functionally relevant: conditioned media from cells exposed to Pf4 decorated with OMVs are significantly less effective at inducing neutrophil migration in vitro and in vivo. These results suggest that Pf4 phages alter innate immunity to bacterial endotoxin and OMVs, potentially dampening inflammation at sites of bacterial colonization or infection.
Collapse
Affiliation(s)
- Nina Pennetzdorfer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Medeea C. Popescu
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Immunology Program, Stanford University, Stanford, CA, United States
| | - Naomi L. Haddock
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Immunology Program, Stanford University, Stanford, CA, United States
| | - Fannie Dupuy
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Ecole Normale Supérieure, Paris Sciences et Lettres (PSL) University, Paris, France
| | - Gernot Kaber
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Aviv Hargil
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Patrik K. Johansson
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, United States
- Department of Material Science and Engineering, Stanford University, Stanford, CA, United States
| | - Annika Enejder
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, United States
- Department of Material Science and Engineering, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, United States
- Immunology Program, Stanford University, Stanford, CA, United States
| |
Collapse
|
64
|
Champagne-Jorgensen K, Luong T, Darby T, Roach DR. Immunogenicity of bacteriophages. Trends Microbiol 2023; 31:1058-1071. [PMID: 37198061 DOI: 10.1016/j.tim.2023.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Hundreds of trillions of diverse bacteriophages (phages) peacefully thrive within and on the human body. However, whether and how phages influence their mammalian hosts is poorly understood. In this review, we explore current knowledge and present growing evidence that direct interactions between phages and mammalian cells often induce host inflammatory and antiviral immune responses. We show evidence that, like viruses of the eukaryotic host, phages are actively internalized by host cells and activate conserved viral detection receptors. This interaction often generates proinflammatory cytokine secretion and recruitment of adaptive immune programs. However, significant variability exists in phage-immune interactions, suggesting an important role for structural phage characteristics. The factors leading to the differential immunogenicity of phages remain largely unknown but are highly influenced by their human and bacterial hosts.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Taylor Darby
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Dwayne R Roach
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
65
|
Ha JY, Seok J, Kim SJ, Jung HJ, Ryu KY, Nakamura M, Jang IS, Hong SH, Lee Y, Lee HJ. Periodontitis promotes bacterial extracellular vesicle-induced neuroinflammation in the brain and trigeminal ganglion. PLoS Pathog 2023; 19:e1011743. [PMID: 37871107 PMCID: PMC10621956 DOI: 10.1371/journal.ppat.1011743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Gram-negative bacteria derived extracellular vesicles (EVs), also known as outer membrane vesicles, have attracted significant attention due to their pathogenic roles in various inflammatory diseases. We recently demonstrated that EVs secreted by the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) can cross the blood-brain barrier (BBB) and that their extracellular RNA cargo can promote the secretion of proinflammatory cytokines, such as IL-6 and TNF-α, in the brain. To gain more insight into the relationship between periodontal disease (PD) and neuroinflammatory diseases, we investigated the effect of Aa EVs in a mouse model of ligature-induced PD. When EVs were administered through intragingival injection or EV-soaked gel, proinflammatory cytokines were strongly induced in the brains of PD mice. The use of TLR (Toll-like receptor)-reporter cell lines and MyD88 knockout mice confirmed that the increased release of cytokines was triggered by Aa EVs via TLR4 and TLR8 signaling pathways and their downstream MyD88 pathway. Furthermore, the injection of EVs through the epidermis and gingiva resulted in the direct retrograde transfer of Aa EVs from axon terminals to the cell bodies of trigeminal ganglion (TG) neurons and the subsequent activation of TG neurons. We also found that the Aa EVs changed the action potential of TG neurons. These findings suggest that EVs derived from periodontopathogens such as Aa might be involved in pathogenic pathways for neuroinflammatory diseases, neuropathic pain, and other systemic inflammatory symptoms as a comorbidity of periodontitis.
Collapse
Affiliation(s)
- Jae Yeong Ha
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Jiwon Seok
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Suk-Jeong Kim
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| | - Hye-Jin Jung
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Ka-Young Ryu
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Su-Hyung Hong
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Heon-Jin Lee
- Department of Microbiology and Immunology, School of Dentistry, Kyungpook National University, Daegu, Korea
- Craniofacial Nerve-Bone Network Research Center, Kyungpook National University, Daegu, Korea
| |
Collapse
|
66
|
Gurunathan S, Kim JH. Bacterial extracellular vesicles: Emerging nanoplatforms for biomedical applications. Microb Pathog 2023; 183:106308. [PMID: 37595812 DOI: 10.1016/j.micpath.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Bacterial extracellular vesicles (BEVs) are nanosized lipid bilayers generated from membranes that are filled with components derived from bacteria. BEVs are important for the physiology, pathogenicity, and interactions between bacteria and their hosts as well. BEVs represent an important mechanism of transport and interaction between cells. Recent advances in biomolecular nanotechnology have enabled the desired properties to be engineered on the surface of BEVs and decoration with desired and diverse biomolecules and nanoparticles, which have potential biomedical applications. BEVs have been the focus of various fields, including nanovaccines, therapeutic agents, and drug delivery vehicles. In this review, we delineate the fundamental aspects of BEVs, including their biogenesis, cargo composition, function, and interactions with host cells. We comprehensively summarize the factors influencing the biogenesis of BEVs. We further highlight the importance of the isolation, purification, and characterization of BEVs because they are essential processes for potential benefits related to host-microbe interactions. In addition, we address recent advancements in BEVs in biomedical applications. Finally, we provide conclusions and future perspectives as well as highlight the remaining challenges of BEVs for different biomedical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Rathinam Techzone Campus, Eachanari, Coimbatore, 641 021, Tamil Nadu, India.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
67
|
Haugsten HR, Kristoffersen AK, Haug TM, Søland TM, Øvstebø R, Aass HCD, Enersen M, Galtung HK. Isolation, characterization, and fibroblast uptake of bacterial extracellular vesicles from Porphyromonas gingivalis strains. Microbiologyopen 2023; 12:e1388. [PMID: 37877660 PMCID: PMC10579780 DOI: 10.1002/mbo3.1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Periodontitis is an inflammatory condition caused by bacteria and represents a serious health problem worldwide as the inflammation damages the supporting tissues of the teeth and may predispose to systemic diseases. Porphyromonas gingivalis is considered a keystone periodontal pathogen that releases bacterial extracellular vesicles (bEVs) containing virulence factors, such as gingipains, that may contribute to the pathogenesis of periodontitis. This study aimed to isolate and characterize bEVs from three strains of P. gingivalis, investigate putative bEV uptake into human oral fibroblasts, and determine the gingipain activity of the bEVs. bEVs from three bacterial strains, ATCC 33277, A7A1-28, and W83, were isolated through ultrafiltration and size-exclusion chromatography. Vesicle size distribution was measured by nano-tracking analysis (NTA). Transmission electron microscopy was used for bEV visualization. Flow cytometry was used to detect bEVs and gingipain activity was measured with an enzyme assay using a substrate specific for arg-gingipain. The uptake of bEVs into oral fibroblasts was visualized using confocal microscopy. NTA showed bEV concentrations from 108 to 1011 particles/mL and bEV diameters from 42 to 356 nm. TEM pictures demonstrated vesicle-like structures. bEV-gingipains were detected both by flow cytometry and enzyme assay. Fibroblasts incubated with bEVs labeled with fluorescent dye displayed intracellular localization consistent with bEV internalization. In conclusion, bEVs from P. gingivalis were successfully isolated and characterized, and their uptake into human oral fibroblasts was documented. The bEVs displayed active gingipains demonstrating their origin from P. gingivalis and the potential role of bEVs in periodontitis.
Collapse
Affiliation(s)
- Helene R. Haugsten
- Institute of Oral Biology, Faculty of DentistryUniversity of OsloOsloNorway
| | | | - Trude M. Haug
- Institute of Oral Biology, Faculty of DentistryUniversity of OsloOsloNorway
| | - Tine M. Søland
- Institute of Oral Biology, Faculty of DentistryUniversity of OsloOsloNorway
- Department of PathologyOslo University HospitalOsloNorway
| | - Reidun Øvstebø
- The Blood Cell Research Group, Department of Medical BiochemistryOslo University HospitalUllevålNorway
| | - Hans C. D. Aass
- The Blood Cell Research Group, Department of Medical BiochemistryOslo University HospitalUllevålNorway
| | - Morten Enersen
- Institute of Oral Biology, Faculty of DentistryUniversity of OsloOsloNorway
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of DentistryUniversity of OsloOsloNorway
| |
Collapse
|
68
|
Wang Y, Luo X, Xiang X, Hao C, Ma D. Roles of bacterial extracellular vesicles in systemic diseases. Front Microbiol 2023; 14:1258860. [PMID: 37840728 PMCID: PMC10569430 DOI: 10.3389/fmicb.2023.1258860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
Accumulating evidence suggests that in various systems, not all bidirectional microbiota-host interactions involve direct cell contact. Bacterial extracellular vesicles (BEVs) may be key participants in this interkingdom crosstalk. BEVs mediate microbiota functions by delivering effector molecules that modulate host signaling pathways, thereby facilitating host-microbe interactions. BEV production during infections by both pathogens and probiotics has been observed in various host tissues. Therefore, these vesicles released by microbiota may have the ability to drive or inhibit disease pathogenesis in different systems within the host. Here, we review the current knowledge of BEVs and particularly emphasize their interactions with the host and the pathogenesis of systemic diseases.
Collapse
Affiliation(s)
- Yanzhen Wang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinghong Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaozhen Xiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunbo Hao
- Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
69
|
Xiao M, Li G, Yang H. Microbe-host interactions: structure and functions of Gram-negative bacterial membrane vesicles. Front Microbiol 2023; 14:1225513. [PMID: 37720140 PMCID: PMC10500606 DOI: 10.3389/fmicb.2023.1225513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Bacteria-host interaction is a common, relevant, and intriguing biological phenomena. The host reacts actively or passively to the bacteria themselves, their products, debris, and so on, through various defense systems containing the immune system, the bacteria communicate with the local or distal tissues of the host via their own surface antigens, secreted products, nucleic acids, etc., resulting in relationships of attack and defense, adaptation, symbiosis, and even collaboration. The significance of bacterial membrane vesicles (MVs) as a powerful vehicle for the crosstalk mechanism between the two is growing. In the recent decade, the emergence of MVs in microbial interactions and a variety of bacterial infections, with multiple adhesions to host tissues, cell invasion and evasion of host defense mechanisms, have brought MVs to the forefront of bacterial pathogenesis research. Whereas MVs are a complex combination of molecules not yet fully understood, research into its effects, targeting and pathogenic components will advance its understanding and utilization. This review will summarize structural, extraction and penetration information on several classes of MVs and emphasize the role of MVs in transport and immune response activation. Finally, the potential of MVs as a therapeutic method will be highlighted, as will future research prospects.
Collapse
Affiliation(s)
- Min Xiao
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guiding Li
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, China
- Department of Dental Research, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
70
|
Gao H, Jiang Y, Wang L, Wang G, Hu W, Dong L, Wang S. Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway. Nat Commun 2023; 14:5157. [PMID: 37620328 PMCID: PMC10449815 DOI: 10.1038/s41467-023-40887-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The gut microbiota is a crucial modulator of Plasmodium infection in mosquitoes, including the production of anti-Plasmodium effector proteins. But how the commensal-derived effectors are translocated into Plasmodium parasites remains obscure. Here we show that a natural Plasmodium blocking symbiotic bacterium Serratia ureilytica Su_YN1 delivers the effector lipase AmLip to Plasmodium parasites via outer membrane vesicles (OMVs). After a blood meal, host serum strongly induces Su_YN1 to release OMVs and the antimalarial effector protein AmLip into the mosquito gut. AmLip is first secreted into the extracellular space via the T1SS and then preferentially loaded on the OMVs that selectively target the malaria parasite, leading to targeted killing of the parasites. Notably, these serum-induced OMVs incorporate certain serum-derived lipids, such as phosphatidylcholine, which is critical for OMV uptake by Plasmodium via the phosphatidylcholine scavenging pathway. These findings reveal that this gut symbiotic bacterium evolved to deliver secreted effector molecules in the form of extracellular vesicles to selectively attack parasites and render mosquitoes refractory to Plasmodium infection. The discovery of the role of gut commensal-derived OMVs as carriers in cross-kingdom communication between mosquito microbiota and Plasmodium parasites offers a potential innovative strategy for blocking malaria transmission.
Collapse
Affiliation(s)
- Han Gao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yongmao Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqian Hu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Dong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
71
|
Charpentier LA, Dolben EF, Hendricks MR, Hogan DA, Bomberger JM, Stanton BA. Bacterial Outer Membrane Vesicles and Immune Modulation of the Host. MEMBRANES 2023; 13:752. [PMID: 37755174 PMCID: PMC10536716 DOI: 10.3390/membranes13090752] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
This article reviews the role of outer membrane vesicles (OMVs) in mediating the interaction between Gram-negative bacteria and their human hosts. OMVs are produced by a diverse range of Gram-negative bacteria during infection and play a critical role in facilitating host-pathogen interactions without requiring direct cell-to-cell contact. This article describes the mechanisms by which OMVs are formed and subsequently interact with host cells, leading to the transport of microbial protein virulence factors and short interfering RNAs (sRNA) to their host targets, exerting their immunomodulatory effects by targeting specific host signaling pathways. Specifically, this review highlights mechanisms by which OMVs facilitate chronic infection through epigenetic modification of the host immune response. Finally, this review identifies critical knowledge gaps in the field and offers potential avenues for future OMV research, specifically regarding rigor and reproducibility in OMV isolation and characterization methods.
Collapse
Affiliation(s)
- Lily A. Charpentier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Emily F. Dolben
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Matthew R. Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| |
Collapse
|
72
|
Shavkunov KS, Markelova NY, Glazunova OA, Kolzhetsov NP, Panyukov VV, Ozoline ON. The Fate and Functionality of Alien tRNA Fragments in Culturing Medium and Cells of Escherichia coli. Int J Mol Sci 2023; 24:12960. [PMID: 37629141 PMCID: PMC10455298 DOI: 10.3390/ijms241612960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous observations have supported the idea that various types of noncoding RNAs, including tRNA fragments (tRFs), are involved in communications between the host and its microbial community. The possibility of using their signaling function has stimulated the study of secreted RNAs, potentially involved in the interspecies interaction of bacteria. This work aimed at identifying such RNAs and characterizing their maturation during transport. We applied an approach that allowed us to detect oligoribonucleotides secreted by Prevotella copri (Segatella copri) or Rhodospirillum rubrum inside Escherichia coli cells. Four tRFs imported by E. coli cells co-cultured with these bacteria were obtained via chemical synthesis, and all of them affected the growth of E. coli. Their successive modifications in the culture medium and recipient cells were studied by high-throughput cDNA sequencing. Instead of the expected accidental exonucleolysis, in the milieu, we observed nonrandom cleavage by endonucleases continued in recipient cells. We also found intramolecular rearrangements of synthetic oligonucleotides, which may be considered traces of intermediate RNA circular isomerization. Using custom software, we estimated the frequency of such events in transcriptomes and secretomes of E. coli and observed surprising reproducibility in positions of such rare events, assuming the functionality of ring isoforms or their permuted derivatives in bacteria.
Collapse
Affiliation(s)
- Konstantin S. Shavkunov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia Yu. Markelova
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga A. Glazunova
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Nikolay P. Kolzhetsov
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Valery V. Panyukov
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Olga N. Ozoline
- Department of Functional Genomics of Prokaryotes, Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
73
|
Thapa HB, Kohl P, Zingl FG, Fleischhacker D, Wolinski H, Kufer TA, Schild S. Characterization of the Inflammatory Response Evoked by Bacterial Membrane Vesicles in Intestinal Cells Reveals an RIPK2-Dependent Activation by Enterotoxigenic Escherichia coli Vesicles. Microbiol Spectr 2023; 11:e0111523. [PMID: 37306596 PMCID: PMC10433812 DOI: 10.1128/spectrum.01115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Although the immunomodulatory potency of bacterial membrane vesicles (MVs) is widely acknowledged, their interactions with host cells and the underlying signaling pathways have not been well studied. Herein, we provide a comparative analysis of the proinflammatory cytokine profile secreted by human intestinal epithelial cells exposed to MVs derived from 32 gut bacteria. In general, outer membrane vesicles (OMVs) from Gram-negative bacteria induced a stronger proinflammatory response than MVs from Gram-positive bacteria. However, the quality and quantity of cytokine induction varied between MVs from different species, highlighting their unique immunomodulatory properties. OMVs from enterotoxigenic Escherichia coli (ETEC) were among those showing the strongest proinflammatory potency. In depth analyses revealed that the immunomodulatory activity of ETEC OMVs relies on a so far unprecedented two-step mechanism, including their internalization into host cells followed by intracellular recognition. First, OMVs are efficiently taken up by intestinal epithelial cells, which mainly depends on caveolin-mediated endocytosis as well as the presence of the outer membrane porins OmpA and OmpF on the MVs. Second, lipopolysaccharide (LPS) delivered by OMVs is intracellularly recognized by novel caspase- and RIPK2-dependent pathways. This recognition likely occurs via detection of the lipid A moiety as ETEC OMVs with underacylated LPS exhibited reduced proinflammatory potency but similar uptake dynamics compared to OMVs derived from wild-type (WT) ETEC. Intracellular recognition of ETEC OMVs in intestinal epithelial cells is pivotal for the proinflammatory response as inhibition of OMV uptake also abolished cytokine induction. The study signifies the importance of OMV internalization by host cells to exercise their immunomodulatory activities. IMPORTANCE The release of membrane vesicles from the bacterial cell surface is highly conserved among most bacterial species, including outer membrane vesicles (OMVs) from Gram-negative bacteria as well as vesicles liberated from the cytoplasmic membrane of Gram-positive bacteria. It is becoming increasingly evident that these multifactorial spheres, carrying membranous, periplasmic, and even cytosolic content, contribute to intra- and interspecies communication. In particular, gut microbiota and the host engage in a myriad of immunogenic and metabolic interactions. This study highlights the individual immunomodulatory activities of bacterial membrane vesicles from different enteric species and provides new mechanistic insights into the recognition of ETEC OMVs by human intestinal epithelial cells.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Paul Kohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Franz G. Zingl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
74
|
Berzosa M, Delgado-López A, Irache JM, Gamazo C. Optimization of Enterotoxigenic Escherichia coli (ETEC) Outer Membrane Vesicles Production and Isolation Method for Vaccination Purposes. Microorganisms 2023; 11:2088. [PMID: 37630648 PMCID: PMC10458947 DOI: 10.3390/microorganisms11082088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The study addresses Enterotoxigenic Escherichia coli (ETEC), a significant concern in low-income countries. Despite its prevalence, there is no licensed vaccine against ETEC. Bacterial vesicle-based vaccines are promising due to their safety and diverse virulence factors. However, cost-effective production requires enhancing vesicle yield while considering altered properties due to isolation methods. The proposed method involves heat treatment and ultrafiltration to recover vesicles from bacterial cultures. Two vesicle types, collected from heat-treated (HT-OMV) or untreated (NT-OMV) cultures, were compared. Vesicles were isolated via ultrafiltration alone ("complete") or with ultracentrifugation ("sediment"). Preliminary findings suggest complete HT-OMV vesicles are suitable for an ETEC vaccine. They express important proteins (OmpA, OmpX, OmpW) and virulence factors (adhesin TibA). Sized optimally (50-200 nm) for mucosal vaccination, they activate macrophages, inducing marker expression (CD40, MHCII, CD80, CD86) and Th1/Th2 cytokine release (IL-6, MCP-1, TNF-α, IL12p70, IL-10). This study confirms non-toxicity in RAW 264.7 cells and the in vivo ability of complete HT-OMV to generate significant IgG2a/IgG1 serum antibodies. Results suggest promise for a cost-effective ETEC vaccine, requiring further research on in vivo toxicity, pathogen-specific antibody detection, and protective efficacy.
Collapse
Affiliation(s)
- Melibea Berzosa
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Alberto Delgado-López
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| | - Juan Manuel Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
75
|
Pin C, David L, Oswald E. Modulation of Autophagy and Cell Death by Bacterial Outer-Membrane Vesicles. Toxins (Basel) 2023; 15:502. [PMID: 37624259 PMCID: PMC10467092 DOI: 10.3390/toxins15080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Bacteria, akin to eukaryotic cells, possess the ability to release extracellular vesicles, lipidic nanostructures that serve diverse functions in host-pathogen interactions during infections. In particular, Gram-negative bacteria produce specific vesicles with a single lipidic layer called OMVs (Outer Membrane Vesicles). These vesicles exhibit remarkable capabilities, such as disseminating throughout the entire organism, transporting toxins, and being internalized by eukaryotic cells. Notably, the cytosolic detection of lipopolysaccharides (LPSs) present at their surface initiates an immune response characterized by non-canonical inflammasome activation, resulting in pyroptotic cell death and the release of pro-inflammatory cytokines. However, the influence of these vesicles extends beyond their well-established roles, as they also profoundly impact host cell viability by directly interfering with essential cellular machinery. This comprehensive review highlights the disruptive effects of these vesicles, particularly on autophagy and associated cell death, and explores their implications for pathogen virulence during infections, as well as their potential in shaping novel therapeutic approaches.
Collapse
Affiliation(s)
- Camille Pin
- IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, 105 Av. de Casselardit, 31300 Toulouse, France
| | - Laure David
- IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, 105 Av. de Casselardit, 31300 Toulouse, France
| | - Eric Oswald
- IRSD, INSERM, ENVT, INRAE, Université de Toulouse, UPS, 105 Av. de Casselardit, 31300 Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Place du Docteur Baylac, 31059 Toulouse, France
| |
Collapse
|
76
|
Sun B, Sawant H, Borthakur A, Bihl JC. Emerging therapeutic role of gut microbial extracellular vesicles in neurological disorders. Front Neurosci 2023; 17:1241418. [PMID: 37621715 PMCID: PMC10445154 DOI: 10.3389/fnins.2023.1241418] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) serve as cell-to-cell and inter-organ communicators by conveying proteins and nucleic acids with regulatory functions. Emerging evidence shows that gut microbial-released EVs play a pivotal role in the gut-brain axis, bidirectional communication, and crosstalk between the gut and the brain. Increasing pre-clinical and clinical evidence suggests that gut bacteria-released EVs are capable of eliciting distinct signaling to the brain with the ability to cross the blood-brain barrier, exerting regulatory function on brain cells such as neurons, astrocytes, and microglia, via their abundant and diversified protein and nucleic acid cargo. Conversely, EVs derived from certain species of bacteria, particularly from gut commensals with probiotic properties, have recently been shown to confer distinct therapeutic effects on various neurological disorders. Thus, gut bacterial EVs may be both a cause of and therapy for neuropathological complications. This review marshals the basic, clinical, and translational studies that significantly contributed to our up-to-date knowledge of the therapeutic potential of gut microbial-derived EVs in treating neurological disorders, including strokes, Alzheimer's and Parkinson's disease, and dementia. The review also discusses the newer insights in recent studies focused on developing superior therapeutic microbial EVs via genetic manipulation and/or dietary intervention.
Collapse
Affiliation(s)
- Bowen Sun
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Harshal Sawant
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Alip Borthakur
- Departments of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Ji Chen Bihl
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
77
|
Thapa HB, Ebenberger SP, Schild S. The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities. Antibiotics (Basel) 2023; 12:1045. [PMID: 37370364 PMCID: PMC10295235 DOI: 10.3390/antibiotics12061045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing mechanisms from Gram-negative and -positive bacteria. It is becoming increasingly evident that MVs can promote antimicrobial resistance but also provide versatile opportunities for therapeutic exploitation. As non-living facsimiles of parent bacteria, MVs can carry multiple bioactive molecules such as proteins, lipids, nucleic acids, and metabolites, which enable them to participate in intra- and interspecific communication. Although energetically costly, the release of MVs seems beneficial for bacterial fitness, especially for pathogens. In this review, we briefly discuss the current understanding of diverse MV biogenesis routes affecting MV cargo. We comprehensively highlight the physiological functions of MVs derived from human pathogens covering in vivo adaptation, colonization fitness, and effector delivery. Emphasis is given to recent findings suggesting a vicious cycle of MV biogenesis, pathophysiological function, and antibiotic therapy. We also summarize potential therapeutical applications, such as immunotherapy, vaccination, targeted delivery, and antimicrobial potency, including their experimental validation. This comparative overview identifies common and unique strategies for MV modification used along diverse applications. Thus, the review summarizes timely aspects of MV biology in a so far unprecedented combination ranging from beneficial function for bacterial pathogen survival to future medical applications.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stephan P. Ebenberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Field of Excellence Biohealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
78
|
Park KS, Svennerholm K, Crescitelli R, Lässer C, Gribonika I, Andersson M, Boström J, Alalam H, Harandi AM, Farewell A, Lötvall J. Detoxified synthetic bacterial membrane vesicles as a vaccine platform against bacteria and SARS-CoV-2. J Nanobiotechnology 2023; 21:156. [PMID: 37208676 DOI: 10.1186/s12951-023-01928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/13/2023] [Indexed: 05/21/2023] Open
Abstract
The development of vaccines based on outer membrane vesicles (OMV) that naturally bud off from bacteria is an evolving field in infectious diseases. However, the inherent inflammatory nature of OMV limits their use as human vaccines. This study employed an engineered vesicle technology to develop synthetic bacterial vesicles (SyBV) that activate the immune system without the severe immunotoxicity of OMV. SyBV were generated from bacterial membranes through treatment with detergent and ionic stress. SyBV induced less inflammatory responses in macrophages and in mice compared to natural OMV. Immunization with SyBV or OMV induced comparable antigen-specific adaptive immunity. Specifically, immunization with Pseudomonas aeruginosa-derived SyBV protected mice against bacterial challenge, and this was accompanied by significant reduction in lung cell infiltration and inflammatory cytokines. Further, immunization with Escherichia coli-derived SyBV protected mice against E. coli sepsis, comparable to OMV-immunized group. The protective activity of SyBV was driven by the stimulation of B-cell and T-cell immunity. Also, SyBV were engineered to display the SARS-CoV-2 S1 protein on their surface, and these vesicles induced specific S1 protein antibody and T-cell responses. Collectively, these results demonstrate that SyBV may be a safe and efficient vaccine platform for the prevention of bacterial and viral infections.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Kristina Svennerholm
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rossella Crescitelli
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mickael Andersson
- Department of Chemistry and Molecular Biology, Centre for Antibiotic Resistance, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Boström
- Department of Chemistry and Molecular Biology, Centre for Antibiotic Resistance, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Alalam
- Department of Chemistry and Molecular Biology, Centre for Antibiotic Resistance, University of Gothenburg, Gothenburg, Sweden
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- BC Children's Hospital Research Institute, Vaccine Evaluation Center, University of British Columbia, Columbia, Canada
| | - Anne Farewell
- Department of Chemistry and Molecular Biology, Centre for Antibiotic Resistance, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
79
|
Doré E, Boilard E. Bacterial extracellular vesicles and their interplay with the immune system. Pharmacol Ther 2023; 247:108443. [PMID: 37210006 DOI: 10.1016/j.pharmthera.2023.108443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
The mammalian intestinal tract harbors trillions of microorganisms confined within this space by mucosal barriers. Despite these barriers, bacterial components may still be found elsewhere in the body, even in healthy subjects. Bacteria can release small lipid-bound particles, also named bacterial extracellular vesicles (bEV). While bacteria themselves cannot normally penetrate the mucosal defense, bEVs may infiltrate the barrier and disseminate throughout the body. The extremely diverse cargo that bEVs can carry, depending on their parent species, strain, and growth conditions, grant them an equally broad potential to interact with host cells and influence immune functions. Herein, we review the current knowledge of processes underlying the uptake of bEVs by mammalian cells, and their effect on the immune system. Furthermore, we discuss how bEVs could be targeted and manipulated for diverse therapeutic purposes.
Collapse
Affiliation(s)
- Etienne Doré
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada; Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, QC, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada; Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, QC, Canada.
| |
Collapse
|
80
|
Buchacher T, Digruber A, Kranzler M, Del Favero G, Ehling-Schulz M. Bacillus cereus extracellular vesicles act as shuttles for biologically active multicomponent enterotoxins. Cell Commun Signal 2023; 21:112. [PMID: 37189133 PMCID: PMC10184354 DOI: 10.1186/s12964-023-01132-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) from Gram-positive bacteria have gained considerable importance as a novel transport system of virulence factors in host-pathogen interactions. Bacillus cereus is a Gram-positive human pathogen, causing gastrointestinal toxemia as well as local and systemic infections. The pathogenicity of enteropathogenic B. cereus has been linked to a collection of virulence factors and exotoxins. Nevertheless, the exact mechanism of virulence factor secretion and delivery to target cells is poorly understood. RESULTS Here, we investigate the production and characterization of enterotoxin-associated EVs from the enteropathogenic B. cereus strain NVH0075-95 by using a proteomics approach and studied their interaction with human host cells in vitro. For the first time, comprehensive analyses of B. cereus EV proteins revealed virulence-associated factors, such as sphingomyelinase, phospholipase C, and the three-component enterotoxin Nhe. The detection of Nhe subunits was confirmed by immunoblotting, showing that the low abundant subunit NheC was exclusively detected in EVs as compared to vesicle-free supernatant. Cholesterol-dependent fusion and predominantly dynamin-mediated endocytosis of B. cereus EVs with the plasma membrane of intestinal epithelial Caco2 cells represent entry routes for delivery of Nhe components to host cells, which was assessed by confocal microscopy and finally led to delayed cytotoxicity. Furthermore, we could show that B. cereus EVs elicit an inflammatory response in human monocytes and contribute to erythrocyte lysis via a cooperative interaction of enterotoxin Nhe and sphingomyelinase. CONCLUSION Our results provide insights into the interaction of EVs from B. cereus with human host cells and add a new layer of complexity to our understanding of multicomponent enterotoxin assembly, offering new opportunities to decipher molecular processes involved in disease development. Video Abstract.
Collapse
Affiliation(s)
- Tanja Buchacher
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Astrid Digruber
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Markus Kranzler
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
81
|
Singh AN, Nice JB, Brown AC, Wittenberg NJ. Identifying size-dependent toxin sorting in bacterial outer membrane vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539273. [PMID: 37205353 PMCID: PMC10187208 DOI: 10.1101/2023.05.03.539273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) that play a critical role in cell-cell communication and virulence. Despite being isolated from a single population of bacteria, OMVs can exhibit heterogeneous size and toxin content, which can be obscured by assays that measure ensemble properties. To address this issue, we utilize fluorescence imaging of individual OMVs to reveal size-dependent toxin sorting. Our results showed that the oral bacterium Aggregatibacter actinomycetemcomitans (A.a.) produces OMVs with a bimodal size distribution, where larger OMVs were much more likely to possess leukotoxin (LtxA). Among the smallest OMVs (< 100 nm diameter), the fraction that are toxin positive ranges from 0-30%, while the largest OMVs (> 200 nm diameter) are between 70-100% toxin positive. Our single OMV imaging method provides a non-invasive way to observe OMV surface heterogeneity at the nanoscale level and determine size-based heterogeneities without the need for OMV fraction separation.
Collapse
Affiliation(s)
- Aarshi N. Singh
- Department of Chemistry, Lehigh University, Bethlehem, PA, U.S.A
| | - Justin B Nice
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, U.S.A
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, U.S.A
| | | |
Collapse
|
82
|
Choi H, Mun D, Ryu S, Kwak MJ, Kim BK, Park DJ, Oh S, Kim Y. Molecular characterization and functionality of rumen-derived extracellular vesicles using a Caenorhabditis elegans animal model. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:652-663. [PMID: 37332276 PMCID: PMC10271931 DOI: 10.5187/jast.2022.e124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 04/24/2024]
Abstract
The rumen fluids contain a wide range of bacteria, protozoa, fungi, and viruses. The various ruminal microorganisms in the rumen provide nutrients by fermenting the forage they eat. During metabolic processes, microorganisms present in the rumen release diverse vesicles during the fermentation process. Therefore, in this study, we confirmed the function of rumen extracellular vesicles (EVs) and their interaction with the host. We confirmed the structure of the rumen EVs by transmission electron microscope (TEM) and the size of the particles using nanoparticle tracking analysis (NTA). Rumen EVs range in size from 100 nm to 400 nm and are composed of microvesicles, microparticles, and ectosomes. Using the Caenorhabditis elegans smart animal model, we verified the interaction between the host and rumen EVs. Exposure of C. elegans to rumen EVs did not significantly enhance longevity, whereas exposure to the pathogenic bacteria Escherichia coli O157:H7 and Staphylococcus aureus significantly increased lifespan. Furthermore, transcriptome analysis showed gene expression alterations in C. elegans exposed to rumen EVs, with significant changes in the metabolic pathway, fatty acid degradation, and biosynthesis of cofactors. Our study describes the effect of rumen EV interactions with the host and provides novel insights for discovering biotherapeutic agents in the animal industry.
Collapse
Affiliation(s)
- Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Min-jin Kwak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Bum-Keun Kim
- Korea Food Research Institute, Wanju 55365, Korea
| | | | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
83
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
84
|
Zwarycz AS, Page T, Nikolova G, Radford EJ, Whitworth DE. Predatory Strategies of Myxococcus xanthus: Prey Susceptibility to OMVs and Moonlighting Enzymes. Microorganisms 2023; 11:microorganisms11040874. [PMID: 37110297 PMCID: PMC10141889 DOI: 10.3390/microorganisms11040874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Predatory outer membrane vesicles (OMVs) secreted by myxobacteria fuse readily with the outer membranes of Gram-negative bacteria, introducing toxic cargo into their prey. Here we used a strain of the myxobacterium Myxococcus xanthus that produces fluorescent OMVs to assay the uptake of OMVs by a panel of Gram-negative bacteria. M. xanthus strains took up significantly less OMV material than the tested prey strains, suggesting that re-fusion of OMVs with producing organisms is somehow inhibited. The OMV killing activity against different prey correlated strongly with the predatory activity of myxobacterial cells, however, there was no correlation between OMV killing activity and their propensity to fuse with different prey. It has previously been proposed that M. xanthus GAPDH stimulates the predatory activity of OMVs by enhancing OMV fusion with prey cells. Therefore, we expressed and purified active fusion proteins of M. xanthus glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase (GAPDH and PGK; moonlighting enzymes with additional activities beyond their roles in glycolysis/gluconeogenesis) to investigate any involvement in OMV-mediated predation. Neither GAPDH nor PGK caused lysis of prey cells or enhanced OMV-mediated lysis of prey cells. However, both enzymes were found to inhibit the growth of Escherichia coli, even in the absence of OMVs. Our results suggest that fusion efficiency is not a determinant of prey killing, but instead resistance to the cargo of OMVs and co-secreted enzymes dictates whether organisms can be preyed upon by myxobacteria.
Collapse
|
85
|
Heinrich E, Hartwig O, Walt C, Kardani A, Koch M, Jahromi LP, Hoppstädter J, Kiemer AK, Loretz B, Lehr CM, Fuhrmann G. Cell-Derived Vesicles for Antibiotic Delivery-Understanding the Challenges of a Biogenic Carrier System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207479. [PMID: 36938700 DOI: 10.1002/smll.202207479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs' technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro-in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B-lymphoid cells with low immunogenicity and from non-pathogenic myxobacteria SBSr073 are introduced here. A large-scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three-dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics.
Collapse
Affiliation(s)
- Eilien Heinrich
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Olga Hartwig
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine Walt
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Arefeh Kardani
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Leila Pourtalebi Jahromi
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
86
|
Niu G, Jian T, Gai Y, Chen J. Microbiota and plant-derived vesicles that serve as therapeutic agents and delivery carriers to regulate metabolic syndrome. Adv Drug Deliv Rev 2023; 196:114774. [PMID: 36906231 DOI: 10.1016/j.addr.2023.114774] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
The gut is a fundamental organ in controlling human health. Recently, researches showed that substances in the intestine can alter the course of many diseases through the intestinal epithelium, especially intestinal flora and exogenously ingested plant vesicles that can be transported over long distances to various organs. This article reviews the current knowledge on extracellular vesicles in modulating gut homeostasis, inflammatory response and numerous metabolic disease that share obesity as a co-morbidity. These complex systemic diseases that are difficult to cure, but can be managed by some bacterial and plant vesicles. Vesicles, due to their digestive stability and modifiable properties, have emerged as novel and targeted drug delivery vehicles for effective treatment of metabolic diseases.
Collapse
Affiliation(s)
- Guanting Niu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yanan Gai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
87
|
Escherichia coli-Derived Outer Membrane Vesicles Relay Inflammatory Responses to Macrophage-Derived Exosomes. mBio 2023; 14:e0305122. [PMID: 36648227 PMCID: PMC9973271 DOI: 10.1128/mbio.03051-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles are considered to be an inflammatory factor in several acute and chronic inflammatory diseases. The present study shows that exosomes from macrophages (Mφ) infected with live Escherichia coli induced secretion of proinflammatory factors by uninfected Mφ. Inflammatory responses induced by exosomes derived from Mφ infected with heat-inactivated E. coli or lipopolysaccharide were significantly weaker than those elicited by outer membrane vesicles (OMVs) released from live E. coli. Proteome analysis of exosomes from Mφ infected with live or heat-inactivated E. coli revealed that E. coli proteins OmpA, GroL1, DegP, CirA, and FepA are candidate triggers of exosome-mediated inflammatory responses. OMVs from a cirA-deleted strain suppressed exosome-mediated inflammatory responses by uninfected Mφ. The C terminus of the CirA protein (residues 158 to 633), which was relayed from E. coli-derived OMV to Mφ-derived exosomes, promoted exosome-mediated inflammatory responses by uninfected Mφ. These results suggest an alternative mechanism by which extracellular vesicles from E. coli OMV-elicited Mφ transmit proinflammatory responses to uninfected Mφ. IMPORTANCE Recently, extracellular membrane vesicles (EVs) were regarded as drivers that carry cargo such as proteins, lipids, metabolites, RNA, and DNA for intracellular signaling transduction. Mammalian cells release various types of EVs, including microvesicles shed from the plasma membrane, exosomes from endosomes, apoptotic bodies, and others. EVs have been reported to mediate inflammatory signals between mammalian cells. In addition, bacteria are also known to release EVs to carry various bacterial factors. In this study, we show that bacterial EVs lead host mammalian cells to release stimulatory EVs that enhance inflammatory responses. Our results provide a novel example that bacterial EVs transduce biological signals to mammalian EVs.
Collapse
|
88
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Extracellular Vesicles as Therapeutic Resources in the Clinical Environment. Int J Mol Sci 2023; 24:2344. [PMID: 36768664 PMCID: PMC9917082 DOI: 10.3390/ijms24032344] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
The native role of extracellular vesicles (EVs) in mediating the transfer of biomolecules between cells has raised the possibility to use them as therapeutic vehicles. The development of therapies based on EVs is now expanding rapidly; here we will describe the current knowledge on different key points regarding the use of EVs in a clinical setting. These points are related to cell sources of EVs, isolation, storage, and delivery methods, as well as modifications to the releasing cells for improved production of EVs. Finally, we will depict the application of EVs therapies in clinical trials, considering the impact of the COVID-19 pandemic on the development of these therapies, pointing out that although it is a promising therapy for human diseases, we are still in the initial phase of its application to patients.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
89
|
MacNair CR, Tan MW. The role of bacterial membrane vesicles in antibiotic resistance. Ann N Y Acad Sci 2023; 1519:63-73. [PMID: 36415037 DOI: 10.1111/nyas.14932] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bacterial survival during antibiotic exposure is a complex and multifaceted phenomenon. On top of antibiotic resistance genes, biofilm formation, and persister tolerance, bacterial membrane vesicles (MVs) provide a layer of protection that has been largely overlooked. MVs are spherical nanoparticles composed of lipid membranes and are common to Gram-positive and Gram-negative bacteria. Although the importance of MVs in bacterial pathogenesis and virulence factor transport has been firmly established, a growing body of work now identifies MVs as key contributors to bacterial survival during antibiotic exposure. Herein, we highlight the ability of MVs to reduce antibiotic efficacy and transmit resistance elements. We also discuss the potential of targeting MV production as an unconventional therapeutic approach.
Collapse
Affiliation(s)
- Craig R MacNair
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, California, USA
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
90
|
Qu M, Zhu H, Zhang X. Extracellular vesicle-mediated regulation of macrophage polarization in bacterial infections. Front Microbiol 2022; 13:1039040. [PMID: 36619996 PMCID: PMC9815515 DOI: 10.3389/fmicb.2022.1039040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscale membrane-enveloped vesicles secreted by prokaryotic and eukaryotic cells, which are commonly defined as membrane vesicles (MVs) and exosomes, respectively. They play critical roles in the bacteria-bacteria and bacteria-host interactions. In infectious diseases caused by bacteria, as the first line of defense against pathogens, the macrophage polarization mode commonly determines the success or failure of the host's response to pathogen aggression. M1-type macrophages secrete pro-inflammatory factors that support microbicidal activity, while alternative M2-type macrophages secrete anti-inflammatory factors that perform an antimicrobial immune response but partially allow pathogens to replicate and survive intracellularly. Membrane vesicles (MVs) released from bacteria as a distinctive secretion system can carry various components, including bacterial effectors, nucleic acids, or lipids to modulate macrophage polarization in host-pathogen interaction. Similar to MVs, bacteria-infected macrophages can secrete exosomes containing a variety of components to manipulate the phenotypic polarization of "bystander" macrophages nearby or long distance to differentiate into type M1 or M2 to regulate the course of inflammation. Exosomes can also repair tissue damage associated with the infection by upregulating the levels of anti-inflammatory factors, downregulating the pro-inflammatory factors, and regulating cellular biological behaviors. The study of the mechanisms by which EVs modulate macrophage polarization has opened new frontiers in delineating the molecular machinery involved in bacterial pathogenesis and challenges in providing new strategies for diagnosis and therapy.
Collapse
Affiliation(s)
- Mingjuan Qu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Jinan, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China,Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China,Shandong Breeding Environmental Control Engineering Laboratory, Yantai, China,*Correspondence: Xingxiao Zhang, ✉
| |
Collapse
|
91
|
Noh I, Guo Z, Zhou J, Gao W, Fang RH, Zhang L. Cellular Nanodiscs Made from Bacterial Outer Membrane as a Platform for Antibacterial Vaccination. ACS NANO 2022; 17:10.1021/acsnano.2c08360. [PMID: 36441916 PMCID: PMC10225015 DOI: 10.1021/acsnano.2c08360] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Vaccination has become an increasingly attractive strategy for protecting against antibiotic-resistant infections. Nanovaccines based on the outer membrane from Gram-negative bacteria are appealing due to their multiantigenic nature and inherent immunogenicity. Here, we develop cellular nanodiscs made of bacterial outer membrane (OM-NDs), as a platform for antibacterial vaccination. Using Pseudomonas aeruginosa as a model pathogen, the resulting OM-NDs can effectively interact with antigen-presenting cells, exhibiting accelerated uptake and an improved capacity for immune stimulation. With their small size, the OM-NDs are also capable of efficiently transporting to the lymph nodes after in vivo administration. As a result, the nanovaccine is effective at eliciting potent humoral and cellular immune responses against P. aeruginosa. In a murine model of pneumonia, immunization with OM-NDs confers strong protection against subsequent lung infection, resulting in improved survival, reduced bacterial loads, and alleviation of immune overactivation. Overall, this report illustrates the advantages of cellular nanodiscs, which can be readily generalized to other pathogens and may be applied toward other biomedical applications.
Collapse
Affiliation(s)
- Ilkoo Noh
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
92
|
Involvement of Bacterial Extracellular Membrane Nanovesicles in Infectious Diseases and Their Application in Medicine. Pharmaceutics 2022; 14:pharmaceutics14122597. [PMID: 36559091 PMCID: PMC9784355 DOI: 10.3390/pharmaceutics14122597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/02/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
Bacterial extracellular membrane nanovesicles (EMNs) are attracting the attention of scientists more and more every year. These formations are involved in the pathogenesis of numerous diseases, among which, of course, the leading role is occupied by infectious diseases, the causative agents of which are a range of Gram-positive and Gram-negative bacteria. A separate field for the study of the role of EMN is cancer. Extracellular membrane nanovesicles nowadays have a practical application as vaccine carriers for immunization against many infectious diseases. At present, the most essential point is their role in stimulating immune response to bacterial infections and tumor cells. The possibility of nanovesicles' practical use in several disease treatments is being evaluated. In our review, we listed diseases, focusing on their multitude and diversity, for which EMNs are essential, and also considered in detail the possibilities of using EMNs in the therapy and prevention of various pathologies.
Collapse
|
93
|
Michel LV, Gaborski T. Outer membrane vesicles as molecular biomarkers for Gram-negative sepsis: Taking advantage of nature's perfect packages. J Biol Chem 2022; 298:102483. [PMID: 36108741 PMCID: PMC9576880 DOI: 10.1016/j.jbc.2022.102483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/13/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis is an often life-threatening response to infection, occurring when host proinflammatory immune responses become abnormally elevated and dysregulated. To diagnose sepsis, the patient must have a confirmed or predicted infection, as well as other symptoms associated with the pathophysiology of sepsis. However, a recent study found that a specific causal organism could not be determined in the majority (70.1%) of sepsis cases, likely due to aggressive antibiotics or localized infections. The timing of a patient's sepsis diagnosis is often predictive of their clinical outcome, underlining the need for a more definitive molecular diagnostic test. Here, we outline the advantages and challenges to using bacterial outer membrane vesicles (OMVs), nanoscale spherical buds derived from the outer membrane of Gram-negative bacteria, as a diagnostic biomarker for Gram-negative sepsis. Advantages include OMV abundance, their robustness in the presence of antibiotics, and their unique features derived from their parent cell that could allow for differentiation between bacterial species. Challenges include the rigorous purification methods required to isolate OMVs from complex biofluids and the additional need to separate OMVs from similarly sized extracellular vesicles, which can share physical properties with OMVs.
Collapse
Affiliation(s)
- Lea Vacca Michel
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, USA.
| | - Thomas Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| |
Collapse
|
94
|
Song M, Cui M, Fang Z, Liu K. Advanced research on extracellular vesicles based oral drug delivery systems. J Control Release 2022; 351:560-572. [PMID: 36179765 DOI: 10.1016/j.jconrel.2022.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
The oral route is the most convenient and simplest mode of administration. Nevertheless, orally administration of some commonly used therapeutic drugs, such as polypeptides, therapeutic proteins, small-molecule drugs, and nucleic acids, remains a major challenge due to the harsh gastrointestinal environment and the limited oral bioavailability. Extracellular vesicles (EVs) are diverse, nanoscale phospholipid vesicles that are actively released by cells and play crucial roles in intercellular communications. Some EVs have been shown to survive with the gastrointestinal tract (GIT) and can cross biological barriers. The potential of EVs to cross the GIT barrier makes them promising natural delivery carriers for orally administered drugs. Here, we introduce the uniqueness of EVs and their feasibility as oral drug delivery vehicles (ODDVs). Then we provide a general description of the different cellular EVs based oral drug delivery systems (ODDSs) currently under study and emphasize the contribution of endogenous features and multifunctional properties of EVs to the delivery performance. The current obstacles of moving EVs based ODDSs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Mengdi Song
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Mingxiao Cui
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
95
|
Gilmore WJ, Johnston EL, Bitto NJ, Zavan L, O'Brien-Simpson N, Hill AF, Kaparakis-Liaskos M. Bacteroides fragilis outer membrane vesicles preferentially activate innate immune receptors compared to their parent bacteria. Front Immunol 2022; 13:970725. [DOI: 10.3389/fimmu.2022.970725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The release of bacterial membrane vesicles (BMVs) has become recognized as a key mechanism used by both pathogenic and commensal bacteria to activate innate immune responses in the host and mediate immunity. Outer membrane vesicles (OMVs) produced by Gram-negative bacteria can harbor various immunogenic cargo that includes proteins, nucleic acids and peptidoglycan, and the composition of OMVs strongly influences their ability to activate host innate immune receptors. Although various Gram-negative pathogens can produce OMVs that are enriched in immunogenic cargo compared to their parent bacteria, the ability of OMVs produced by commensal organisms to be enriched with immunostimulatory contents is only recently becoming known. In this study, we investigated the cargo associated with OMVs produced by the intestinal commensal Bacteroides fragilis and determined their ability to activate host innate immune receptors. Analysis of B. fragilis OMVs revealed that they packaged various biological cargo including proteins, DNA, RNA, lipopolysaccharides (LPS) and peptidoglycan, and that this cargo could be enriched in OMVs compared to their parent bacteria. We visualized the entry of B. fragilis OMVs into intestinal epithelial cells, in addition to the ability of B. fragilis OMVs to transport bacterial RNA and peptidoglycan cargo into Caco-2 epithelial cells. Using HEK-Blue reporter cell lines, we identified that B. fragilis OMVs could activate host Toll-like receptors (TLR)-2, TLR4, TLR7 and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), whereas B. fragilis bacteria could only induce the activation of TLR2. Overall, our data demonstrates that B. fragilis OMVs activate a broader range of host innate immune receptors compared to their parent bacteria due to their enrichment of biological cargo and their ability to transport this cargo directly into host epithelial cells. These findings indicate that the secretion of OMVs by B. fragilis may facilitate immune crosstalk with host epithelial cells at the gastrointestinal surface and suggests that OMVs produced by commensal bacteria may preferentially activate host innate immune receptors at the mucosal gastrointestinal tract.
Collapse
|
96
|
Diallo I, Ho J, Lambert M, Benmoussa A, Husseini Z, Lalaouna D, Massé E, Provost P. A tRNA-derived fragment present in E. coli OMVs regulates host cell gene expression and proliferation. PLoS Pathog 2022; 18:e1010827. [PMID: 36108089 PMCID: PMC9514646 DOI: 10.1371/journal.ppat.1010827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/27/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
RNA-sequencing has led to a spectacular increase in the repertoire of bacterial sRNAs and improved our understanding of their biological functions. Bacterial sRNAs have also been found in outer membrane vesicles (OMVs), raising questions about their potential involvement in bacteria-host relationship, but few studies have documented this issue. Recent RNA-Sequencing analyses of bacterial RNA unveiled the existence of abundant very small RNAs (vsRNAs) shorter than 16 nt. These especially include tRNA fragments (tRFs) that are selectively loaded in OMVs and are predicted to target host mRNAs. Here, in Escherichia coli (E. coli), we report the existence of an abundant vsRNA, Ile-tRF-5X, which is selectively modulated by environmental stress, while remaining unaffected by inhibition of transcription or translation. Ile-tRF-5X is released through OMVs and can be transferred to human HCT116 cells, where it promoted MAP3K4 expression. Our findings provide a novel perspective and paradigm on the existing symbiosis between bacteria and human cells. We previously outlined by RNA-Sequencing (RNA-seq) the existence of abundant very small (<16 nt) bacterial and eukaryote RNA (vsRNA) population with potential regulatory functions. However, it is not exceptional to see vsRNA species removed from the RNA-seq libraries or datasets because being considered as random degradation products. As a proof of concept, we present in this study a 13 nt in length isoleucine tRNA-derived fragment (Ile-tRF-5X) which is selectively modulated by nutritional and thermal stress while remaining unaffected by transcription and translation inhibitions. We also showed that OMVs and their Ile-tRF-5X vsRNAs are delivered into human HCT116 cells and both can promote host cell gene expression and proliferation. Ile-tRF-5X appears to regulate gene silencing properties of miRNAs by competition. Our findings provide a novel perspective and paradigm on the existing symbiosis between hosts and bacteria but also brings a new insight of host-pathogen interactions mediated by tRFs which remain so far poorly characterized in bacteria.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jeffrey Ho
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Marine Lambert
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Abderrahim Benmoussa
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Zeinab Husseini
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - David Lalaouna
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Massé
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrick Provost
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
97
|
Liu H, Zhang H, Han Y, Hu Y, Geng Z, Su J. Bacterial extracellular vesicles-based therapeutic strategies for bone and soft tissue tumors therapy. Theranostics 2022; 12:6576-6594. [PMID: 36185613 PMCID: PMC9516228 DOI: 10.7150/thno.78034] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Bone and soft tissue tumors are complex mesenchymal neoplasms that seriously endanger human health. Over the past decade, the relationship between microorganisms and human health and diseases is getting more attention. The extracellular vesicles derived from bacteria have been shown to regulate bacterial-host cell communication by transferring their contents, including nucleic acids, proteins, metabolites, lipopolysaccharides, and peptidoglycans. Bacteria extracellular vesicles (BEVs) are promising lipid-bilayer nanocarriers for the treatment of many diseases due to their low toxicity, drug loading capacity, ease of modification and industrialization. Specially, BEVs-based cancer therapy has attracted much attention because of their ability to effectively stimulate immune responses. In this review, we provide an overview of the biogenesis, composition, isolation, classification, and internalization of BEVs. We then comprehensively summarize the sources of BEVs in cancer therapy and the BEVs-related cancer treatment strategies. We further highlight the great potential of BEVs in bone and soft tissue tumors. Finally, we conclude the major advantages and challenges of BEVs-based cancer therapy. We believe that the comprehensive understanding of BEVs in the field of cancer therapy will generate innovative solutions to bone and soft tissue tumors and achieve clinical applications.
Collapse
Affiliation(s)
- Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
98
|
Wang S, Guo J, Bai Y, Sun C, Wu Y, Liu Z, Liu X, Wang Y, Wang Z, Zhang Y, Hao H. Bacterial outer membrane vesicles as a candidate tumor vaccine platform. Front Immunol 2022; 13:987419. [PMID: 36159867 PMCID: PMC9505906 DOI: 10.3389/fimmu.2022.987419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer represents a serious concern for human life and health. Due to drug resistance and the easy metastasis of tumors, there is urgent need to develop new cancer treatment methods beyond the traditional radiotherapy, chemotherapy, and surgery. Bacterial outer membrane vesicles (OMVs) are a type of double-membrane vesicle secreted by Gram-negative bacteria in the process of growth and life, and play extremely important roles in the survival and invasion of those bacteria. In particular, OMVs contain a large number of immunogenic components associated with their parent bacterium, which can be used as vaccines, adjuvants, and vectors to treat diseases, especially in presenting tumor antigens or targeted therapy with small-molecule drugs. Some OMV-based vaccines are already on the market and have demonstrated good therapeutic effect on the corresponding diseases. OMV-based vaccines for cancer are also being studied, and some are already in clinical trials. This paper reviews bacterial outer membrane vesicles, their interaction with host cells, and their applications in tumor vaccines.
Collapse
Affiliation(s)
- Shuming Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Jiayi Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yang Bai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Cai Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yanhao Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Zhe Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- *Correspondence: Huifang Hao,
| |
Collapse
|
99
|
Ozuna H, Snider I, Belibasakis GN, Oscarsson J, Johansson A, Uriarte SM. Aggregatibacter actinomycetemcomitans and Filifactor alocis: Two exotoxin-producing oral pathogens. FRONTIERS IN ORAL HEALTH 2022; 3:981343. [PMID: 36046121 PMCID: PMC9420871 DOI: 10.3389/froh.2022.981343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a dysbiotic disease caused by the interplay between the microbial ecosystem present in the disease with the dysregulated host immune response. The disease-associated microbial community is formed by the presence of established oral pathogens like Aggregatibacter actinomycetemcomitans as well as by newly dominant species like Filifactor alocis. These two oral pathogens prevail and grow within the periodontal pocket which highlights their ability to evade the host immune response. This review focuses on the virulence factors and potential pathogenicity of both oral pathogens in periodontitis, accentuating the recent description of F. alocis virulence factors, including the presence of an exotoxin, and comparing them with the defined factors associated with A. actinomycetemcomitans. In the disease setting, possible synergistic and/or mutualistic interactions among both oral pathogens might contribute to disease progression.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Ian Snider
- Department of Biology, School of Arts and Sciences, University of Louisville, Louisville, KY, United States
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Silvia M. Uriarte
| |
Collapse
|
100
|
Matinha‐Cardoso J, Coutinho F, Lima S, Eufrásio A, Carvalho AP, Oliva‐Teles A, Bessa J, Tamagnini P, Serra CR, Oliveira P. Novel protein carrier system based on cyanobacterial nano-sized extracellular vesicles for application in fish. Microb Biotechnol 2022; 15:2191-2207. [PMID: 35419949 PMCID: PMC9328742 DOI: 10.1111/1751-7915.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022] Open
Abstract
Aquaculture has been one of the fastest-growing food industry sectors, expanding at the pace of consumers' demands. To promote safe and effective fish growth performance strategies, and to stimulate environmentally friendly solutions to protect fish against disease outbreaks, new approaches are needed to safeguard fish welfare, as well as farmers and consumers interests. Here, we tested the use of cyanobacterial extracellular vesicles (EVs) as a novel nanocarrier system of heterologous proteins for applications in fish. We started by incubating zebrafish larvae with Synechocystis sp. PCC6803 EVs, isolated from selected mutant strains with different cell envelope characteristics. Results show that Synechocystis EVs are biocompatible with fish larvae, regardless of their structural composition, as EVs neither induced fish mortality nor triggered significant inflammatory responses. We establish also that cyanobacteria are amenable to engineering heterologous protein expression and loading into EVs, for which we used the reporter sfGFP. Moreover, upon immersion treatment, we successfully demonstrate that sfGFP-loaded Synechocystis EVs accumulate in the gastrointestinal tract of zebrafish larvae. This work opens the possibility of using cyanobacterial EVs as a novel biotechnological tool in fish, with prospective applications in carrying proteins/enzymes, for example for modulating their nutritional status or stimulating specific adaptive immune responses.
Collapse
Affiliation(s)
- Jorge Matinha‐Cardoso
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Filipe Coutinho
- CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de LeixõesUniversidade do PortoAv. General Norton de Matos s/nMatosinhos4450‐208Portugal
| | - Steeve Lima
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- MCbiology Doctoral ProgramICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoRua Jorge de Viterbo Ferreira, 228Porto4050‐313Portugal
| | - Ana Eufrásio
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- MCbiology Doctoral ProgramICBAS – Instituto de Ciências Biomédicas Abel SalazarUniversidade do PortoRua Jorge de Viterbo Ferreira, 228Porto4050‐313Portugal
| | - António Paulo Carvalho
- CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de LeixõesUniversidade do PortoAv. General Norton de Matos s/nMatosinhos4450‐208Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| | - Aires Oliva‐Teles
- CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de LeixõesUniversidade do PortoAv. General Norton de Matos s/nMatosinhos4450‐208Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| | - José Bessa
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Paula Tamagnini
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| | - Cláudia R. Serra
- CIMAR/CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de LeixõesUniversidade do PortoAv. General Norton de Matos s/nMatosinhos4450‐208Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| | - Paulo Oliveira
- i3S – Instituto de Investigação e Inovação em SaúdeUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- IBMC – Instituto de Biologia Molecular e CelularUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
- Departamento de BiologiaFaculdade de CiênciasUniversidade do PortoRua do Campo Alegre s/nPorto4169‐007Portugal
| |
Collapse
|