51
|
Chu PWY, Beart PM, Jones NM. Preconditioning protects against oxidative injury involving hypoxia-inducible factor-1 and vascular endothelial growth factor in cultured astrocytes. Eur J Pharmacol 2010; 633:24-32. [PMID: 20153315 DOI: 10.1016/j.ejphar.2010.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/18/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
Tolerance to brain injury involves hypoxia-inducible factor-1 (HIF-1) and its target genes as the key pathway mediating a cascade of events including cell survival, energetics, and angiogenesis. In this study, we established the treatment paradigms for an in vitro model of tolerance to oxidative injury in primary astrocytic cultures and further examined the roles for the HIF-1 signalling cascade. Isolated murine astrocytes were preconditioned with sub-toxic concentrations of HIF-1 inducers and subsequently exposed to a H(2)O(2) insult, where changes in cell viability and protein expression were determined. Preconditioning with non-damaging concentrations of desferrioxamine (DFO) and ethyl-3,4-dihydroxybenzoate (EDHB) significantly improved cellular viability after H(2)O(2) injury treatment. Time course studies revealed that DFO and EDHB treatments alone induced sequential activation of HIF-1 signal transduction where nuclear HIF-1alpha protein accumulation was detected as early as 2h, followed by downstream upregulation of intracellular and released VEGF from 4h and 8h onwards, respectively. The protective effects of DFO and EDHB preconditioning against H(2)O(2) injury were abolished by co-treatment with cycloheximide, an inhibitor of protein synthesis. Importantly, when the anti-HIF-1 compound, 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) was used, the cytoprotection and VEGF accumulation produced by DFO and EDHB preconditioning were diminished. These results indicate the essential role of the HIF-1 pathway in our model of tolerance against oxidative injury in cultured astrocytes, and suggest roles for astrocytic HIF-1 expression and VEGF release which may influence the function of surrounding cells and vasculature during oxidative stress-related brain diseases.
Collapse
Affiliation(s)
- Percy W Y Chu
- Molecular Neuropharmacology, Florey Neuroscience Institutes, University of Melbourne, VIC 3010, Australia
| | | | | |
Collapse
|
52
|
Lee HT, Chang YC, Tu YF, Huang CC. CREB activation mediates VEGF-A's protection of neurons and cerebral vascular endothelial cells. J Neurochem 2010; 113:79-91. [PMID: 20067582 DOI: 10.1111/j.1471-4159.2010.06584.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hypoxic ischemia (HI) in neonates causes significant neurodevelopmental sequelae. Pharmacological agents designed to target specific transcription factors expressed in neurons and vasculature may provide powerful therapy against HI. Vascular endothelial growth factor-A (VEGF-A) and cAMP response element-binding protein (CREB) both underlie learning and memory, and survival of the nervous system. We examined whether CREB activation is a shared pathway underlying VEGF-A's protection in neurons and cerebral vascular endothelial cells. VEGF-A was used in a HI model of rat pups and in oxygen-glucose-deprivation (OGD) models of immortalized H19-7 neurons and b.End3 cerebral vascular endothelial cells. We found that VEGF-A activated VEGF receptor-2 (VEGFR-2), phosphorylated CREB in neurons and endothelial cells, and protected against HI, and inhibiting VEGFR-2 before VEGF-A reduced the protective effect of VEGF-A in rat pups. VEGF-A also up-regulated VEGFR-2 and phosphorylated CREB, and protected H19-7 neurons and b.End3 endothelial cells against OGD. Inhibiting VEGFR-2 and extracellular signal-regulated kinase (ERK), respectively, reduced VEGF-A-induced CREB phosphorylation and protection of H19-7 and b.End3 cells against OGD. Transfecting H19-7 and b.End3 cells with a serine-133 phosphorylation mutant CREB also inhibited VEGF-A's protection of both types of cells. We conclude that CREB phosphorylation through VEGFR-2/ERK signaling is the shared pathway that underlies VEGF-A's protection of neurons and vascular endothelial cells.
Collapse
Affiliation(s)
- Hsueh-Te Lee
- Department of Pediatrics, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | | | | | | |
Collapse
|
53
|
Enhanced expression of vascular endothelial growth factor receptor-3 in the subventricular zone of stroke-lesioned rats. Neurosci Lett 2010; 469:194-8. [DOI: 10.1016/j.neulet.2009.11.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/18/2009] [Accepted: 11/27/2009] [Indexed: 11/17/2022]
|
54
|
Role of the oxygen-dependent degradation domain in a hypoxia-inducible gene expression system in vascular endothelial growth factor gene therapy. Spine (Phila Pa 1976) 2009; 34:E952-8. [PMID: 20010384 DOI: 10.1097/brs.0b013e3181c4af80] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN.: An in vitro neural hypoxia model and rat spinal cord injury (SCI) model were used to assess the regulation effect of a reporter or therapeutic gene expression by an oxygen-dependent degradation (ODD) domain in a hypoxia-inducible gene expression system with or without the erythropoietin (EPO) enhancer. OBJECTIVE.: To increase vascular endothelial growth factor (VEGF) gene expression in SCI lesions but avoid unwanted overexpression of VEGF in normal sites, we developed a hypoxia-inducible gene expression system consisting of the EPO enhancer upstream of the SV promoter and an ODD domain C-terminally fused to VEGF. SUMMARY OF BACKGROUND DATA.: ODD domain plays a major role in the degradation of hypoxia-inducible factor 1alpha and has been used in a hypoxia-specific gene expression system as a post-translational regulatory factor. METHODS.: The hypoxia-inducible luciferase or VEGF plasmid was constructed using the EPO enhancer combined with or without the ODD domain. The constructed plasmid was transfected into mouse Neuro 2a (N2a) neuroblastoma cells by Lipofectamine 2000, followed by a 24-hour incubation in hypoxia or normoxia. For in vivo analysis, the naked plasmid DNA was directly injected into the injured rat spinal cord. The gene expression was evaluated by luciferase activity assay, enzyme-linked immunosorbent assay, reverse transcriptase-polymerase chain reaction, and immunofluorescence staining. RESULTS.: The EPO enhancer/ODD domain-combined hypoxia-inducible gene expression system clearly increased the expression of the reporter luciferase gene and therapeutic VEGF gene specifically under hypoxic conditions and SCI, and quickly downregulated protein expression to a very low level after reoxygenation. CONCLUSION.: These results strongly suggest the potential applicability of this EPO enhancer/ODD domain-based hypoxia-inducible gene expression system in the development of a safer and more effective VEGF gene therapy for SCI.
Collapse
|
55
|
Xiong Y, Huo Y, Chen C, Zeng H, Lu X, Wei C, Ruan C, Zhang X, Hu Z, Shibuya M, Luo J. Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways. J Biol Chem 2009; 284:23217-24. [PMID: 19570985 DOI: 10.1074/jbc.m109.019679] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is increasing evidence that vascular endothelial growth factor (VEGF) contributes to inflammation independent of its angiogenic functions. Targeting some of the components in endothelial Weibel-Palade bodies (WPBs) effectively inhibits VEGF-induced inflammation, but little is known about how VEGF regulates WPB exocytosis. In this study, we showed that VEGF receptor-2 (VEGFR2), but not VEGFR1, is responsible for VEGF-induced release of von Willebrand factor (vWF), a major marker of WPBs. This is in good contrast to VEGF-stimulated interleukin-6 release from endothelium, which is selectively mediated through VEGFR1. We further demonstrated that VEGFR2-initiated phospholipase C-gamma1 (PLCgamma1)/calcium signaling is important but insufficient for full vWF release, suggesting the possible participation of another effector pathway. We found that cAMP/protein kinase A (PKA) signaling is required for full vWF release. Importantly, a single mutation of Tyr(1175) in the C terminus of VEGFR2, a tyrosine residue crucial for embryonic vasculogenesis, abolished vWF release, concomitant with defective activations of both PLCgamma1 and PKA. These data suggest that Tyr(1175) mediates both PLCgamma1-dependent and PKA-dependent signaling pathways. Taken together, our results not only reveal a novel Tyr(1175)-mediated signaling pathway but also highlight a potentially new therapeutic target for the management of vascular inflammation.
Collapse
Affiliation(s)
- Yan Xiong
- Laboratory of Vascular Biology, Institute of Molecular Medicine, Peking University, Beijing 10087, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Li X, Lu L, Bush DJ, Zhang X, Zheng L, Suswam EA, King PH. Mutant copper-zinc superoxide dismutase associated with amyotrophic lateral sclerosis binds to adenine/uridine-rich stability elements in the vascular endothelial growth factor 3'-untranslated region. J Neurochem 2009; 108:1032-44. [PMID: 19196430 DOI: 10.1111/j.1471-4159.2008.05856.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a neurotrophic factor essential for maintenance of motor neurons. Loss of this factor produces a phenotype similar to amyotrophic lateral sclerosis (ALS). We recently showed that ALS-producing mutations of Cu/Zn-superoxide dismutase (SOD1) disrupt post-transcriptional regulation of VEGF mRNA, leading to significant loss of expression [Lu et al., J. Neurosci.27 (2007), 7929]. Mutant SOD1 was present in the ribonucleoprotein complex associated with adenine/uridine-rich elements (ARE) of the VEGF 3'-untranslated region (UTR). Here, we show by electrophoretic mobility shift assay that mutant SOD1 bound directly to the VEGF 3'-UTR with a predilection for AREs similar to the RNA stabilizer HuR. SOD1 mutants A4V and G37R showed higher affinity for the ARE than L38V or G93A. Wild-type SOD1 bound very weakly with an apparent K(d) 11- to 72-fold higher than mutant forms. Mutant SOD1 showed an additional lower shift with VEGF ARE that was accentuated in the metal-free state. A similar pattern of binding was observed with AREs of tumor necrosis factor-alpha and interleukin-8, except only a single shift predominated. Using an ELISA-based assay, we demonstrated that mutant SOD1 competes with HuR and neuronal HuC for VEGF 3'-UTR binding. To define potential RNA-binding domains, we truncated G37R, G93A and wild-type SOD1 and found that peptides from the N-terminal portion of the protein that included amino acids 32-49 could recapitulate the binding pattern of full-length protein. Thus, the strong RNA-binding affinity conferred by ALS-associated mutations of SOD1 may contribute to the post-transcriptional dysregulation of VEGF mRNA.
Collapse
Affiliation(s)
- Xuelin Li
- Department of Neurology, University of Alabama at Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Lee HT, Chang YC, Tu YF, Huang CC. VEGF-A/VEGFR-2 signaling leading to cAMP response element-binding protein phosphorylation is a shared pathway underlying the protective effect of preconditioning on neurons and endothelial cells. J Neurosci 2009; 29:4356-68. [PMID: 19357264 PMCID: PMC6665743 DOI: 10.1523/jneurosci.5497-08.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 12/29/2008] [Accepted: 02/24/2009] [Indexed: 01/13/2023] Open
Abstract
Preconditioning protects endothelial cells as well as neurons from ischemic injury. In 7-d-old rat pups, ligating the carotid artery 1 h before hypoxia damaged the ipsilateral cerebral hemisphere; in contrast, ligating the artery 24 h before hypoxia provided complete neuroprotection. The protective effect of the 24 h artery ligation preconditioning model requires the activation of cAMP response element-binding protein (CREB). We tested the hypothesis that vascular endothelial growth factor (VEGF)-A/VEGF receptor-2 (VEGFR-2) signaling that leads to CREB activation is the shared pathway underlying the protective effect of preconditioning in neurons and endothelial cells. VEGF-A, VEGFR-1, or VEGFR-2 was inhibited by antisense oligodeoxynucleotides (ODNs) in vivo and by a VEGF-A neutralizing antibody or VEGFR-2 inhibitor in vitro. CREB phosphorylation (pCREB) and VEGF-A and VEGFR-2 expression were increased and colocalized in vascular endothelial cells and neurons in the ipsilateral cerebral cortex 24 h after ligation. The antisense ODN blockades of VEGF-A and VEGFR-2 decreased pCREB and reduced the protection of 24 h ligation preconditioning. Furthermore, oxygen-glucose deprivation (OGD) preconditioning upregulated VEGF-A, VEGFR-2, and pCREB levels and protected immortalized H19-7 neuronal cells and b.End3 vascular endothelial cells against 24 h OGD cell death. Blocking VEGF-A or VEGFR-2 reduced CREB activation and the effects of OGD preconditioning in neuronal cells and endothelial cells. Transfecting a serine-133 phosphorylation mutant CREB also inhibited the protective effect of OGD preconditioning. We conclude that VEGF-A/VEGFR-2 signaling leading to CREB phosphorylation is the shared pathway underlying the preconditioning-induced protective effect in neurons and vascular endothelial cells in the developing brain.
Collapse
Affiliation(s)
| | - Ying-Chao Chang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Fang Tu
- Institute of Clinical Medicine, and
- Department of Emergency Medicine, National Cheng Kung University Hospital, Tainan 70428, Taiwan, and
| | | |
Collapse
|
58
|
Ventriglia M, Zanardini R, Pedrini L, Placentino A, Nielsen MG, Gennarelli M, Bocchio-Chiavetto L. VEGF serum levels in depressed patients during SSRI antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:146-9. [PMID: 19059450 DOI: 10.1016/j.pnpbp.2008.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/14/2008] [Accepted: 11/17/2008] [Indexed: 01/17/2023]
Abstract
Recent evidence indicates that the vascular endothelial growth factor (VEGF) may be involved in the neuronal mechanisms underlying both the depression aetiology and the response to pharmacological and non pharmacological antidepressant treatments. To investigate whether VEGF peripheral levels are altered in depression and are modulated by antidepressant therapies, we analyzed the serum VEGF concentrations in 25 subjects affected by major depression (MD) before (T0) and after 8 (T8) and 12 (T12) weeks of escitalopram treatment. No significant alterations in VEGF serum levels were found at T0, even considering possible effects of confounders such as gender and smoking habit (r2=0.227 p=0.74). No changes appeared during the treatment (F(1.83, 43.86)=0.962; p=0.383) and there was no correlation between percentage VEGF variations at T12 and symptoms improvements (p=0.823). The present work represents the first report on the evaluation of serum VEGF levels in MD patients. However, before discarding serum VEGF as a biochemical marker in the diagnosis and treatment of depression, our negative results need to be confirmed in larger patient samples stratified for clinical characteristics, co-morbidities, cardiovascular diseases and confounding factors.
Collapse
Affiliation(s)
- Mariacarla Ventriglia
- Department of Neuroscience, AFaR-Ospedale Fatebenefratelli, Isola Tiberina, Neurology, University Campus Biomedico, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
59
|
Vasil’ev AV, Verkhovskaya LV, Shmarov MM, Tutykhina IL, Vorob’eva AA, Naroditskii BS, Zakharova MN. The role of vascular endothelial growth factor in the progression of amytrophic lateral sclerosis. NEUROCHEM J+ 2008. [DOI: 10.1134/s1819712408040119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Shin YJ, Choi JS, Lee JY, Choi JY, Cha JH, Chun MH, Lee MY. Differential regulation of vascular endothelial growth factor-C and its receptor in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol 2008; 116:517-27. [PMID: 18704465 DOI: 10.1007/s00401-008-0423-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/22/2008] [Accepted: 08/06/2008] [Indexed: 12/22/2022]
Abstract
We investigated the changes in the expression of vascular endothelial growth factor-C (VEGF-C) and its receptor, VEGFR-3, in the rat hippocampus following transient forebrain ischemia. The expression profiles of VEGF-C and VEGFR-3 were very similar in the control hippocampi, where both genes were constitutively expressed in neurons in the pyramidal cell and granule cell layers. The spatiotemporal expression pattern of VEGF-C was similar to that of VEGFR-3 in the ischemic hippocampus, and in the CA1 and dentate hilar regions both VEGF-C and VEGFR-3 were strongly expressed in activated glial cells rather than in neurons. Most of the activated glial cells expressing both genes were reactive astrocytes, although some were a subpopulation of brain macrophages. In the dentate gyrus, however, VEGFR-3 expression was transiently increased in the innermost layer of granule cells on days 7-10 after reperfusion, coinciding with an increase in polysialylated neural cell adhesion molecule staining--a marker for immature neurons. These data suggest that VEGF-C may be involved in glial reaction via paracrine or autocrine mechanisms in the ischemic brain and may carry out specific roles in adult hippocampal neurogenesis during ischemic insults.
Collapse
Affiliation(s)
- Yoo-Jin Shin
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
61
|
Araneda S, Commin L, Atlagich M, Kitahama K, Parraguez VH, Pequignot JM, Dalmaz Y. VEGF overexpression in the astroglial cells of rat brainstem following ozone exposure. Neurotoxicology 2008; 29:920-7. [DOI: 10.1016/j.neuro.2008.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 01/19/2023]
|
62
|
Plaschke K, Staub J, Ernst E, Marti HH. VEGF overexpression improves mice cognitive abilities after unilateral common carotid artery occlusion. Exp Neurol 2008; 214:285-92. [PMID: 18822285 DOI: 10.1016/j.expneurol.2008.08.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 12/16/2022]
Abstract
Angiogenesis and neurogenesis are adaptive responses protecting cerebral tissue from hypoxic-ischemic injury. Both processes seem to be governed by hypoxia-induced growth factors, of which vascular endothelial growth factor (VEGF) is a prominent example. The aim of this study was to investigate the influence of VEGF overexpression (V1 mice) on mice cognitive function and cerebral structure under moderate cerebral oligemia. In 33 V1 and wild-type (wt) mice, the left common carotid artery was permanently occluded (CCAO) under acute (48 h) and subchronic (12 days) conditions. Sham operation was performed in 35 mice (controls). Psychometric testing was done using holeboard test and Morris Water Maze system, immunohistochemistry was performed for detection of cerebral apoptosis, nestin and CD31 expression. The results show that under control conditions V1 mice showed better spatial cognitive abilities as compared to their wt littermates. During CCAO, time and distance to reach a hidden platform in Water Maze were shorter in V1 mice as compared to wt animals, indicative of faster learning and better spatial memory processes. While no signs of necrosis or apoptosis were detected, immunohistochemistry showed that VEGF transgenity was related to higher number of nestin-positive precursor cells. Finally, acute CCAO was paralleled by a reduction of CD31 staining in wt but not V1 mice. We conclude that VEGF overexpression led to a protective effect on cognitive function, because V1 mice showed evidence for faster spatial learning and better memory, as well as an increased number of neuronal precursor cells and a prevention of endothelial cell loss after CCAO.
Collapse
Affiliation(s)
- Konstanze Plaschke
- Department of Anesthesiology, Medical Faculty, University of Heidelberg, Germany.
| | | | | | | |
Collapse
|
63
|
Dhanushkodi A, Shetty AK. Is exposure to enriched environment beneficial for functional post-lesional recovery in temporal lobe epilepsy? Neurosci Biobehav Rev 2007; 32:657-74. [PMID: 18178250 DOI: 10.1016/j.neubiorev.2007.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 09/24/2007] [Accepted: 10/29/2007] [Indexed: 01/19/2023]
Abstract
Exposure to enriched environment has been shown to induce robust neuronal plasticity in both intact and injured adult central nervous system, including up-regulation of multiple neurotrophic factors, enhanced neurogenesis in the dentate gyrus of the hippocampus, and improved spatial learning and memory function. Neuronal plasticity, though mostly adaptive and abnormal, also occurs during certain neurodegenerative conditions such as the temporal lobe epilepsy (TLE). The TLE is characterized by hippocampal neurodegeneration, aberrant mossy fiber sprouting, spontaneous recurrent motor seizures, cognitive deficits, and abnormally enhanced neurogenesis during the early phase and dramatically declined neurogenesis during the chronic phase of the disease. As environmental enrichment has been found to be beneficial for treating animal models of Alzheimer's, Parkinson's, and Huntington's diseases, there is considerable interest in determining the efficacy of this strategy for preventing or treating chronic TLE after the initial precipitating brain injury. This review first discusses the proof of principle behind the potential application of the environmental enrichment strategy for preventing or treating TLE after brain injury. The subsequent chapters confer the portrayed beneficial effects of enrichment for functional post-lesional recovery in TLE and the possible complications which may arise from housing epilepsy-prone or epileptic rats in enriched environmental conditions. The final segment discusses studies that are essential for further understanding the efficacy of this approach for preventing or treating TLE.
Collapse
Affiliation(s)
- Anandh Dhanushkodi
- Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, NC 27705, USA
| | | |
Collapse
|
64
|
Kim HY, Choi JS, Cha JH, Choi JY, Lee MY. Expression of vascular endothelial growth factor receptors Flt-1 and Flk-1 in embryonic rat forebrain. Neurosci Lett 2007; 425:131-5. [PMID: 17854994 DOI: 10.1016/j.neulet.2007.08.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/03/2007] [Accepted: 08/16/2007] [Indexed: 01/19/2023]
Abstract
To define better the putative targets of vascular endothelial growth factor (VEGF) in the developing brain we have examined the ontogeny of the two VEGF tyrosine kinase receptors, Flt-1 and Flk-1, in embryonic rat forebrain. Semiquantitative reverse transcriptase-polymerase chain reaction and immunoblot analysis showed expression of both receptors in the forebrain at all embryonic ages studied. Messenger RNAs for Flt-1 and Flk-1 appeared along most of the ventricular zone of the lateral ventricle as early as embryonic day (E) 13. Messages gradually became restricted to a limited ventricular zone at E20. Expression of VEGF receptors was also observed in the cerebral cortex, hippocampus and thalamic nuclei. In the cortex, expression of mRNA for both receptors was detected in the cortical plate around E15, and became relatively weak and restricted to the deeper layers of the cortical plate at E20. These data suggest that VEGF may contribute to early developmental processes including the proliferation, differentiation and maturation of specific neuronal populations via specific VEGF receptors in the developing rat forebrain.
Collapse
Affiliation(s)
- Ha-Young Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, 137-701 Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
65
|
Brambilla P, Cerini R, Fabene PF, Andreone N, Rambaldelli G, Farace P, Versace A, Perlini C, Pelizza L, Gasparini A, Gatti R, Bellani M, Dusi N, Barbui C, Nosè M, Tournikioti K, Sbarbati A, Tansella M. Assessment of cerebral blood volume in schizophrenia: A magnetic resonance imaging study. J Psychiatr Res 2007; 41:502-10. [PMID: 16698038 DOI: 10.1016/j.jpsychires.2006.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 02/26/2006] [Accepted: 03/06/2006] [Indexed: 11/22/2022]
Abstract
Brain atrophy has consistently been observed in schizophrenia, representing a 'gross' evidence of anatomical abnormalities. Reduced cerebral blood volume (CBV) may accompany brain size decrement in schizophrenia, as suggested by prior small SPECT studies. In this study, we non-invasively investigated the hemisphere CBV in a large sample of patients suffering from schizophrenia with perfusion-weighted imaging (PWI). PWI images were obtained, following intravenous injection of paramagnetic contrast agent (Gadolinium-DTPA), for 54 DSM-IV patients with schizophrenia (mean age+/-SD=39.19+/-12.20 years; 34 males, 20 females) and 24 normal controls (mean age+/-SD=44.63+/-10.43 years; 9 males, 15 females) with a 1.5T Siemens magnet using an echo-planar sequence (TR=2160 ms, TE=47 ms, slice thickness=5mm). The contrast of enhancement (CE), a semi-quantitative parameter inversely estimating the CBV, were calculated pixel by pixel as the ratio of the maximum signal intensity drop during the passage of contrast agent (Sm) by the baseline pre-bolus signal intensity (So) (CE=Sm/Sox100) for right and left hemisphere on two axial images. Specifically, higher CE values correspond to lower CBV and viceversa Compared to normal controls, patients with schizophrenia had significantly higher bilateral hemisphere CE values (p=0.02) and inverse CE laterality index (p=0.02). This study showed abnormally reduced and inverse hemisphere CBV in a large population of patients with schizophrenia. Hypothetically, chronic low CBV may sustain neural hypoactivation and concomitant increase of free radicals, ultimately resulting in neuronal loss and cognitive impairments. Thus, altered intracranial hemodynamics may accompany brain atrophy and cognitive deficits, being a crucial factor in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Paolo Brambilla
- Department of Pathology and Experimental and Clinical Medicine, Section of Psychiatry, University of Udine, Udine, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Lu L, Zheng L, Viera L, Suswam E, Li Y, Li X, Estévez AG, King PH. Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J Neurosci 2007; 27:7929-38. [PMID: 17652584 PMCID: PMC6672720 DOI: 10.1523/jneurosci.1877-07.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a neuroprotective role in mice harboring mutations of copper-zinc superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis (ALS). Conversely, the loss of VEGF expression through genetic depletion can give rise to a phenotype resembling ALS independent of SOD1 mutations. Here, we observe a profound downregulation of VEGF mRNA expression in spinal cords of G93A SOD1 mice that occurred early in the course of the disease. Using an in vitro culture model of glial cells expressing mutant SOD1, we demonstrate destabilization and downregulation of VEGF RNA with concomitant loss of protein expression that correlates with level of transgene expression. Using a luciferase reporter assay, we show that this molecular effect is mediated through a portion of the VEGF 3'-untranslated region (UTR) that harbors a class II adenylate/uridylate-rich element. Other mutant forms of SOD1 produced a similar negative effect on luciferase RNA and protein expression. Mobility shift assay with a VEGF 3'-UTR probe reveals an aberrantly migrating complex that contains mutant SOD1. We further show that the RNA stabilizing protein, HuR (human antigen R), is translocated from nucleus to cytoplasm in mutant SOD1 cells in vitro and mouse motor neurons in vivo. In summary, our data suggest that mutant SOD1 gains a novel function, possibly by altering the ribonucleoprotein complex with the VEGF 3'-UTR. We postulate that the resultant dysregulation of VEGF posttranscriptional processing critically reduces the level of this neuroprotective growth factor and accelerates the neurodegenerative process in ALS.
Collapse
Affiliation(s)
- Liang Lu
- Departments of Neurology
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| | | | - Liliana Viera
- Laboratory of Motor Neuron Biology, Burke Medical Research Institute
| | | | - Yanyan Li
- Departments of Neurology
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| | - Xuelin Li
- Departments of Neurology
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| | - Alvaro G. Estévez
- Laboratory of Motor Neuron Biology, Burke Medical Research Institute
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, White Plains, New York 10605
| | - Peter H. King
- Departments of Neurology
- Genetics, and
- Physiology and Biophysics, University of Alabama, Birmingham, and
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| |
Collapse
|
67
|
Choi UH, Ha Y, Huang X, Park SR, Chung J, Hyun DK, Park H, Park HC, Kim SW, Lee M. Hypoxia-inducible expression of vascular endothelial growth factor for the treatment of spinal cord injury in a rat model. J Neurosurg Spine 2007; 7:54-60. [PMID: 17633488 DOI: 10.3171/spi-07/07/054] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECT Vascular endothelial growth factor (VEGF) has been investigated as a therapy for many disorders and injuries involving ischemia. In this report, we constructed and evaluated a hypoxia-inducible VEGF expression system as a treatment for spinal cord injury (SCI). METHODS The hypoxia-inducible VEGF plasmid was constructed using the erythropoietin (Epo) enhancer with the Simian virus 40 (SV40) promoter (pEpo-SV-VEGF) or the RTP801 promoter (pRTP801-VEGF). The expression of VEGF in vitro was evaluated after transfection into N2A cells. The plasmids were then injected into rat spinal cords with contusion injuries. The expression of VEGF in vivo was measured using reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Locomotor recovery in the rats was evaluated using the Basso, Beattie and Bresnahan (BBB) scale for locomotor analysis. RESULTS In vitro transfection showed that pEpo-SV-VEGF or pRTP801-VEGF induced VEGF expression under hypoxic conditions, whereas pSV-VEGF did not. The VEGF level was higher in the pEpo-SV-VEGF and pRTP801-VEGF groups than in the control group. The VEGF expression was detected in neurons and astrocytes of the spinal cord. Locomotor recovery was improved in the pEpo-SV-VEGF and pRTP801-VEGF groups, and BBB scores were higher than in the control group. Staining using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling showed that the number of apoptotic cells decreased in the plasmid-injected groups compared with the control group, and significant differences were observed between the hypoxia-responsive groups and the pSV-VEGF group. CONCLUSIONS These results suggest that the hypoxia-inducible VEGF expression system may be useful for gene therapy of SCI.
Collapse
Affiliation(s)
- Ung Hyune Choi
- Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Nico B, Mangieri D, Benagiano V, Crivellato E, Ribatti D. Nerve growth factor as an angiogenic factor. Microvasc Res 2007; 75:135-41. [PMID: 17764704 DOI: 10.1016/j.mvr.2007.07.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 05/14/2007] [Accepted: 07/05/2007] [Indexed: 01/15/2023]
Abstract
Nerve growth factor (NGF), a neurotrophin that plays a crucial role in promoting neurotrophic and neurotropic effects in sympathetic neurons, has recently been identified as a novel angiogenic molecule, which exerts a variety of effects in the cardiovascular system and on endothelial cells. In fact, NGF may contribute to maintenance, survival, and function of endothelial cells by autocrine and/or paracrine mechanisms. This review summarizes the involvement of NGF in the regulation of angiogenesis in both normal and pathological conditions.
Collapse
Affiliation(s)
- Beatrice Nico
- Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico, 70124 Bari, Italy
| | | | | | | | | |
Collapse
|
69
|
Choi JS, Kim HY, Cha JH, Choi JY, Chun MH, Lee MY. Upregulation of vascular endothelial growth factor receptors Flt-1 and Flk-1 in rat hippocampus after transient forebrain ischemia. J Neurotrauma 2007; 24:521-31. [PMID: 17402857 DOI: 10.1089/neu.2006.0139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study characterizes the distribution of the two tyrosine kinase receptors for vascular endothelial growth factor (VEGF), Flt-1 and Flk-1, in the rat hippocampus following transient forebrain ischemia. The semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of Flt-1 and Flk-1 in hippocampal CA1 showed upregulation of these receptors following ischemic injury. Expression of Flt-1 and Flk-1 mRNA was restricted to neurons in the pyramidal cell and granule cell layers in control animals; however, upregulation was detected in activated glial cells and in the vascular endothelial cells rather than in neurons, in ischemic hippocampi. Most of the activated glial cells expressing Flt-1 and Flk-1 were reactive astrocytes, although some were microglial cells. The spatiotemporal expression of Flt-1 in the ischemic hippocampus mirrored that of Flk-1 expression. Expression of mRNA for both receptors was induced after 12 h, appeared to be increased progressively until 3 days when the highest expression was reached, and was sustained for more than 2 weeks. Flt-1 and Flk-1 immunoreactivity in the ischemic hippocampus matched the mRNA induction patterns except for a somewhat delayed onset. These data suggest that VEGF may be involved in the glial response via specific VEGF receptors in the rat hippocampus following transient forebrain ischemia.
Collapse
Affiliation(s)
- Jeong-Sun Choi
- Department of Anatomy, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
70
|
Brunet N, Tarabal O, Portero-Otín M, Oppenheim RW, Esquerda JE, Calderó J. Survival and death of mature avian motoneurons in organotypic slice culture: trophic requirements for survival and different types of degeneration. J Comp Neurol 2007; 501:669-90. [PMID: 17299760 DOI: 10.1002/cne.21157] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have developed an organotypic culture technique that uses slices of chick embryo spinal cord, in which trophic requirements for long-term survival of mature motoneurons (MNs) were studied. Slices were obtained from E16 chick embryos and maintained for up to 28 days in vitro (DIV) in a basal medium. Under these conditions, most MNs died. To promote MN survival, 14 different trophic factors were assayed. Among these 14, glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor were the most effective. GDNF was able to promote MN survival for at least 28 DIV. K(+) depolarization or caspase inhibition prevented MN death but also induced degenerative-like changes in rescued MNs. Agents that elevate cAMP levels promoted the survival of a proportion of MNs for at least 7 DIV. Examination of dying MNs revealed that, in addition to cells exhibiting a caspase-3-dependent apoptotic pattern, some MNs died by a caspase-3-independent mechanism and displayed autophagic vacuoles, an extremely convoluted nucleus, and a close association with microglia. This organotypic spinal cord slice culture may provide a convenient model for testing conditions that promote survival of mature-like MNs that are affected in late-onset MN disease such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Núria Brunet
- Unitat de Neurobiologia Cel.lular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida and IRB Lleida, 25008 Lleida, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
71
|
Rite I, Machado A, Cano J, Venero JL. Blood-brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 2007; 101:1567-82. [PMID: 17437543 DOI: 10.1111/j.1471-4159.2007.04567.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have evaluated the possibility that changes in the vascular system may constitute a contributing factor for the death of nigral dopaminergic neurons in Parkinson's disease. Thus, we have employed intranigral injections of vascular endothelial growth factor (VEGF), the most potent inducer of blood-brain barrier (BBB) permeability. A single dose of 1 mug of VEGF, chosen from a dose-response study, highly disrupted the BBB in the ventral mesencephalon in a time-dependent manner. A strong regional correlation between BBB disruption and loss of tyrosine hydroxylase-positive neurons was evident. Moreover, Fluoro-Jade B labelling showed the presence of dying neurons in the substantia nigra in response to VEGF injection. High number of TUNEL-positive nuclei was observed in this area along with activation of caspase 3 within nigral dopaminergic neurons. Analysis of the glial population demonstrated a strong inflammatory response and activation of astroglia in response to BBB disruption. We conclude that disruption of the BBB may be a causative factor for degeneration of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Inmaculada Rite
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González, Sevilla, Spain
| | | | | | | |
Collapse
|
72
|
Savas S, Savas C, Altuntas I, Adiloglu A. The correlation between nitric oxide and vascular endothelial growth factor in spinal cord injury. Spinal Cord 2007; 46:113-7. [PMID: 17420770 DOI: 10.1038/sj.sc.3102066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Prospective, randomized, placebo-controlled, experimental study. OBJECTIVES The issue of whether nitric oxide (NO) production is beneficial or deleterious on ischemic injuries of the central nervous system still remains doubtful. Vascular endothelial growth factor (VEGF) is known to induce the release of NO from endothelial cells. However, the effect of NO on VEGF synthesis is not clear. We aimed to determine the effects of L-arginine and NG-nitro-L-arginine methyl ester (L-NAME) on VEGF synthesis and free radicals in a rat model of spinal cord ischemia-reperfusion (IR) injury. SETTING Surgical Research Laboratory of a Medical School. MATERIAL AND METHODS Twenty-eight Wistar rats were divided into four groups as follows (n=7): Sham, IR injury, L-arginine, and L-NAME. Infrarenal abdominal aorta was occluded to induce spinal cord ischemia. L-Arginine (100 mg/kg) and L-NAME (10 mg/kg) were given before aortic occlusion. Biochemical assays of malondialdehyde (MDA), NO and VEGF were carried out in spinal cord specimens. RESULTS L-Arginine treatment significantly increased MDA and NO, but decreased VEGF levels in spinal cord. However, nonselective inhibition of NOS with L-NAME significantly decreased MDA and NO, but increased VEGF levels. Besides, the positive linear correlation between MDA and NO, and negative linear correlations between MDA, NO and VEGF levels have also been demonstrated. CONCLUSION Nonselective inhibition of NO synthase activity with L-NAME attenuated free radical formation and increased VEGF level when compared with NO precursor L-arginine in a rat model of spinal cord ischemia. We suggest that inhibition of NO synthase, as well as induction of VEGF, may be a therapeutic option in spinal cord IR injury.
Collapse
Affiliation(s)
- S Savas
- Department of Physical Medicine and Rehabilitation, Süleyman Demirel University Medical School, Isparta, Turkey.
| | | | | | | |
Collapse
|
73
|
Choi JS, Kim HY, Cha JH, Choi JY, Park SI, Jeong CH, Jeun SS, Lee MY. Upregulation of Vascular Endothelial Growth Factor Receptors Flt-1 and Flk-1 Following Acute Spinal Cord Contusion in Rats. J Histochem Cytochem 2007; 55:821-30. [PMID: 17409380 DOI: 10.1369/jhc.6a7139.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To investigate the possible role of vascular endothelial growth factor (VEGF) in the injured spinal cord, we analyzed the distribution and time course of the two tyrosine kinase receptors for VEGF, Flt-1 and Flk-1, in the rat spinal cord following contusion injury using a weight-drop impactor. The semi-quantitative RT-PCR analysis of Flt-1 and Flk-1 in the spinal cord showed slight upregulation of these receptors following spinal cord injury. Although mRNAs for Flt-1 and Flk-1 were constitutively expressed in neurons, vascular endothelial cells, and some astrocytes in laminectomy control rats, their upregulation was induced in association with microglia/macrophages and reactive astrocytes in the vicinity of the lesion within 1 day in rats with a contusion injury and persisted for at least 14 days. The spatiotemporal expression of Flt-1 in the contused spinal cord mirrored that of Flk-1 expression. In the early phase of spinal cord injury, upregulation of Flt-1 and Flk-1 mRNA occurred in microglia/macrophages that infiltrated the lesion. In addition, the expression of both receptors increased progressively in reactive astrocytes within the vicinity of the lesion, predominately in the white matter, and almost all reactive astrocytes coexpressed Flt-1 or Flk-1 and nestin. These results suggest that VEGF may be involved in the inflammatory response and the astroglial reaction to contusion injuries of the spinal cord via specific VEGF receptors. (J Histochem Cytochem 55: 821–830, 2007)
Collapse
Affiliation(s)
- Jeong-Sun Choi
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Barber SC, Shaw PJ. Chapter 4 Molecular mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:57-87. [PMID: 18808889 DOI: 10.1016/s0072-9752(07)80007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
75
|
|
76
|
Eskens FALM, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer 2006; 42:3127-39. [PMID: 17098419 DOI: 10.1016/j.ejca.2006.09.015] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 09/27/2006] [Indexed: 01/09/2023]
Abstract
Clinical experience with vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors is rapidly increasing, and some compounds have already been approved for regular anticancer treatment. Apart from their activity, much attention has been focussed on the clinical toxicity profile of these compounds. This review describes the most frequently occurring side-effects of both antibodies and tyrosine kinase inhibitors and discusses some of the underlying mechanisms. Some practical guidelines for treatment of the side-effects are given.
Collapse
Affiliation(s)
- Ferry A L M Eskens
- Erasmus University Medical Center, Department of Medical Oncology PO Box 2040, 3000 CA Rotterdam, Netherlands.
| | | |
Collapse
|
77
|
Infanger M, Kossmehl P, Shakibaei M, Baatout S, Witzing A, Grosse J, Bauer J, Cogoli A, Faramarzi S, Derradji H, Neefs M, Paul M, Grimm D. Induction of three-dimensional assembly and increase in apoptosis of human endothelial cells by simulated microgravity: impact of vascular endothelial growth factor. Apoptosis 2006; 11:749-64. [PMID: 16528471 DOI: 10.1007/s10495-006-5697-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endothelial cells play a crucial role in the pathogenesis of many diseases and are highly sensitive to low gravity conditions. Using a three-dimensional random positioning machine (clinostat) we investigated effects of simulated weightlessness on the human EA.hy926 cell line (4, 12, 24, 48 and 72 h) and addressed the impact of exposure to VEGF (10 ng/ml). Simulated microgravity resulted in an increase in extracellular matrix proteins (ECMP) and altered cytoskeletal components such as microtubules (alpha-tubulin) and intermediate filaments (cytokeratin). Within the initial 4 h, both simulated microgravity and VEGF, alone, enhanced the expression of ECMP (collagen type I, fibronectin, osteopontin, laminin) and flk-1 protein. Synergistic effects between microgravity and VEGF were not seen. After 12 h, microgravity further enhanced all proteins mentioned above. Moreover, clinorotated endothelial cells showed morphological and biochemical signs of apoptosis after 4 h, which were further increased after 72 h. VEGF significantly attenuated apoptosis as demonstrated by DAPI staining, TUNEL flow cytometry and electron microscopy. Caspase-3, Bax, Fas, and 85-kDa apoptosis-related cleavage fragments were clearly reduced by VEGF. After 72 h, most surviving endothelial cells had assembled to three-dimensional tubular structures. Simulated weightlessness induced apoptosis and increased the amount of ECMP. VEGF develops a cell-protective influence on endothelial cells exposed to simulated microgravity.
Collapse
Affiliation(s)
- M Infanger
- Department of Trauma and Reconstructive Surgery, Charité-University Medical School, Benjamin Franklin Medical Center Center of Space Medicine Berlin, 12200 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Collombet JM, Four E, Fauquette W, Burckhart MF, Masqueliez C, Bernabé D, Baubichon D, Lallement G. Soman poisoning induces delayed astrogliotic scar and angiogenesis in damaged mouse brain areas. Neurotoxicology 2006; 28:38-48. [PMID: 16949671 DOI: 10.1016/j.neuro.2006.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/08/2006] [Accepted: 07/13/2006] [Indexed: 11/29/2022]
Abstract
Gliotic scar formation and angiogenesis are two biological events involved in the tissue reparative process generally occurring in the brain after mechanically induced injury, ischemia or cerebral tumor development. For the first time, in this study, neo-vascularization and glial scar formation were investigated in the brain of soman-poisoned mice over a 3-month period after nerve agent exposure (1.2 LD50 of soman). Using anti-claudin-5 and anti-vascular endothelial growth factor (VEGF) immunostaining techniques on brain sections, blood vessels were quantified and VEGF expression was verified to appraise the level of neo-angiogenesis induced in damaged brain areas. Furthermore, glial scar formation and neuropathology were estimated over time in the same injured brain regions by anti-glial fibrillary acidic protein (GFAP) immunohistochemistry and hemalun-phloxin (H&P) dye staining, respectively. VEGF over-expression was noticed on post-soman day 3 in lesioned areas such as the hippocampal CA1 field and amygdala. This was followed by an increase in the quantity of mature blood vessels, 3 months after soman poisoning, in the same brain areas. On the other hand, massive astroglial cell activation was demonstrated on post-soman day 8. Reactive astroglial cells were located only in damaged cerebral regions where H&P-stained eosinophilic neurons were found. For longer experimental times, astroglial response slowly decreased overtime but remained detectable on post-soman day 90 in some discrete brain regions (i.e. CA1 field and amygdala) evidencing the formation of a glial scar. In this study, we discuss the key role of VEGF in the angiogenic process and in the glial or neuronal response induced by soman poisoning.
Collapse
Affiliation(s)
- Jean-Marc Collombet
- Département de Toxicologie, CRSSA, 24 avenue des Maquis du Grésivaudan, B.P. 87, 38702 LA TRONCHE Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Pieren M, Prota AE, Ruch C, Kostrewa D, Wagner A, Biedermann K, Winkler FK, Ballmer-Hofer K. Crystal Structure of the Orf Virus NZ2 Variant of Vascular Endothelial Growth Factor-E. J Biol Chem 2006; 281:19578-87. [PMID: 16672228 DOI: 10.1074/jbc.m601842200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian vascular endothelial growth factors constitute a family of polypeptides, vascular endothelial growth factor (VEGF)-A, -B, -C, -D and placenta growth factor (PlGF), that regulate blood and lymphatic vessel development. VEGFs bind to three types of receptor tyrosine kinases, VEGF receptors 1, 2, and 3, that are predominantly expressed on endothelial and some hematopoietic cells. Pox viruses of the Orf family encode highly related proteins called VEGF-E that show only 25-35% amino acid identity with VEGF-A but bind with comparable affinity to VEGFR-2. The crystal structure of VEGF-E NZ2 described here reveals high similarity to the known structural homologs VEGF-A, PlGF, and the snake venoms Vammin and VR-1, which are all homodimers and contain the characteristic cysteine knot motif. Distinct conformational differences are observed in loop L1 and particularly in L3, which contains a highly flexible GS-rich motif that differs from all other structural homologs. Based on our structure, we created chimeric proteins by exchanging selected segments in L1 and L3 with the corresponding sequences from PlGF. Single loop mutants did not bind to either receptor, whereas a VEGF-E mutant in which both L1 and L3 were replaced gained affinity for VEGFR-1, illustrating the possibility to engineer receptor-specific chimeric VEGF molecules. In addition, changing arginine 46 to isoleucine in L1 significantly increased the affinity of VEGF-E for both VEGF receptors.
Collapse
Affiliation(s)
- Michel Pieren
- Molecular Cell Biology, Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
80
|
McCloskey DP, Croll SD, Scharfman HE. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 2006; 25:8889-97. [PMID: 16192378 PMCID: PMC1415170 DOI: 10.1523/jneurosci.2577-05.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In addition to its potent effects on vasculature, it has become clear that vascular endothelial growth factor (VEGF) has effects on both neurons and glia, and recent studies suggest that it can be neuroprotective. To determine potential mechanisms underlying this neuroprotection, recombinant human VEGF was bath applied to adult rat hippocampal slices, and both extracellular and intracellular recordings were used to examine intrinsic properties and synaptic responses of hippocampal principal neurons. Initial studies in area CA1 showed that VEGF significantly reduced the amplitude of responses elicited by Schaffer collateral stimulation, without influencing membrane properties. Similar effects occurred in CA3 pyramidal cells and dentate gyrus granule cells when their major glutamatergic afferents were stimulated. Because VEGF expression is increased after seizures, effects of VEGF were also examined in rats with recurrent spontaneous seizures. VEGF reduced spontaneous discharges in slices from these rats but had surprisingly little effect on epileptiform discharges produced by disinhibition of slices from control rats. These results demonstrate a previously unknown effect of VEGF on neuronal activity and also demonstrate a remarkable potency in the epileptic brain. Based on this, we suggest that VEGF or VEGF-related targets could provide useful endpoints to direct novel therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Daniel P McCloskey
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, West Haverstraw, New York 10993, USA.
| | | | | |
Collapse
|
81
|
Brockington A, Wharton SB, Fernando M, Gelsthorpe CH, Baxter L, Ince PG, Lewis CE, Shaw PJ. Expression of Vascular Endothelial Growth Factor and Its Receptors in the Central Nervous System in Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2006; 65:26-36. [PMID: 16410746 DOI: 10.1097/01.jnen.0000196134.51217.74] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) prolongs survival in the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis (ALS), whereas dysregulation of VEGF through deletion of its hypoxia-regulatory element causes motor neuron degeneration in mice. We investigated the expression of VEGF and its major agonist receptors in the normal central nervous system and in patients with ALS. Immunohistochemistry demonstrated similar expression patterns of VEGF and VEGF receptor 2 (VEGFR2) in the spinal cord with finely punctate staining of the neuropil and strong expression in anterior horn cells (AHCs). Granular staining on the surface of some AHCs, similar to that seen with synaptic markers, suggested synaptic labeling. VEGFR2 staining was reduced in the neuropil of ALS cases (p=0.018) associated with a reduction of synaptophysin but not SNAP25 expression. A greater proportion of AHCs in ALS cases showed low expression of VEGF (p=0.006) and VEGFR2 (p=0.009) compared with controls. Expression of VEGF and VEGFR2 was confirmed by Western blotting and quantitative reverse transcriptase-polymerase chain reaction (QPCR). The similar expression patterns of VEGF and VEGFR2 suggests autocrine/paracrine effects on spinal motor neurons, and the reduction in their expression seen in ALS cases would support the hypothesis that, as in mouse models of the disease, reduced VEGF signaling may play a role in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Alice Brockington
- Academic Neurology Unit and the Academic Unit of Pathology, University of Sheffield, Medical School, Sheffield, U.K
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Pallini R, Vitiani LR, Bez A, Casalbore P, Facchiano F, Di Giorgi Gerevini V, Falchetti ML, Fernandez E, Maira G, Peschle C, Parati E. Homologous Transplantation of Neural Stem Cells to the Injured Spinal Cord of Mice. Neurosurgery 2005; 57:1014-25; discussion 1014-25. [PMID: 16284571 DOI: 10.1227/01.neu.0000180058.58372.4c] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Murine neural stem cells (NSCs) were homografted onto the injured spinal cord (SC) to assess their potential to improve motor behavior, to differentiate as neurons, and to establish synapse-like contacts with the descending axonal paths of the host. In addition, we investigated whether transduced NSCs over-expressing vascular endothelial growth factor might exert any angiogenetic effect in the injured SC. METHODS NSCs derived from mouse embryos were transduced to express either green fluorescent protein or vascular endothelial growth factor. The cells were engrafted in mice where an extended dorsal funiculotomy had been performed at the T8-T9 level. At intervals from 4 to 12 weeks after grafting, motor behavior was assessed using an open field locomotor scale and footprint analysis. At the same time points, the SC was studied by conventional histology, immunohistochemistry, and fluorescence microscopy. The interactions between the grafted NSCs and descending axonal paths were investigated using anterogradely transported fluorescent axonal tracers. RESULTS By the 12-week time point, mice engrafted with NSCs significantly improved both their locomotor score on open field test and their base of support on footprint analysis. Histological studies showed that green fluorescent protein-positive NSCs survived as long as 12 weeks after grafting, migrated from the grafting site with a tropism toward the lesion, and either remained undifferentiated or differentiated into the astrocytic phenotype without neuronal or oligodendrocytic differentiation. Interestingly, the NSC-derived astrocytes expressed vimentin, suggesting that these cells differentiated as immature astrocytes. The tips of severed descending axonal paths came adjacent to grafted NSCs without forming synapse-like structures. When genetically engineered to over-express vascular endothelial growth factor, the grafted NSCs significantly increased vessel density in the injured area. CONCLUSION In the traumatically injured mice SC, NSC grafting improves motor recovery. Although differentiation of engrafted NSCs is restricted exclusively toward the astrocytic phenotype, the NSC-derived astrocytes show features that are typical of the early phase after SC injury when the glial scar is still permissive to regenerating axons. The immature phenotype of the NSC-derived astrocytes suggests that these cells might support neurite outgrowth by the host neurons. Thus, modifying the glial scar with NSCs might enhance axonal regeneration in the injured area. The use of genetically engineered NSCs that express trophic factors appears to be an attractive tool in SC transplantation research.
Collapse
Affiliation(s)
- Roberto Pallini
- Department of Neurosurgery, Laboratory for Neural Stem Cells, Center for Research on Regeneration of the Nervous System, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
The process of neuronal degeneration in motor neurone disease is complex. Several genetic alterations may be involved in motor neurone injury in familial amyotrophic lateral sclerosis, less is known about the genetic and environmental factors involved in the commoner sporadic form of the disease. Most is known about the mechanisms of motor neurone degeneration in the subtype of disease caused by SOD1 mutations, but even here there appears to be a complex interplay between multiple pathogenic processes including oxidative stress, protein aggregation, mitochondrial dysfunction excitotoxicity, and impaired axonal transport. There is new evidence that non-neuronal cells in the vicinity of motor neurones may contribute to neuronal injury. The final demise of motor neurones is likely to involve a programmed cell death pathway resembling apoptosis.
Collapse
|
84
|
Matsumoto T, Bohman S, Dixelius J, Berge T, Dimberg A, Magnusson P, Wang L, Wikner C, Qi JH, Wernstedt C, Wu J, Bruheim S, Mugishima H, Mukhopadhyay D, Spurkland A, Claesson-Welsh L. VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 2005; 24:2342-53. [PMID: 15962004 PMCID: PMC1173150 DOI: 10.1038/sj.emboj.7600709] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Accepted: 05/18/2005] [Indexed: 11/09/2022] Open
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2) activation by VEGF-A is essential in vasculogenesis and angiogenesis. We have generated a pan-phosphorylation site map of VEGFR-2 and identified one major tyrosine phosphorylation site in the kinase insert (Y951), in addition to two major sites in the C-terminal tail (Y1175 and Y1214). In developing vessels, phosphorylation of Y1175 and Y1214 was detected in all VEGFR-2-expressing endothelial cells, whereas phosphorylation of Y951 was identified in a subset of vessels. Phosphorylated Y951 bound the T-cell-specific adapter (TSAd), which was expressed in tumor vessels. Mutation of Y951 to F and introduction of phosphorylated Y951 peptide or TSAd siRNA into endothelial cells blocked VEGF-A-induced actin stress fibers and migration, but not mitogenesis. Tumor vascularization and growth was reduced in TSAd-deficient mice, indicating a critical role of Y951-TSAd signaling in pathological angiogenesis.
Collapse
Affiliation(s)
- Taro Matsumoto
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Ohyaguchikamimachi, Itabashi-ku, Tokyo, Japan
| | - Svante Bohman
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Dixelius
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tone Berge
- Department of Anatomy, Institute of Basal Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Anna Dimberg
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Peetra Magnusson
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ling Wang
- Mayo Clinic Foundation, Gugg, Rochester, MN, USA
| | - Charlotte Wikner
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jian Hua Qi
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christer Wernstedt
- Ludwig Institute for Cancer Research, Uppsala Branch, Biomedical Center, Uppsala, Sweden
| | - Jiong Wu
- Cell Signaling Technology, Cummings Center, Beverly, MA, USA
| | - Skjalg Bruheim
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Hideo Mugishima
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Ohyaguchikamimachi, Itabashi-ku, Tokyo, Japan
| | | | - Anne Spurkland
- Department of Anatomy, Institute of Basal Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Lena Claesson-Welsh
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Dag Hammarskjöldsv. 20, 75185 Uppsala, Sweden. Tel.: +46 18 471 43 63; Fax: +46 18 55 89 31; E-mail:
| |
Collapse
|
85
|
Brockington A, Kirby J, Eggitt D, Schofield E, Morris C, Lewis CE, Ince PG, Shaw PJ. Screening of the regulatory and coding regions of vascular endothelial growth factor in amyotrophic lateral sclerosis. Neurogenetics 2005; 6:101-4. [PMID: 15776280 DOI: 10.1007/s10048-004-0201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 11/02/2004] [Indexed: 02/04/2023]
|