51
|
Da Roit F, Engelberts PJ, Taylor RP, Breij ECW, Gritti G, Rambaldi A, Introna M, Parren PWHI, Beurskens FJ, Golay J. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy. Haematologica 2014; 100:77-86. [PMID: 25344523 DOI: 10.3324/haematol.2014.107011] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies. Pre-treatment with ibrutinib did not inhibit complement activation or complement-mediated lysis. In contrast, ibrutinib strongly inhibited all cell-mediated mechanisms induced by anti-CD20 antibodies rituximab, ofatumumab or obinutuzumab, either in purified systems or whole blood assays. Activation of natural killer cells, and antibody-dependent cellular cytotoxicity by these cells, as well as phagocytosis by macrophages or neutrophils were inhibited by ibrutinib with a half maximal effective concentration of 0.3-3 μM. Analysis of anti-CD20 mediated activation of natural killer cells isolated from patients on continued oral ibrutinib treatment suggested that repeated drug dosing inhibits these cells in vivo. Finally we show that the phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib similarly inhibited the immune cell-mediated mechanisms induced by anti-CD20 antibodies, although the effects of this drug at 10 μM were weaker than those observed with ibrutinib at the same concentration. We conclude that the design of combined treatment schedules of anti-CD20 antibodies with these kinase inhibitors should consider the multiple negative interactions between these two classes of drugs.
Collapse
Affiliation(s)
- Fabio Da Roit
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | | | - Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Giuseppe Gritti
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Rambaldi
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Martino Introna
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Paul W H I Parren
- Genmab, Utrecht, the Netherlands Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
52
|
Ponader S, Burger JA. Bruton's tyrosine kinase: from X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies. J Clin Oncol 2014; 32:1830-9. [PMID: 24778403 PMCID: PMC5073382 DOI: 10.1200/jco.2013.53.1046] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Discovery of Bruton's tyrosine kinase (BTK) mutations as the cause for X-linked agammaglobulinemia was a milestone in understanding the genetic basis of primary immunodeficiencies. Since then, studies have highlighted the critical role of this enzyme in B-cell development and function, and particularly in B-cell receptor signaling. Because its deletion affects mostly B cells, BTK has become an attractive therapeutic target in autoimmune disorders and B-cell malignancies. Ibrutinib (PCI-32765) is the most advanced BTK inhibitor in clinical testing, with ongoing phase III clinical trials in patients with chronic lymphocytic leukemia and mantle-cell lymphoma. In this article, we discuss key discoveries related to BTK and clinically relevant aspects of BTK inhibitors, and we provide an outlook into clinical development and open questions regarding BTK inhibitor therapy.
Collapse
Affiliation(s)
- Sabine Ponader
- All authors: The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jan A Burger
- All authors: The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
53
|
Vu QV, Wada T, Le HTM, Le HT, Van Nguyen AT, Osamu O, Yachie A, Nguyen SN. Clinical and mutational features of Vietnamese children with X-linked agammaglobulinemia. BMC Pediatr 2014; 14:129. [PMID: 24885015 PMCID: PMC4054903 DOI: 10.1186/1471-2431-14-129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/23/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is a primary immune deficiency characterized by recurrent bacterial infections and profoundly depressed serum immunoglobulin levels and circulating mature B cells. It is caused by mutations of the Bruton tyrosine kinase (BTK) gene and is the most common form of inherited antibody deficiency. To our knowledge, this is the first report of XLA from Vietnam. METHODS We investigated the BTK gene mutations and clinical features of four unrelated Vietnamese children. RESULTS The mean ages at onset and at diagnosis were 2.5 and 8 years, respectively. All patients had a medical history of otitis media, pneumonia, and septicemia at the time of diagnosis. Other infections reported included sinusitis, bronchiectasis, arthritis, skin infections, meningitis, and recurrent diarrhea. We identified one previously reported mutation (c.441G >A) and three novel mutations: two frameshifts (c.1770delG and c.1742 delG), and one nonsense (c.1249A >T). CONCLUSIONS The delayed diagnosis may be attributable to insufficient awareness of this rare disease on the background of frequent infections even in the immunocompetent pediatric population in Vietnam. Our results further support the importance of molecular genetic testing in diagnosis of XLA.
Collapse
Affiliation(s)
- Quang Van Vu
- Department of Pediatrics, Haiphong University of Medicine and Pharmacy, 72 A Nguyen Binh Khiem, Ngo Quyen, Haiphong, Vietnam
| | - Taizo Wada
- Department of Pediatrics, Intistute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | - Akihiro Yachie
- Department of Pediatrics, Intistute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, Japan
| | - Sang Ngoc Nguyen
- Department of Pediatrics, Haiphong University of Medicine and Pharmacy, 72 A Nguyen Binh Khiem, Ngo Quyen, Haiphong, Vietnam
| |
Collapse
|
54
|
Reynolds G, Cooles FAH, Isaacs JD, Hilkens CMU. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother 2014; 10:822-37. [PMID: 24535556 DOI: 10.4161/hv.27910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Novel treatments in development for rheumatoid arthritis target 3 broad areas: cytokines, cells, and signaling pathways. Therapies from each domain share common advantages (for example previously demonstrated efficacy, potential long-term immunomodulation, and oral administration respectively) that have stimulated research in each area but also common obstacles to their development. In this review recent progress in each area will be discussed alongside the factors that have impeded their path to clinical use.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - Faye A H Cooles
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - John D Isaacs
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| | - Catharien M U Hilkens
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| |
Collapse
|
55
|
Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F, Ribas C. Gαq signalling: the new and the old. Cell Signal 2014; 26:833-48. [PMID: 24440667 DOI: 10.1016/j.cellsig.2014.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/09/2014] [Indexed: 01/25/2023]
Abstract
In the last few years the interactome of Gαq has expanded considerably, contributing to improve our understanding of the cellular and physiological events controlled by this G alpha subunit. The availability of high-resolution crystal structures has led the identification of an effector-binding region within the surface of Gαq that is able to recognise a variety of effector proteins. Consequently, it has been possible to ascribe different Gαq functions to specific cellular players and to identify important processes that are triggered independently of the canonical activation of phospholipase Cβ (PLCβ), the first identified Gαq effector. Novel effectors include p63RhoGEF, that provides a link between G protein-coupled receptors and RhoA activation, phosphatidylinositol 3-kinase (PI3K), implicated in the regulation of the Akt pathway, or the cold-activated TRPM8 channel, which is directly inhibited upon Gαq binding. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has also been described as a novel PLCβ-independent signalling axis that relies upon the interaction between this G protein and two novel effectors (PKCζ and MEK5). Additionally, the association of Gαq with different regulatory proteins can modulate its effector coupling ability and, therefore, its signalling potential. Regulators include accessory proteins that facilitate effector activation or, alternatively, inhibitory proteins that downregulate effector binding or promote signal termination. Moreover, Gαq is known to interact with several components of the cytoskeleton as well as with important organisers of membrane microdomains, which suggests that efficient signalling complexes might be confined to specific subcellular environments. Overall, the complex interaction network of Gαq underlies an ever-expanding functional diversity that puts forward this G alpha subunit as a major player in the control of physiological functions and in the development of different pathological situations.
Collapse
Affiliation(s)
- Guzmán Sánchez-Fernández
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Sofía Cabezudo
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Carlota García-Hoz
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Anna M Aragay
- Department of Cell Biology, Molecular Biology Institute of Barcelona, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Catalina Ribas
- Departamento de Biología Molecular and Centro de Biologia Molecular "Severo Ochoa", CSIC-UAM, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|
56
|
Berglöf A, Turunen JJ, Gissberg O, Bestas B, Blomberg KEM, Smith CIE. Agammaglobulinemia: causative mutations and their implications for novel therapies. Expert Rev Clin Immunol 2014; 9:1205-21. [DOI: 10.1586/1744666x.2013.850030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
57
|
Zhang Q, Liu H, Pan Z. A general approach for the development of fluorogenic probes suitable for no-wash imaging of kinases in live cells. Chem Commun (Camb) 2014; 50:15319-22. [DOI: 10.1039/c4cc07429g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A general approach is presented for developing small molecule-based fluorogenic probes suitable for no-wash imaging of endogenous kinases in live cells.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Chemical Genomics
- Key Laboratory of Structural Biology
- School of Chemical Biology and Biotechnology Shenzhen Graduate School
- Peking University Xili University Town
- Shenzhen, 518055 China
| | - Hui Liu
- Key Laboratory of Chemical Genomics
- Key Laboratory of Structural Biology
- School of Chemical Biology and Biotechnology Shenzhen Graduate School
- Peking University Xili University Town
- Shenzhen, 518055 China
| | - Zhengying Pan
- Key Laboratory of Chemical Genomics
- Key Laboratory of Structural Biology
- School of Chemical Biology and Biotechnology Shenzhen Graduate School
- Peking University Xili University Town
- Shenzhen, 518055 China
| |
Collapse
|
58
|
López-Herrera G, Vargas-Hernández A, González-Serrano ME, Berrón-Ruiz L, Rodríguez-Alba JC, Espinosa-Rosales F, Santos-Argumedo L. Bruton's tyrosine kinase--an integral protein of B cell development that also has an essential role in the innate immune system. J Leukoc Biol 2013; 95:243-50. [PMID: 24249742 DOI: 10.1189/jlb.0513307] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Btk is the protein affected in XLA, a disease identified as a B cell differentiation defect. Btk is crucial for B cell differentiation and activation, but its role in other cells is not fully understood. This review focuses on the function of Btk in monocytes, neutrophils, and platelets and the receptors and signaling cascades in such cells with which Btk is associated.
Collapse
Affiliation(s)
- Gabriela López-Herrera
- 1.Col. Insurgentes Cuicuilco, Torre de Investigación 9o. piso, Mexico, D.F., Mexico 04530.
| | | | | | | | | | | | | |
Collapse
|
59
|
Qin X, Jiang LP, Tang XM, Wang M, Liu EM, Zhao XD. Clinical features and mutation analysis of X-linked agammaglobulinemia in 20 Chinese patients. World J Pediatr 2013; 9:273-7. [PMID: 23335184 DOI: 10.1007/s12519-013-0400-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/17/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND X-linked agammagobulinemia (XLA) is a primary immunodeficiency caused by Bruton's tyrosine kinase (BTK) gene mutation. XLA patients have an extremely small amount of peripheral B cells and profound deficiency in all immunoglobulin isotypes. We analyzed the clinical, immunologic, and molecular characteristics of children with XLA in an attempt to improve the diagnosis and treatment of XLA in China. METHODS Twenty children with XLA-compatible phenotypes from 18 unrelated families were enrolled in this study. The BTK gene was amplified and sequenced, followed by mutation analysis in these children and their female relatives. RESULTS Eighteen different mutations of the BTK gene were identified in the 20 patients. Eleven mutations had been reported previously including eight missense mutations (c.994C>T, c.1987C>A, c.1885G>T, c.502T>C, c.1085C>T, c.1816C>T, c.214C>T, c.1912G>A) and three nonsense mutations (c.1267T>A, c.1793C>G, c.1618C>T). Seven novel mutations of the BTK gene were also presented and included five missense mutations (c.134T>A, c.1646T>A, c.1829C>G, c.711G>T, c.1235G>A), one splice-site mutation (c.523+1G>A) and one insertion mutation (c.1024-1025in sTTGCTAAAGCAACTGCTAAAGCAAG). Eight out of 18 mutations of the BTK gene were located in the TK domain, 4 in the PH domain, 4 in the SH2 domain and 2 in the TH domain. Genetic study for carrier status was carried out in 18 families with definite BTK gene mutations. Nine carriers with BTK gene mutations were identified. Six families without carriers were detected, and 3 patients were not tested in this study. CONCLUSION Our results support that molecular genetic testing represents an important tool for early confirmed diagnosis of congenital agammaglobulinemia and may allow accurate carrier detection and prenatal diagnosis.
Collapse
Affiliation(s)
- Xian Qin
- Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | | | | | | | | | | |
Collapse
|
60
|
Vargas L, Hamasy A, Nore BF, E. Smith CI. Inhibitors of BTK and ITK: State of the New Drugs for Cancer, Autoimmunity and Inflammatory Diseases. Scand J Immunol 2013; 78:130-9. [DOI: 10.1111/sji.12069] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/05/2013] [Indexed: 01/01/2023]
Affiliation(s)
- L. Vargas
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| | | | | | - C. I. E. Smith
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| |
Collapse
|
61
|
Kelly V, Genovese M. Novel small molecule therapeutics in rheumatoid arthritis. Rheumatology (Oxford) 2013; 52:1155-62. [DOI: 10.1093/rheumatology/kes367] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
62
|
Schroeder HW, Szymanska-Mroczek E. Primary antibody deficiencies. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Abstract
Over the last decade, the Tec family of nonreceptor tyrosine kinases (Btk, Tec, Bmx, Itk, and Rlk) have been shown to play a key role in inflammation and bone destruction. Bruton's tyrosine kinase (Btk) has been the most widely studied due to the critical role of this kinase in B-cell development and recent evidence showing that blocking Btk signaling is effective in ameliorating lymphoma progression and experimental arthritis. This review will examine the role of TFK in myeloid cell function and the potential of targeting these kinases as a therapeutic intervention in autoimmune disorders such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Nicole J Horwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, London, UK.
| | | | | |
Collapse
|
64
|
SCHNUTE MARKE, HUANG ADRIAN, SAIAH EDDINE. Bruton's Tyrosine Kinase (Btk). ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bruton's tyrosine kinase (Btk) is a non-receptor tyrosine kinase belonging to the Tec family of kinases. Btk is critical for B-cell development, differentiation and signalling through the B-cell antigen receptor (BCR) as is evident by its genetic association to a human primary immunodeficiency disease known as X-linked Agammaglobulinemia (XLA). Btk is also present in specific cells of the myeloid lineage and contributes to the activation of the FcγR and FcεR signalling pathways in macrophages, neutrophils and mast cells. Because of its key role in these pathways, Btk is considered a promising target for therapeutic intervention in autoimmune and inflammatory disease. Numerous research groups are actively working to identify Btk inhibitors through the targeting of inactive kinase conformations or covalent active site inhibition. Both strategies have benefited from the rapid growth in structural biology insight for the target. Recently discovered potent and orally bioavailable Btk inhibitors have shown promising efficacy in several pre-clinical animal models of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). These results, coupled with promising initial findings from the study of Btk inhibitors in human clinical trials for oncology, strongly suggest Btk intervention offers significant potential as a treatment strategy in inflammatory disease.
Collapse
Affiliation(s)
- MARK E. SCHNUTE
- Medicinal Chemistry, Pfizer Inc. 200 Cambridge Park Drive Cambridge, MA 02140 USA
| | - ADRIAN HUANG
- Department of Chemistry Wellesley College, 106 Central Street, Wellesley, MA 02481 USA
| | - EDDINE SAIAH
- Medicinal Chemistry, Pfizer Inc. 200 Cambridge Park Drive Cambridge, MA 02140 USA
| |
Collapse
|
65
|
Regulation of nucleocytoplasmic shuttling of Bruton's tyrosine kinase (Btk) through a novel SH3-dependent interaction with ankyrin repeat domain 54 (ANKRD54). Mol Cell Biol 2012; 32:2440-53. [PMID: 22527282 DOI: 10.1128/mcb.06620-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bruton's tyrosine kinase (Btk), belonging to the Tec family of tyrosine kinases (TFKs), is essential for B-lymphocyte development. Abrogation of Btk signaling causes human X-linked agammaglobulinemia (XLA) and murine X-linked immunodeficiency (Xid). We employed affinity purification of Flag-tagged Btk, combined with tandem mass spectrometry, to capture and identify novel interacting proteins. We here characterize the interaction with ankryin repeat domain 54 protein (ANKRD54), also known as Lyn-interacting ankyrin repeat protein (Liar). While Btk is a nucleocytoplasmic protein, the Liar pool was found to shuttle at a higher rate than Btk. Importantly, our results suggest that Liar mediates nuclear export of both Btk and another TFK, Txk/Rlk. Liar-mediated Btk shuttling was enriched for activation loop, nonphosphorylated Btk and entirely dependent on Btk's SH3 domain. Liar also showed reduced binding to an aspartic acid phosphomimetic SH3 mutant. Three other investigated nucleus-located proteins, Abl, estrogen receptor β (ERβ), and transcription factor T-bet, were all unaffected by Liar. We mapped the interaction site to the C terminus of the Btk SH3 domain. A biotinylated, synthetic Btk peptide, ARDKNGQEGYIPSNYVTEAEDS, was sufficient for this interaction. Liar is the first protein identified that specifically influences the nucleocytoplasmic shuttling of Btk and Txk and belongs to a rare group of known proteins carrying out this activity in a Crm1-dependent manner.
Collapse
|
66
|
Bruton's tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci U S A 2012; 109:5791-6. [PMID: 22454496 DOI: 10.1073/pnas.1119238109] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptor 3 (TLR3) mediates antiviral response by recognizing double-stranded RNA. Its cytoplasmic domain is tyrosine phosphorylated upon ligand binding and initiates downstream signaling via the adapter TIR-containing adaptor inducing interferon-β (TRIF). However, the kinase responsible for TLR3 phosphorylation remains unknown. We show here that Bruton's tyrosine kinase (BTK)-deficient macrophages failed to secrete inflammatory cytokines and IFN-β upon TLR3 stimulation and were impaired in clearing intracellular dengue virus infection. Mutant mice were also less susceptible to d-galactosamine/p(I:C)-induced sepsis. In the absence of BTK, TLR3-induced phosphoinositide 3-kinase (PI3K), AKT and MAPK signaling and activation of NFκB, IRF3, and AP-1 transcription factors were all defective. We demonstrate that BTK directly phosphorylates TLR3 and in particular the critical Tyr759 residue. BTK point mutations that abrogate or led to constitutive kinase activity have opposite effects on TLR3 phosphorylation. Loss of BTK also compromises the formation of the downstream TRIF/receptor-interacting protein 1 (RIP1)/TBK1 complex. Thus, BTK plays a critical role in initiating TLR3 signaling.
Collapse
|
67
|
Boucheron N, Ellmeier W. The Role of Tec Family Kinases in the Regulation of T-helper-cell Differentiation. Int Rev Immunol 2012; 31:133-54. [DOI: 10.3109/08830185.2012.664798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
68
|
Khan WN. Colonel Bruton's Kinase Defined the Molecular Basis of X-Linked Agammaglobulinemia, the First Primary Immunodeficiency. THE JOURNAL OF IMMUNOLOGY 2012; 188:2933-5. [DOI: 10.4049/jimmunol.1200490] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
69
|
Critical roles of the WASP N-terminal domain and Btk in LPS-induced inflammatory response in macrophages. PLoS One 2012; 7:e30351. [PMID: 22253930 PMCID: PMC3257260 DOI: 10.1371/journal.pone.0030351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/14/2011] [Indexed: 02/06/2023] Open
Abstract
While Wiskott-Aldrich syndrome protein (WASP) plays critical roles in TCR signaling as an adaptor molecule, how it transduces innate immune signals remains to be elucidated. To investigate the roles of WASP in innate immune cells, we established bone marrow-derived macrophage (BMDM) cell lines from WASP15 transgenic (Tg) mice overexpressing the WASP N-terminal region (exons 1–5). Upon LPS stimulation, WASP15 Tg BMDM cell lines produce lower levels of inflammatory cytokines, such as TNF-α, IL-6, and IL-12p40 than the wild-type BMDM cell line. In addition, the production of nitric oxide by WASP15 Tg BMDM cells in response to LPS and IFN-γ was significantly impaired. Furthermore, we uncovered that the WASP N-terminal domain associates with the Src homology (SH) 3 domain of Bruton's tyrosine kinase (Btk). Overexpression of the WASP N-terminal domain diminishes the extent of tyrosine phosphorylation of endogenous WASP in WASP15 Tg BMDM cells, possibly by interfering with the specific binding between endogenous WASP and Btk during LPS signaling. These observations strongly suggest that the interaction between WASP N-terminal domain and Btk plays important roles in the LPS signaling cascade in innate immunity.
Collapse
|
70
|
Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 2012; 26:963-71. [PMID: 22289921 DOI: 10.1038/leu.2011.371] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this study was the appraisal of the clinical and functional consequences of germline mutations within the gene for the IL-2 inducible T-cell kinase, ITK. Among patients with Epstein-Barr virus-driven lymphoproliferative disorders (EBV-LPD), negative for mutations in SH2D1A and XIAP (n=46), we identified two patients with R29H or D500T,F501L,M503X mutations, respectively. Human wild-type (wt) ITK, but none of the mutants, was able to rescue defective calcium flux in murine Itk(-/-) T cells. Pulse-chase experiments showed that ITK mutations lead to varying reductions of protein half-life from 25 to 69% as compared with wt ITK (107 min). The pleckstrin homology domain of wt ITK binds most prominently to phosphatidylinositol monophosphates (PI(3)P, PI(4)P, PI(5)P) and to lesser extend to its double or triple phosphorylated derivates (PIP2, PIP3), interactions which were dramatically reduced in the patient with the ITK(R29H) mutant. ITK mutations are distributed over the entire protein and include missense, nonsense and indel mutations, reminiscent of the situation in its sister kinase in B cells, Bruton's tyrosine kinase.
Collapse
|
71
|
Marron TU, Yu JE, Cunningham-Rundles C. Toll-like receptor function in primary B cell defects. Front Biosci (Elite Ed) 2012; 4:1853-63. [PMID: 22202002 PMCID: PMC3428023 DOI: 10.2741/507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiency diseases include more than 150 different genetic defects, classified on the basis of the mutations or physiological defects involved. The first immune defects to be well recognized were those of adaptive immunity affecting B cell function and resulting in hypogammaglobulinemia and defects of specific antibody production; more recently, novel defects of innate immunity have been described, some involving Toll-like receptors (TLRs) and their signaling pathways. Furthermore, it is increasingly evident that the innate and adaptive pathways intersect and reinforce each other. B cells express a number of TLRs, which when activated lead to cell activation, up-regulation of co-stimulatory molecules, secretion of cytokines, up-regulation of recombination enzymes, isotype switch and immune globulin production. TLR activation of antigen presenting cells leads to heightened cytokine production, providing additional stimuli for B cell development and maturation. Recent studies have demonstrated that patients with common variable immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA) have altered TLR responsiveness. We review TLR defects in these disorders of B cell development, and discuss how B cell gene defects may modulate TLR signaling.
Collapse
Affiliation(s)
- Thomas U Marron
- Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
72
|
Marron TU, Martinez-Gallo M, Yu JE, Cunningham-Rundles C. Toll-like receptor 4-, 7-, and 8-activated myeloid cells from patients with X-linked agammaglobulinemia produce enhanced inflammatory cytokines. J Allergy Clin Immunol 2011; 129:184-90.e1-4. [PMID: 22088613 DOI: 10.1016/j.jaci.2011.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 10/05/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Bruton tyrosine kinase (BTK) is a component of signaling pathways downstream from Toll-like receptors (TLRs) 2, 4, 7, 8, and 9. Previous work in BTK-deficient mice, cell lines, and cultured cells from patients with X-linked agammaglobulinemia (XLA) suggested defective TLR-driven cytokine production. OBJECTIVE We sought to compare TLR-4-, TLR-7-, and TLR-8-induced cytokine production of primary cells from patients with XLA with that seen in control cells. METHODS PBMCs from patients with XLA, freshly isolated plasmacytoid dendritic cells, monocytes, and monocytoid dendritic cells were activated with TLR-4, TLR-7, and TLR-8 agonists. Signaling intermediates and intracellular and secreted cytokine levels were compared with those seen in control cells. RESULTS Although TLR-4, TLR-7, and TLR-8 activation of nuclear factor κB and mitogen-activated protein kinase pathways in cells from patients with XLA and control cells were comparable, TLR-activated freshly isolated monocytes and monocytoid dendritic cells from patients with XLA produced significantly more TNF-α, IL-6, and IL-10 than control cells. TLR-7/8-activated plasmacytoid dendritic cells produced normal amounts of IFN-α. In murine models BTK regulates the degradation of Toll-IL-1 receptor domain-containing adaptor protein, terminating TLR-4-induced cytokine production. Although this might explain the heightened TLR-4-driven cytokine production we observed, Toll-IL-1 receptor domain-containing adaptor protein degradation is intact in cells from patients with XLA, excluding this explanation. CONCLUSION In contrast to previous studies with BTK-deficient mice, cell lines, and cultured cells from patients with XLA suggesting impaired TLR-driven cytokine production, these data suggest that BTK inhibits TLR-induced cytokine production in primary human cells.
Collapse
Affiliation(s)
- Thomas U Marron
- Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
73
|
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) has been implicated in the production of proinflammatory cytokines and chemokines during bacterial infection and sepsis. For downstream signal transduction, TREM-1 is coupled to the ITAM-containing adaptor DAP12. Here, we demonstrate that Bruton tyrosine kinase (Btk), a member of the Tec kinases, becomes phosphorylated upon TREM-1 triggering. In U937-derived cell lines, in which expression of Btk was diminished by shRNA-mediated knockdown, phosphorylation of Erk1/2 and PLCγ1 and Ca²⁺ mobilization were reduced after TREM-1 stimulation. Importantly, TREM-1-induced production of the pro-inflammatory cytokines, TNF-α and IL-8, and up-regulation of activation/differentiation cell surface markers were impaired in Btk knockdown cells. Similar results were obtained upon TREM-1 stimulation of BMDCs of Btk(-/-) mice. The analysis of cells containing Btk mutants revealed that intact membrane localization and a functional kinase domain were required for TREM-1-mediated signaling. Finally, after TREM-1 engagement, TNF-α production by PBMCs was reduced in the majority of patients suffering from X-linked agammaglobulinemia (XLA), a rare hereditary disease caused by mutations in the BTK gene. In conclusion, our data identify Btk as a positive regulator in the ITAM-mediated TREM-1/DAP12 pathway and suggest its implication in inflammatory processes.
Collapse
|
74
|
Hussain A, Yu L, Faryal R, Mohammad DK, Mohamed AJ, Smith CIE. TEC family kinases in health and disease--loss-of-function of BTK and ITK and the gain-of-function fusions ITK-SYK and BTK-SYK. FEBS J 2011; 278:2001-10. [PMID: 21518255 DOI: 10.1111/j.1742-4658.2011.08134.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The TEC family is ancient and constitutes the second largest family of cytoplasmic tyrosine kinases. In 1993, loss-of-function mutations in the BTK gene were reported as the cause of X-linked agammaglobulinemia. Of all the existing 90 tyrosine kinases in humans, Bruton's tyrosine kinase (BTK) is the kinase for which most mutations have been identified. These experiments of nature collectively provide a form of mutation scanning with direct implications for the several hundred endogenous signaling proteins carrying domains also found in BTK. In 2009, an inactivating mutation in the ITK gene was shown to cause susceptibility to lethal Epstein-Barr virus infection. Both kinases represent interesting targets for inhibition: in the case of BTK, as an immunosuppressant, whereas there is evidence that the inhibition of inducible T-cell kinase (ITK) could influence the infectivity of HIV and also have anti-inflammatory activity. Since 2006, several patients carrying a fusion protein, originating from a translocation joining genes encoding the kinases ITK and spleen tyrosine kinase (SYK), have been shown to develop T-cell lymphoma. We review these disease processes and also describe the role of the N-terminal pleckstrin homology-Tec homology (PH-TH) domain doublet of BTK and ITK in the downstream intracellular signaling of such fusion proteins.
Collapse
Affiliation(s)
- Alamdar Hussain
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
75
|
Abstract
The inhibitor of Bruton tyrosine kinase γ (IBtkγ) is a negative regulator of the Bruton tyrosine kinase (Btk), which plays a major role in B-cell differentiation; however, the mechanisms of IBtkγ-mediated regulation of Btk are unknown. Here we report that B-cell receptor (BCR) triggering caused serine-phosphorylation of IBtkγ at protein kinase C consensus sites and dissociation from Btk. By liquid chromatography and mass-mass spectrometry and functional analysis, we identified IBtkγ-S87 and -S90 as the critical amino acid residues that regulate the IBtkγ binding affinity to Btk. Consistently, the mutants IBtkγ carrying S87A and S90A mutations bound constitutively to Btk and down-regulated Ca(2+) fluxes and NF-κB activation on BCR triggering. Accordingly, spleen B cells from Ibtkγ(-/-) mice showed an increased activation of Btk, as evaluated by Y551-phosphorylation and sustained Ca(2+) mobilization on BCR engagement. These findings identify a novel pathway of Btk regulation via protein kinase C phosphorylation of IBtkγ.
Collapse
|
76
|
Ellmeier W, Abramova A, Schebesta A. Tec family kinases: regulation of FcεRI-mediated mast-cell activation. FEBS J 2011; 278:1990-2000. [PMID: 21362140 DOI: 10.1111/j.1742-4658.2011.08073.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mast cells express the high-affinity receptor for IgE (FcεRI) and are key players in type I hypersensitivity reactions. They are critically involved in the development of allergic rhinitis, allergic asthma and systemic anaphylaxis, however, they also regulate normal physiological processes that link innate and adaptive immune responses. Thus, their activation has to be tightly controlled. One group of signaling molecules that are activated upon FcεRI stimulation is formed by Tec family kinases, and three members of this kinase family (Btk, Itk and Tec) are expressed in mast cells. Many studies have revealed important functions of Tec kinases in signaling pathways downstream of the antigen receptors in lymphocytes. This review summarizes the current knowledge about the function of Tec family kinases in FcεRI-mediated signaling pathways in mast cell.
Collapse
Affiliation(s)
- Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria.
| | | | | |
Collapse
|
77
|
Kuglstatter A, Wong A, Tsing S, Lee SW, Lou Y, Villaseñor AG, Bradshaw JM, Shaw D, Barnett JW, Browner MF. Insights into the conformational flexibility of Bruton's tyrosine kinase from multiple ligand complex structures. Protein Sci 2011; 20:428-36. [PMID: 21280133 PMCID: PMC3048427 DOI: 10.1002/pro.575] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bruton's tyrosine kinase (BTK) plays a key role in B cell receptor signaling and is considered a promising drug target for lymphoma and inflammatory diseases. We have determined the X-ray crystal structures of BTK kinase domain in complex with six inhibitors from distinct chemical classes. Five different BTK protein conformations are stabilized by the bound inhibitors, providing insights into the structural flexibility of the Gly-rich loop, helix C, the DFG sequence, and activation loop. The conformational changes occur independent of activation loop phosphorylation and do not correlate with the structurally unchanged WEI motif in the Src homology 2-kinase domain linker. Two novel activation loop conformations and an atypical DFG conformation are observed representing unique inactive states of BTK. Two regions within the activation loop are shown to structurally transform between 3(10)- and α-helices, one of which collapses into the adenosine-5'-triphosphate binding pocket. The first crystal structure of a Tec kinase family member in the pharmacologically important DFG-out conformation and bound to a type II kinase inhibitor is described. The different protein conformations observed provide insights into the structural flexibility of BTK, the molecular basis of its regulation, and the structure-based design of specific inhibitors.
Collapse
Affiliation(s)
- Andreas Kuglstatter
- *Correspondence to: Andreas Kuglstatter, Hoffmann-La Roche, 340 Kingsland Street, Nutley, NJ 07110. E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 2010; 7:41-50. [PMID: 21113169 DOI: 10.1038/nchembio.481] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022]
Abstract
Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes FcγRIII-induced TNFα, IL-1β and IL-6 production. Accordingly, in myeloid- and FcγR-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.
Collapse
|
79
|
Boucheron N, Sharif O, Schebesta A, Croxford A, Raberger J, Schmidt U, Vigl B, Bauer J, Bankoti R, Lassmann H, Epstein MM, Knapp S, Waisman A, Ellmeier W. The Protein Tyrosine Kinase Tec Regulates a CD44highCD62L− Th17 Subset. THE JOURNAL OF IMMUNOLOGY 2010; 185:5111-9. [DOI: 10.4049/jimmunol.1001734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
80
|
Uckun FM, Qazi S. Bruton's tyrosine kinase as a molecular target in treatment of leukemias and lymphomas as well as inflammatory disorders and autoimmunity. Expert Opin Ther Pat 2010; 20:1457-70. [DOI: 10.1517/13543776.2010.517750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
81
|
Niazi UH, Bibby J, Sutcliffe MJ. In-silico characterization of the effects of phosphorylated tyrosines 86 and 106 on structure and binding of MAL: insight into hyperinflammatory response to infection by the human malaria parasites. J Recept Signal Transduct Res 2010; 31:53-65. [DOI: 10.3109/10799893.2010.512014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
82
|
Ng YY, Baert MRM, Pike-Overzet K, Rodijk M, Brugman MH, Schambach A, Baum C, Hendriks RW, van Dongen JJM, Staal FJT. Correction of B-cell development in Btk-deficient mice using lentiviral vectors with codon-optimized human BTK. Leukemia 2010; 24:1617-30. [PMID: 20574453 DOI: 10.1038/leu.2010.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency (PID) in man and caused by mutations in the Bruton's tyrosine kinase (BTK) gene. XLA is characterized by a B-cell differentiation arrest in bone marrow, absence of mature B cells and immunoglobulins (Igs), and recurrent bacterial infections. We used self-inactivating lentiviral vectors expressing codon-optimized human BTK under the control of three different ubiquitous or B cell-specific promoters. Btk-/- mice engrafted with transduced cells showed correction of both precursor B-cell and peripheral B-cell development. Lentiviral vectors containing the wildtype BTK sequence did not correct the phenotype. All treated mice with codon-optimized BTK exhibited the recovery of B1 cells in the peritoneal cavity, and of serum IgM and IgG3 levels. Calcium mobilization responses upon B-cell receptor stimulation as well as in vivo responses to T cell-independent antigens were restored. Viral promoters overexpressing BTK >100-fold above normal resulted in erythro-myeloid proliferations independent of insertional mutagenesis. However, transplantation into secondary Btk-/- recipients using cellular promoters resulted in functional restoration of peripheral B cells and IgM levels, without any adverse effects. In conclusion, transduction of human BTK corrects B-cell development and antigen-specific antibody responses in Btk-/- mice, thus indicating the feasibility of lentiviral gene therapy for XLA, provided that BTK expression does not vastly exceed normal levels.
Collapse
Affiliation(s)
- Y Y Ng
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kido O, Fukushima K, Ueno Y, Inoue J, Jefferson DM, Shimosegawa T. Compensatory role of inducible annexin A2 for impaired biliary epithelial anion-exchange activity of inflammatory cholangiopathy. J Transl Med 2009; 89:1374-86. [PMID: 19823170 DOI: 10.1038/labinvest.2009.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The peribiliary inflammation of cholangiopathy affects the physiological properties of biliary epithelial cells (cholangiocyte), including bicarbonate-rich ductular secretion. We revealed the upregulation of annexin A2 (ANXA2) in cholangiocytes in primary biliary cirrhosis (PBC) by a proteomics approach and evaluated its physiological significance. Global protein expression profiles of a normal human cholangiocyte line (H69) in response to interferon-gamma (IFNgamma) were obtained by two-dimensional electrophoresis followed by MALDI-TOF-MS. Histological expression patterns of the identified molecules in PBC liver were confirmed by immunostaining. H69 cells stably transfected with doxycyclin-inducible ANXA2 were subjected to physiological evaluation. Recovery of the intracellular pH after acute alkalinization was measured consecutively by a pH indicator with a specific inhibitor of anion exchanger (AE), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Protein kinase-C (PKC) activation was measured by PepTag Assay and immunoblotting. Twenty spots that included ANXA2 were identified as IFNgamma-responsive molecules. Cholangiocytes of PBC liver were decorated by the unique membranous overexpression of ANXA2. Apical ANXA2 of small ducts of PBC was directly correlated with the clinical cholestatic markers and transaminases. Controlled induction of ANXA2 resulted in significant increase of the DIDS-inhibitory fraction of AE activity of H69, which was accompanied by modulation of PKC activity. We, therefore, identified ANXA2 as an IFNgamma-inducible gene in cholangiocytes that could serve as a potential histological marker of inflammatory cholangiopathy, including PBC. We conclude that inducible ANXA2 expression in cholangiocytes may play a compensatory role for the impaired AE activity of cholangiocytes in PBC in terms of bicarbonate-rich ductular secretion and bile formation through modulation of the PKC activity.
Collapse
Affiliation(s)
- Osamu Kido
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
84
|
Liu Z, Mai A, Sun J. Lysine acetylation regulates Bruton's tyrosine kinase in B cell activation. THE JOURNAL OF IMMUNOLOGY 2009; 184:244-54. [PMID: 19949111 DOI: 10.4049/jimmunol.0902324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bruton's tyrosine kinase (Btk) is essential for BCR signal transduction and has diverse functions in B cells. Although Btk has been extensively studied, the role of lysine acetylation in Btk regulation has not been reported. In this study, we show that BCR cross-linking induces histone lysine acetylation at the Btk promoter, correlating with marked recruitment of histone acetyltransferase E1A-associated 300-kDa protein (p300) to the locus. These effects enhance Btk promoter activity and increase the expression of Btk mRNA and protein. Consistent with these results, activated B cells display increased p300 expression and total histone acetyltransferase activity in vitro and in vivo, resulting in global histone acetylation. Interestingly, we found that BCR signaling induces Btk lysine acetylation mediated by p300. Moreover, lysine acetylation of Btk promotes its phosphorylation. Together, our results indicate a novel regulatory mechanism for Btk transcription and reveal a previously unrecognized posttranslational modification of the Btk protein and its association with phosphorylation in B cell activation.
Collapse
Affiliation(s)
- Zhijian Liu
- Laboratory of B-Cell and Autoantibody, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | | | | |
Collapse
|
85
|
Clinical characteristics and genotype-phenotype correlation in 62 patients with X-linked agammaglobulinemia. J Clin Immunol 2009; 30:121-31. [PMID: 19904586 DOI: 10.1007/s10875-009-9341-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/30/2009] [Indexed: 12/29/2022]
Abstract
INTRODUCTION X-linked agammagobulinemia (XLA) is a primary immunodeficiency disorder caused by Bruton's tyrosine kinase (Btk) gene mutation. Recent studies suggested genotype-phenotype correlation in XLA, but a definitive association remains controversial. PATIENTS AND METHODS We examined the relationship between specific Btk gene mutations and severity of clinical presentation in 62 patients with XLA. Disease severity was assessed by the age of disease onset and the presence of severe infections, while mutations were classified into severe and mild based on structural and functional consequence by bioinformatics analysis. RESULTS Fifty-six Btk mutations were identified in 62 patients from 57 kindreds. Variation in phenotypes was observed, and there was a tendency of association between genotype and age of disease onset as well as occurrence of severe infections. CONCLUSION A critical analysis of the circumstances upon presentation also revealed that under-recognition of recurrent infections and relevant family history are important hurdles to timely diagnosis of XLA.
Collapse
|
86
|
|
87
|
Lin L, Czerwinski R, Kelleher K, Siegel MM, Wu P, Kriz R, Aulabaugh A, Stahl M. Activation loop phosphorylation modulates Bruton's tyrosine kinase (Btk) kinase domain activity. Biochemistry 2009; 48:2021-32. [PMID: 19206206 DOI: 10.1021/bi8019756] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bruton's tyrosine kinase (Btk) plays a central role in signal transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. A number of cell signaling studies clearly show that Btk is activated by Lyn, a Src family kinase, through phosphorylation on activation loop tyrosine 551 (Y(551)). However, the detailed molecular mechanism regulating Btk activation remains unclear. In particular, we do not fully understand the correlation of kinase activity with Y(551) phosphorylation, and the role of the noncatalytic domains of Btk in the activation process. Insect cell expressed full-length Btk is enzymatically active, but a truncated version of Btk, composed of only the kinase catalytic domain, is largely inactive. Further characterization of both forms of Btk by mass spectrometry showed partial phosphorylation of Y(551) of the full-length enzyme and none of the truncated kinase domain. To determine whether the lack of activity of the kinase domain was due to the absence of Y(551) phosphorylation, we developed an in vitro method to generate Y(551) monophosphorylated Btk kinase domain fragment using the Src family kinase Lyn. Detailed kinetic analyses demonstrated that the in vitro phosphorylated Btk kinase domain has a similar activity as the full-length enzyme while the unphosphorylated kinase domain has a very low k(cat) and is largely inactive. A divalent magnesium metal dependence study established that Btk requires a second magnesium ion for activity. Furthermore, our analysis revealed significant differences in the second metal-binding site among the kinase domain and the full-length enzyme that likely account for the difference in their catalytic profile. Taken together, our study provides important mechanistic insights into Btk kinase activity and phosphorylation-mediated regulation.
Collapse
Affiliation(s)
- Laura Lin
- Structural Biology and Computational Chemistry, Wyeth Research, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Noronha AM, Liang Y, Hetzel JT, Hasturk H, Kantarci A, Stucchi A, Zhang Y, Nikolajczyk BS, Farraye FA, Ganley-Leal LM. Hyperactivated B cells in human inflammatory bowel disease. J Leukoc Biol 2009; 86:1007-16. [PMID: 19589946 DOI: 10.1189/jlb.0309203] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IBD is characterized by a chronic, dysregulated immune response to intestinal bacteria. Past work has focused on the role of T cells and myeloid cells in mediating chronic gastrointestinal and systemic inflammation. Here, we show that circulating and tissue B cells from CD patients demonstrate elevated basal levels of activation. CD patient B cells express surface TLR2, spontaneously secrete high levels of IL-8, and contain increased ex vivo levels of phosphorylated signaling proteins. CD clinical activity correlates directly with B cell expression of IL-8 and TLR2, suggesting a positive relationship between these B cell inflammatory mediators and disease pathogenesis. In contrast, B cells from UC patients express TLR2 but generally do not demonstrate spontaneous IL-8 secretion; however, significant IL-8 production is inducible via TLR2 stimulation. Furthermore, UC clinical activity correlates inversely with levels of circulating TLR2+ B cells, which is opposite to the association observed in CD. In conclusion, TLR2+ B cells are associated with clinical measures of disease activity and differentially associated with CD- and UC-specific patterns of inflammatory mediators, suggesting a formerly unappreciated role of B cells in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Ansu Mammen Noronha
- Section of Infectious Disease, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Blomberg KEM, Boucheron N, Lindvall JM, Yu L, Raberger J, Berglöf A, Ellmeier W, Smith CE. Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells. BMC Genomics 2009; 10:233. [PMID: 19450280 PMCID: PMC2689280 DOI: 10.1186/1471-2164-10-233] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 05/18/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Tec-family kinase Itk plays an important role during T-cell activation and function, and controls also conventional versus innate-like T-cell development. We have characterized the transcriptome of Itk-deficient CD3+ T-cells, including CD4+ and CD8+ subsets, using Affymetrix microarrays. RESULTS The largest difference between Itk-/- and Wt CD3+ T-cells was found in unstimulated cells, e.g. for killer cell lectin-like receptors. Compared to anti-CD3-stimulation, anti-CD3/CD28 significantly decreased the number of transcripts suggesting that the CD28 co-stimulatory pathway is mainly independent of Itk. The signatures of CD4+ and CD8+ T-cell subsets identified a greater differential expression than in total CD3+ cells. Cyclosporin A (CsA)-treatment had a stronger effect on transcriptional regulation than Itk-deficiency, suggesting that only a fraction of TCR-mediated calcineurin/NFAT-activation is dependent on Itk. Bioinformatic analysis of NFAT-sites of the group of transcripts similarly regulated by Itk-deficiency and CsA-treatment, followed by chromatin-immunoprecipitation, revealed NFATc1-binding to the Bub1, IL7R, Ctla2a, Ctla2b, and Schlafen1 genes. Finally, to identify transcripts that are regulated by Tec-family kinases in general, we compared the expression profile of Itk-deficient T-cells with that of Btk-deficient B-cells and a common set of transcripts was found. CONCLUSION Taken together, our study provides a general overview about the global transcriptional changes in the absence of Itk.
Collapse
Affiliation(s)
- K Emelie M Blomberg
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-14186 Huddinge, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Tóth B, Volokha A, Mihas A, Pac M, Bernatowska E, Kondratenko I, Polyakov A, Erdos M, Pasic S, Bataneant M, Szaflarska A, Mironska K, Richter D, Stavrik K, Avcin T, Márton G, Nagy K, Dérfalvi B, Szolnoky M, Kalmár A, Belevtsev M, Guseva M, Rugina A, Kriván G, Timár L, Nyul Z, Mosdósi B, Kareva L, Peova S, Chernyshova L, Gherghina I, Serban M, Conley ME, Notarangelo LD, Smith CIE, van Dongen J, van der Burg M, Maródi L. Genetic and demographic features of X-linked agammaglobulinemia in Eastern and Central Europe: a cohort study. Mol Immunol 2009; 46:2140-6. [PMID: 19419768 DOI: 10.1016/j.molimm.2009.03.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 03/05/2009] [Accepted: 03/14/2009] [Indexed: 12/12/2022]
Abstract
Primary immunodeficiency disorders are a recognized public health problem worldwide. The prototype of these conditions is X-linked agammaglobulinemia (XLA) or Bruton's disease. XLA is caused by mutations in Bruton's tyrosine kinase gene (BTK), preventing B cell development and resulting in the almost total absence of serum immunoglobulins. The genetic profile and prevalence of XLA have not previously been studied in Eastern and Central European (ECE) countries. We studied the genetic and demographic features of XLA in Belarus, Croatia Hungary, Poland, Republic of Macedonia, Romania, Russia, Serbia, Slovenia, and Ukraine. We collected clinical, immunological, and genetic information for 122 patients from 109 families. The BTK gene was sequenced from the genomic DNA of patients with a high susceptibility to infection, almost no CD19(+) peripheral blood B cells, and low or undetectable levels of serum immunoglobulins M, G, and A, compatible with a clinical and immunological diagnosis of XLA. BTK sequence analysis revealed 98 different mutations, 46 of which are reported for the first time here. The mutations included single nucleotide changes in the coding exons (35 missense and 17 nonsense), 23 splicing defects, 13 small deletions, 7 large deletions, and 3 insertions. The mutations were scattered throughout the BTK gene and most frequently concerned the SH1 domain; no missense mutation was detected in the SH3 domain. The prevalence of XLA in ECE countries (total population 145,530,870) was found to be 1 per 1,399,000 individuals. This report provides the first comprehensive overview of the molecular genetic and demographic features of XLA in Eastern and Central Europe.
Collapse
Affiliation(s)
- Beáta Tóth
- Department of Infectious and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Martina JA, Lelouvier B, Puertollano R. The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic 2009; 10:1143-56. [PMID: 19497048 DOI: 10.1111/j.1600-0854.2009.00935.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The varitint-waddler phenotype in mice is caused by gain-of-function mutations in mucolipin-3 (MCOLN3), a member of the mucolipin family of ion channels. These mice are characterized by defects in pigmentation, hearing loss and vestibular defects, suggesting that MCOLN3 might play a role in melanosome trafficking and hair cell maturation. Recent evidence has shown that MCOLN3 is a Ca(2+)-permeable channel and its activity is regulated by pH. Here we show that MCOLN3 primarily localizes to early and late endosomes in human epithelial cells. This distribution at the less acidic portions of the endocytic pathway is consistent with the reported inactivation of the channel by low pH. Furthermore, overexpression of MCOLN3 causes dramatic alterations in the endosomal pathway, including enlargement of Hrs-positive endosomes, delayed degradation of epidermal growth factor (EGF) and EGF receptor (EGFR) and defective autophagosome maturation, whereas depletion of endogenous MCOLN3 enhances EGFR degradation. Finally, we found that endosomal pH is higher in cells overexpressing MCOLN3 and propose a model in which Ca(2+) release from endosomes mediated by MCOLN3 might be important for efficient endosomal acidification. Therefore, MCOLN3 is a novel Ca(2+) channel that plays a crucial role in the regulation of cargo trafficking along the endosomal pathway.
Collapse
Affiliation(s)
- Jose A Martina
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
92
|
Serosal inflammation (pleural and pericardial effusions) related to tyrosine kinase inhibitors. Target Oncol 2009; 4:99-105. [PMID: 19381453 DOI: 10.1007/s11523-009-0110-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have dramatically changed the treatment of chronic myeloid leukemia (CML) and are increasingly used in other malignancies. Despite the apparent selectivity of these agents significant side effects can occur mainly due to off target kinase inhibition. Clinical consequences of serosal inflammation, including pleural and pericardial effusions, have emerged as a frequent adverse event associated with dasatinib while occurring much less frequently during imatinib and nilotinib therapy. The pathogenesis is uncertain but may involve inhibition of platelet derived growth factor or expansion of cytotoxic T and natural killer cells. The development of serosal inflammation with dasatinib poses a significant challenge to physicians, as it cannot be predicted, the time of onset is variable, and management frequently requires repeat invasive procedures.
Collapse
|
93
|
Abstract
Mast cell mediator release represents a pivotal event in the initiation of inflammatory reactions associated with allergic disorders. These responses follow antigen-mediated aggregation of immunoglobulin E (IgE)-occupied high-affinity receptors for IgE (Fc epsilon RI) on the mast cell surface, a response which can be further enhanced following stem cell factor-induced ligation of the mast cell growth factor receptor KIT (CD117). Activation of tyrosine kinases is central to the ability of both Fc epsilon RI and KIT to transmit downstream signaling events required for the regulation of mast cell activation. Whereas KIT possesses inherent tyrosine kinase activity, Fc epsilon RI requires the recruitment of Src family tyrosine kinases and Syk to control the early receptor-proximal signaling events. The signaling pathways propagated by these tyrosine kinases can be further upregulated by the Tec kinase Bruton's tyrosine kinase and downregulated by the actions of the tyrosine Src homology 2 domain-containing phosphatase 1 (SHP-1) and SHP-2. In this review, we discuss the regulation and role of specific members of this tyrosine kinase network in KIT and Fc epsilon RI-mediated mast cell activation.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1930, USA
| | | |
Collapse
|
94
|
Mohamed AJ, Yu L, Bäckesjö CM, Vargas L, Faryal R, Aints A, Christensson B, Berglöf A, Vihinen M, Nore BF, Smith CIE. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009; 228:58-73. [PMID: 19290921 DOI: 10.1111/j.1600-065x.2008.00741.x] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bruton's agammaglobulinemia tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important in B-lymphocyte development, differentiation, and signaling. Btk is a member of the Tec family of kinases. Mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Activation of Btk triggers a cascade of signaling events that culminates in the generation of calcium mobilization and fluxes, cytoskeletal rearrangements, and transcriptional regulation involving nuclear factor-kappaB (NF-kappaB) and nuclear factor of activated T cells (NFAT). In B cells, NF-kappaB was shown to bind to the Btk promoter and induce transcription, whereas the B-cell receptor-dependent NF-kappaB signaling pathway requires functional Btk. Moreover, Btk activation is tightly regulated by a plethora of other signaling proteins including protein kinase C (PKC), Sab/SH3BP5, and caveolin-1. For example, the prolyl isomerase Pin1 negatively regulates Btk by decreasing tyrosine phosphorylation and steady state levels of Btk. It is intriguing that PKC and Pin1, both of which are negative regulators, bind to the pleckstrin homology domain of Btk. To this end, we describe here novel mutations in the pleckstrin homology domain investigated for their transforming capacity. In particular, we show that the mutant D43R behaves similar to E41K, already known to possess such activity.
Collapse
Affiliation(s)
- Abdalla J Mohamed
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
TRPML1, TRPML2 and TRPML3 belong to the mucolipin family of the TRP superfamily of ion channels. The founding member of this family, TRPML1, was cloned during the search for the genetic determinants of the lysosomal storage disease mucolipidosis type IV (MLIV). Mucolipins are predominantly expressed within the endocytic pathway, where they appear to regulate membrane traffic and/or degradation. The physiology of mucolipins raises some of the most interesting questions of modern cell biology. Their traffic and localization is a multistep process involving a system of adaptor proteins, while their ion channel activity possibly exemplifies the rare cases of regulation of endocytic traffic and hydrolysis by ion channels. Finally, dysregulation of mucolipins results in cell death leading to neurodegenerative phenotypes of MLIV and of the varitint-waddler mouse model of familial deafness. The present review discusses current knowledge and questions regarding this novel family of disease-relevant ion channels with a specific focus on mucolipin regulation and their role in membrane traffic and cell death. Since mucolipins are ubiquitously expressed, this review may be useful for a wide audience of basic biologists and clinicians.
Collapse
Affiliation(s)
- Rosa Puertollano
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
96
|
Abstract
The primary antibody deficiency syndromes are a group of rare disorders characterized by an inability to produce clinically effective immunoglobulin responses. Some of these disorders result from genetic mutations in genes involved in B cell development, whereas others appear to be complex polygenic disorders. They most commonly present with recurrent infections due to encapsulated bacteria, although in the most common antibody deficiency, Common Variable Immunodeficiency, systemic and organ-specific autoimmunity can be a presenting feature. Diagnostic delay in this group of disorders remains a problem, and the laboratory has a vital role in the detection of abnormalities in immunoglobulin concentration and function. It is critical to distinguish this group of disorders from secondary causes of hypogammaglobulinaemia, in particular lymphoid malignancy, and appropriate laboratory investigations are of critical importance. Treatment of primary antibody deficiencies involves immunoglobulin replacement therapy, either via the intravenous or subcutaneous route. Patients remain at risk of a wide variety of complications, not all linked to diagnostic delay and inadequate therapy. In common variable immunodeficiency (CVID) in particular, patients remain at significantly increased risk of lymphoid malignancy, and regular clinical and laboratory monitoring is required. This review aims to give an overview of these conditions for the general reader, covering pathogenesis, clinical presentation, laboratory investigation, therapy and clinical management.
Collapse
Affiliation(s)
- P Wood
- Clinical Immunology Unit, St James's University Hospital, Leeds, UK.
| |
Collapse
|
97
|
Sharma S, Orlowski G, Song W. Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:329-39. [PMID: 19109164 PMCID: PMC2855895 DOI: 10.4049/jimmunol.182.1.329] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The high efficiency of Ag processing and presentation by B cells requires Ag-induced BCR signaling and actin cytoskeleton reorganization, although the underlying mechanism for such requirements remains elusive. In this study, we identify Bruton's tyrosine kinase (Btk) as a linker connecting BCR signaling to actin dynamics and the Ag transport pathway. Using xid mice and a Btk inhibitor, we show that BCR engagement increases actin polymerization and Wiskott-Aldrich syndrome protein activation in a Btk-dependent manner. Concurrently, we observe Btk-dependent increases in the levels of phosphatidylinositide-4,5-bisphosphate and phosphorylated Vav upon BCR engagement. The rate of BCR internalization, its movement to late endosomes, and efficiency of BCR-mediated Ag processing and presentation are significantly reduced in both xid and Btk inhibitor-treated B cells. Thus, Btk regulates actin dynamics and Ag transport by activating Wiskott-Aldrich syndrome protein via Vav and phosphatidylinositides. This represents a novel mechanism by which BCR-mediated signaling regulates BCR-mediated Ag processing and presentation.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Gregory Orlowski
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
98
|
Crystal structure of the Bruton’s tyrosine kinase PH domain with phosphatidylinositol. Biochem Biophys Res Commun 2008; 377:23-8. [DOI: 10.1016/j.bbrc.2008.09.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/11/2008] [Indexed: 11/22/2022]
|
99
|
Remsing Rix LL, Rix U, Colinge J, Hantschel O, Bennett KL, Stranzl T, Müller A, Baumgartner C, Valent P, Augustin M, Till JH, Superti-Furga G. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 2008; 23:477-85. [PMID: 19039322 DOI: 10.1038/leu.2008.334] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The detailed molecular mechanism of action of second-generation BCR-ABL tyrosine kinase inhibitors, including perturbed targets and pathways, should contribute to rationalized therapy in chronic myeloid leukemia (CML) or in other affected diseases. Here, we characterized the target profile of the dual SRC/ABL inhibitor bosutinib employing a two-tiered approach using chemical proteomics to identify natural binders in whole cell lysates of primary CML and K562 cells in parallel to in vitro kinase assays against a large recombinant kinase panel. The combined strategy resulted in a global survey of bosutinib targets comprised of over 45 novel tyrosine and serine/threonine kinases. We have found clear differences in the target patterns of bosutinib in primary CML cells versus the K562 cell line. A comparison of bosutinib with dasatinib across the whole kinase panel revealed overlapping, but distinct, inhibition profiles. Common among those were the SRC, ABL and TEC family kinases. Bosutinib did not inhibit KIT or platelet-derived growth factor receptor, but prominently targeted the apoptosis-linked STE20 kinases. Although in vivo bosutinib is inactive against ABL T315I, we found this clinically important mutant to be enzymatically inhibited in the mid-nanomolar range. Finally, bosutinib is the first kinase inhibitor shown to target CAMK2G, recently implicated in myeloid leukemia cell proliferation.
Collapse
Affiliation(s)
- L L Remsing Rix
- Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Dubois PC, van Heel DA. Translational mini-review series on the immunogenetics of gut disease: immunogenetics of coeliac disease. Clin Exp Immunol 2008; 153:162-73. [PMID: 18713140 DOI: 10.1111/j.1365-2249.2008.03704.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent advances in immunological and genetic research in coeliac disease provide new and complementary insights into the immune response driving this chronic intestinal inflammatory disorder. Both approaches confirm the central importance of T cell-mediated immune responses to disease pathogenesis and have further begun to highlight other relevant components of the mucosal immune system, including innate immunity and the control of lymphocyte trafficking to the mucosa. In the last year, the first genome wide association study in celiac disease led to the identification of multiple new risk variants. These risk regions implicate genes involved in the immune system. Overlap with autoimmune diseases is striking with several of these regions being shown to confer susceptibility to other chronic immune-mediated diseases, particularly type 1 diabetes.
Collapse
Affiliation(s)
- P C Dubois
- Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK.
| | | |
Collapse
|