51
|
A gene family-based method for interspecies comparisons of sequencing-based transcriptomes and its use in environmental adaptation analysis. J Genet Genomics 2010; 37:205-18. [PMID: 20347830 DOI: 10.1016/s1673-8527(09)60039-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/20/2010] [Accepted: 02/03/2010] [Indexed: 11/21/2022]
Abstract
We describe a new method for sequencing-based cross-species transcriptome comparisons and define a new metric for evaluating gene expression across species using protein-coding families as units of comparison. Using this measure transcriptomes from different species were evaluated by mapping them to gene families and integrating the mapping results with expression data. Statistical tests were applied to the transcriptome evaluation results to identify differentially expressed families. A Perl program named Pro-Diff was compiled to implement this method. To evaluate the method and provide an example of its use, two liver EST transcriptomes from two closely related fish that live in different temperature zones were compared. One EST library was from a recent sequencing project of Dissosticus mawsoni, a fish that lives in cold Antarctic sea waters, while the other was newly sequenced data (available at: http://www.fishgenome.org/polarbank/) from Notothenia angustata, a species that lives in temperate near-shore water of southern New Zealand. Results from the comparison were consistent with results inferred from phenotype differences and also with our previously published Gene Ontology-based method. The Pro-Diff program and operation manual can be downloaded from: http://www.fishgenome.org/download/Prodiff.rar.
Collapse
|
52
|
Lim D, Lee SH, Cho YM, Yoon D, Shin Y, Kim KW, Park HS, Kim H. Transcript profiling of expressed sequence tags from intramuscular fat, longissimus dorsi muscle and liver in Korean cattle (Hanwoo). BMB Rep 2010; 43:115-21. [PMID: 20193130 DOI: 10.5483/bmbrep.2010.43.2.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large data set of Hanwoo (Korean cattle) ESTs was analyzed to obtain differential gene expression results for the following three libraries: intramuscular fat, longissimus dorsi muscle and liver. To better understand the gene expression profiles, we identified differentially expressed genes (DEGs) via digital gene expression analysis. Hierarchical clustering of genes was performed according to their relative abundance within the six separate groups (Hanwoo fat versus non-Hanwoo fat, Hanwoo muscle versus non-Hanwoo muscle and Hanwoo liver versus non-Hanwoo liver), producing detailed patterns of gene expression. We determined the quantitative traits associated with the highly expressed genes. We also provide the first list of putative regulatory elements associated with differential tissue expression in Hanwoo cattle. In addition, we conducted evolutionary analysis that suggests a subset of genes accelerated in the bovine lineage are strongly correlated with their expression in Hanwoo muscle.
Collapse
Affiliation(s)
- Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Hsieh TH, Li CW, Su RC, Cheng CP, Tsai YC, Chan MT. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. PLANTA 2010; 231:1459-73. [PMID: 20358223 DOI: 10.1007/s00425-010-1147-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/10/2010] [Indexed: 05/03/2023]
Abstract
Abiotic stresses such as cold, water deficit, and salt stresses severely reduce crop productivity. Tomato (Solanum lycopersicum) is an important economic crop; however, not much is known about its stress responses. To gain insight into stress-responsive gene regulation in tomato plants, we identified transcription factors from a tomato cDNA microarray. An ABA-responsive element binding protein (AREB) was identified and named SlAREB. In tomato protoplasts, SlAREB transiently transactivated luciferase reporter gene expression driven by AtRD29A (responsive to dehydration) and SlLAP (leucine aminopeptidase) promoters with exogenous ABA application, which was suppressed by the kinase inhibitor staurosporine, indicating that an ABA-dependent post-translational modification is required for the transactivation ability of SlAREB protein. Electrophoretic mobility shift assays showed that the recombinant DNA-binding domain of SlAREB protein is able to bind AtRD29A and SlLAP promoter regions. Constitutively expressed SlAREB increased tolerance to water deficit and high salinity stresses in both Arabidopsis and tomato plants, which maintained PSII and membrane integrities as well as water content in plant bodies. Overproduction of SlAREB in Arabidopsis thaliana and tomato plants regulated stress-related genes AtRD29A, AtCOR47, and SlCI7-like dehydrin under ABA and abiotic stress treatments. Taken together, these results show that SlAREB functions to regulate some stress-responsive genes and that its overproduction improves plant tolerance to water deficit and salt stress.
Collapse
Affiliation(s)
- Tsai-Hung Hsieh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
54
|
|
55
|
Mochida K, Shinozaki K. Genomics and bioinformatics resources for crop improvement. PLANT & CELL PHYSIOLOGY 2010; 51:497-523. [PMID: 20208064 PMCID: PMC2852516 DOI: 10.1093/pcp/pcq027] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/01/2010] [Indexed: 05/19/2023]
Abstract
Recent remarkable innovations in platforms for omics-based research and application development provide crucial resources to promote research in model and applied plant species. A combinatorial approach using multiple omics platforms and integration of their outcomes is now an effective strategy for clarifying molecular systems integral to improving plant productivity. Furthermore, promotion of comparative genomics among model and applied plants allows us to grasp the biological properties of each species and to accelerate gene discovery and functional analyses of genes. Bioinformatics platforms and their associated databases are also essential for the effective design of approaches making the best use of genomic resources, including resource integration. We review recent advances in research platforms and resources in plant omics together with related databases and advances in technology.
Collapse
|
56
|
Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, Suda K, Kurabayashi A, Suzuki T, Tsugane T, Watanabe M, Ooga K, Torii M, Narita T, Shin-I T, Kohara Y, Yamamoto N, Takahashi H, Watanabe Y, Egusa M, Kodama M, Ichinose Y, Kikuchi M, Fukushima S, Okabe A, Arie T, Sato Y, Yazawa K, Satoh S, Omura T, Ezura H, Shibata D. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 2010. [PMID: 20350329 DOI: 10.1186/1471‐2164‐11‐210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. RESULTS To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. CONCLUSION The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom http://www.pgb.kazusa.or.jp/kaftom/ via the website of the National Bioresource Project Tomato http://tomato.nbrp.jp.
Collapse
Affiliation(s)
- Koh Aoki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, Suda K, Kurabayashi A, Suzuki T, Tsugane T, Watanabe M, Ooga K, Torii M, Narita T, Shin-I T, Kohara Y, Yamamoto N, Takahashi H, Watanabe Y, Egusa M, Kodama M, Ichinose Y, Kikuchi M, Fukushima S, Okabe A, Arie T, Sato Y, Yazawa K, Satoh S, Omura T, Ezura H, Shibata D. Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 2010; 11:210. [PMID: 20350329 PMCID: PMC2859864 DOI: 10.1186/1471-2164-11-210] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 03/30/2010] [Indexed: 11/18/2022] Open
Abstract
Background The Solanaceae family includes several economically important vegetable crops. The tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. Recently, a number of tomato resources have been developed in parallel with the ongoing tomato genome sequencing project. In particular, a miniature cultivar, Micro-Tom, is regarded as a model system in tomato genomics, and a number of genomics resources in the Micro-Tom-background, such as ESTs and mutagenized lines, have been established by an international alliance. Results To accelerate the progress in tomato genomics, we developed a collection of fully-sequenced 13,227 Micro-Tom full-length cDNAs. By checking redundant sequences, coding sequences, and chimeric sequences, a set of 11,502 non-redundant full-length cDNAs (nrFLcDNAs) was generated. Analysis of untranslated regions demonstrated that tomato has longer 5'- and 3'-untranslated regions than most other plants but rice. Classification of functions of proteins predicted from the coding sequences demonstrated that nrFLcDNAs covered a broad range of functions. A comparison of nrFLcDNAs with genes of sixteen plants facilitated the identification of tomato genes that are not found in other plants, most of which did not have known protein domains. Mapping of the nrFLcDNAs onto currently available tomato genome sequences facilitated prediction of exon-intron structure. Introns of tomato genes were longer than those of Arabidopsis and rice. According to a comparison of exon sequences between the nrFLcDNAs and the tomato genome sequences, the frequency of nucleotide mismatch in exons between Micro-Tom and the genome-sequencing cultivar (Heinz 1706) was estimated to be 0.061%. Conclusion The collection of Micro-Tom nrFLcDNAs generated in this study will serve as a valuable genomic tool for plant biologists to bridge the gap between basic and applied studies. The nrFLcDNA sequences will help annotation of the tomato whole-genome sequence and aid in tomato functional genomics and molecular breeding. Full-length cDNA sequences and their annotations are provided in the database KaFTom http://www.pgb.kazusa.or.jp/kaftom/ via the website of the National Bioresource Project Tomato http://tomato.nbrp.jp.
Collapse
Affiliation(s)
- Koh Aoki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Minoia S, Petrozza A, D'Onofrio O, Piron F, Mosca G, Sozio G, Cellini F, Bendahmane A, Carriero F. A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 2010; 3:69. [PMID: 20222995 PMCID: PMC2845601 DOI: 10.1186/1756-0500-3-69] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/12/2010] [Indexed: 01/31/2023] Open
Abstract
Background In the last decade, the availability of gene sequences of many plant species, including tomato, has encouraged the development of strategies that do not rely on genetic transformation techniques (GMOs) for imparting desired traits in crops. One of these new emerging technology is TILLING (Targeting Induced Local Lesions In Genomes), a reverse genetics tool, which is proving to be very valuable in creating new traits in different crop species. Results To apply TILLING to tomato, a new mutant collection was generated in the genetic background of the processing tomato cultivar Red Setter by treating seeds with two different ethylemethane sulfonate doses (0.7% and 1%). An associated phenotype database, LycoTILL, was developed and a TILLING platform was also established. The interactive and evolving database is available online to the community for phenotypic alteration inquiries. To validate the Red Setter TILLING platform, induced point mutations were searched in 7 tomato genes with the mismatch-specific ENDO1 nuclease. In total 9.5 kb of tomato genome were screened and 66 nucleotide substitutions were identified. The overall mutation density was estimated and it resulted to be 1/322 kb and 1/574 kb for the 1% EMS and 0.7% EMS treatment respectively. Conclusions The mutation density estimated in our collection and its comparison with other TILLING populations demonstrate that the Red Setter genetic resource is suitable for use in high-throughput mutation discovery. The Red Setter TILLING platform is open to the research community and is publicly available via web for requesting mutation screening services.
Collapse
Affiliation(s)
- Silvia Minoia
- Metapontum Agrobios, SS Jonica 106 Km 448,2, 75010 Metaponto (MT), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ashrafi H, Kinkade M, Foolad MR. A new genetic linkage map of tomato based on a Solanum lycopersicum x S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 2010; 52:935-56. [PMID: 19935918 DOI: 10.1139/g09-065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The narrow genetic base of the cultivated tomato, Solanum lycopersicum L., necessitates introgression of new variation from related species. Wild tomato species represent a rich source of useful genes and traits. Exploitation of genetic variation within wild species can be facilitated by the use of molecular markers and genetic maps. Recently we identified an accession (LA2093) within the red-fruited wild tomato species Solanum pimpinellifolium L. with exceptionally desirable characteristics, including disease resistance, abiotic stress tolerance, and high fruit lycopene content. To facilitate genetic characterization of such traits and their exploitation in tomato crop improvement, we developed a new recombinant inbred line (RIL) population from a cross between LA2093 and an advanced tomato breeding line (NCEBR-1). Furthermore, we constructed a medium-density molecular linkage map of this population using 294 polymorphic markers, including standard RFLPs, EST sequences (used as RFLP probes), CAPS, and SSRs. The map spanned 1091 cM of the tomato genome with an average marker spacing of 3.7 cM. A majority of the EST sequences, which were mainly chosen based on the putative role of their unigenes in disease resistance, defense-related response, or fruit quality, were mapped onto the tomato chromosomes for the first time. Co-localizations of relevant EST sequences with known disease resistance genes in tomato were also examined. This map will facilitate identification, genetic exploitation, and positional cloning of important genes or quantitative trait loci in LA2093. It also will allow the elucidation of the molecular mechanism(s) underlying important traits segregating in the RIL population. The map may further facilitate characterization and exploitation of genetic variation in other S. pimpinellifolium accessions as well as in modern cultivars of tomato.
Collapse
Affiliation(s)
- Hamid Ashrafi
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
60
|
Weiss J, Egea-Cortines M. Transcriptomic analysis of cold response in tomato fruits identifies dehydrin as a marker of cold stress. J Appl Genet 2010; 50:311-9. [PMID: 19875881 DOI: 10.1007/bf03195689] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tomato is sensitive to cold during vegetative growth, fruit set, development, and ripening. We have characterized the effect of cold stress (6xC for up to 48 h) on the transcriptome of Micro-Tom tomato fruits during ripening by subtractive PCR. The cold stress caused modifications in gene expression of housekeeping genes. From a total of 38 genes up-regulated by cold, only one clone - a dehydrin homologue - was related to previously identified cold-stress genes. Phylogenetic analysis showed its clustering with other cold-induced dehydrins, and increased distances from dehydrins activated by abscisic acid. Quantitative expression analysis of tomato dehydrin showed it was activated by cold treatment in leaves and fruits. As dehydrin is a member of the Sl-CBF1 regulon from tomato, we analyzed the cold-responsive transcription factor Sl-CBF1 in mature leaves and ripening fruits stored at 6xC. Leaves of Micro-Tom showed high basal levels of the transcription factor Sl-CBF1, compared to fruits. Cold treatment caused increased levels of Sl-CBF1 expression in leaves but not in fruits of Micro-Tom and Demisem (a commercial cultivar). Tomato dehydrin can be used as a transcriptional marker of cold stress in leaves and ripening fruits. However, our results indicate that the cold response activation of dehydrin gene in tomato fruits is the consequence of an alternative pathway, different from the Sl-CBF1 regulon.
Collapse
Affiliation(s)
- J Weiss
- Institute of Plant Biotechnology, Technical University of Cartagena (UPCT), Department of Agricultural Science and Technology, ETSIA, Cartagena, Spain
| | | |
Collapse
|
61
|
Pineda B, Giménez-Caminero E, García-Sogo B, Antón MT, Atarés A, Capel J, Lozano R, Angosto T, Moreno V. Genetic and physiological characterization of the arlequin insertional mutant reveals a key regulator of reproductive development in tomato. PLANT & CELL PHYSIOLOGY 2010; 51:435-47. [PMID: 20081209 DOI: 10.1093/pcp/pcq009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The genetic and phenotypic characterization of a new tomato (Solanum lycopersicum) insertional mutant, Arlequin (Alq) is reported. Alq mutant plants were affected in reproductive development and their sepals were homeotically converted into fleshy fruit-like organs. Molecular analysis demonstrated that a single copy of T-DNA was present in the mutant genome while genetic analysis confirmed that the mutant phenotype co-segregated with the T-DNA insertion and was inherited as a monogenic semi-dominant trait. The histological and scanning electron microscope analyses revealed cell identity changes in both external and internal tissues of Alq sepals. Flowers developed by Alq homozygous plants showed a severe mutant phenotype, since after fruit set, not only did the sepals become succulent but they also followed a ripening pattern similar to that of normal fruits. From a metabolic viewpoint, Alq sepals also behaved like a fruit, as they acquired the properties of a sink that acted alternatively and independently to the fruit. In fact, expression of regulatory genes controlling tomato fruit ripening was detected in Alq sepals at similar levels to those observed in mature fruits. Furthermore, the Alq mutation inhibited the development of the abscission zone in tomato flowers indicating that the JOINTLESS gene is regulated by ALQ. Results from the genetic and developmental characterization of the Alq tomato mutant suggest that the ALQ gene participates in the regulatory pathway controlling fruit ripening of tomato.
Collapse
Affiliation(s)
- Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avda de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Fukuoka H, Yamaguchi H, Nunome T, Negoro S, Miyatake K, Ohyama A. Accumulation, functional annotation, and comparative analysis of expressed sequence tags in eggplant (Solanum melongena L.), the third pole of the genus Solanum species after tomato and potato. Gene 2010; 450:76-84. [PMID: 19857557 DOI: 10.1016/j.gene.2009.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/16/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
Abstract
Eggplant (Solanum melongena L.) is a widely grown vegetable crop that belongs to the genus Solanum, which is comprised of more than 1000 species of wide genetic and phenotypic variation. Unlike tomato and potato, Solanum crops that belong to subgenus Potatoe and have been targets for comprehensive genomic studies, eggplant is endemic to the Old World and belongs to a different subgenus, Leptostemonum, and therefore, would be a unique member for comparative molecular biology in Solanum. In this study, more than 60,000 eggplant cDNA clones from various tissues and treatments were sequenced from both the 5'- and 3'-ends, and a unigene set consisting of 16,245 unique sequences was constructed. Functional annotations based on sequence similarity to known plant reference datasets revealed a distribution of functional categories almost similar to that of tomato, while 1316 unigenes were suggested to be eggplant-specific. Sequence-based comparative analysis using putative orthologous gene groups setup by reciprocal sequence comparison among six solanaceous species suggested that eggplant and its wild ally Solanum torvum were clustered separately from subgenus Potatoe species, and then, all Solanum species were clustered separately from the genus Capsicum. Microsatellite motif distribution was different among species and likely to be coincident with the phylogenetic relationships. Furthermore, the eggplant unigene dataset exhibited its utility in transcriptome analysis by the SAGE strategy where a considerable number of short tag sequences of interest were successfully assigned to unigenes and their functional annotations. The eggplant ESTs and 16k unigene set developed in this study would be a useful resource not only for molecular genetics and breeding in eggplant itself, but for expanding the scope of comparative biology in Solanum species.
Collapse
Affiliation(s)
- Hiroyuki Fukuoka
- National Institute of Vegetable and Tea Science, NARO., Ano, Tsu, Mie 514-2392, Japan.
| | | | | | | | | | | |
Collapse
|
63
|
Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:1081-95. [PMID: 19891701 DOI: 10.1111/j.1365-313x.2009.04064.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
After fertilization, the expanding carpel of fleshy fruit goes through a phase change to ripening. Although the role of ethylene signalling in mediating climacteric ripening has been established, knowledge regarding the regulation of ethylene biosynthesis and its association with fruit developmental programs is still lacking. A functional screen of tomato transcription factors showed that silencing of the TOMATO AGAMOUS-LIKE 1 (TAGL1) MADS box gene results in altered fruit pigmentation. Over-expressing TAGL1 as a chimeric repressor suggested a role in controlling ripening, as transgenic tomato fruit showed reduced carotenoid and ethylene levels, suppressed chlorophyll breakdown, and down-regulation of ripening-associated genes. Moreover, fruits over-expressing TAGL1 accumulated more lycopene, and their sepals were swollen, accumulated high levels of the yellow flavonoid naringenin chalcone and contained lycopene. Transient promoter-binding assays indicated that part of the TAGL1 activity in ripening is executed through direct activation of ACS2, an ethylene biosynthesis gene that has recently been reported to be a target of the RIN MADS box factor. Examination of the TAGL1 transcript and its over-expression in the rin mutant background suggested that RIN does not regulate TAGL1 or vice versa. The results also indicated RIN-dependent and -independent processes that are regulated by TAGL1. We also noted that fruit of TAGL1 loss-of-function lines had a thin pericarp layer, indicating an additional role for TAGL1 in carpel expansion prior to ripening. The results add a new component to the current model of the regulatory network that controls fleshy fruit ripening and its association with the ethylene biosynthesis pathway.
Collapse
Affiliation(s)
- Maxim Itkin
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
64
|
D'Agostino N, Traini A, Frusciante L, Chiusano ML. SolEST database: a "one-stop shop" approach to the study of Solanaceae transcriptomes. BMC PLANT BIOLOGY 2009; 9:142. [PMID: 19948013 PMCID: PMC2794286 DOI: 10.1186/1471-2229-9-142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/30/2009] [Indexed: 05/21/2023]
Abstract
BACKGROUND Since no genome sequences of solanaceous plants have yet been completed, expressed sequence tag (EST) collections represent a reliable tool for broad sampling of Solanaceae transcriptomes, an attractive route for understanding Solanaceae genome functionality and a powerful reference for the structural annotation of emerging Solanaceae genome sequences. DESCRIPTION We describe the SolEST database http://biosrv.cab.unina.it/solestdb which integrates different EST datasets from both cultivated and wild Solanaceae species and from two species of the genus Coffea. Background as well as processed data contained in the database, extensively linked to external related resources, represent an invaluable source of information for these plant families. Two novel features differentiate SolEST from other resources: i) the option of accessing and then visualizing Solanaceae EST/TC alignments along the emerging tomato and potato genome sequences; ii) the opportunity to compare different Solanaceae assemblies generated by diverse research groups in the attempt to address a common complaint in the SOL community. CONCLUSION Different databases have been established worldwide for collecting Solanaceae ESTs and are related in concept, content and utility to the one presented herein. However, the SolEST database has several distinguishing features that make it appealing for the research community and facilitates a "one-stop shop" for the study of Solanaceae transcriptomes.
Collapse
Affiliation(s)
- Nunzio D'Agostino
- University of Naples 'Federico II', Dept of Soil, Plant, Environmental and Animal Production Sciences, Via Università 100, 80055 Portici, Italy
| | - Alessandra Traini
- University of Naples 'Federico II', Dept of Soil, Plant, Environmental and Animal Production Sciences, Via Università 100, 80055 Portici, Italy
| | - Luigi Frusciante
- University of Naples 'Federico II', Dept of Soil, Plant, Environmental and Animal Production Sciences, Via Università 100, 80055 Portici, Italy
| | - Maria Luisa Chiusano
- University of Naples 'Federico II', Dept of Soil, Plant, Environmental and Animal Production Sciences, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
65
|
Galla G, Barcaccia G, Ramina A, Collani S, Alagna F, Baldoni L, Cultrera NGM, Martinelli F, Sebastiani L, Tonutti P. Computational annotation of genes differentially expressed along olive fruit development. BMC PLANT BIOLOGY 2009; 9:128. [PMID: 19852839 PMCID: PMC2774695 DOI: 10.1186/1471-2229-9-128] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 10/24/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Olea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases. This study deals with the identification of large sets of differentially expressed genes in developing olive fruits and the subsequent computational annotation by means of different software. RESULTS mRNA from fruits of the cv. Leccino sampled at three different stages [i.e., initial fruit set (stage 1), completed pit hardening (stage 2) and veraison (stage 3)] was used for the identification of differentially expressed genes putatively involved in main processes along fruit development. Four subtractive hybridization libraries were constructed: forward and reverse between stage 1 and 2 (libraries A and B), and 2 and 3 (libraries C and D). All sequenced clones (1,132 in total) were analyzed through BlastX against non-redundant NCBI databases and about 60% of them showed similarity to known proteins. A total of 89 out of 642 differentially expressed unique sequences was further investigated by Real-Time PCR, showing a validation of the SSH results as high as 69%. Library-specific cDNA repertories were annotated according to the three main vocabularies of the gene ontology (GO): cellular component, biological process and molecular function. BlastX analysis, GO terms mapping and annotation analysis were performed using the Blast2GO software, a research tool designed with the main purpose of enabling GO based data mining on sequence sets for which no GO annotation is yet available. Bioinformatic analysis pointed out a significantly different distribution of the annotated sequences for each GO category, when comparing the three fruit developmental stages. The olive fruit-specific transcriptome dataset was used to query all known KEGG (Kyoto Encyclopaedia of Genes and Genomes) metabolic pathways for characterizing and positioning retrieved EST records. The integration of the olive sequence datasets within the MapMan platform for microarray analysis allowed the identification of specific biosynthetic pathways useful for the definition of key functional categories in time course analyses for gene groups. CONCLUSION The bioinformatic annotation of all gene sequences was useful to shed light on metabolic pathways and transcriptional aspects related to carbohydrates, fatty acids, secondary metabolites, transcription factors and hormones as well as response to biotic and abiotic stresses throughout olive drupe development. These results represent a first step toward both functional genomics and systems biology research for understanding the gene functions and regulatory networks in olive fruit growth and ripening.
Collapse
Affiliation(s)
- Giulio Galla
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
| | - Gianni Barcaccia
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
| | - Angelo Ramina
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
| | - Silvio Collani
- Department of Environmental Agronomy and Crop Science, University of Padova, Viale dell'Università 16, 35020 Legnaro (Padova), Italy
| | - Fiammetta Alagna
- CNR - Istituto di Genetica Vegetale - Research Division of Perugia, Via Madonna Alta 130, 06128 Perugia, Italy
| | - Luciana Baldoni
- CNR - Istituto di Genetica Vegetale - Research Division of Perugia, Via Madonna Alta 130, 06128 Perugia, Italy
| | - Nicolò GM Cultrera
- CNR - Istituto di Genetica Vegetale - Research Division of Perugia, Via Madonna Alta 130, 06128 Perugia, Italy
| | - Federico Martinelli
- Scuola Superiore Sant'Anna - Pisa, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Luca Sebastiani
- Scuola Superiore Sant'Anna - Pisa, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Pietro Tonutti
- Scuola Superiore Sant'Anna - Pisa, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
66
|
Construction of a Normalized cDNA Silencing Library of Tomato Fruit and Model Establishment of Screening Specific Functions of Genes*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
67
|
Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF. Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. THE PLANT CELL 2009; 21:3041-62. [PMID: 19880793 PMCID: PMC2782289 DOI: 10.1105/tpc.109.066936] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 05/18/2023]
Abstract
The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively.
Collapse
Affiliation(s)
- Julia Vrebalov
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Irvin L. Pan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | | | - Ryan McQuinn
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853
| | - MiYoung Chung
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Mervin Poole
- Division of Plant Sciences, University of Nottingham, Sutton Bonnington, Loughborough, Leics LE12 5RD, United Kingdom
| | - Jocelyn Rose
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Graham Seymour
- Division of Plant Sciences, University of Nottingham, Sutton Bonnington, Loughborough, Leics LE12 5RD, United Kingdom
| | - Silvana Grandillo
- Consiglio Nationale delle Ricerche-Instituto Di Genetica Vegetale, 80055 Portici (Naples), Italy
| | - James Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853
- Address correspondence to
| | - Vivian F. Irish
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8104
| |
Collapse
|
68
|
Gupta V, Mathur S, Solanke AU, Sharma MK, Kumar R, Vyas S, Khurana P, Khurana JP, Tyagi AK, Sharma AK. Genome analysis and genetic enhancement of tomato. Crit Rev Biotechnol 2009; 29:152-81. [PMID: 19319709 DOI: 10.1080/07388550802688870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Solanaceae is an important family of vegetable crops, ornamentals and medicinal plants. Tomato has served as a model member of this family largely because of its enriched cytogenetic, genetic, as well as physical, maps. Mapping has helped in cloning several genes of importance such as Pto, responsible for resistance against bacterial speck disease, Mi-1.2 for resistance against nematodes, and fw2.2 QTL for fruit weight. A high-throughput genome-sequencing program has been initiated by an international consortium of 10 countries. Since heterochromatin has been found to be concentrated near centromeres, the consortium is focusing on sequencing only the gene-rich euchromatic region. Genomes of the members of Solanaceae show a significant degree of synteny, suggesting that the tomato genome sequence would help in the cloning of genes for important traits from other Solanaceae members as well. ESTs from a large number of cDNA libraries have been sequenced, and microarray chips, in conjunction with wide array of ripening mutants, have contributed immensely to the understanding of the fruit-ripening phenomenon. Work on the analysis of the tomato proteome has also been initiated. Transgenic tomato plants with improved abiotic stress tolerance, disease resistance and insect resistance, have been developed. Attempts have also been made to develop tomato as a bioreactor for various pharmaceutical proteins. However, control of fruit quality and ripening remains an active and challenging area of research. Such efforts should pave the way to improve not only tomato, but also other solanaceous crops.
Collapse
Affiliation(s)
- Vikrant Gupta
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Non-climacteric fruit ripening in pepper: increased transcription of EIL-like genes normally regulated by ethylene. Funct Integr Genomics 2009; 10:135-46. [PMID: 19756789 DOI: 10.1007/s10142-009-0136-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/10/2009] [Accepted: 08/16/2009] [Indexed: 10/20/2022]
Abstract
Only limited information has been published to date on the similarities and differences between climacteric and non-climacteric fruit ripening on transcriptional level. To address this issue, we performed a direct comparative transcriptome analysis between tomato and pepper fruits using heterologous microarray hybridization. Given the significant differences in the morphological, physiological, and biochemical characteristics of pepper and tomato fruits, the existence of extensive common regulons is surprising. This finding suggests the conservation of ripening mechanisms in climacteric and non-climacteric fruits. However, disparate expression profiles were also observed in both fruits. This study revealed that a gene that encodes an enzyme that converts lycopene to downstream carotenoids is induced in pepper but not in tomato. Most of the genes that encode ribosomal proteins are only induced in early fruit-stage pepper fruit and show rapidly diminishing expression in the later developmental stages. The genes involved in ethylene biosynthesis were not induced in pepper fruit. However, the EIL-like genes, ethylene-mediated signaling components, were induced in pepper fruit. Divergent types of transcription factors were expressed in ripening tomato and pepper fruits, suggesting they may be key factors that differentiate these distinct ripening processes.
Collapse
|
70
|
Zhuang J, Xiong AS, Peng RH, Gao F, Zhu B, Zhang J, Fu XY, Jin XF, Chen JM, Zhang Z, Qiao YS, Yao QH. Analysis of Brassica rapa ESTs: gene discovery and expression patterns of AP2/ERF family genes. Mol Biol Rep 2009; 37:2485-92. [DOI: 10.1007/s11033-009-9763-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 08/11/2009] [Indexed: 01/20/2023]
|
71
|
Molesini B, Rotino GL, Spena A, Pandolfini T. Expression profile analysis of early fruit development in iaaM-parthenocarpic tomato plants. BMC Res Notes 2009; 2:143. [PMID: 19619340 PMCID: PMC2718906 DOI: 10.1186/1756-0500-2-143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 07/21/2009] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fruit normally develops from the ovary after pollination and fertilization. However, the ovary can also generate seedless fruit without fertilization by parthenocarpy. Parthenocarpic fruit development has been obtained in tomato (Solanum lycopersicum) by genetic modification using auxin-synthesising gene(s) (DefH9-iaaM; DefH9-RI-iaaM) expressed specifically in the placenta and ovules. FINDINGS We have performed a cDNA Amplified Fragment Length Polymorphism (cDNA-AFLP) analysis on pre-anthesis tomato flower buds (0.5 cm long) collected from DefH9-iaaM and DefH9-RI-iaaM parthenocarpic and wild-type plants, with the aim to identify genes involved in very early phases of tomato fruit development. We detected 212 transcripts differentially expressed in auxin-ipersynthesising pre-anthesis flower buds, 65 of them (31%) have unknown function. Several differentially expressed genes show homology to genes involved in protein trafficking and protein degradation via proteasome. These processes are crucial for auxin cellular transport and signaling, respectively. CONCLUSION The data presented might contribute to elucidate the molecular basis of the fruiting process and to develop new methods to confer parthenocarpy to species of agronomic interest. In a recently published work, we have demonstrated that one of the genes identified in this screening, corresponding to #109 cDNA clone, regulates auxin-dependent fruit initiation and its suppression causes parthenocarpic fruit development in tomato.
Collapse
Affiliation(s)
- Barbara Molesini
- Dipartimento di Biotecnologie, University of Verona, Strada Le Grazie 15, 37134-Verona, Italy.
| | | | | | | |
Collapse
|
72
|
Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kühn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. PLANT PHYSIOLOGY 2009; 150:1204-18. [PMID: 19439574 PMCID: PMC2705052 DOI: 10.1104/pp.109.136598] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/09/2009] [Indexed: 05/18/2023]
Abstract
It has been previously demonstrated, utilizing intraspecific introgression lines, that Lycopersicum Invertase5 (LIN5), which encodes a cell wall invertase, controls total soluble solids content in tomato (Solanum lycopersicum). The physiological role of this protein, however, has not yet been directly studied, since evaluation of data obtained from the introgression lines is complicated by the fact that they additionally harbor many other wild species alleles. To allow a more precise comparison, we generated transgenic tomato in which we silenced the expression of LIN5 using the RNA interference approach. The transformants were characterized by an altered flower and fruit morphology, displaying increased numbers of petals and sepals per flower, an increased rate of fruit abortion, and a reduction in fruit size. Evaluation of the mature fruit revealed that the transformants were characterized by a reduction of seed number per plant. Furthermore, detailed physiological analysis revealed that the transformants displayed aberrant pollen morphology and a reduction in the rate of pollen tube elongation. Metabolite profiling of ovaries and green and red fruit revealed that metabolic changes in the transformants were largely confined to sugar metabolism, whereas transcript and hormone profiling revealed broad changes both in the hormones themselves and in transcripts encoding their biosynthetic enzymes and response elements. These results are discussed in the context of current understanding of the role of sugar during the development of tomato fruit, with particular focus given to its impact on hormone levels and organ morphology.
Collapse
Affiliation(s)
- María Inés Zanor
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Pascual L, Blanca JM, Cañizares J, Nuez F. Transcriptomic analysis of tomato carpel development reveals alterations in ethylene and gibberellin synthesis during pat3/pat4 parthenocarpic fruit set. BMC PLANT BIOLOGY 2009; 9:67. [PMID: 19480705 PMCID: PMC2700107 DOI: 10.1186/1471-2229-9-67] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 05/29/2009] [Indexed: 05/22/2023]
Abstract
BACKGROUND Tomato fruit set is a key process that has a great economic impact on crop production. We employed the Affymetrix GeneChip Tomato Genome Array to compare the transcriptome of a non-parthenocarpic line, UC82, with that of the parthenocarpic line RP75/59 (pat3/pat4 mutant). We analyzed the transcriptome under normal conditions as well as with forced parthenocarpic development in RP75/59, emasculating the flowers 2 days before anthesis. This analysis helps to understand the fruit set in tomato. RESULTS Differentially expressed genes were extracted with maSigPro, which is designed for the analysis of single and multiseries time course microarray experiments. 2842 genes showed changes throughout normal carpel development and fruit set. Most of them showed a change of expression at or after anthesis. The main differences between lines were concentrated at the anthesis stage. We found 758 genes differentially expressed in parthenocarpic fruit set. Among these genes we detected cell cycle-related genes that were still activated at anthesis in the parthenocarpic line, which shows the lack of arrest in the parthenocarpic line at anthesis. Key genes for the synthesis of gibberellins and ethylene, which were up-regulated in the parthenocarpic line were also detected. CONCLUSION Comparisons between array experiments determined that anthesis was the most different stage and the key point at which most of the genes were modulated. In the parthenocarpic line, anthesis seemed to be a short transitional stage to fruit set. In this line, the high GAs contends leads to the development of a parthenocarpic fruit, and ethylene may mimic pollination signals, inducing auxin synthesis in the ovary and the development of a jelly fruit.
Collapse
Affiliation(s)
- Laura Pascual
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Jose M Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Joaquin Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Fernado Nuez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
74
|
Estornell LH, Orzáez D, López-Peña L, Pineda B, Antón MT, Moreno V, Granell A. A multisite gateway-based toolkit for targeted gene expression and hairpin RNA silencing in tomato fruits. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:298-309. [PMID: 19228332 DOI: 10.1111/j.1467-7652.2009.00402.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A collection of fruit promoters, reporter genes and protein tags has been constructed in a triple-gateway format, a recombination-based cloning system that facilitates the tandem assembly of three DNA fragments into plant expression vectors. The new pENFRUIT collection includes, among others, the classical tomato-ripening promoters E8 and 2A11 and a set of six new tomato promoters. The new promoter activities were characterized in both transient assays and stable transgenic plants. The range of expression of the new promoters comprises strong (PNH, PLI), medium (PLE, PFF, PHD) and weak (PSN) promoters driving gene expression preferentially in the fruit, and covering a wide range of tissues and developmental stages. Together, a total of 78 possible combinations for the expression of a gene of interest in the fruit, plus a set of five reporters for new promoter analysis, was made available in the current collection. Moreover, the pENFRUIT promoter collection is adaptable to hairpin RNA strategies aimed at tissue/organ-specific gene silencing with only an additional cloning step. The pENFRUIT toolkit broadens the spectrum of promoter activities available for fruit biotechnology and fundamental research, and bypasses technical difficulties of current ligase-dependent cloning techniques in the construction of fruit expression cassettes. The pENFRUIT vector collection is available for the research community in a plasmid repository, facilitating its accessibility.
Collapse
Affiliation(s)
- Leandro Hueso Estornell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
75
|
Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3311-36. [PMID: 19567479 DOI: 10.1093/jxb/erp204] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene regulates many aspects of the plant life cycle, including seed germination, root initiation, flower development, fruit ripening, senescence, and responses to biotic and abiotic stresses. It thus plays a key role in responses to the environment that have a direct bearing on a plant's fitness for adaptation and reproduction. In recent years, there have been major advances in our understanding of the molecular mechanisms regulating ethylene synthesis and action. Screening for mutants of the triple response phenotype of etiolated Arabidopsis seedlings, together with map-based cloning and candidate gene characterization of natural mutants from other plant species, has led to the identification of many new genes for ethylene biosynthesis, signal transduction, and response pathways. The simple chemical nature of ethylene contrasts with its regulatory complexity. This is illustrated by the multiplicity of genes encoding the key ethylene biosynthesis enzymes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase, multiple ethylene receptors and signal transduction components, and the complexity of regulatory steps involving signalling relays and control of mRNA and protein synthesis and turnover. In addition, there are extensive interactions with other hormones. This review integrates knowledge from the model plant Arabidopsis and other plant species and focuses on key aspects of recent research on regulatory networks controlling ethylene synthesis and its role in flower development and fruit ripening.
Collapse
Affiliation(s)
- Zhefeng Lin
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | |
Collapse
|
76
|
Martinelli F, Uratsu SL, Reagan RL, Chen Y, Tricoli D, Fiehn O, Rocke DM, Gasser CS, Dandekar AM. Gene regulation in parthenocarpic tomato fruit. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3873-90. [PMID: 19700496 PMCID: PMC2736898 DOI: 10.1093/jxb/erp227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/26/2009] [Accepted: 06/25/2009] [Indexed: 05/18/2023]
Abstract
Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlation could be made between the number of seeds, transgene, and fruit size. Expression of auxin synthesis or responsiveness genes by both of these promoters produced seedless parthenocarpic fruits. Eighty-three percent of the genes measured showed no significant differences in expression due to parthenocarpy. The remaining 17% with significant variation (P <0.05) (1748 genes) were studied by assigning a predicted function (when known) based on BLAST to the TAIR database. Among them several genes belong to cell wall, hormone metabolism and response (auxin in particular), and metabolism of sugars and lipids. Up-regulation of lipid transfer proteins and differential expression of several indole-3-acetic acid (IAA)- and ethylene-associated genes were observed in transgenic parthenocarpic fruits. Despite differences in several fatty acids, amino acids, and other metabolites, the fundamental metabolic profile remains unchanged. This work showed that parthenocarpy with ovule-specific alteration of auxin synthesis or response driven by the INO promoter could be effectively applied where such changes are commercially desirable.
Collapse
Affiliation(s)
- Federico Martinelli
- Department of Plant Sciences, Mail Stop 2, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Sandra L. Uratsu
- Department of Plant Sciences, Mail Stop 2, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Russell L. Reagan
- Department of Plant Sciences, Mail Stop 2, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Ying Chen
- Division of Biostatistics, Med Sci 1C, Room 146, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - David Tricoli
- Plant Transformation Facility, 190 Robbins Hall, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Oliver Fiehn
- UC Davis Genome Center and Bioinformatics Program, 1315 GBSF, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - David M. Rocke
- Division of Biostatistics, Med Sci 1C, Room 146, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Charles S. Gasser
- Department of Molecular and Cellular Biology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Abhaya M. Dandekar
- Department of Plant Sciences, Mail Stop 2, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
77
|
Kim HJ, Baek KH, Lee SW, Kim J, Lee BW, Cho HS, Kim WT, Choi D, Hur CG. Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome. BMC PLANT BIOLOGY 2008; 8:101. [PMID: 18844979 PMCID: PMC2575210 DOI: 10.1186/1471-2229-8-101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 10/09/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND There is no dedicated database available for Expressed Sequence Tags (EST) of the chili pepper (Capsicum annuum), although the interest in a chili pepper EST database is increasing internationally due to the nutritional, economic, and pharmaceutical value of the plant. Recent advances in high-throughput sequencing of the ESTs of chili pepper cv. Bukang have produced hundreds of thousands of complementary DNA (cDNA) sequences. Therefore, a chili pepper EST database was designed and constructed to enable comprehensive analysis of chili pepper gene expression in response to biotic and abiotic stresses. RESULTS We built the Pepper EST database to mine the complexity of chili pepper ESTs. The database was built on 122,582 sequenced ESTs and 116,412 refined ESTs from 21 pepper EST libraries. The ESTs were clustered and assembled into virtual consensus cDNAs and the cDNAs were assigned to metabolic pathway, Gene Ontology (GO), and MIPS Functional Catalogue (FunCat). The Pepper EST database is designed to provide a workbench for (i) identifying unigenes in pepper plants, (ii) analyzing expression patterns in different developmental tissues and under conditions of stress, and (iii) comparing the ESTs with those of other members of the Solanaceae family. The Pepper EST database is freely available at http://genepool.kribb.re.kr/pepper/. CONCLUSION The Pepper EST database is expected to provide a high-quality resource, which will contribute to gaining a systemic understanding of plant diseases and facilitate genetics-based population studies. The database is also expected to contribute to analysis of gene synteny as part of the chili pepper sequencing project by mapping ESTs to the genome.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Omics Integration Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - Kwang-Hyun Baek
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Korea
| | - Seung-Won Lee
- Omics Integration Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - JungEun Kim
- Omics Integration Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - Bong-Woo Lee
- Omics Integration Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - Hye-Sun Cho
- Plant Genome Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| | - Woo Taek Kim
- Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Doil Choi
- Department of Plant Science, Seoul National University, Seoul 151-921, Korea
| | - Cheol-Goo Hur
- Omics Integration Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Korea
| |
Collapse
|
78
|
Crowhurst RN, Gleave AP, MacRae EA, Ampomah-Dwamena C, Atkinson RG, Beuning LL, Bulley SM, Chagne D, Marsh KB, Matich AJ, Montefiori M, Newcomb RD, Schaffer RJ, Usadel B, Allan AC, Boldingh HL, Bowen JH, Davy MW, Eckloff R, Ferguson AR, Fraser LG, Gera E, Hellens RP, Janssen BJ, Klages K, Lo KR, MacDiarmid RM, Nain B, McNeilage MA, Rassam M, Richardson AC, Rikkerink EH, Ross GS, Schröder R, Snowden KC, Souleyre EJF, Templeton MD, Walton EF, Wang D, Wang MY, Wang YY, Wood M, Wu R, Yauk YK, Laing WA. Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics 2008; 9:351. [PMID: 18655731 PMCID: PMC2515324 DOI: 10.1186/1471-2164-9-351] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/27/2008] [Indexed: 11/13/2022] Open
Abstract
Background Kiwifruit (Actinidia spp.) are a relatively new, but economically important crop grown in many different parts of the world. Commercial success is driven by the development of new cultivars with novel consumer traits including flavor, appearance, healthful components and convenience. To increase our understanding of the genetic diversity and gene-based control of these key traits in Actinidia, we have produced a collection of 132,577 expressed sequence tags (ESTs). Results The ESTs were derived mainly from four Actinidia species (A. chinensis, A. deliciosa, A. arguta and A. eriantha) and fell into 41,858 non redundant clusters (18,070 tentative consensus sequences and 23,788 EST singletons). Analysis of flavor and fragrance-related gene families (acyltransferases and carboxylesterases) and pathways (terpenoid biosynthesis) is presented in comparison with a chemical analysis of the compounds present in Actinidia including esters, acids, alcohols and terpenes. ESTs are identified for most genes in color pathways controlling chlorophyll degradation and carotenoid biosynthesis. In the health area, data are presented on the ESTs involved in ascorbic acid and quinic acid biosynthesis showing not only that genes for many of the steps in these pathways are represented in the database, but that genes encoding some critical steps are absent. In the convenience area, genes related to different stages of fruit softening are identified. Conclusion This large EST resource will allow researchers to undertake the tremendous challenge of understanding the molecular basis of genetic diversity in the Actinidia genus as well as provide an EST resource for comparative fruit genomics. The various bioinformatics analyses we have undertaken demonstrates the extent of coverage of ESTs for genes encoding different biochemical pathways in Actinidia.
Collapse
Affiliation(s)
- Ross N Crowhurst
- The Horticultural and Food Research Institute of New Zealand, PB 92169, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Bennett AB, Labavitch JM. Ethylene and ripening-regulated expression and function of fruit cell wall modifying proteins. PLANT SCIENCE 2008; 175:130-136. [PMID: 0 DOI: 10.1016/j.plantsci.2008.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
80
|
Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang Z, Jetter R, Venger I, Adato A, Aharoni A. Gene expression and metabolism in tomato fruit surface tissues. PLANT PHYSIOLOGY 2008; 147:823-51. [PMID: 18441227 PMCID: PMC2409049 DOI: 10.1104/pp.108.116004] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/08/2008] [Indexed: 05/07/2023]
Abstract
The cuticle, covering the surface of all primary plant organs, plays important roles in plant development and protection against the biotic and abiotic environment. In contrast to vegetative organs, very little molecular information has been obtained regarding the surfaces of reproductive organs such as fleshy fruit. To broaden our knowledge related to fruit surface, comparative transcriptome and metabolome analyses were carried out on peel and flesh tissues during tomato (Solanum lycopersicum) fruit development. Out of 574 peel-associated transcripts, 17% were classified as putatively belonging to metabolic pathways generating cuticular components, such as wax, cutin, and phenylpropanoids. Orthologs of the Arabidopsis (Arabidopsis thaliana) SHINE2 and MIXTA-LIKE regulatory factors, activating cutin and wax biosynthesis and fruit epidermal cell differentiation, respectively, were also predominantly expressed in the peel. Ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer and gas chromatography-mass spectrometry using a flame ionization detector identified 100 metabolites that are enriched in the peel tissue during development. These included flavonoids, glycoalkaloids, and amyrin-type pentacyclic triterpenoids as well as polar metabolites associated with cuticle and cell wall metabolism and protection against photooxidative stress. Combined results at both transcript and metabolite levels revealed that the formation of cuticular lipids precedes phenylpropanoid and flavonoid biosynthesis. Expression patterns of reporter genes driven by the upstream region of the wax-associated SlCER6 gene indicated progressive activity of this wax biosynthetic gene in both fruit exocarp and endocarp. Peel-associated genes identified in our study, together with comparative analysis of genes enriched in surface tissues of various other plant species, establish a springboard for future investigations of plant surface biology.
Collapse
Affiliation(s)
- Shira Mintz-Oron
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Lindlöf A, Bräutigam M, Chawade A, Olsson O, Olsson B. Evaluation of combining several statistical methods with a flexible cutoff for identifying differentially expressed genes in pairwise comparison of EST sets. Bioinform Biol Insights 2008; 2:215-37. [PMID: 19812778 PMCID: PMC2735943 DOI: 10.4137/bbi.s431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The detection of differentially expressed genes from EST data is of importance for the discovery of potential biological or pharmaceutical targets, especially when studying biological processes in less characterized organisms and where large-scale microarrays are not an option. We present a comparison of five different statistical methods for identifying up-regulated genes through pairwise comparison of EST sets, where one of the sets is generated from a treatment and the other one serves as a control. In addition, we specifically address situations where the sets are relatively small (~2,000–10,000 ESTs) and may differ in size. The methods were tested on both simulated and experimentally derived data, and compared to a collection of cold stress induced genes identified by microarrays. We found that combining the method proposed by Audic and Claverie with Fisher’s exact test and a method based on calculating the difference in relative frequency was the best combination for maximizing the detection of up-regulated genes. We also introduced the use of a flexible cutoff, which takes the size of the EST sets into consideration. This could be considered as an alternative to a static cutoff. Finally, the detected genes showed a low overlap with those identified by microarrays, which indicates, as in previous studies, low overall concordance between the two platforms.
Collapse
Affiliation(s)
- Angelica Lindlöf
- School of Humanities and Informatics, University of Skövde, Box 408, 541 28 Skövde, Sweden.
| | | | | | | | | |
Collapse
|
82
|
Nakagawa T, Nakatsuka A, Yano K, Yasugahira S, Nakamura R, Sun N, Itai A, Suzuki T, Itamura H. Expressed sequence tags from persimmon at different developmental stages. PLANT CELL REPORTS 2008; 27:931-938. [PMID: 18301901 DOI: 10.1007/s00299-008-0518-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/28/2008] [Accepted: 02/10/2008] [Indexed: 05/26/2023]
Abstract
Persimmon (Diospyros kaki Thunb.) is an important fruit in Asian countries, where it is eaten as a fresh fruit and is also used for many other purposes. To understand the molecular mechanism of fruit development and ripening in persimmon, we generated a total of 9,952 expressed sequence tags (ESTs) from randomly selected clones of two different cDNA libraries. One cDNA library was derived from fruit of "Saijo" persimmon at an early stage of development, and the other from ripening fruit. These ESTs were clustered into 6,700 non-redundant sequences. Of the 6,700 non-redundant sequences evaluated, the deduced amino acid sequences of 4,356 (65%) showed significant homology to known proteins, and 2,344 (35%) showed no significant similarity to any known proteins in Arabidopsis databases. We report comparison of genes identified in the two cDNA libraries and describe some putative genes involved in proanthocyanidin and carotenoid synthesis. This study provides the first global overview of a set of genes that are expressed during fruit development and ripening in persimmon.
Collapse
Affiliation(s)
- T Nakagawa
- Department of Molecular and Functional Genomics, Center for Integrated Research in Science, Shimane University, Matsue 690-8504, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Janssen BJ, Thodey K, Schaffer RJ, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC PLANT BIOLOGY 2008; 8:16. [PMID: 18990244 PMCID: PMC2287172 DOI: 10.1186/1471-2229-8-16] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 02/17/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Apple fruit develop over a period of 150 days from anthesis to fully ripe. An array representing approximately 13000 genes (15726 oligonucleotides of 45-55 bases) designed from apple ESTs has been used to study gene expression over eight time points during fruit development. This analysis of gene expression lays the groundwork for a molecular understanding of fruit growth and development in apple. RESULTS Using ANOVA analysis of the microarray data, 1955 genes showed significant changes in expression over this time course. Expression of genes is coordinated with four major patterns of expression observed: high in floral buds; high during cell division; high when starch levels and cell expansion rates peak; and high during ripening. Functional analysis associated cell cycle genes with early fruit development and three core cell cycle genes are significantly up-regulated in the early stages of fruit development. Starch metabolic genes were associated with changes in starch levels during fruit development. Comparison with microarrays of ethylene-treated apple fruit identified a group of ethylene induced genes also induced in normal fruit ripening. Comparison with fruit development microarrays in tomato has been used to identify 16 genes for which expression patterns are similar in apple and tomato and these genes may play fundamental roles in fruit development. The early phase of cell division and tissue specification that occurs in the first 35 days after pollination has been associated with up-regulation of a cluster of genes that includes core cell cycle genes. CONCLUSION Gene expression in apple fruit is coordinated with specific developmental stages. The array results are reproducible and comparisons with experiments in other species has been used to identify genes that may play a fundamental role in fruit development.
Collapse
Affiliation(s)
- Bart J Janssen
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Kate Thodey
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Robert J Schaffer
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Rob Alba
- Boyce Thompson Institute for Plant Research, Tower Road, Cornell University Campus, Ithaca, NY 14853, USA
- Monsanto Company – O3D, Product Safety Center, 800 North Lindbergh Blvd., St. Louis, MO 63167, USA
| | | | - Rebecca Bishop
- 4 La Trobe Track, RD2 New Lynn, Karekare, Auckland, New Zealand
| | - Judith H Bowen
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Ross N Crowhurst
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Andrew P Gleave
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Susan Ledger
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Steve McArtney
- Department of Horticultural Science, North Carolina State University, Mountain Horticultural Crops Research and Extension Centre, 455 Research Drive, Fletcher, NC 28732-9244, USA
| | - Franz B Pichler
- Microbial Ecology & Genomics Lab, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kimberley C Snowden
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Shayna Ward
- The Horticulture and Food Research Institute of New Zealand Ltd., Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
84
|
Peng FY, Reid KE, Liao N, Schlosser J, Lijavetzky D, Holt R, Martínez Zapater JM, Jones S, Marra M, Bohlmann J, Lund ST. Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Gene 2007; 402:40-50. [PMID: 17761391 DOI: 10.1016/j.gene.2007.07.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/26/2007] [Accepted: 07/17/2007] [Indexed: 11/30/2022]
Abstract
We report the generation and analysis of a total of 77,583 expressed sequence tags (ESTs) from two grapevine (Vitis vinifera L.) cultivars, Cabernet Sauvignon (wine grape) and Muscat Hamburg (table grape) with a focus on EST sequence quality and assembly optimization. The majority of the ESTs were derived from normalized cDNA libraries representing berry pericarp and seed developmental series, pooled non-berry tissues including root, flower, and leaf in Cabernet Sauvignon, and pooled tissues of berry, seed, and flower in Muscat Hamburg. EST and unigene sequence quality were determined by computational filtering coupled with small-scale contig reassembly, manual review, and BLAST analyses. EST assembly was optimized to better discriminate among closely related paralogs using two independent grape sequence sets, a previously published set of Vitis spp. gene families and our EST dataset derived from pooled leaf, flower, and root tissues of Cabernet Sauvignon. Sequence assembly within individual libraries indicated that those prepared from pooled tissues contributed the most to gene discovery. Annotations based upon searches against multiple databases including tomato and strawberry sequences helped to identify putative functions of ESTs and unigenes, particularly with respect to fleshy fruit development. Sequence comparison among the three wine grape libraries identified a number of genes preferentially expressed in the pericarp tissue, including transcription factors, receptor-like protein kinases, and hexose transporters. Gene ontology (GO) classification in the biological process aspect showed that GO categories corresponding to 'transport' and 'cell organization and biogenesis', which are associated with metabolite movement and cell wall structural changes during berry ripening, were higher in pericarp than in other tissues in the wine grape studied. The sequence data were used to characterize potential roles of new genes in berry development and composition.
Collapse
Affiliation(s)
- Fred Y Peng
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Kolotilin I, Koltai H, Tadmor Y, Bar-Or C, Reuveni M, Meir A, Nahon S, Shlomo H, Chen L, Levin I. Transcriptional profiling of high pigment-2dg tomato mutant links early fruit plastid biogenesis with its overproduction of phytonutrients. PLANT PHYSIOLOGY 2007; 145:389-401. [PMID: 17704236 PMCID: PMC2048735 DOI: 10.1104/pp.107.102962] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Phenotypes of the tomato (Solanum lycopersicum) high pigment-2(dg) (hp-2(dg)) and hp-2(j) mutants are caused by lesions in the gene encoding DEETIOLATED1, a negative regulator of light signaling. Homozygous hp-2(dg) and hp-2(j) plants display a plethora of distinctive developmental and metabolic phenotypes in comparison to their normal isogenic counterparts. These mutants are, however, best known for the increased levels of carotenoids, primarily lycopene, and other plastid-accumulating functional metabolites. In this study we analyzed the transcriptional alterations in mature-green, breaker, and early red fruits of hp-2(dg)/hp-2(dg) plants in relation to their normal counterparts using microarray technology. Results show that a large portion of the genes that are affected by hp-2(dg) mutation display a tendency for up- rather than down-regulation. Ontology assignment of these differentially regulated transcripts revealed a consistent up-regulation of transcripts related to chloroplast biogenesis and photosynthesis in hp-2(dg) mutants throughout fruit ripening. A tendency of up-regulation was also observed in structural genes involved in phytonutrient biosynthesis. However, this up-regulation was not as consistent, positioning plastid biogenesis as an important determinant of phytonutrient overproduction in hp-2(dg) and possibly other hp mutant fruits. Microscopic observations revealed a highly significant increase in chloroplast size and number in pericarp cells of mature-green hp-2(dg)/hp-2(dg) and hp-2(j)/hp-2(j) fruits in comparison to their normal counterparts. This increase could be observed from early stages of fruit development. Therefore, the molecular trigger that drives phytonutrient overproduction in hp-2(dg) and hp-2(j) mutant fruits should be initially traced at these early stages.
Collapse
Affiliation(s)
- Igor Kolotilin
- Institute of Plant Sciences, The Volcani Center, Bet Dagan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Pilcher RLR, Moxon S, Pakseresht N, Moulton V, Manning K, Seymour G, Dalmay T. Identification of novel small RNAs in tomato (Solanum lycopersicum). PLANTA 2007; 226:709-17. [PMID: 17415587 DOI: 10.1007/s00425-007-0518-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 03/19/2007] [Indexed: 05/14/2023]
Abstract
To date, the majority of plant small RNAs (sRNA) have been identified in rice, poplar and Arabidopsis. To identify novel tomato sRNAs potentially involved in tomato specific processes such as fruit development and/or ripening, we cloned 4,018 sRNAs from tomato fruit tissue at the mature green stage. From this pool of sRNAs, we detected tomato homologues of nine known miRNAs, including miR482; a poplar miRNA not conserved in Arabidopsis or rice. We identified three novel putative miRNAs with flanking sequence that could be folded into a stem-loop precursor structure and which accumulated as 19-24nt RNA. One of these putative miRNAs (Put-miRNA3) exhibited significantly higher expression in fruit compared with leaf tissues, indicating a specific role in fruit development processes. We also identified nine sRNAs that accumulated as 19-24nt RNA species in tomato but genome sequence was not available for these loci. None of the nine sRNAs or three putative miRNAs possessed a homologue in Arabidopsis that had a precursor with a predicted stem-loop structure or that accumulated as a sRNA species, suggesting that the 12 sRNAs we have identified in tomato may have a species specific role in this model fruit species.
Collapse
|
87
|
Giovannoni JJ. Fruit ripening mutants yield insights into ripening control. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:283-9. [PMID: 17442612 DOI: 10.1016/j.pbi.2007.04.008] [Citation(s) in RCA: 297] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 04/03/2007] [Indexed: 05/14/2023]
Abstract
Fruit ripening is a developmental process that is exclusive to plants whereby mature seed-bearing organs undergo physiological and metabolic changes that promote seed dispersal. Molecular investigations into ripening control mechanisms have been aided by the recent cloning of tomato ripening genes that were previously known only through mutation. Advances in the genomics of tomato have provided genetic and molecular tools that have facilitated the positional and candidate-gene-based cloning of several key ripening genes. These discoveries have created new inroads into understanding of the primary ripening control mechanisms, including transcription factors such as those encoded by the RIPENING-INHIBITOR (RIN) MADS-box and COLOURLESS NON-RIPENING (CNR) SPB-box genes, which are necessary for the progression of virtually all ripening processes. They have also facilitated the elucidation of downstream signal transduction components that impact the hormonal and environmental stimuli that coordinate and modulate ripening phenotypes.
Collapse
Affiliation(s)
- James J Giovannoni
- US Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Tower Road, Cornell University Campus, Ithaca, New York 14853, USA.
| |
Collapse
|
88
|
Barry CS, Giovannoni JJ. Ethylene and Fruit Ripening. JOURNAL OF PLANT GROWTH REGULATION 2007; 26:143. [PMID: 0 DOI: 10.1007/s00344-007-9002-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/18/2007] [Indexed: 05/19/2023]
|
89
|
Kok EJ, Franssen-van Hal NLW, Winnubst LNW, Kramer EHM, Dijksma WTP, Kuiper HA, Keijer J. Assessment of representational difference analysis (RDA) to construct informative cDNA microarrays for gene expression analysis of species with limited transcriptome information, using red and green tomatoes as a model. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:337-49. [PMID: 16630671 DOI: 10.1016/j.jplph.2006.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Accepted: 02/03/2006] [Indexed: 05/08/2023]
Abstract
Microarray technology makes it feasible to analyse the expression of thousands of different gene elements in a single experiment. Most informative are 'whole genome' arrays, where all gene expression products of a single species or variety are represented. Such arrays are now available for a limited number of model species. However, for other, less well-documented species other routes are still necessary to obtain informative arrays. This includes the use of cDNA libraries. To enhance the amount of information that can be obtained from cDNA libraries, redundancy needs to be minimised, and the number of cDNAs relevant for the conditions of interest needs to be increased. Here, we used representational difference analysis (RDA), a mRNA subtraction procedure, as a tool to enhance the efficiency of cDNA libraries to be used to generate microarrays. Tomato was chosen as a model system for a less well-documented species. cDNA libraries for two distinct physiological conditions of tomato fruits, red and green, were made. The libraries were characterized by sequencing and hybridisation analysis. The RDA procedure was shown to be effective in selecting for genes of relevance for the physiological conditions under investigation, and against constitutively expressed genes. At the same time, redundancy was reduced, but complete normalisation was not obtained, and subsequent sequence analysis will be required to obtain non-redundant arrays. Further, known and putative ripening-related cDNAs were identified in hybridisation experiments on the basis of RNA populations as isolated from the green and red stage of ripening.
Collapse
Affiliation(s)
- Esther J Kok
- RIKILT Institute for Food Safety, Bornsesteeg 45, 6700 AE Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
90
|
Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR. Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. PLANT PHYSIOLOGY 2006; 142:1380-96. [PMID: 17071647 PMCID: PMC1676044 DOI: 10.1104/pp.106.088534] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2006] [Accepted: 10/17/2006] [Indexed: 05/12/2023]
Abstract
Tomato (Solanum lycopersicum) is a well-studied model of fleshy fruit development and ripening. Tomato fruit development is well understood from a hormonal-regulatory perspective, and developmental changes in pigment and cell wall metabolism are also well characterized. However, more general aspects of metabolic change during fruit development have not been studied despite the importance of metabolism in the context of final composition of the ripe fruit. In this study, we quantified the abundance of a broad range of metabolites by gas chromatography-mass spectrometry, analyzed a number of the principal metabolic fluxes, and in parallel analyzed transcriptomic changes during tomato fruit development. Metabolic profiling revealed pronounced shifts in the abundance of metabolites of both primary and secondary metabolism during development. The metabolite changes were reflected in the flux analysis that revealed a general decrease in metabolic activity during ripening. However, there were several distinct patterns of metabolite profile, and statistical analysis demonstrated that metabolites in the same (or closely related) pathways changed in abundance in a coordinated manner, indicating a tight regulation of metabolic activity. The metabolite data alone allowed investigations of likely routes through the metabolic network, and, as an example, we analyze the operational feasibility of different pathways of ascorbate synthesis. When combined with the transcriptomic data, several aspects of the regulation of metabolism during fruit ripening were revealed. First, it was apparent that transcript abundance was less strictly coordinated by functional group than metabolite abundance, suggesting that posttranslational mechanisms dominate metabolic regulation. Nevertheless, there were some correlations between specific transcripts and metabolites, and several novel associations were identified that could provide potential targets for manipulation of fruit compositional traits. Finally, there was a strong relationship between ripening-associated transcripts and specific metabolite groups, such as TCA-cycle organic acids and sugar phosphates, underlining the importance of the respective metabolic pathways during fruit development.
Collapse
Affiliation(s)
- Fernando Carrari
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm-Postdam, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
D'Agostino N, Aversano M, Frusciante L, Chiusano ML. TomatEST database: in silico exploitation of EST data to explore expression patterns in tomato species. Nucleic Acids Res 2006; 35:D901-5. [PMID: 17142232 PMCID: PMC1669777 DOI: 10.1093/nar/gkl921] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
TomatEST is a secondary database integrating expressed sequence tag (EST)/cDNA sequence information from different libraries of multiple tomato species. Redundant EST collections from each species are organized into clusters (gene indices). A cluster consists of one or multiple contigs. Multiple contigs in a cluster represent alternatively transcribed forms of a gene. The set of stand-alone EST sequences (singletons) and contigs, representing all the computationally defined ‘Transcript Indices’, are annotated according to similarity versus protein and RNA family databases. Sequence function description is integrated with the Gene Ontologies and the Enzyme Commission identifiers for a standard classification of gene products and for the mapping of the expressed sequences onto metabolic pathways. Information on the origin of the ESTs, on their structural features, on clusters and contigs, as well as on functional annotations are accessible via a user-friendly web interface. Specific facilities in the database allow Transcript Indices from a query be automatically classified in Enzyme classes and in metabolic pathways. The ‘on the fly’ mapping onto the metabolic maps is integrated in the analytical tools. The TomatEST database website is freely available at .
Collapse
Affiliation(s)
| | | | - Luigi Frusciante
- Department of Soil, Plantand Environmental Sciences, University ‘Federico II’, 80055 Portici, Naples, Italy
| | | |
Collapse
|
92
|
Levi A, Davis A, Hernandez A, Wechter P, Thimmapuram J, Trebitsh T, Tadmor Y, Katzir N, Portnoy V, King S. Genes expressed during the development and ripening of watermelon fruit. PLANT CELL REPORTS 2006; 25:1233-45. [PMID: 16802118 DOI: 10.1007/s00299-006-0163-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/01/2006] [Accepted: 03/25/2006] [Indexed: 05/10/2023]
Abstract
A normalized cDNA library was constructed using watermelon flesh mRNA from three distinct developmental time-points and was subtracted by hybridization with leaf cDNA. Random cDNA clones of the watermelon flesh subtraction library were sequenced from the 5' end in order to identify potentially informative genes associated with fruit setting, development, and ripening. One-thousand and forty-six 5'-end sequences (expressed sequence tags; ESTs) were assembled into 832 non-redundant sequences, designated as "EST-unigenes". Of these 832 "EST-unigenes", 254 ( approximately 30%) have no significant homology to sequences published so far for other plant species. Additionally, 168 "EST-unigenes" ( approximately 20%) correspond to genes with unknown function, whereas 410 "EST-unigenes" ( approximately 50%) correspond to genes with known function in other plant species. These "EST-unigenes" are mainly associated with metabolism, membrane transport, cytoskeleton synthesis and structure, cell wall formation and cell division, signal transduction, nucleic acid binding and transcription factors, defense and stress response, and secondary metabolism. This study provides the scientific community with novel genetic information for watermelon as well as an expanded pool of genes associated with fruit development in watermelon. These genes will be useful targets in future genetic and functional genomic studies of watermelon and its development.
Collapse
Affiliation(s)
- A Levi
- USDA, ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S. Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. PLANT PHYSIOLOGY 2006; 141:811-24. [PMID: 16825339 PMCID: PMC1489918 DOI: 10.1104/pp.106.080994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Advanced studies of apple (Malus domestica Borkh) development, physiology, and biochemistry have been hampered by the lack of appropriate genomics tools. One exception is the recent acquisition of extensive expressed sequence tag (EST) data. The entire available EST dataset for apple resulted from the efforts of at least 20 contributors and was derived from more than 70 cDNA libraries representing diverse transcriptional profiles from a variety of organs, fruit parts, developmental stages, biotic and abiotic stresses, and from at least nine cultivars. We analyzed apple EST sequences available in public databanks using statistical algorithms to identify those apple genes that are likely to be highly expressed in fruit, expressed uniquely or preferentially in fruit, and/or temporally or spatially regulated during fruit growth and development. We applied these results to the analysis of biochemical pathways involved in biosynthesis of precursors for volatile esters and identified a subset of apple genes that may participate in generating flavor and aroma components found in mature fruit.
Collapse
Affiliation(s)
- Sunchung Park
- Pomology Group, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
94
|
Saladié M, Rose JKC, Cosgrove DJ, Catalá C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:282-95. [PMID: 16774648 DOI: 10.1111/j.1365-313x.2006.02784.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall-modifying enzymes that align within three or four distinct phylogenetic subgroups. One explanation for this grouping is association with different enzymic modes of action, as XTHs can have xyloglucan endotransglucosylase (XET) or endohydrolase (XEH) activities. While Group 1 and 2 XTHs predominantly exhibit XET activity, to date the activity of only one member of Group 3 has been reported: nasturtium TmXH1, which has a highly specialized function and hydrolyses seed-storage xyloglucan rather than modifying cell wall structure. Tomato fruit ripening was selected as a model to test the hypothesis that preferential XEH activity might be a defining characteristic of Group 3 XTHs, which would be expressed during processes where net xyloglucan depolymerization occurs. Database searches identified 25 tomato XTHs, and one gene (SlXTH5) was of particular interest as it aligned within Group 3 and was expressed abundantly during ripening. Recombinant SlXTH5 protein acted primarily as a transglucosylase in vitro and depolymerized xyloglucan more rapidly in the presence than in the absence of xyloglucan oligosaccharides (XGOs), indicative of XET activity. Thus, there is no correlation between the XTH phylogenetic grouping and the preferential enzymic activities (XET or XEH) of the proteins in those groups. Similar analyses of SlXTH2, a Group 2 tomato XTH, and nasturtium seed TmXTH1 revealed a spectrum of modes of action, suggesting that all XTHs have the capacity to function in both modes. The biomechanical properties of plant walls were unaffected by incubation with SlXTH5, with or without XGOs, suggesting that XTHs do not represent primary cell wall-loosening agents. The possible roles of SlXTH5 in vivo are discussed.
Collapse
Affiliation(s)
- Montserrat Saladié
- Department of Plant Biology, 228 Plant Science Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
95
|
Rocco M, D'Ambrosio C, Arena S, Faurobert M, Scaloni A, Marra M. Proteomic analysis of tomato fruits from two ecotypes during ripening. Proteomics 2006; 6:3781-91. [PMID: 16739135 DOI: 10.1002/pmic.200600128] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ripening of climacteric fruits is a complex physiological phenomenon, which makes berries attractive/palatable and also determines their nutritional characteristics. We report here a comparative proteomic investigation on tomato fruits from a regional and commercial elite ecotype during maturation. Several hundreds of protein components were resolved on 2-DE gels (pH range 4-7) stained with colloidal Coomassie; almost 57% presented overlapping gel coordinates between the two compared varieties. Specific proteins were recognized in each ecotype as differentially expressed during ripening. Constant and variable components were excised, in-gel digested and analysed by MALDI-TOF-MS and microLC-ESI-IT-MS/MS approaches. Peptide MS and MS/MS data were searched against publicly available protein and EST databases, and 83 protein spots were unambiguously identified by MS. Gel matching procedures allowed further identification of proteins between ecotypes. In general, common variably expressed proteins in both ecotypes during maturation were associated to important physiological processes such as redox status control, defence, stress, carbon metabolism, energy production and cellular signalling. Protein components differentially expressed in each variety were also identified. The role of some of the identified proteins in the berries is discussed in relation to tomato fruit ripening. Accordingly, this investigation provides the first characterization of the tomato fruit proteome and description of its variation during maturation.
Collapse
Affiliation(s)
- Mariapina Rocco
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy
| | | | | | | | | | | |
Collapse
|
96
|
Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, Laroche A, Links MG, MacCarthy L, Crosby WL, Sarhan F. Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 2006; 7:149. [PMID: 16772040 PMCID: PMC1539019 DOI: 10.1186/1471-2164-7-149] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/13/2006] [Indexed: 11/30/2022] Open
Abstract
Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals.
Collapse
Affiliation(s)
- Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Mahdi Belcaid
- Département d'Informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - François Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Jean Danyluk
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - Antonio F Monroy
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Ani Dryanova
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Patrick Gulick
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montreal QC, H4B 1R6, Canada
| | - Anne Bergeron
- Département d'Informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| | - André Laroche
- Agriculture et Agroalimentaire Canada, Centre de recherches de Lethbridge, 5403, 1st Avenue South, C.P. 3000, Lethbridge AB, T1J 4B1, Canada
| | - Matthew G Links
- Department of Biological Sciences, University of Windsor, 401 Sunset ave, Windsor ON, N9B 3P4, Canada
| | - Luke MacCarthy
- Department of Computer Science, University of Saskatchewan, 176 Thorvaldson Building, 110 Science Place, Saskatoon SK, S7N 5C9, Canada
| | - William L Crosby
- Department of Biological Sciences, University of Windsor, 401 Sunset ave, Windsor ON, N9B 3P4, Canada
| | - Fathey Sarhan
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada
| |
Collapse
|
97
|
Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK. Analyses of expressed sequence tags from apple. PLANT PHYSIOLOGY 2006; 141:147-66. [PMID: 16531485 PMCID: PMC1459330 DOI: 10.1104/pp.105.076208] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The domestic apple (Malus domestica; also known as Malus pumila Mill.) has become a model fruit crop in which to study commercial traits such as disease and pest resistance, grafting, and flavor and health compound biosynthesis. To speed the discovery of genes involved in these traits, develop markers to map genes, and breed new cultivars, we have produced a substantial expressed sequence tag collection from various tissues of apple, focusing on fruit tissues of the cultivar Royal Gala. Over 150,000 expressed sequence tags have been collected from 43 different cDNA libraries representing 34 different tissues and treatments. Clustering of these sequences results in a set of 42,938 nonredundant sequences comprising 17,460 tentative contigs and 25,478 singletons, together representing what we predict are approximately one-half the expressed genes from apple. Many potential molecular markers are abundant in the apple transcripts. Dinucleotide repeats are found in 4,018 nonredundant sequences, mainly in the 5'-untranslated region of the gene, with a bias toward one repeat type (containing AG, 88%) and against another (repeats containing CG, 0.1%). Trinucleotide repeats are most common in the predicted coding regions and do not show a similar degree of sequence bias in their representation. Bi-allelic single-nucleotide polymorphisms are highly abundant with one found, on average, every 706 bp of transcribed DNA. Predictions of the numbers of representatives from protein families indicate the presence of many genes involved in disease resistance and the biosynthesis of flavor and health-associated compounds. Comparisons of some of these gene families with Arabidopsis (Arabidopsis thaliana) suggest instances where there have been duplications in the lineages leading to apple of biosynthetic and regulatory genes that are expressed in fruit. This resource paves the way for a concerted functional genomics effort in this important temperate fruit crop.
Collapse
Affiliation(s)
- Richard D Newcomb
- Horticultural and Food Research Institute of New Zealand Limited, Mt. Albert Research Centre, Auckland, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F, Davy M, Bläsing O, Kowalczyk M, Weicht D, Polinceusz A, Meyer S, Stitt M, Fernie AR. Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf. PLANT MOLECULAR BIOLOGY 2006; 60:773-92. [PMID: 16649112 DOI: 10.1007/s11103-005-5772-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 12/08/2005] [Indexed: 05/08/2023]
Abstract
The tomato microarray TOM1 offers the possibility to monitor the levels of several thousand transcripts in parallel. The microelements represented on this tomato microarray have been putatively assigned to unigenes, and organised in functional classes using the MapMan ontology (Thimm et al., 2004. Plant J. 37: 914-939). This ontology was initially developed for use with the Arabidopsis ATH1 array, has a low level of redundancy, and can be combined with the MapMan software to provide a biologically structured overview of changes of transcripts, metabolites and enzyme activities. Use of this application is illustrated using three case studies with published or novel TOM1 array data sets for Solanaceous species. Comparison of previously reported data on transcript levels in potato leaves in the middle of the day and the middle of the night identified coordinated changes in the levels of transcripts of genes involved in various metabolic pathways and cellular events. Comparison with diurnal changes of gene expression in Arabidopsis revealed common features, illustrating how MapMan can be used to compare responses in different organisms. Comparison of transcript levels in new experiments performed on the leaves of the cultivated tomato S. lycopersicum and the wild relative S. pennellii revealed a general decrease of levels of transcripts of genes involved in terpene and, phenylpropanoid metabolism as well as chorismate biosynthesis in the crop compared to the wild relative. This matches the recently reported decrease of the levels of secondary metabolites in the latter. In the third case study, new expression array data for two genotypes deficient in TCA cycle enzymes is analysed to show that these genotypes have elevated levels of transcripts associated with photosynthesis. This in part explains the previously documented enhanced rates of photosynthesis in these genotypes. Since the Solanaceous MapMan is intended to be a community resource it will be regularly updated on improvements in tomato gene annotation and transcript profiling resources.
Collapse
Affiliation(s)
- Ewa Urbanczyk-Wochniak
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Golm, 14476, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Sun HJ, Uchii S, Watanabe S, Ezura H. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. PLANT & CELL PHYSIOLOGY 2006; 47:426-31. [PMID: 16381658 DOI: 10.1093/pcp/pci251] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We report a highly efficient protocol for the Agrobacterium-mediated genetic transformation of a miniature dwarf tomato (Lycopersicon esculentum), Micro-Tom, a model cultivar for tomato functional genomics. Cotyledon explants of tomato inoculated with Agrobacterium tumefaciens (Rhizobium radiobacter) C58C1Rif(R) harboring the binary vector pIG121Hm generated a mass of chimeric non-transgenic and transgenic adventitious buds. Repeated shoot elongation from the mass of adventitious buds on selection media resulted in the production of multiple transgenic plants that originated from independent transformation events. The transformation efficiency exceeded 40% of the explants. This protocol could become a powerful tool for functional genomics in tomato.
Collapse
Affiliation(s)
- Hyeon-Jin Sun
- Gene Research Center, Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
100
|
Fei Z, Tang X, Alba R, Giovannoni J. Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucleic Acids Res 2006; 34:D766-70. [PMID: 16381976 PMCID: PMC1347472 DOI: 10.1093/nar/gkj110] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Tomato Expression Database (TED) includes three integrated components. The Tomato Microarray Data Warehouse serves as a central repository for raw gene expression data derived from the public tomato cDNA microarray. In addition to expression data, TED stores experimental design and array information in compliance with the MIAME guidelines and provides web interfaces for researchers to retrieve data for their own analysis and use. The Tomato Microarray Expression Database contains normalized and processed microarray data for ten time points with nine pair-wise comparisons during fruit development and ripening in a normal tomato variety and nearly isogenic single gene mutants impacting fruit development and ripening. Finally, the Tomato Digital Expression Database contains raw and normalized digital expression (EST abundance) data derived from analysis of the complete public tomato EST collection containing >150 000 ESTs derived from 27 different non-normalized EST libraries. This last component also includes tools for the comparison of tomato and Arabidopsis digital expression data. A set of query interfaces and analysis, and visualization tools have been developed and incorporated into TED, which aid users in identifying and deciphering biologically important information from our datasets. TED can be accessed at .
Collapse
Affiliation(s)
- Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|