51
|
Ortega L, Walker KA, Patrick C, Wamishe Y, Rojas A, Rojas CM. Harnessing Pseudomonas protegens to Control Bacterial Panicle Blight of Rice. PHYTOPATHOLOGY 2020; 110:1657-1667. [PMID: 32852258 DOI: 10.1094/phyto-02-20-0045-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial panicle blight of rice is a seedborne disease caused by the bacterium Burkholderia glumae. This disease has affected rice production worldwide and its effects are likely to become more devastating with the continuous increase in global temperatures, especially during the growing season. The bacterium can cause disease symptoms in different tissues and at different developmental stages. In reproductive stages, the bacterium interferes with grain development in the panicles and, as a result, directly affects rice yield. Currently, there are no methods to control the disease because chemical control is not effective and completely resistant cultivars are not available. Thus, a promising approach is the use of antagonistic microorganisms. In this work, we identified one strain of Pseudomonas protegens and one strain of B. cepacia with antimicrobial activity against B. glumae in vitro and in planta. We further characterized the antimicrobial activity of P. protegens and found that this activity is associated with bacterial secretions. Cell-free secretions from P. protegens inhibited the growth of B. glumae in vitro and also prevented B. glumae from causing disease in rice. Although the specific molecules associated with these activities have not been identified, these findings suggest that the secreted fractions from P. protegens could be harnessed as biopesticides to control bacterial panicle blight of rice.
Collapse
Affiliation(s)
- Laura Ortega
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Katherine A Walker
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Casey Patrick
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Yeshi Wamishe
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
- Rice Research and Extension Center, University of Arkansas, Stuttgart, AR 72160, U.S.A
| | - Alejandro Rojas
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Clemencia M Rojas
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| |
Collapse
|
52
|
Identification of a Novel LysR-Type Transcriptional Regulator in Staphylococcus aureus That Is Crucial for Secondary Tissue Colonization during Metastatic Bloodstream Infection. mBio 2020; 11:mBio.01646-20. [PMID: 32843554 PMCID: PMC7448277 DOI: 10.1128/mbio.01646-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an important pathogen that can disseminate via the bloodstream and establish metastatic infections in distant organs. To achieve a better understanding of the bacterial factors facilitating the development of these metastatic infections, we used in this study a Staphylococcus aureus transposon mutant library in a murine model of intravenous infection, where bacteria first colonize the liver as the primary infection site and subsequently progress to secondary sites such as the kidney and bones. We identified a novel LysR-type transcriptional regulator (LTTR), which was specifically required by S. aureus for efficient colonization of secondary organs. We also determined the transcriptional activation as well as the regulon of LTTR, which suggests that this regulator is involved in the metabolic adaptation of S. aureus to the host microenvironment found in secondary infection sites. Staphylococcus aureus is a common cause of bacteremia that can lead to severe complications once the bacteria exit the bloodstream and establish infection in secondary organs. Despite its clinical relevance, little is known about the bacterial factors facilitating the development of these metastatic infections. Here, we used an S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) to identify genes that are critical for efficient bacterial colonization of secondary organs in a murine model of metastatic bloodstream infection. Our transposon screen identified a LysR-type transcriptional regulator (LTTR), which was required for efficient colonization of secondary organs such as the kidneys in infected mice. The critical role of LTTR in secondary organ colonization was confirmed using an isogenic mutant deficient in the expression of LTTR. To identify the set of genes controlled by LTTR, we used an S. aureus strain carrying the LTTR gene in an inducible expression plasmid. Gene expression analysis upon induction of LTTR showed increased transcription of genes involved in branched-chain amino acid biosynthesis, a methionine sulfoxide reductase, and a copper transporter as well as decreased transcription of genes coding for urease and components of pyrimidine nucleotides. Furthermore, we show that transcription of LTTR is repressed by glucose, is induced under microaerobic conditions, and required trace amounts of copper ions. Our data thus pinpoints LTTR as an important element that enables a rapid adaptation of S. aureus to the changing host microenvironment.
Collapse
|
53
|
Kwak GY, Goo E, Jeong H, Hwang I. Adverse effects of adaptive mutation to survive static culture conditions on successful fitness of the rice pathogen Burkholderia glumae in a host. PLoS One 2020; 15:e0238151. [PMID: 32833990 PMCID: PMC7444824 DOI: 10.1371/journal.pone.0238151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
Bacteria often possess relatively flexible genome structures and adaptive genetic variants that allow survival in unfavorable growth conditions. Bacterial survival tactics in disadvantageous microenvironments include mutations that are beneficial against threats in their niche. Here, we report that the aerobic rice bacterial pathogen Burkholderia glumae BGR1 changes a specific gene for improved survival in static culture conditions. Static culture triggered formation of colony variants with deletions or point mutations in the gene bspP (BGLU_RS28885), which putatively encodes a protein that contains PDC2, PAS-9, SpoIIE, and HATPase domains. The null mutant of bspP survived longer in static culture conditions and produced a higher level of bis-(3'-5')-cyclic dimeric guanosine monophosphate than the wild type. Expression of the bacterial cellulose synthase regulator (bcsB) gene was upregulated in the mutant, consistent with the observation that the mutant formed pellicles faster than the wild type. Mature pellicle formation was observed in the bspP mutant before pellicle formation in wild-type BGR1. However, the population density of the bspP null mutant decreased substantially when grown in Luria-Bertani medium with vigorous agitation due to failure of oxalate-mediated detoxification of the alkaline environment. The bspP null mutant was less virulent and exhibited less effective colonization of rice plants than the wild type. All phenotypes caused by mutations in bspP were recovered to those of the wild type by genetic complementation. Thus, although wild-type B. glumae BGR1 prolonged viability by spontaneous mutation under static culture conditions, such genetic changes negatively affected colonization in rice plants. These results suggest that adaptive gene sacrifice of B. glumae to survive unfavorable growth conditions is not always desirable as it can adversely affect adaptability in the host.
Collapse
Affiliation(s)
- Gi-Young Kwak
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Haeyoon Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
54
|
Mirghasempour A, Glick BR, Hou Y, Huang S. A system to study the expression of phytopathogenic genes encoded by Burkholderia glumae. Arch Microbiol 2020; 203:383-387. [PMID: 32785734 DOI: 10.1007/s00203-020-01986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 11/28/2022]
Abstract
Rice is often infected by bacterial panicle blight disease caused by Burkholderia glumae. Since most studies have assessed the transcriptome of the plant when it is exposed to bacteria, the gene expression of the phytopathogenic bacteria have not been well elaborated during the infection process or in the host cell. Recently, a few researches were conducted to evaluate the in vivo transcriptome of bacteria during the infective process. Most bacterial cells do not express genes involved in pathogenicity in culture medium making it difficult to investigate gene expression of bacterial cells in plant cells. Here, we sought a simulated patho-system that would allow bacterial cells to express their pathogenic genes. Thus, rice root exudates (RE) and bacterial N-acyl homoserine lactone (AHL) were used and their effects on bacterial gene expression were assessed. Transcription patterns of B. glumae virulence determinants showed that enrichment medium (LB + RE + C8-HSL) could significantly induce virulence factor genes compared with Luria Bertani (LB; control) medium. The data indicate that the artificial environment is similar to the real patho-system, and that this induced maximum relevant gene expression. In this model system, bacterial gene expression changes are traceable in the infection process. Bacterial cells exposed to either an artificial environment or LB + RE + C8-HSL behaved similarly to the natural environment in situ.
Collapse
Affiliation(s)
- A Mirghasempour
- China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - B R Glick
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Y Hou
- China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - S Huang
- China National Rice Research Institute, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
55
|
Peng J, Lelis T, Chen R, Barphagha I, Osti S, Ham JH. tepR encoding a bacterial enhancer-binding protein orchestrates the virulence and interspecies competition of Burkholderia glumae through qsmR and a type VI secretion system. MOLECULAR PLANT PATHOLOGY 2020; 21:1042-1054. [PMID: 32608174 PMCID: PMC7368122 DOI: 10.1111/mpp.12947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/23/2020] [Accepted: 05/04/2020] [Indexed: 05/05/2023]
Abstract
The pathogenesis of the rice pathogenic bacterium Burkholderia glumae is under the tight regulation of the tofI/tofR quorum-sensing (QS) system. tepR, encoding a group I bacterial enhancer-binding protein, negatively regulates the production of toxoflavin, the phytotoxin acting as a major virulence factor in B. glumae. In this study, through a transcriptomic analysis, we identified the genes that were modulated by tepR and/or the tofI/tofR QS system. More than half of the differentially expressed genes, including the genes for the biosynthesis and transport of toxoflavin, were significantly more highly expressed in the ΔtepR mutant but less expressed in the ΔtofI-tofR (tofI/tofR QS-defective) mutant. In consonance with the transcriptome data, other virulence-related functions of B. glumae, extracellular protease activity and flagellum-dependent motility, were also negatively regulated by tepR, and this negative regulatory function of tepR was dependent on the IclR-type transcriptional regulator gene qsmR. Likewise, the ΔtepR mutant exhibited a higher level of heat tolerance in congruence with the higher transcription levels of heat shock protein genes in the mutant. Interestingly, tepR also exhibited its positive regulatory function on a previously uncharacterized type VI secretion system (denoted as BgT6SS-1). The survival of the both ΔtepR and ΔtssD (BgT6SS-1-defective) mutants was significantly compromised compared to the wild-type parent strain 336gr-1 in the presence of the natural rice-inhabiting bacterium, Pantoea sp. RSPAM1. Taken together, this study revealed pivotal regulatory roles of tepR in orchestrating multiple biological functions of B. glumae, including pathogenesis, heat tolerance, and bacterial interspecies competition.
Collapse
Affiliation(s)
- Jingyu Peng
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Tiago Lelis
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Tropical Research and Education CenterInstitute of Food and Agriculture SciencesUniversity of FloridaHomesteadFLUSA
| | - Ruoxi Chen
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
1501 Capitol AvenueSacramentoCA95814USA
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| | - Surendra Osti
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
- Present address:
Department of Agricultural Economics and AgribusinessLouisiana State UniversityBaton RougeLA70803USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLAUSA
| |
Collapse
|
56
|
Wang S, Nie W, Gong Q, Lee Y, Shui H, Chen G, Zhu B. Complete Genomic Data of Burkholderia glumae Strain GX Associated with Bacterial Panicle Blight of Rice in China. PLANT DISEASE 2020; 104:1578-1580. [PMID: 32282280 DOI: 10.1094/pdis-10-19-2265-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Burkholderia glumae is a seedborne pathogen causing bacterial panicle blight of rice. Here, we report the complete genome of B. glumae strain GX, which represents the first whole-genome sequence of an isolate from China. The assembled genome consisted of five contigs, with two circular chromosomes of 3,712,850 and 2,750,046 bp and three plasmids of 201,571, 105,587, and 96,100 bp. This complete genome will provide a valuable resource for further studies on bacterial panicle blight worldwide.
Collapse
Affiliation(s)
- Sai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai 200240, China
| | - Wenhan Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai 200240, China
| | - Qiang Gong
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai 200240, China
| | - Yaohui Lee
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai 200240, China
| | - Hanxia Shui
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai 200240, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai 200240, China
| | - Bo Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, Shanghai 200240, China
| |
Collapse
|
57
|
Gnanasekaran G, Lim JY, Hwang I. Disappearance of Quorum Sensing in Burkholderia glumae During Experimental Evolution. MICROBIAL ECOLOGY 2020; 79:947-959. [PMID: 31828389 DOI: 10.1007/s00248-019-01445-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The plant pathogen Burkholderia glumae uses quorum sensing (QS) that allows bacteria to share information and alter gene expression on the basis of cell density. The wild-type strain of B. glumae produces quorum-sensing signals (autoinducers) to detect their community and upregulate QS-dependent genes across the population for performing social and group behaviors. The model organism B. glumae was selected to investigate adaptation, estimate evolutionary parameters, and test diverse evolutionary hypotheses by using experimental evolution. The wild-type B. glumae virulent strain showed genotypic changes during regular subculture due to oxygen limitation. The laboratory-evolved clones failed to produce the signaling molecule of C8-HSL/C6-HSL for activation of the quorum-sensing system. Further, the laboratory-evolved clones failed to produce catalase and oxalate for protecting themselves from the toxic environment at stationary phase and phytotoxins (toxoflavin) for infecting rice grain, respectively. The laboratory-evolved clones were completely sequenced and compared with the wild-type. Sequencing analysis of the evolved clones revealed that mutations in QS-responsible genes (iclR), sensor genes (shk, mcp), and signaling genes (luxR) were responsible for quorum-sensing activity failure. The experimental results and sequencing analysis revealed quorum-sensing process failure in the laboratory-evolved clones. In conclusion, the wild-type B. glumae strain was often exposed to oxidative stress during regular subculture and evolved as an avirulent strain (quorum-sensing mutant) by losing the phenotypic and genotypic characteristics.
Collapse
Affiliation(s)
- Gopalsamy Gnanasekaran
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
58
|
Castellanos L, Naranjo-Gaybor SJ, Forero AM, Morales G, Wilson EG, Ramos FA, Choi YH. Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. PHYTOCHEMISTRY 2020; 172:112272. [PMID: 32032827 DOI: 10.1016/j.phytochem.2020.112272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Banana passion fruit of the Passiflora genus, are commercially cultivated on a small to medium scale, mainly as edible fruits or as components of traditional herbal medicines. This subgenus comprises several species and hybrid specimens that grow readily in the wild. Due to their taxonomical complexity, many of these species have recently been reclassified (Ocampo Pérez and Coppens d'Eeckenbrugge, 2017), and their chemical profile has still to be determined. In this study, an 1H NMR-based platform was applied to the chemical profiling of seven wild species of the Passiflora subgenus, and UHPLC-DAD-MS was additionally used for the identification of phenolic compounds. A total of 59 compounds were detected including 26 O- and C-glycosidated flavonoids and polyphenols, nine organic acids, seven amino acids, GABA, sucrose, glucose, myo-inositol, and five other non-identified compounds. Two of the identified compounds are the previously undescribed C-glycosyl flavonoids, apigenin-4'-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside. These C-glycosyl flavonoids were isolated to confirm their proposed structures by NMR and LCMS analysis. The PCA score plots obtained from the 1H NMR data of the studied Passiflora samples showed P. cumbalensis and P. uribei as the species with the most distinguishable chemical profile. In addition, a correlation analysis using OPLS-DA was conducted between 1H-NMR data and the quorum quenching activity (QQ) of Chromobacterium violaceum ATCC 31532. This analysis revealed P. lehmannii, and P. uribei extracts to be the most active, and apigenin-4'-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside were identified as possibly responsible for the QQ activity. To confirm this, QQ activity of both compounds was tested against C. violaceum ATCC 3153. An inhibition of violacein production of 0.135 mM (100 μg/mL) and 0.472 mM (300 μg/mL) was observed for apigenin-4'-O-β-glucopyranosyl,8-C-β-(6″acetyl)-glucopyranoside and apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside respectively, while bacterial growth was unaffected in both cases. Furthermore, both compounds showed the ability to inhibit the production of the toxoflavin of the phytopathogen Burkholderia glumae ATCC 33617.
Collapse
Affiliation(s)
- Leonardo Castellanos
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia; Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands.
| | - Sandra Judith Naranjo-Gaybor
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia; Universidad de las Fuerzas Armadas. ESPE Carrera de Ingeniería Agropecuaria Extensión Santo Domingo, Av. General Rumiñahui s/n, Sangolquí, Ecuador
| | - Abel M Forero
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Gustavo Morales
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Erica Georgina Wilson
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Freddy A Ramos
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45-03, Bogotá, D.C., 111321, Colombia
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands; College of Pharmacy, Kyung Hee University, 02447, Seoul, Republic of Korea
| |
Collapse
|
59
|
Hussain A, Shahbaz M, Tariq M, Ibrahim M, Hong X, Naeem F, Khalid Z, Raza HMZ, Bo Z, Bin L. Genome re-seqeunce and analysis of Burkholderia glumae strain AU6208 and evidence of toxoflavin: A potential bacterial toxin. Comput Biol Chem 2020; 86:107245. [PMID: 32172200 DOI: 10.1016/j.compbiolchem.2020.107245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022]
Abstract
Burkholderia glumae, the primary causative agent of bacterial panicle blight in rice, has been reported as an opportunistic pathogen in patients with chronic infections. This study aimed to re-sequence the clinical isolate B. glumae strain AU6208 and comparatively analyze its genome using B. glumae strain BGR1 from rice plant as the reference. Re-sequencing results revealed that the genome of strain AU6208 comprised 96 contigs corresponding to a 6.1 Mbp genome of the strain AU6208, with 5322 coding sequences and 68.2 % GC content; this is much larger compared to the genome previously sequenced by us and described by Seo et al (2015), which was reported to be 4.1 Mbp comprising >1200 contigs, 4361 coding sequences, and 67.31 % GC content. Moreover, this updated genome shares >80 % identity to the 7.2 Mbp genome of BGR1, which encodes 6491 coding sequences and has 68.3 % GC content. Further computational analysis revealed that the strain AU6208 encodes several bacteriocin biosynthesis genes, antibiotic, as well as virulent genes such as toxoflavin genes, which included 425 specialty genes and 12 toxoflavin genes. Upon further characterization, 12 toxoflavins (ToxA, B, C, D, E, F, G, H, I, J, TofI, and TofR) were found in AU6208 with 70-100 % sequence, family, and domain similarity with that of BGR1. Upon comparison with BGR1, the structural characterizations of selected toxoflavin genes (ToxB, ToxC, ToxG, H, and TofI) revealed variations in 2D and 3D structures such as differences in α-helix, β-sheets, loops, physiological properties of proteins, RMSD values, etc. These variations may play significant role in different mode of action in different hosts thereby indicating that in addition to their respective hosts, toxoflavins could also contribute to exploit other hosts across the kingdom. In addition to understanding the epidemiology of strain AU6208, this updated genomics data will also unfold the pathogenicity of bacteria in diversity of various hosts and anti-virulence.
Collapse
Affiliation(s)
- Annam Hussain
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Maham Shahbaz
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Maria Tariq
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Muhammad Ibrahim
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Xianxian Hong
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Faryal Naeem
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Zunera Khalid
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Hafiz Muhammad Zeeshan Raza
- Genomics and Computational Biology Laboratory, Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Zhu Bo
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| | - Li Bin
- State Key Laboratory of Rice Biology and Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
60
|
Aziz M, Chapman KD. Fatty Acid Amide Hydrolases: An Expanded Capacity for Chemical Communication? TRENDS IN PLANT SCIENCE 2020; 25:236-249. [PMID: 31919033 DOI: 10.1016/j.tplants.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 05/25/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is an enzyme that belongs to the amidase signature (AS) superfamily and is widely distributed in multicellular eukaryotes. FAAH hydrolyzes lipid signaling molecules - namely, N-acylethanolamines (NAEs) - which terminates their actions. Recently, the crystal structure of Arabidopsis thaliana FAAH was solved and key residues were identified for substrate-specific interactions. Here, focusing on residues surrounding the substrate-binding pocket, a comprehensive analysis of FAAH sequences from angiosperms reveals a distinctly different family of FAAH-like enzymes. We hypothesize that FAAH, in addition to its role in seedling development, also acts in an N-acyl amide communication axis to facilitate plant-microbe interactions and that structural diversity provides for the flexible use of a wide range of small lipophilic signaling molecules.
Collapse
Affiliation(s)
- Mina Aziz
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
61
|
Yang W, Wang WY, Zhao W, Cheng JG, Wang Y, Yao XP, Yang ZX, Yu D, Luo Y. Preliminary study on the role of novel LysR family gene kp05372 in Klebsiella pneumoniae of forest musk deer. J Zhejiang Univ Sci B 2020; 21:137-154. [PMID: 32115911 DOI: 10.1631/jzus.b1900440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
LysR-type transcriptional regulators are involved in the regulation of numerous cellular metabolic processes in Klebsiella pneumoniae, leading to severe infection. Earlier, we found a novel LysR family gene, named kp05372, in a strain of K. pneumoniae (designated GPKP) isolated from forest musk deer. To study the function of this gene in relation to the biological characteristics of GPKP, we used the suicide plasmid and conjugative transfer methods to construct deletion mutant strain GPKP-Δkp05372; moreover, we also constructed the GPKP-Δkp05372+ complemented strain. The role of this gene was determined by comparing the following characteristics of three strains: growth curves, biofilm formation, drug resistance, stress resistance, median lethal dose (LD50), organ colonization ability, and the histopathology of GPKP. Real-time polymerase chain reaction (RT-PCR) was used to test the expression level of seven genes upstream of kp05372. There was no significant difference in the growth rates when comparing the three bacterial strains, and no significant difference was recorded at different osmotic pressures, temperatures, salt contents, or hydrogen peroxide concentrations. The GPKP-Δkp05372 mutant formed a weak biofilm, and the other two strains formed medium biofilm. The drug resistance of the GPKP-Δkp05372 mutant toward cephalothin, cotrimoxazole, and polymyxin B was changed. The acid tolerance of the deletion strain was stronger than that of the other two strains. The LD50 values of the wild-type and complemented strains were 174-fold and 77-fold higher than that of the GPKP-Δkp05372 mutant, respectively. The colonization ability of the GPKP-Δkp05372 mutant in the heart, liver, spleen, kidney, and intestine was the weakest. The three strains caused different histopathological changes in the liver and lungs. In the GPKP-Δkp05372 mutant, the relative expression levels of kp05374 and kp05379 were increased to 1.32-fold and 1.42-fold, respectively, while the level of kp05378 was decreased by 42%. Overall, the deletion of kp05372 gene leads to changes in the following: drug resistance and acid tolerance; decreases in virulence, biofilm formation, and colonization ability of GPKP; and regulation of the upstream region of adjacent genes.
Collapse
Affiliation(s)
- Wei Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Wu-You Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Jian-Guo Cheng
- Sichuan Institute of Musk Deer Breeding, Dujiangyan 611830, China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Xue-Ping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Ze-Xiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Dong Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| |
Collapse
|
62
|
Kwak GY, Choi O, Goo E, Kang Y, Kim J, Hwang I. Quorum Sensing-Independent Cellulase-Sensitive Pellicle Formation Is Critical for Colonization of Burkholderia glumae in Rice Plants. Front Microbiol 2020; 10:3090. [PMID: 32010117 PMCID: PMC6978641 DOI: 10.3389/fmicb.2019.03090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/20/2019] [Indexed: 01/19/2023] Open
Abstract
Bacteria form biofilms as a means to adapt to environmental changes for survival. Pellicle is a floating biofilm formed at the air-liquid interface in static culture conditions; however, its functional roles have received relatively little attention compared to solid surface-associated biofilms in gram-negative bacteria. Here we show that the rice pathogen Burkholderia glumae BGR1 forms cellulase-sensitive pellicles in a bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)- and flagellum-dependent, but quorum sensing (QS)-independent, manner. Pellicle formation was more favorable at 28°C than at the optimum growth temperature (37°C), and was facilitated by constitutive expression of pelI, a diguanylate cyclase gene from B. glumae, or pleD, the GGDEF response regulator from Agrobacterium tumefaciens. Constitutive expression of pelI or pleD raised the levels of c-di-GMP, facilitated pellicle formation, and suppressed swarming motility in B. glumae. QS-defective mutants of B. glumae formed pellicles, while flagellum-defective mutants did not. Pellicles of B. glumae were sensitive to cellulase but not to proteinase K or DNase I. A gene cluster containing seven genes involved in bacterial cellulose biosynthesis, bcsD, bcsR, bcsQ, bcsA, bcsB, bcsZ, and bcsC, homologous to known genes involved in cellulose biosynthesis in other bacteria, was identified in B. glumae. Mutations in each gene abolished pellicle formation. These results revealed a positive correlation between cellulase-sensitive pellicles and putative cellulose biosynthetic genes. Pellicle-defective mutants did not colonize as successfully as the wild-type strain BGR1 in rice plants, which resulted in a significant reduction in virulence. Our findings show that cellulase-sensitive pellicles produced in a QS-independent manner play important roles in the interactions between rice plants and B. glumae.
Collapse
Affiliation(s)
- Gi-Young Kwak
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Okhee Choi
- Division of Applied Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yongsung Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jinwoo Kim
- Division of Applied Life Science, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, South Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
63
|
Sun T, Li XD, Hong J, Liu C, Zhang XL, Zheng JP, Xu YJ, Ou ZY, Zheng JL, Yu DJ. Inhibitory Effect of Two Traditional Chinese Medicine Monomers, Berberine and Matrine, on the Quorum Sensing System of Antimicrobial-Resistant Escherichia coli. Front Microbiol 2019; 10:2584. [PMID: 31798551 PMCID: PMC6863804 DOI: 10.3389/fmicb.2019.02584] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 01/05/2023] Open
Abstract
The quorum sensing (QS) system controls bacterial biofilm formation, which is highly related to the virulence and resistance of pathogens. In the present study, the effect of two traditional Chinese medicine (TCM) monomers, berberine and matrine, on biofilm formation and QS-related gene expression of antimicrobial-resistant (AMR) Escherichia coli strains was investigated by laser scanning confocal microscopy (LSCM) observation and real-time PCR. The results indicated a roughly positive relationship between biofilm formation ability and antimicrobial resistance. LSCM observation showed that berberine and matrine inhibited biofilm formation of AMR E. coli strains at 1/2 minimal inhibitory concentration (MIC) (1/2 MIC berberine at OD630: 0.1020; 1/2 MIC matrine: OD630: 0.1045); furthermore, abnormal cell morphology such as rounded and elongated cells was also observed. This finding was consistent with the downregulation of QS-related genes: luxS, pfS, sdiA, hflX, motA, and fliA. At 1/2 MIC and 1/4 MIC concentrations of berberine, a significant downregulation of luxS, pfS, hflX, ftsQ, and ftsE was observed. The results indicate that berberine and matrine can inhibit biofilm formation by inhibiting the QS system and that berberine is more effective than matrine.
Collapse
Affiliation(s)
- Tong Sun
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Dong Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Hong
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Can Liu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin-Luo Zhang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin-Ping Zheng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan-Jun Xu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zheng-Yang Ou
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing-Ling Zheng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dao-Jin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
64
|
Lee C, Mannaa M, Kim N, Kim J, Choi Y, Kim SH, Jung B, Lee HH, Lee J, Seo YS. Stress Tolerance and Virulence-Related Roles of Lipopolysaccharide in Burkholderia glumae. THE PLANT PATHOLOGY JOURNAL 2019; 35:445-458. [PMID: 31632220 PMCID: PMC6788416 DOI: 10.5423/ppj.oa.04.2019.0124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 05/10/2023]
Abstract
The lipopolysaccharide (LPS) composed of lipid A, core, and O-antigen is the fundamental constituent of the outer membrane in gram-negative bacteria. This study was conducted to investigate the roles of LPS in Burkholderia glumae, the phytopathogen causing bacterial panicle blight and seedling rot in rice. To study the roles of the core oligosaccharide (OS) and the O-antigen region, mutant strains targeting the waaC and the wbiFGHI genes were generated. The LPS profile was greatly affected by disruption of the waaC gene and slight reductions were observed in the O-antigen region following wbiFGHI deletions. The results indicated that disruption in the core OS biosynthesis-related gene, waaC, was associated with increased sensitivity to environmental stress conditions including acidic, osmotic, saline, and detergent stress, and to polymyxin B. Moreover, significant impairment in the swimming and swarming motility and attenuation of bacterial virulence to rice were also observed in the waaC-defective mutant. The motility and virulence of O-antigen mutants defective in any gene of the wbiFGHI operon, were not significantly different from the wild-type except in slight decrease in swimming and swarming motility with wbiH deletion. Altogether, the results of present study indicated that the LPS, particularly the core OS region, is required for tolerance to environmental stress and full virulence in B. glumae. To our knowledge, this is the first functional study of LPS in a plant pathogenic Burkholderia sp. and presents a step forward toward full understanding of B. glumae pathogenesis.
Collapse
Affiliation(s)
- Chaeyeong Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Mohamed Mannaa
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Juyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Yeounju Choi
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Soo Hyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Boknam Jung
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 49315,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Corresponding author.: Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail)
| |
Collapse
|
65
|
Park J, Lee HH, Jung H, Seo YS. Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli. J Microbiol 2019; 57:781-794. [DOI: 10.1007/s12275-019-9330-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
|
66
|
Unraveling the role of quorum sensing-dependent metabolic homeostasis of the activated methyl cycle in a cooperative population of Burkholderia glumae. Sci Rep 2019; 9:11038. [PMID: 31363118 PMCID: PMC6667456 DOI: 10.1038/s41598-019-47460-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
The activated methyl cycle (AMC) is responsible for the generation of S-adenosylmethionine (SAM), which is a substrate of N-acylhomoserine lactone (AHL) synthases. However, it is unknown whether AHL-mediated quorum sensing (QS) plays a role in the metabolic flux of the AMC to ensure cell density-dependent biosynthesis of AHL in cooperative populations. Here we show that QS controls metabolic homeostasis of the AMC critical for AHL biosynthesis and cellular methylation in Burkholderia glumae, the causal agent of rice panicle blight. Activation of genes encoding SAM-dependent methyltransferases, S-adenosylhomocysteine (SAH) hydrolase, and methionine synthases involved in the AMC by QS is essential for maintaining the optimal concentrations of methionine, SAM, and SAH required for bacterial cooperativity as cell density increases. Thus, the absence of QS perturbed metabolic homeostasis of the AMC and caused pleiotropic phenotypes in B. glumae. A null mutation in the SAH hydrolase gene negatively affected AHL and ATP biosynthesis and the activity of SAM-dependent methyltransferases including ToxA, which is responsible for the biosynthesis of a key virulence factor toxoflavin in B. glumae. These results indicate that QS controls metabolic flux of the AMC to secure the biosynthesis of AHL and cellular methylation in a cooperative population.
Collapse
|
67
|
Lelis T, Peng J, Barphagha I, Chen R, Ham JH. The Virulence Function and Regulation of the Metalloprotease Gene prtA in the Plant-Pathogenic Bacterium Burkholderia glumae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:841-852. [PMID: 30694091 DOI: 10.1094/mpmi-11-18-0312-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bacterial panicle blight caused by Burkholderia glumae is a major bacterial disease of rice. Our preliminary RNA-seq study showed that a serine metalloprotease gene, prtA, is regulated in a similar manner to the genes for the biosynthesis and transport of toxoflavin, which is a known major virulence factor of B. glumae. prtA null mutants of the virulent strain B. glumae 336gr-1 did not show a detectable extracellular protease activity, indicating that prtA is the solely responsible gene for the extracellular protease activity detected from this bacterium. In addition, inoculation of rice panicles with the prtA mutants resulted in a significant reduction of disease severity compared with the wild-type parent strain, suggesting the requirement of prtA for the full virulence of B. glumae. A double mutant deficient in both serine metalloprotease and toxoflavin (ΔtoxA/prtA-) exhibited a further numeric but not statistically significant decrease of disease development compared with the ΔtoxA strain. Both the prtA-driven extracellular protease activity and the toxoflavin production were dependent on both the tofI/tofR quorum-sensing and the global regulatory gene qsmR, indicating the important roles of the two global regulatory factors for the bacterial pathogenesis by this pathogen.
Collapse
Affiliation(s)
- Tiago Lelis
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Jingyu Peng
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Ruoxi Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| |
Collapse
|
68
|
Seynos-García E, Castañeda-Lucio M, Muñoz-Rojas J, López-Pliego L, Villalobos M, Bustillos-Cristales R, Fuentes-Ramírez LE. Loci Identification of a N-acyl Homoserine Lactone Type Quorum Sensing System and a New LysR-type Transcriptional Regulator Associated with Antimicrobial Activity and Swarming in Burkholderia Gladioli UAPS07070. Open Life Sci 2019; 14:165-178. [PMID: 33817149 PMCID: PMC7874821 DOI: 10.1515/biol-2019-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
A random transposition mutant library of B. gladioli UAPS07070 was analyzed for searching mutants with impaired microbial antagonism. Three derivates showed diminished antimicrobial activity against a sensitive strain. The mutated loci showed high similarity to the quorum sensing genes of the AHL-synthase and its regulator. Another mutant was affected in a gene coding for a LysrR-type transcriptional regulator. The production of toxoflavin, the most well known antimicrobial-molecule and a major virulence factor of plant-pathogenic B. glumae and B. gladioli was explored. The absence of a yellowish pigment related to toxoflavin and the undetectable transcription of toxA in the mutants indicated the participation of the QS system and of the LysR-type transcriptional regulator in the regulation of toxoflavin. Additionally, those genes were found to be related to the swarming phenotype. Lettuce inoculated with the AHL synthase and the lysR mutants showed less severe symptoms. We present evidence of the participation of both, the quorum sensing and for the first time, of a LysR-type transcriptional regulator in antibiosis and swarming phenotype in a strain of B. gladioli
Collapse
Affiliation(s)
- E Seynos-García
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - M Castañeda-Lucio
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - J Muñoz-Rojas
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - L López-Pliego
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - M Villalobos
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Carretera Estatal Sta Inés Tecuexcomac‑Tepetitla, km. 1.5, C.P: 90700 Tepetitla de Lárdizabal, Tlaxcala,Mexico
| | - R Bustillos-Cristales
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - L E Fuentes-Ramírez
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| |
Collapse
|
69
|
Mullins AJ, Murray JAH, Bull MJ, Jenner M, Jones C, Webster G, Green AE, Neill DR, Connor TR, Parkhill J, Challis GL, Mahenthiralingam E. Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nat Microbiol 2019; 4:996-1005. [PMID: 30833726 PMCID: PMC6544543 DOI: 10.1038/s41564-019-0383-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/22/2019] [Indexed: 11/09/2022]
Abstract
Beneficial microorganisms are widely used in agriculture for control of plant pathogens, but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties but potential pathogenic risk. A panel of 64 B. ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B. ambifaria. The biosynthetic gene cluster responsible for the production of the metabolite cepacin was identified and directly shown to mediate protection of germinating crops against Pythium damping-off disease. B. ambifaria maintained biopesticidal protection and overall fitness in the soil after deletion of its third replicon, a non-essential plasmid associated with virulence in Burkholderia cepacia complex bacteria. Removal of the third replicon reduced B. ambifaria persistence in a murine respiratory infection model. Here, we show that by using interdisciplinary phylogenomic, metabolomic and functional approaches, the mode of action of natural biological control agents related to pathogens can be systematically established to facilitate their future exploitation.
Collapse
Affiliation(s)
- Alex J Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK.
| | - James A H Murray
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Matthew J Bull
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Matthew Jenner
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | - Cerith Jones
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
- Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Angharad E Green
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Daniel R Neill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Thomas R Connor
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Gregory L Challis
- Department of Chemistry and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
- Department of Biochemistry and Molecular Biology,Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
70
|
Toxoflavin Produced by Burkholderia gladioli from Lycoris aurea Is a New Broad-Spectrum Fungicide. Appl Environ Microbiol 2019; 85:AEM.00106-19. [PMID: 30824447 DOI: 10.1128/aem.00106-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/16/2019] [Indexed: 01/10/2023] Open
Abstract
Fungal infections not only cause extensive agricultural damage but also result in serious diseases in the immunodeficient populations of human beings. Moreover, the increasing emergence of drug resistance has led to a decrease in the efficacy of current antifungals. Thus, screening of new antifungal agents is imperative in the fight against antifungal drug resistance. In this study, we show that an endophytic bacterium, Burkholderia gladioli HDXY-02, isolated from the medicinal plant Lycoris aurea, showed broad-spectrum antifungal activity against plant and human fungal pathogens. An antifungal ability assay indicated that the bioactive component was produced from strain HDXY-02 having an extracellular secreted component with a molecular weight lower than 1,000 Da. In addition, we found that this new antifungal could be produced effectively by liquid fermentation of HDXY-02. Furthermore, the purified component contributing to the antifungal activity was identified to be toxoflavin, a yellow compound possessing a pyrimido[5,4-e][1,2,4]triazine ring. In vitro bioactivity studies demonstrated that purified toxoflavin from B. gladioli HDXY-02 cultures had a significant antifungal activity against the human fungal pathogen Aspergillus fumigatus, resulting in abolished germination of conidia. More importantly, the growth inhibition by toxoflavin was observed in both wild-type and drug-resistant mutants (cyp51A and non-cyp51A) of A. fumigatus Finally, an optimized protocol for the large-scale production of toxoflavin (1,533 mg/liter) has been developed. Taken together, our findings provide a promising biosynthetic resource for producing a new antifungal reagent, toxoflavin, from isolates of the endophytic bacterium B. gladioli IMPORTANCE Human fungal infections are a growing problem associated with increased morbidity and mortality. Moreover, a growing number of antifungal-resistant fungal isolates have been reported over the past decade. Thus, the need for novel antifungal agents is imperative. In this study, we show that an endophytic bacterium, Burkholderia gladioli, isolated from the medicinal plant Lycoris aurea, is able to abundantly secrete a compound, toxoflavin, which has a strong fungicidal activity not only against plant fungal pathogens but also against human fungal pathogens Aspergillus fumigatus and Candida albicans, Cryptococcus neoformans, and the model filamentous fungus Aspergillus nidulans More importantly, toxoflavin also displays an efficacious inhibitory effect against azole antifungal-resistant mutants of A. fumigatus Consequently, our findings provide a promising approach to abundantly produce toxoflavin, which has novel broad-spectrum antifungal activity, especially against those currently problematic drug-resistant isolates.
Collapse
|
71
|
Torres M, Dessaux Y, Llamas I. Saline Environments as a Source of Potential Quorum Sensing Disruptors to Control Bacterial Infections: A Review. Mar Drugs 2019; 17:md17030191. [PMID: 30934619 PMCID: PMC6471967 DOI: 10.3390/md17030191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Saline environments, such as marine and hypersaline habitats, are widely distributed around the world. They include sea waters, saline lakes, solar salterns, or hypersaline soils. The bacteria that live in these habitats produce and develop unique bioactive molecules and physiological pathways to cope with the stress conditions generated by these environments. They have been described to produce compounds with properties that differ from those found in non-saline habitats. In the last decades, the ability to disrupt quorum-sensing (QS) intercellular communication systems has been identified in many marine organisms, including bacteria. The two main mechanisms of QS interference, i.e., quorum sensing inhibition (QSI) and quorum quenching (QQ), appear to be a more frequent phenomenon in marine aquatic environments than in soils. However, data concerning bacteria from hypersaline habitats is scarce. Salt-tolerant QSI compounds and QQ enzymes may be of interest to interfere with QS-regulated bacterial functions, including virulence, in sectors such as aquaculture or agriculture where salinity is a serious environmental issue. This review provides a global overview of the main works related to QS interruption in saline environments as well as the derived biotechnological applications.
Collapse
Affiliation(s)
- Marta Torres
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CEA/CNRS/University Paris-Sud, University Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Biotechnology, Biomedical Research Center (CIBM), University of Granada, 18100 Granada, Spain.
| |
Collapse
|
72
|
Su C, Yan Y, Guo X, Luo J, Liu C, Zhang Z, Xiang WS, Huang SX. Characterization of the N-methyltransferases involved in the biosynthesis of toxoflavin, fervenulin and reumycin from Streptomyces hiroshimensis ATCC53615. Org Biomol Chem 2019; 17:477-481. [PMID: 30565634 DOI: 10.1039/c8ob02847h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Toxoflavin (1), fervenulin (2), and reumycin (3), known to be produced by plant pathogen Burkholderia glumae BGR1, are structurally related 7-azapteridine antibiotics. Previous biosynthetic studies revealed that N-methyltransferase ToxA from B. glumae BGR1 catalyzed the sequential methylation at N6 and N1 in pyrimido[5,4-e]-as-triazine-5,7(6H,8H)-dione (4) to generate 1. However, the N8 methylation of 4 in the biosynthesis of fervenulin remains unclear. To explore the N-methyltransferases required for the biosynthesis of 1 and 2, we identified and characterized the fervenulin and toxoflavin biosynthetic gene clusters in S. hiroshimensis ATCC53615. On the basis of the structures of intermediates accumulated from the four N-methyltransferase gene inactivation mutants and systematic enzymatic methylation reactions, the tailoring steps for the methylation order in the biosynthesis of 1 and 2 were proposed. The N-methylation order and routes for the biosynthesis of fervenulin and toxoflavin in S. hiroshimensis are more complex and represent an obvious departure from those in B. glumae BGR1.
Collapse
Affiliation(s)
- Can Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
74
|
Mannaa M, Park I, Seo YS. Genomic Features and Insights into the Taxonomy, Virulence, and Benevolence of Plant-Associated Burkholderia Species. Int J Mol Sci 2018; 20:E121. [PMID: 30598000 PMCID: PMC6337347 DOI: 10.3390/ijms20010121] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
The members of the Burkholderia genus are characterized by high versatility and adaptability to various ecological niches. With the availability of the genome sequences of numerous species of Burkholderia, many studies have been conducted to elucidate the unique features of this exceptional group of bacteria. Genomic and metabolic plasticity are common among Burkholderia species, as evidenced by their relatively large multi-replicon genomes that are rich in insertion sequences and genomic islands and contain a high proportion of coding regions. Such unique features could explain their adaptability to various habitats and their versatile lifestyles, which are reflected in a multiplicity of species including free-living rhizospheric bacteria, plant endosymbionts, legume nodulators, and plant pathogens. The phytopathogenic Burkholderia group encompasses several pathogens representing threats to important agriculture crops such as rice. Contrarily, plant-beneficial Burkholderia have also been reported, which have symbiotic and growth-promoting roles. In this review, the taxonomy of Burkholderia is discussed emphasizing the recent updates and the contributions of genomic studies to precise taxonomic positioning. Moreover, genomic and functional studies on Burkholderia are reviewed and insights are provided into the mechanisms underlying the virulence and benevolence of phytopathogenic and plant-beneficial Burkholderia, respectively, on the basis of cutting-edge knowledge.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| | - Inmyoung Park
- Department of Oriental Food and Culinary Arts, Youngsan University, Busan 48015, Korea.
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
75
|
Kim J, Mannaa M, Kim N, Lee C, Kim J, Park J, Lee HH, Seo YS. The Roles of Two hfq Genes in the Virulence and Stress Resistance of Burkholderia glumae. THE PLANT PATHOLOGY JOURNAL 2018; 34:412-425. [PMID: 30369851 PMCID: PMC6200039 DOI: 10.5423/ppj.oa.06.2018.0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/09/2018] [Accepted: 07/22/2018] [Indexed: 05/08/2023]
Abstract
The Hfq protein is a global small RNA chaperone that interacts with regulatory bacterial small RNAs (sRNA) and plays a role in the post-transcriptional regulation of gene expression. The roles of Hfq in the virulence and pathogenicity of several infectious bacteria have been reported. This study was conducted to elucidate the functions of two hfq genes in Burkholderia glumae, a causal agent of rice grain rot. Therefore, mutant strains of the rice-pathogenic B. glumae BGR1, targeting each of the two hfq genes, as well as the double defective mutant were constructed and tested for several phenotypic characteristics. Bacterial swarming motility, toxoflavin production, virulence in rice, siderophore production, sensitivity to H2O2, and lipase production assays were conducted to compare the mutant strains with the wild-type B. glumae BGR1 and complementation strains. The hfq1 gene showed more influence on bacterial motility and toxoflavin production than the hfq2 gene. Both genes were involved in the full virulence of B. glumae in rice plants. Other biochemical characteristics such as siderophore production and sensitivity to H2O2 induced oxidative stress were also found to be regulated by the hfq1 gene. However, lipase activity was shown to be unassociated with both tested genes. To the best of our knowledge, this is the first study to elucidate the functions of two hfq genes in B. glumae. Identification of virulence-related factors in B. glumae will facilitate the development of efficient control measures.
Collapse
Affiliation(s)
| | | | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Chaeyeong Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Juyun Kim
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
76
|
Agaras BC, Iriarte A, Valverde CF. Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6. PLoS One 2018. [PMID: 29538430 PMCID: PMC5851621 DOI: 10.1371/journal.pone.0194088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plant-growth promotion has been linked to the Pseudomonas genus since the beginning of this research field. In this work, we mined the genome of an Argentinean isolate of the recently described species P. donghuensis. Strain SVBP6, isolated from bulk soil of an agricultural plot, showed a broad antifungal activity and several other plant-probiotic activities. As this species has been recently described, and it seems like some plant-growth promoting (PGP) traits do not belong to the classical pseudomonads toolbox, we decide to explore the SVBP6 genome via an bioinformatic approach. Genome inspection confirmed our previous in vitro results about genes involved in several probiotic activities. Other genetic traits possibly involved in survival of SVBP6 in highly competitive environments, such as rhizospheres, were found. Tn5 mutagenesis revealed that the antifungal activity against the soil pathogen Macrophomina phaseolina was dependent on a functional gacS gene, from the regulatory cascade Gac-Rsm, but it was not due to volatile compounds. Altogether, our genomic analyses and in vitro tests allowed the phylogenetic assignment and provided the first insights into probiotic properties of the first P. donghuensis isolate from the Americas.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudio Fabián Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
77
|
Choi JE, Nguyen CM, Lee B, Park JH, Oh JY, Choi JS, Kim JC, Song JK. Isolation and characterization of a novel metagenomic enzyme capable of degrading bacterial phytotoxin toxoflavin. PLoS One 2018; 13:e0183893. [PMID: 29293506 PMCID: PMC5749703 DOI: 10.1371/journal.pone.0183893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/14/2017] [Indexed: 11/19/2022] Open
Abstract
Toxoflavin, a 7-azapteridine phytotoxin produced by the bacterial pathogens such as Burkholderia glumae and Burkholderia gladioli, has been known as one of the key virulence factors in crop diseases. Because the toxoflavin had an antibacterial activity, a metagenomic E. coli clone capable of growing well in the presence of toxoflavin (30 μg/ml) was isolated and the first metagenome-derived toxoflavin-degrading enzyme, TxeA of 140 amino acid residues, was identified from the positive E. coli clone. The conserved amino acids for metal-binding and extradiol dioxygenase activity, Glu-12, His-8 and Glu-130, were revealed by the sequence analysis of TxeA. The optimum conditions for toxoflavin degradation were evaluated with the TxeA purified in E. coli. Toxoflavin was totally degraded at an initial toxoflavin concentration of 100 μg/ml and at pH 5.0 in the presence of Mn2+, dithiothreitol and oxygen. The final degradation products of toxoflavin and methyltoxoflavin were fully identified by MS and NMR as triazines. Therefore, we suggested that the new metagenomic enzyme, TxeA, provided the clue to applying the new metagenomic enzyme to resistance development of crop plants to toxoflavin-mediated disease as well as to biocatalysis for Baeyer-Villiger type oxidation.
Collapse
Affiliation(s)
- Ji-Eun Choi
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Cuong Mai Nguyen
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Phytochemistry, Vietnam Institute of Industrial Chemistry, HoanKiem, Hanoi, Vietnam
| | - Boyoung Lee
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Ji Hyun Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Joon Young Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jung Sup Choi
- Research Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jae Kwang Song
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
78
|
Jung B, Park J, Kim N, Li T, Kim S, Bartley LE, Kim J, Kim I, Kang Y, Yun K, Choi Y, Lee HH, Ji S, Lee KS, Kim BY, Shon JC, Kim WC, Liu KH, Yoon D, Kim S, Seo YS, Lee J. Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice. Nat Commun 2018; 9:31. [PMID: 29295978 PMCID: PMC5750236 DOI: 10.1038/s41467-017-02430-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 11/30/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial-fungal interactions are widely found in distinct environments and contribute to ecosystem processes. Previous studies of these interactions have mostly been performed in soil, and only limited studies of aerial plant tissues have been conducted. Here we show that a seed-borne plant pathogenic bacterium, Burkholderia glumae (Bg), and an air-borne plant pathogenic fungus, Fusarium graminearum (Fg), interact to promote bacterial survival, bacterial and fungal dispersal, and disease progression on rice plants, despite the production of antifungal toxoflavin by Bg. We perform assays of toxoflavin sensitivity, RNA-seq analyses, lipid staining and measures of triacylglyceride content to show that triacylglycerides containing linolenic acid mediate resistance to reactive oxygen species that are generated in response to toxoflavin in Fg. As a result, Bg is able to physically attach to Fg to achieve rapid and expansive dispersal to enhance disease severity.
Collapse
Affiliation(s)
- Boknam Jung
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Namgyu Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Taiying Li
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Soyeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Jinnyun Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Inyoung Kim
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Yoonhee Kang
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kihoon Yun
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Younghae Choi
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan, 46269, Korea
| | - Sungyeon Ji
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Kwang Sik Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Bo Yeon Kim
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Won Cheol Kim
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics-Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Korea
| | - Dahye Yoon
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Suhkman Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46269, Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, 46269, Korea.
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Korea.
| |
Collapse
|
79
|
Hudson J, Gardiner M, Deshpande N, Egan S. Transcriptional response of Nautella italica R11 towards its macroalgal host uncovers new mechanisms of host-pathogen interaction. Mol Ecol 2017; 27:1820-1832. [PMID: 29215165 DOI: 10.1111/mec.14448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022]
Abstract
Macroalgae (seaweeds) are essential for the functioning of temperate marine ecosystems, but there is increasing evidence to suggest that their survival is under threat from anthropogenic stressors and disease. Nautella italica R11 is recognized as an aetiological agent of bleaching disease in the red alga, Delisea pulchra. Yet, there is a lack of knowledge surrounding the molecular mechanisms involved in this model host-pathogen interaction. Here we report that mutations in the gene encoding for a LuxR-type quorum sensing transcriptional regulator, RaiR, render N. italica R11 avirulent, suggesting this gene is important for regulating the expression of virulence phenotypes. Using an RNA sequencing approach, we observed a strong transcriptional response of N. italica R11 towards the presence of D. pulchra. In particular, genes involved in oxidative stress resistance, carbohydrate and central metabolism were upregulated in the presence of the host, suggesting a role for these functions in the opportunistic pathogenicity of N. italica R11. Furthermore, we show that RaiR regulates a subset of genes in N. italica R11, including those involved in metabolism and the expression of phage-related proteins. The outcome of this research reveals new functions important for virulence of N. italica R11 and contributes to our greater understanding of the complex factors mitigating microbial diseases in macroalgae.
Collapse
Affiliation(s)
- Jennifer Hudson
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Melissa Gardiner
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Suhelen Egan
- School of Biological, Earth and Environmental Sciences, Centre for Marine Bio-Innovation, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
80
|
Quorum Sensing in Burkholderia pseudomallei and Other Burkholderia species. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
81
|
The transcriptional regulator LysG (Rv1985c) of Mycobacterium tuberculosis activates lysE (Rv1986) in a lysine-dependent manner. PLoS One 2017; 12:e0186505. [PMID: 29049397 PMCID: PMC5648196 DOI: 10.1371/journal.pone.0186505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/03/2017] [Indexed: 12/20/2022] Open
Abstract
The Mycobacterium tuberculosis protein encoded by the Rv1986 gene is a target for memory T cells in patients with tuberculosis, and shows strong similarities to a lysine exporter LysE of Corynebacterium glutamicum. During infection, the pathogen Mycobacterium tuberculosis adapts its metabolism to environmental changes. In this study, we found that the expression of Rv1986 is controlled by Rv1985c. Rv1985c is located directly upstream of Rv1986 with an overlapping promoter region between both genes. Semiquantitative reverse transcription PCR using an isogenic mutant of Mycobacterium tuberculosis lacking Rv1985c showed that in the presence of lysine, Rv1985c protein positively upregulated the expression of Rv1986. RNA sequencing revealed the transcription start points for both transcripts and overlapping promoters. An inverted repeat in the center of the intergenic region was identified, and binding of Rv1985c protein to the intergenic region was confirmed by electrophoretic mobility shift assays. Whole transcriptome expression analysis and RNAsequencing showed downregulated transcription of ppsBCD in the Rv1985c-mutant compared to the wild type strain. Taken together, our findings characterize the regulatory network of Rv1985c in Mycobacterium tuberculosis. Due to their similarity of an orthologous gene pair in Corynebacterium glutamicum, we suggest to rename Rv1985c to lysG(Mt), and Rv1986 to lysE(Mt).
Collapse
|
82
|
Fenwick MK, Almabruk KH, Ealick SE, Begley TP, Philmus B. Biochemical Characterization and Structural Basis of Reactivity and Regioselectivity Differences between Burkholderia thailandensis and Burkholderia glumae 1,6-Didesmethyltoxoflavin N-Methyltransferase. Biochemistry 2017; 56:3934-3944. [PMID: 28665591 DOI: 10.1021/acs.biochem.7b00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burkholderia glumae converts the guanine base of guanosine triphosphate into an azapteridine and methylates both the pyrimidine and triazine rings to make toxoflavin. Strains of Burkholderia thailandensis and Burkholderia pseudomallei have a gene cluster encoding seven putative biosynthetic enzymes that resembles the toxoflavin gene cluster. Four of the enzymes are similar in sequence to BgToxBCDE, which have been proposed to make 1,6-didesmethyltoxoflavin (1,6-DDMT). One of the remaining enzymes, BthII1283 in B. thailandensis E264, is a predicted S-adenosylmethionine (SAM)-dependent N-methyltransferase that shows a low level of sequence identity to BgToxA, which sequentially methylates N6 and N1 of 1,6-DDMT to form toxoflavin. Here we show that, unlike BgToxA, BthII1283 catalyzes a single methyl transfer to N1 of 1,6-DDMT in vitro. In addition, we investigated the differences in reactivity and regioselectivity by determining crystal structures of BthII1283 with bound S-adenosylhomocysteine (SAH) or 1,6-DDMT and SAH. BthII1283 contains a class I methyltransferase fold and three unique extensions used for 1,6-DDMT recognition. The active site structure suggests that 1,6-DDMT is bound in a reduced form. The plane of the azapteridine ring system is orthogonal to its orientation in BgToxA. In BthII1283, the modeled SAM methyl group is directed toward the p orbital of N1, whereas in BgToxA, it is first directed toward an sp2 orbital of N6 and then toward an sp2 orbital of N1 after planar rotation of the azapteridine ring system. Furthermore, in BthII1283, N1 is hydrogen bonded to a histidine residue whereas BgToxA does not supply an obvious basic residue for either N6 or N1 methylation.
Collapse
Affiliation(s)
- Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Khaled H Almabruk
- College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Benjamin Philmus
- College of Pharmacy, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
83
|
Melanson RA, Barphagha I, Osti S, Lelis TP, Karki HS, Chen R, Shrestha BK, Ham JH. Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae. MICROBIOLOGY-SGM 2017; 163:266-279. [PMID: 28036242 DOI: 10.1099/mic.0.000419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia glumae is an emerging plant-pathogenic bacterium that causes disease in rice in several of the major rice-producing areas throughout the world. In the southern United States, B. glumae is the major causal agent of bacterial panicle blight of rice and has caused severe yield losses in recent decades. Despite its importance, few management options are available for diseases caused by B. glumae, and knowledge of how this pathogen causes disease is limited. In an effort to identify novel factors that contribute to the pathogenicity of B. glumae, random mutagenesis using the miniTn5gus transposon was performed on two strains of B. glumae. Resultant mutants were screened in the laboratory for altered phenotypes in various known or putative virulence factors, including toxoflavin, lipase and extracellular polysaccharides. Mutants that exhibited altered phenotypes compared to their parent strain were selected and subsequently characterized using a PCR-based method to identify the approximate location of the transposon insertion. Altogether, approximately 20 000 random mutants were screened and 51 different genes were identified as having potential involvement in the production of toxoflavin, lipase and/or extracellular polysaccharide. Especially, two regulatory genes, ntpR and tepR, encoding a LysR-type transcriptional regulator and a σ54-dependent response regulator, respectively, were discovered in this study as new negative regulatory factors for the production of toxoflavin, the major phytotoxin synthesized by B. glumae and involved in bacterial pathogenesis.
Collapse
Affiliation(s)
- Rebecca A Melanson
- Present address: Mississippi State University, Central Mississippi Research and Extension Center, 1320 Seven Springs Road, Raymond, MS 39154, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Surendra Osti
- Present address: Department of Agricultural Economics, Louisiana State University, Baton Rouge, LA 70803, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Tiago P Lelis
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Hari S Karki
- Present address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Ruoxi Chen
- Present address: Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Bishnu K Shrestha
- Present address: Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA.,Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, 302 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
84
|
Critical role of quorum sensing-dependent glutamate metabolism in homeostatic osmolality and outer membrane vesiculation in Burkholderia glumae. Sci Rep 2017; 7:44195. [PMID: 28272446 PMCID: PMC5341150 DOI: 10.1038/srep44195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/03/2017] [Indexed: 02/08/2023] Open
Abstract
Metabolic homeostasis in cooperative bacteria is achieved by modulating primary metabolism in a quorum sensing (QS)-dependent manner. A perturbed metabolism in QS mutants causes physiological stress in the rice bacterial pathogen Burkholderia glumae. Here, we show that increased bacterial osmolality in B. glumae is caused by unusually high cellular concentrations of glutamate and betaine generated by QS deficiencies. QS negatively controls glutamate uptake and the expression of genes involved in the glutamine synthetase and glutamine oxoglutarate aminotransferase cycles. Thus, cellular glutamate levels were significantly higher in the QS mutants than in the wild type, and they caused hyperosmotic cellular conditions. Under the hypotonic conditions of the periplasm in the QS mutants, outer membrane bulging and vesiculation were observed, although these changes were rescued by knocking out the gltI gene, which encodes a glutamate transporter. Outer membrane modifications were not detected in the wild type. These results suggest that QS-dependent glutamate metabolism is critical for homeostatic osmolality. We suggest that outer membrane bulging and vesiculation might be the outcome of a physiological adaptation to relieve hypotonic osmotic stress in QS mutants. Our findings reveal how QS functions to maintain bacterial osmolality in a cooperative population.
Collapse
|
85
|
Lethal Consequences of Overcoming Metabolic Restrictions Imposed on a Cooperative Bacterial Population. mBio 2017; 8:mBio.00042-17. [PMID: 28246357 PMCID: PMC5347341 DOI: 10.1128/mbio.00042-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Quorum sensing (QS) controls cooperative activities in many Proteobacteria. In some species, QS-dependent specific metabolism contributes to the stability of the cooperation. However, the mechanism by which QS and metabolic networks have coevolved to support stable public good cooperation and maintenance of the cooperative group remains unknown. Here we explored the underlying mechanisms of QS-controlled central metabolism in the evolutionary aspects of cooperation. In Burkholderia glumae, the QS-dependent glyoxylate cycle plays an important role in cooperativity. A bifunctional QS-dependent transcriptional regulator, QsmR, rewired central metabolism to utilize the glyoxylate cycle rather than the tricarboxylic acid cycle. Defects in the glyoxylate cycle caused metabolic imbalance and triggered high expression of the stress-responsive chaperonin GroEL. High-level expression of GroEL in glyoxylate cycle mutants interfered with the biosynthesis of a public resource, oxalate, by physically interrupting the oxalate biosynthetic enzyme ObcA. Under such destabilized cooperativity conditions, spontaneous mutations in the qsmR gene in glyoxylate cycle mutants occurred to relieve metabolic stresses, but these mutants lost QsmR-mediated pleiotropy. Overcoming the metabolic restrictions imposed on the population of cooperators among glyoxylate cycle mutants resulted in the occurrence and selection of spontaneous qsmR mutants despite the loss of other important functions. These results provide insight into how QS bacteria have evolved to maintain stable cooperation via QS-mediated metabolic coordination. We address how quorum sensing (QS) has coevolved with metabolic networks to maintain bacterial sociality. We found that QS-mediated metabolic rewiring is critical for sustainable bacterial cooperation in Burkholderia glumae. The loss of the glyoxylate cycle triggered the expression of the stress-responsive molecular chaperonin GroEL. Excessive biosynthesis of GroEL physically hampered biosynthesis of a public good, oxalate. This is one good example of how molecular chaperones play critical roles in bacterial cooperation. In addition, we showed that metabolic restrictions in the glyoxylate cycle acted as a selection pressure on metabolic networks; there were spontaneous mutations in the qsmR gene to relieve such stresses. However, the presence of spontaneous qsmR mutants had tragic consequences for a cooperative population of B. glumae due to failure of qsmR-dependent activation of public good biosynthesis. These results provide a good example of a bacterial strategy for robust cooperation via QS-mediated metabolic rewiring.
Collapse
|
86
|
Betancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno-Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, Acosta-González A, Padilla-Gonzalez GF, Puyana M, Castellanos L, Ramos FA. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach. PLoS One 2017; 12:e0170148. [PMID: 28225766 PMCID: PMC5321270 DOI: 10.1371/journal.pone.0170148] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022] Open
Abstract
Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.
Collapse
Affiliation(s)
- Luz A. Betancur
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de Caldas. Departamento de Química. Edificio Orlando Sierra, Bloque B, Sede Palogrande Calle. Manizales, Caldas, Colombia
| | - Sandra J. Naranjo-Gaybor
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
- Universidad de las Fuerzas Armadas, ESPE Carrera de Ingeniería Agropecuaria IASA II Av. General Rumiñahui s/n, Sangolquí- Ecuador
| | - Diana M. Vinchira-Villarraga
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Nubia C. Moreno-Sarmiento
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Luis A. Maldonado
- Universidad Autónoma Metropolitana Rectoría—Secretaría General, Prolongación Canal de Miramontes, Col. Ex-hacienda San Juan de Dios, Tlalpan, México DF
| | - Zulma R. Suarez-Moreno
- Investigación y Desarrollo, Empresa Colombiana de Productos Veterinarios VECOL S.A., Bogotá D.C
| | | | - Gillermo F. Padilla-Gonzalez
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do de Sao Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Av. do Café, Ribeirão Preto–SP, Brazil
| | - Mónica Puyana
- Departamento de Ciencias Biológicas y Ambientales, Programa de Biología Marina, Universidad Jorge Tadeo Lozano, Carrera, Modulo, Oficina, Bogotá, Colombia
| | - Leonardo Castellanos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| | - Freddy A. Ramos
- Universidad Nacional de Colombia, Sede Bogotá, Departamento de Química, Carrera, Edificio de Química of 427, Bogotá, Colombia
| |
Collapse
|
87
|
Boonma S, Romsang A, Duang-Nkern J, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa. PLoS One 2017; 12:e0172071. [PMID: 28187184 PMCID: PMC5302815 DOI: 10.1371/journal.pone.0172071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa has two genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. We show here that P. aeruginosa fprA is an essential gene. However, the ΔfprA mutant could only be successfully constructed in PAO1 strains containing an extra copy of fprA on a mini-Tn7 vector integrated into the chromosome or carrying it on a temperature-sensitive plasmid. The strain containing an extra copy of the ferredoxin gene (fdx1) could suppress the essentiality of FprA. Other ferredoxin genes could not suppress the requirement for FprA, suggesting that Fdx1 mediates the essentiality of FprA. The expression of fprA was highly induced in response to treatments with a superoxide generator, paraquat, or sodium hypochlorite (NaOCl). The induction of fprA by these treatments depended on FinR, a LysR-family transcription regulator. In vivo and in vitro analysis suggested that oxidized FinR acted as a transcriptional activator of fprA expression by binding to its regulatory box, located 20 bases upstream of the fprA -35 promoter motif. This location of the FinR box also placed it between the -35 and -10 motifs of the finR promoter, where the reduced regulator functions as a repressor. Under uninduced conditions, binding of FinR repressed its own transcription but had no effect on fprA expression. Exposure to paraquat or NaOCl converted FinR to a transcriptional activator, leading to the expression of both fprA and finR. The ΔfinR mutant showed an increased paraquat sensitivity phenotype and attenuated virulence in the Drosophila melanogaster host model. These phenotypes could be complemented by high expression of fprA, indicating that the observed phenotypes of the ΔfinR mutant arose from the inability to up-regulate fprA expression. In addition, increased expression of fprB was unable to rescue essentiality of fprA or the superoxide-sensitive phenotype of the ΔfinR mutant, suggesting distinct mechanisms of the FprA and FprB enzymes.
Collapse
Affiliation(s)
- Siriwan Boonma
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | | | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
88
|
Biochemical and Genetic Bases of Indole-3-Acetic Acid (Auxin Phytohormone) Degradation by the Plant-Growth-Promoting Rhizobacterium Paraburkholderia phytofirmans PsJN. Appl Environ Microbiol 2016; 83:AEM.01991-16. [PMID: 27795307 DOI: 10.1128/aem.01991-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/14/2016] [Indexed: 12/16/2022] Open
Abstract
Several bacteria use the plant hormone indole-3-acetic acid (IAA) as a sole carbon and energy source. A cluster of genes (named iac) encoding IAA degradation has been reported in Pseudomonas putida 1290, but the functions of these genes are not completely understood. The plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN harbors iac gene homologues in its genome, but with a different gene organization and context than those of P. putida 1290. The iac gene functions enable P. phytofirmans to use IAA as a sole carbon and energy source. Employing a heterologous expression system approach, P. phytofirmans iac genes with previously undescribed functions were associated with specific biochemical steps. In addition, two uncharacterized genes, previously unreported in P. putida and found to be related to major facilitator and tautomerase superfamilies, are involved in removal of an IAA metabolite called dioxindole-3-acetate. Similar to the case in strain 1290, IAA degradation proceeds through catechol as intermediate, which is subsequently degraded by ortho-ring cleavage. A putative two-component regulatory system and a LysR-type regulator, which apparently respond to IAA and dioxindole-3-acetate, respectively, are involved in iac gene regulation in P. phytofirmans These results provide new insights about unknown gene functions and complex regulatory mechanisms in IAA bacterial catabolism. IMPORTANCE This study describes indole-3-acetic acid (auxin phytohormone) degradation in the well-known betaproteobacterium P. phytofirmans PsJN and comprises a complete description of genes, some of them with previously unreported functions, and the general basis of their gene regulation. This work contributes to the understanding of how beneficial bacteria interact with plants, helping them to grow and/or to resist environmental stresses, through a complex set of molecular signals, in this case through degradation of a highly relevant plant hormone.
Collapse
|
89
|
Genome Sequence of Burkholderia plantarii ZJ171, a Tropolone-Producing Bacterial Pathogen Responsible for Rice Seedling Blight. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01318-16. [PMID: 27932643 PMCID: PMC5146435 DOI: 10.1128/genomea.01318-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Burkholderia plantarii is the causal agent of rice seedling blight. Here, we report the draft genome sequence of B. plantarii, which contains 8,020,831 bp, with a G+C content of 68.66% and a predicted 7,688 coding sequences. The annotated genome sequence will provide further insight into its pathogenicity.
Collapse
|
90
|
Bauer JS, Hauck N, Christof L, Mehnaz S, Gust B, Gross H. The Systematic Investigation of the Quorum Sensing System of the Biocontrol Strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 Unveils aurI to Be a Biosynthetic Origin for 3-Oxo-Homoserine Lactones. PLoS One 2016; 11:e0167002. [PMID: 27861617 PMCID: PMC5115851 DOI: 10.1371/journal.pone.0167002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 11/30/2022] Open
Abstract
The shoot endophytic biocontrol strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 produces a wide range of exoproducts, including enzymes and antibiotics. The production of exoproducts is commonly tightly regulated. In order to get a deeper insight into the regulatory network of PB-St2, the strain was systematically investigated regarding its quorum sensing systems, both on the genetic and metabolic level. The genome analysis of PB-St2 revealed the presence of four putative acyl homoserine lactone (AHL) biosynthesis genes: phzI, csaI, aurI, and hdtS. LC-MS/MS analyses of the crude supernatant extracts demonstrated that PB-St2 produces eight AHLs. In addition, the concentration of all AHL derivatives was quantified time-resolved in parallel over a period of 42 h during the growth of P. aurantiaca PB-St2, resulting in production curves, which showed differences regarding the maximum levels of the AHLs (14.6 nM– 1.75 μM) and the production period. Cloning and heterologous overexpression of all identified AHL synthase genes in Escherichia coli proved the functionality of the resulting synthases PhzI, CsaI, and AurI. A clear AHL production pattern was assigned to each of these three AHL synthases, while the HdtS synthase did not lead to any AHL production. Furthermore, the heterologous expression study demonstrated unequivocally and for the first time that AurI directs the synthesis of two 3-oxo-AHLs.
Collapse
Affiliation(s)
- Judith S. Bauer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Nils Hauck
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Lisa Christof
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Samina Mehnaz
- Department of Biological Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Bertolt Gust
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tuebingen, Tuebingen, Germany
- German Centre for Infection Research (DZIF), Partner site Tuebingen, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
91
|
Pfeilmeier S, Caly DL, Malone JG. Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2016; 17:1298-313. [PMID: 27170435 PMCID: PMC6638335 DOI: 10.1111/mpp.12427] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 05/03/2023]
Abstract
Plant infection is a complicated process. On encountering a plant, pathogenic microorganisms must first adapt to life on the epiphytic surface, and survive long enough to initiate an infection. Responsiveness to the environment is critical throughout infection, with intracellular and community-level signal transduction pathways integrating environmental signals and triggering appropriate responses in the bacterial population. Ultimately, phytopathogens must migrate from the epiphytic surface into the plant tissue using motility and chemotaxis pathways. This migration is coupled with overcoming the physical and chemical barriers to entry into the plant apoplast. Once inside the plant, bacteria use an array of secretion systems to release phytotoxins and protein effectors that fulfil diverse pathogenic functions (Fig. ) (Melotto and Kunkel, ; Phan Tran et al., ). As our understanding of the pathways and mechanisms underpinning plant pathogenicity increases, a number of central research challenges are emerging that will profoundly shape the direction of research in the future. We need to understand the bacterial phenotypes that promote epiphytic survival and surface adaptation in pathogenic bacteria. How do these pathways function in the context of the plant-associated microbiome, and what impact does this complex microbial community have on the onset and severity of plant infections? The huge importance of bacterial signal transduction to every stage of plant infection is becoming increasingly clear. However, there is a great deal to learn about how these signalling pathways function in phytopathogenic bacteria, and the contribution they make to various aspects of plant pathogenicity. We are increasingly able to explore the structural and functional diversity of small-molecule natural products from plant pathogens. We need to acquire a much better understanding of the production, deployment, functional redundancy and physiological roles of these molecules. Type III secretion systems (T3SSs) are important and well-studied contributors to bacterial disease. Several key unanswered questions will shape future investigations of these systems. We need to define the mechanism of hierarchical and temporal control of effector secretion. For successful infection, effectors need to interact with host components to exert their function. Advanced biochemical, proteomic and cell biological techniques will enable us to study the function of effectors inside the host cell in more detail and on a broader scale. Population genomics analyses provide insight into evolutionary adaptation processes of phytopathogens. The determination of the diversity and distribution of type III effectors (T3Es) and other virulence genes within and across pathogenic species, pathovars and strains will allow us to understand how pathogens adapt to specific hosts, the evolutionary pathways available to them, and the possible future directions of the evolutionary arms race between effectors and molecular plant targets. Although pathogenic bacteria employ a host of different virulence and proliferation strategies, as a result of the space constraints, this review focuses mainly on the hemibiotrophic pathogens. We discuss the process of plant infection from the perspective of these important phytopathogens, and highlight new approaches to address the outstanding challenges in this important and fast-moving field.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Delphine L Caly
- Université de Lille, EA 7394, ICV - Institut Charles Viollette, Lille, F-59000, France
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
92
|
Shah N, Klaponski N, Selin C, Rudney R, Fernando WGD, Belmonte MF, de Kievit TR. PtrA Is Functionally Intertwined with GacS in Regulating the Biocontrol Activity of Pseudomonas chlororaphis PA23. Front Microbiol 2016; 7:1512. [PMID: 27713742 PMCID: PMC5031690 DOI: 10.3389/fmicb.2016.01512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/09/2016] [Indexed: 11/13/2022] Open
Abstract
In vitro inhibition of the fungal pathogen Sclerotinia sclerotiorum by Pseudomonas chlororaphis PA23 is reliant upon a LysR-type transcriptional regulator (LTTR) called PtrA. In the current study, we show that Sclerotinia stem rot and leaf infection are significantly increased in canola plants inoculated with the ptrA-mutant compared to the wild type, establishing PtrA as an essential regulator of PA23 biocontrol. LTTRs typically regulate targets that are upstream of and divergently transcribed from the LTTR locus. We identified a short chain dehydrogenase (scd) gene immediately upstream of ptrA. Characterization of a scd mutant revealed that it is phenotypically identical to the wild type. Moreover, scd transcript abundance was unchanged in the ptrA mutant. These findings indicate that PtrA regulation does not involve scd, rather this LTTR controls genes located elsewhere on the chromosome. Employing a combination of complementation and transcriptional analysis we investigated whether connections exist between PtrA and other regulators of biocontrol. Besides ptrA, gacS was the only gene able to partially rescue the wild-type phenotype, establishing a connection between PtrA and the sensor kinase GacS. Transcriptomic analysis revealed decreased expression of biosynthetic (phzA, prnA) and regulatory genes (phzI, phzR, rpoS, gacA, rsmX, rsmZ, retS) in the ptrA mutant; conversely, rsmE, and rsmY were markedly upregulated. The transcript abundance of ptrA was nine-fold higher in the mutant background indicating that this LTTR negatively autoregulates itself. In summary, PtrA is an essential regulator of genes required for PA23 biocontrol that is functionally intertwined with GacS.
Collapse
Affiliation(s)
- Nidhi Shah
- Department of Microbiology, University of Manitoba Winnipeg, MB, Canada
| | - Natasha Klaponski
- Department of Microbiology, University of Manitoba Winnipeg, MB, Canada
| | - Carrie Selin
- Department of Plant Science, University of Manitoba Winnipeg, MB, Canada
| | - Rachel Rudney
- Department of Microbiology, University of Manitoba Winnipeg, MB, Canada
| | | | - Mark F Belmonte
- Department of Biological Science, University of Manitoba Winnipeg, MB, Canada
| | | |
Collapse
|
93
|
Nickzad A, Déziel E. Adaptive Significance of Quorum Sensing-Dependent Regulation of Rhamnolipids by Integration of Growth Rate in Burkholderia glumae: A Trade-Off between Survival and Efficiency. Front Microbiol 2016; 7:1215. [PMID: 27540372 PMCID: PMC4972832 DOI: 10.3389/fmicb.2016.01215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023] Open
Abstract
Quorum sensing (QS) is a cell density-dependent mechanism which enables a population of bacteria to coordinate cooperative behaviors in response to the accumulation of self-produced autoinducer signals in their local environment. An emerging framework is that the adaptive significance of QS in the regulation of production of costly extracellular metabolites ("public goods") is to maintain the homeostasis of cooperation. We investigated this model using the phytopathogenic bacterium Burkholderia glumae, which we have previously demonstrated uses QS to regulate the production of rhamnolipids, extracellular surface-active glycolipids promoting the social behavior called "swarming motility." Using mass spectrometric quantification and chromosomal lux-based gene expression, we made the unexpected finding that when unrestricted nutrient resources are provided, production of rhamnolipids is carried out completely independently of QS regulation. This is a unique observation among known QS-controlled factors in bacteria. On the other hand, under nutrient-limited conditions, QS then becomes the main regulating mechanism, significantly enhancing the specific rhamnolipids yield. Accordingly, decreasing nutrient concentrations amplifies rhamnolipid biosynthesis gene expression, revealing a system where QS-dependent regulation is specifically triggered by the growth rate of the population, rather than by its cell density. Furthermore, a gradual increase in QS signal specific concentration upon decrease of specific growth rate suggests a reduction in quorum threshold, which reflects an increase in cellular demand for production of QS-dependent target gene product at low density populations. Integration of growth rate with QS as a decision-making mechanism for biosynthesis of costly metabolites, such as rhamnolipids, could serve to assess the demand and timing for expanding the carrying capacity of a population through spatial expansion mechanisms, such as swarming motility, thus promoting the chances of survival, even if the cell density might not be high enough for an otherwise efficient production of rhamnolipids. In conclusion, we propose that the adaptive significance of growth rate-dependent functionality of QS in biosynthesis of costly public goods lies within providing a regulatory mechanism for selecting the optimal trade-off between survival and efficiency.
Collapse
Affiliation(s)
| | - Eric Déziel
- Institut National de la Recherche Scientifique – Institut Armand-Frappier, LavalQC, Canada
| |
Collapse
|
94
|
Khakhum N, Yordpratum U, Boonmee A, Tattawasart U, Rodrigues JLM, Sermswan RW. Identification of the Burkholderia pseudomallei bacteriophage ST79 lysis gene cassette. J Appl Microbiol 2016; 121:364-72. [PMID: 27038077 DOI: 10.1111/jam.13151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/18/2016] [Accepted: 03/31/2016] [Indexed: 11/30/2022]
Abstract
AIMS To identify and characterize the lysis gene cassette from the bacteriophage ST79 that lyses Burkholderia pseudomallei. METHODS AND RESULTS Approximately 1·5 kb of ST79 lysis genes were identified from the phage genome data. It was composed of holin, peptidase M15A or endolysin, lysB and lysC. Each gene and its combinations were cloned into Escherichia coli and the lytic effects were measured. Co-expression of holin and peptidase M15A showed the highest lysis activity. Expression of holin, lysB/C or holin-peptidase M15A-lysB/lysC lysed the E. coli membrane, whereas peptidase M15A alone did not. The predicted transmembrane structures of holin and lysB/C indicated that they could be inserted into the bacterial membrane to form pores, affecting cell permeability and causing lysis. CONCLUSION This is the first report of an investigation into the lysis genes of B. pseudomallei's lytic phage using E. coli as a model. SIGNIFICANCE AND IMPACT OF THE STUDY Burkholderia pseudomallei, a Gram-negative bacterium causing an infectious disease, is intrinsically resistant to several antibiotics, and a vaccine is not available. The lysis genes of ST79, the first reported lytic bacteriophage of B. pseudomallei, were characterized. The development of ST79 as an alternative treatment for skin ulceration, for example, or to be used as a gene cloning tool for B. pseudomallei may be possible with this knowledge.
Collapse
Affiliation(s)
- N Khakhum
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - U Yordpratum
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - A Boonmee
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - U Tattawasart
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - J L M Rodrigues
- Department of Land, Air and Water Resources, University of California - Davis, Davis, CA, USA
| | - R W Sermswan
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
95
|
Fenwick MK, Philmus B, Begley TP, Ealick SE. Burkholderia glumae ToxA Is a Dual-Specificity Methyltransferase That Catalyzes the Last Two Steps of Toxoflavin Biosynthesis. Biochemistry 2016; 55:2748-59. [PMID: 27070241 PMCID: PMC4870115 DOI: 10.1021/acs.biochem.6b00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Toxoflavin is a major virulence factor of the rice pathogen Burkholderia glumae. The tox operon of B. glumae contains five putative toxoflavin biosynthetic genes toxABCDE. ToxA is a predicted S-adenosylmethionine-dependent methyltransferase, and toxA knockouts of B. glumae are less virulent in plant infection models. In this study, we show that ToxA performs two consecutive methylations to convert the putative azapteridine intermediate, 1,6-didemethyltoxoflavin, to toxoflavin. In addition, we report a series of crystal structures of ToxA complexes that reveals the molecular basis of the dual methyltransferase activity. The results suggest sequential methylations with initial methylation at N6 of 1,6-didemethyltoxoflavin followed by methylation at N1. The two azapteridine orientations that position N6 or N1 for methylation are coplanar with a 140° rotation between them. The structure of ToxA contains a class I methyltransferase fold having an N-terminal extension that either closes over the active site or is largely disordered. The ordered conformation places Tyr7 at a position of a structurally conserved tyrosine site of unknown function in various methyltransferases. Crystal structures of ToxA-Y7F consistently show a closed active site, whereas structures of ToxA-Y7A consistently show an open active site, suggesting that the hydroxyl group of Tyr7 plays a role in opening and closing the active site during the multistep reaction.
Collapse
Affiliation(s)
- Michael K. Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Benjamin Philmus
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
96
|
Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 2016; 100:5215-29. [PMID: 27115756 DOI: 10.1007/s00253-016-7520-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 02/02/2023]
Abstract
Burkholderia is an incredibly diverse and versatile Gram-negative genus, within which over 80 species have been formally named and multiple other genotypic groups likely represent new species. Phylogenetic analysis based on the 16S rRNA gene sequence and core genome ribosomal multilocus sequence typing analysis indicates the presence of at least three major clades within the genus. Biotechnologically, Burkholderia are well-known for their bioremediation and biopesticidal properties. Within this review, we explore the ability of Burkholderia to synthesise a wide range of antimicrobial compounds ranging from historically characterised antifungals to recently described antibacterial antibiotics with activity against multiresistant clinical pathogens. The production of multiple Burkholderia antibiotics is controlled by quorum sensing and examples of quorum sensing pathways found across the genus are discussed. The capacity for antibiotic biosynthesis and secondary metabolism encoded within Burkholderia genomes is also evaluated. Overall, Burkholderia demonstrate significant biotechnological potential as a source of novel antibiotics and bioactive secondary metabolites.
Collapse
|
97
|
Lin L, Dai S, Tian B, Li T, Yu J, Liu C, Wang L, Xu H, Zhao Y, Hua Y. DqsIR quorum sensing-mediated gene regulation of the extremophilic bacterium Deinococcus radiodurans in response to oxidative stress. Mol Microbiol 2016; 100:527-41. [PMID: 26789904 DOI: 10.1111/mmi.13331] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 11/30/2022]
Abstract
Here, we show that AHLs can be employed by Deinococcus radiodurans, which belongs to the unique phylum Deinococcus-Thermus and is known for its cellular resistance to environmental stresses. An AHL-mediated quorum-sensing system (DqsI/DqsR) was identified in D. radiodurans. We found that under non-stress conditions, the AHL level was "shielded" by quorum quenching enzymes, whereas AHLs accumulated when D. radiodurans was exposed to oxidative stress. Upon exposure to H2 O2 , AHL synthetic enzymes (DqsI) were immediately induced, while the expression of quorum-quenching enzymes began to increase approximately 30 min after exposure to H2 O2 , as shown by time-course analyses of gene expression. Both dqsI mutant (DMDqsI) and dqsR mutant (MDqsR) were more sensitive to oxidative stress compared with the wild-type strain. Exogenous AHLs (5 μM) could completely restore the survival fraction of DMDqsI under oxidative stress. RNA-seq analysis showed that a number of genes involved in stress-response, cellular cleansing, and DNA repair had altered transcriptional levels in MDqsR. The DqsR, acting as a regulator of quorum sensing, controls gene expression along with AHLs. Hence, the DqsIR-mediated quorum sensing that mediates gene regulation is an adaptive strategy for D. radiodurans in response to oxidative stresses and is conserved in the extremophilic Deinococcus bacteria.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Shang Dai
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Tao Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Jiangliu Yu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Chengzhi Liu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
98
|
Knapp A, Voget S, Gao R, Zaburannyi N, Krysciak D, Breuer M, Hauer B, Streit WR, Müller R, Daniel R, Jaeger KE. Mutations improving production and secretion of extracellular lipase by Burkholderia glumae PG1. Appl Microbiol Biotechnol 2016; 100:1265-1273. [PMID: 26476653 PMCID: PMC4717159 DOI: 10.1007/s00253-015-7041-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023]
Abstract
Burkholderia glumae is a Gram-negative phytopathogenic bacterium known as the causative agent of rice panicle blight. Strain B. glumae PG1 is used for the production of a biotechnologically relevant lipase, which is secreted into the culture supernatant via a type II secretion pathway. We have comparatively analyzed the genome sequences of B. glumae PG1 wild type and a lipase overproducing strain obtained by classical strain mutagenesis. Among a total number of 72 single nucleotide polymorphisms (SNPs) identified in the genome of the production strain, two were localized in front of the lipAB operon and were analyzed in detail. Both mutations contribute to a 100-fold overproduction of extracellular lipase in B. glumae PG1 by affecting transcription of the lipAB operon and efficiency of lipase secretion. We analyzed each of the two SNPs separately and observed a stronger influence of the promoter mutation than of the signal peptide modification but also a cumulative effect of both mutations. Furthermore, fusion of the mutated LipA signal peptide resulted in a 2-fold increase in secretion of the heterologous reporter alkaline phosphatase from Escherichia coli.
Collapse
Affiliation(s)
- Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sonja Voget
- Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, Germany
| | - Rong Gao
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Nestor Zaburannyi
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Dagmar Krysciak
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Michael Breuer
- BASF SE, Biocatalysis and Fine Chemicals Research, Ludwigshafen, Germany
| | - Bernhard Hauer
- BASF SE, Biocatalysis and Fine Chemicals Research, Ludwigshafen, Germany
- Institute of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Wolfgang R Streit
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Rolf Daniel
- Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany.
| |
Collapse
|
99
|
Naughton LM, An SQ, Hwang I, Chou SH, He YQ, Tang JL, Ryan RP, Dow JM. Functional and genomic insights into the pathogenesis of B
urkholderia
species to rice. Environ Microbiol 2016; 18:780-90. [DOI: 10.1111/1462-2920.13189] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/13/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Lynn M. Naughton
- School of Microbiology; Biosciences Institute; University College Cork; Cork Ireland
| | - Shi-qi An
- Division of Molecular Microbiology; College of Life Sciences; University of Dundee; Dundee UK
| | - Ingyu Hwang
- Institute of Biochemistry and Department of Agricultural Biotechnology; Seoul National University; Seoul 151-921 South Korea
| | - Shan-Ho Chou
- National Chung Hsing University Biotechnology Center; National Chung Hsing University; Taichung 40227 Taiwan
| | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering; College of Life Science and Technology; Guangxi University; 100 Daxue Road Nanning Guangxi 530004 China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources; The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering; College of Life Science and Technology; Guangxi University; 100 Daxue Road Nanning Guangxi 530004 China
| | - Robert P. Ryan
- Division of Molecular Microbiology; College of Life Sciences; University of Dundee; Dundee UK
| | - J. Maxwell Dow
- School of Microbiology; Biosciences Institute; University College Cork; Cork Ireland
| |
Collapse
|
100
|
Lee J, Park J, Kim S, Park I, Seo YS. Differential regulation of toxoflavin production and its role in the enhanced virulence of Burkholderia gladioli. MOLECULAR PLANT PATHOLOGY 2016; 17:65-76. [PMID: 25845410 PMCID: PMC6638467 DOI: 10.1111/mpp.12262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Burkholderia gladioli is a causal agent of bacterial panicle blight and sheath/grain browning in rice in many countries. Many strains produce the yellow pigment toxoflavin, which is highly toxic to plants, fungi, animals and microorganisms. Although there have been several studies on the toxoflavin biosynthesis system of B. glumae, it is still unclear how B. gladioli activates toxoflavin biosynthesis. In this study, we explored the genomic organization of the toxoflavin system of B. gladioli and its biological functions using comparative genomic analysis between toxoflavin-producing strains (B. glumae BGR1 and B. gladioli BSR3) and a strain not producing toxoflavin (B. gladioli KACC11889). The latter exhibits normal physiological characteristics similar to other B. gladioli strains. Burkholderia gladioli KACC11889 possesses all the genes involved in toxoflavin biosynthesis, but lacks the quorum-sensing (QS) system that functions as an on/off switch for toxoflavin biosynthesis. These data suggest that B. gladioli has evolved to use the QS signalling cascade of toxoflavin production (TofI/TofR of QS → ToxJ or ToxR → tox operons) similar to that in B. glumae. However, some strains may have evolved to eliminate toxoflavin production through deletion of the QS genes. In addition, we demonstrate that the toxoflavin biosynthetic system enhances the virulence of B. gladioli. These findings provide another line of evidence supporting the differential regulation of the toxoflavin system in Burkholderia strains.
Collapse
Affiliation(s)
- Jongyun Lee
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| | - Sunyoung Kim
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| | - Inmyoung Park
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, 609-735, South Korea
| |
Collapse
|