51
|
Genome-wide identification, expression, and association analysis of the monosaccharide transporter (MST) gene family in peanut ( Arachis hypogaea L.). 3 Biotech 2020; 10:130. [PMID: 32154043 DOI: 10.1007/s13205-020-2123-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022] Open
Abstract
In this study, we reported the genome-wide analysis of the whole sugar transporter gene family of a legume species, peanut (Arachis hypogaea L.), including the chromosome locations, gene structures, phylogeny, expression patterns, as well as comparative genomic analysis with Arabidopsis, rice, grape, and soybean. A total of 76 AhMST genes (AhMST1-76) were identified from the peanut genome and located unevenly in 20 chromosomes. Phylogeny analysis indicated that the AhMSTs can be divided into eight groups including two undefined peanut-specific groups. Transcriptional profiles revealed that many AhMST genes showed tissue-specific expression, the majority of the AhMST genes mainly expressed in sink organs and floral organ of peanut. Chromosome distribution pattern and synteny analysis strongly indicated that genome-wide segmental and tandem duplication contributed to the expansion of peanut MST genes. Four common orthologs (AhMST9, AhMST13, AhMST40, and AhMST43) between peanut and the other four species were identified by comparative genomic analysis, which might play important roles in maintaining the growth and development of plant. Furthermore, four polymorphic sites in AhMST11, AhMST13, and AhMST60 were significantly correlated with hundred pod weight (HPW) and hundred seed weight (HSW) by association analysis. In a word, these results will provide new insights for understanding the functions of AhMST family members to sugar transporting and the potential for yield improvement in peanut.
Collapse
|
52
|
Huai B, Yang Q, Wei X, Pan Q, Kang Z, Liu J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC PLANT BIOLOGY 2020; 20:49. [PMID: 32000681 PMCID: PMC6993525 DOI: 10.1186/s12870-020-2248-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Biotrophic fungi make intimate contact with host cells to access nutrients. Sugar is considered as the main carbon sources absorbed from host cells by pathogens. Partition, exchanges and competition for sugar at plant-pathogen interfaces are controlled by sugar transporters. Previous studies have indicated that the leaf rust resistance (Lr) gene Lr67, a natural mutation of TaSTP13 encoding a wheat sugar transport protein, confers partial resistance to all three wheat rust species and powdery mildew possibly due to weakened sugar transport activity of TaSTP13 by heterodimerization. However, one major problem that remains unresolved concerns whether TaSTP13 participates in wheat susceptibility to rust and mildew. RESULTS In this study, expression of TaSTP13 was highly induced in wheat leaves challenged by Puccinia striiformis f. sp. tritici (Pst) and certain abiotic treatments. TaSTP13 was localized in the plasma membrane and functioned as homooligomers. In addition, a functional domain for its transport activity was identified in yeast. Suppression of TaSTP13 reduced wheat susceptibility to Pst by barley stripe mosaic virus-induced gene silencing (VIGS). While overexpression of TaSTP13 promoted Arabidopsis susceptibility to powdery mildew and led to increased glucose accumulation in the leaves. CONCLUSIONS These results indicate that TaSTP13 is transcriptionally induced and contributes to wheat susceptibility to stripe rust, possibly by promoting cytoplasmic hexose accumulation for fungal sugar acquisition in wheat-Pst interactions.
Collapse
Affiliation(s)
- Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaobo Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qinglin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.
| |
Collapse
|
53
|
Huai B, Yang Q, Wei X, Pan Q, Kang Z, Liu J. TaSTP13 contributes to wheat susceptibility to stripe rust possibly by increasing cytoplasmic hexose concentration. BMC PLANT BIOLOGY 2020; 20:49. [PMID: 32000681 DOI: 10.1186/s12870-020-2248-2242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Biotrophic fungi make intimate contact with host cells to access nutrients. Sugar is considered as the main carbon sources absorbed from host cells by pathogens. Partition, exchanges and competition for sugar at plant-pathogen interfaces are controlled by sugar transporters. Previous studies have indicated that the leaf rust resistance (Lr) gene Lr67, a natural mutation of TaSTP13 encoding a wheat sugar transport protein, confers partial resistance to all three wheat rust species and powdery mildew possibly due to weakened sugar transport activity of TaSTP13 by heterodimerization. However, one major problem that remains unresolved concerns whether TaSTP13 participates in wheat susceptibility to rust and mildew. RESULTS In this study, expression of TaSTP13 was highly induced in wheat leaves challenged by Puccinia striiformis f. sp. tritici (Pst) and certain abiotic treatments. TaSTP13 was localized in the plasma membrane and functioned as homooligomers. In addition, a functional domain for its transport activity was identified in yeast. Suppression of TaSTP13 reduced wheat susceptibility to Pst by barley stripe mosaic virus-induced gene silencing (VIGS). While overexpression of TaSTP13 promoted Arabidopsis susceptibility to powdery mildew and led to increased glucose accumulation in the leaves. CONCLUSIONS These results indicate that TaSTP13 is transcriptionally induced and contributes to wheat susceptibility to stripe rust, possibly by promoting cytoplasmic hexose accumulation for fungal sugar acquisition in wheat-Pst interactions.
Collapse
Affiliation(s)
- Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaobo Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qinglin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.
| |
Collapse
|
54
|
Wei H, Liu J, Zheng J, Zhou R, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Deng M, Chen Y, Wan H. Sugar transporter proteins in Capsicum: identification, characterization, evolution and expression patterns. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1749529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Huawei Wei
- College of Horticulture, Anhui Agricultural University, Hefei, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu, China
| | - Jiaqiu Zheng
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, Agro Food Park, Denmark
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Meiying Ruan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingjing Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongqing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhuping Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Minghua Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Yougen Chen
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
55
|
Cheng J, Wen S, Bie Z. Overexpression of hexose transporter CsHT3 increases cellulose content in cucumber fruit peduncle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:107-113. [PMID: 31677541 DOI: 10.1016/j.plaphy.2019.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Hexose transporters play many important roles in plant development. However, the role of hexose transporter in secondary cell wall growth has not been reported before. Here, we report that the hexose transporter gene CsHT3 is mainly expressed in cells with secondary cell walls in cucumber. Spatiotemporal expression analysis revealed that the transcript of CsHT3 mainly accumulates in the stem, petiole, tendril, and peduncle, all of which contain high cellulose levels. Immunolocalization results show that CsHT3 is localized at the sclereids in young peduncles, shifts to the phloem fiber cells during peduncle development, and then shifts again to the companion cells when the development of secondary cell walls is almost completed. Carboxyfluoresce unloading experiment indicated that carbohydrate unloading in the phloem follows an apoplastic pathway. Overexpression of CsHT3 in cucumber plant can improve the cellulose content and cell wall thickness of phloem fiber cells in the peduncle. The expression of cellulose synthase genes were increased in the CsHT3 overexpression plants. These results indicated that CsHT3 may play an important role in cellulose synthesis through promoting the expression of cellulose synthase genes.
Collapse
Affiliation(s)
- Jintao Cheng
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China.
| | - Suying Wen
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China.
| | - Zhilong Bie
- College of Horticulture and Forestry, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, 430070, PR China.
| |
Collapse
|
56
|
Lee J, Dong X, Choi K, Song H, Yi H, Hur Y. Identification of source-sink tissues in the leaf of Chinese cabbage (Brassica rapa ssp. pekinensis) by carbohydrate content and transcriptomic analysis. Genes Genomics 2019; 42:13-24. [DOI: 10.1007/s13258-019-00873-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
|
57
|
Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited. MOLECULAR PLANT 2019; 12:1182-1202. [PMID: 31330327 DOI: 10.1016/j.molp.2019.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The Major Facilitator Superfamily (MFS) is ubiquitous in living organisms and represents the largest group of secondary active membrane transporters. In plants, significant research efforts have focused on the role of specific families within the MFS, particularly those transporting macronutrients (C, N, and P) that constitute the vast majority of the members of this superfamily. Other MFS families remain less explored, although a plethora of additional substrates and physiological functions have been uncovered. Nevertheless, the lack of a systematic approach to analyzing the MFS as a whole has obscured the high diversity and versatility of these transporters. Here, we present a phylogenetic analysis of all annotated MFS domain-containing proteins encoded in the Arabidopsis thaliana genome and propose that this superfamily of transporters consists of 218 members, clustered in 22 families. In reviewing the available information regarding the diversity in biological functions and substrates of Arabidopsis MFS members, we provide arguments for intensified research on these membrane transporters to unveil the breadth of their physiological relevance, disclose the molecular mechanisms underlying their mode of action, and explore their biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - Pedro M Barros
- Genomics of Plant Stress Unit, ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
58
|
Kong W, An B, Zhang Y, Yang J, Li S, Sun T, Li Y. Sugar Transporter Proteins (STPs) in Gramineae Crops: Comparative Analysis, Phylogeny, Evolution, and Expression Profiling. Cells 2019; 8:cells8060560. [PMID: 31181814 PMCID: PMC6628381 DOI: 10.3390/cells8060560] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
Sugar transporter proteins (STPs), such as H+/sugar symporters, play essential roles in plants’ sugar transport, growth, and development, and possess an important potential to enhance plants’ performance of multiple agronomic traits, especially crop yield and stress tolerance. However, the evolutionary dynamics of this important gene family in Gramineae crops are still not well-documented and functional differentiation of rice STP genes remain unclear. To address this gap, we conducted a comparative genomic study of STP genes in seven representative Gramineae crops, which are Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Setaria italica (Si), Sorghum bicolor (Sb), Zea mays (Zm), Oryza rufipogon (Or), and Oryza sativa ssp. japonica (Os). In this case, a total of 177 STP genes were identified and grouped into four clades. Of four clades, the Clade I, Clade III, and Clade IV showed an observable number expansion compared to Clade II. Our results of identified duplication events and divergence time of duplicate gene pairs indicated that tandem, Whole genome duplication (WGD)/segmental duplication events play crucial roles in the STP gene family expansion of some Gramineae crops (expect for Hv) during a long-term evolutionary process. However, expansion mechanisms of the STP gene family among the tested species were different. Further selective force studies revealed that the STP gene family in Gramineae crops was under purifying selective forces and different clades and orthologous groups with different selective forces. Furthermore, expression analysis showed that rice STP genes play important roles not only in flower organs development but also under various abiotic stresses (cold, high-temperature, and submergence stresses), blast infection, and wounding. The current study highlighted the expansion and evolutionary patterns of the STP gene family in Gramineae genomes and provided some important messages for the future functional analysis of Gramineae crop STP genes.
Collapse
Affiliation(s)
- Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Baoguang An
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yue Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China. Yue.Zhang-@whu.edu.cn
| | - Jing Yang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuangmiao Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Tong Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
59
|
Misra VA, Wafula EK, Wang Y, dePamphilis CW, Timko MP. Genome-wide identification of MST, SUT and SWEET family sugar transporters in root parasitic angiosperms and analysis of their expression during host parasitism. BMC PLANT BIOLOGY 2019; 19:196. [PMID: 31088371 PMCID: PMC6515653 DOI: 10.1186/s12870-019-1786-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/17/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Root parasitic weeds are a major constraint to crop production worldwide causing significant yearly losses in yield and economic value. These parasites cause their destruction by attaching to their hosts with a unique organ, the haustorium, that allows them to obtain the nutrients (sugars, amino acids, etc.) needed to complete their lifecycle. Parasitic weeds differ in their nutritional requirements and degree of host dependency and the differential expression of sugar transporters is likely to be a critical component in the parasite's post-attachment survival. RESULTS We identified gene families encoding monosaccharide transporters (MSTs), sucrose transporters (SUTs), and SWEETs (Sugars Will Eventually be Exported Transporters) in three root-parasitic weeds differing in host dependency: Triphysaria versicolor (facultative hemiparasite), Phelipanche aegyptiaca (holoparasite), and Striga hermonthica (obligate hemiparasite). The phylogenetic relationship and differential expression profiles of these genes throughout parasite development were examined to uncover differences existing among parasites with different levels of host dependence. Differences in estimated gene numbers are found among the three parasites, and orthologs within the different sugar transporter gene families are found to be either conserved among the parasites in their expression profiles throughout development, or to display parasite-specific differences in developmentally-timed expression. For example, MST genes in the pGLT clade express most highly before host connection in Striga and Triphysaria but not Phelipanche, whereas genes in the MST ERD6-like clade are highly expressed in the post-connection growth stages of Phelipanche but highest in the germination and reproduction stages in Striga. Whether such differences reflect changes resulting from differential host dependence levels is not known. CONCLUSIONS While it is tempting to speculate that differences in estimated gene numbers and expression profiles among members of MST, SUT and SWEET gene families in Phelipanche, Striga and Triphysaria reflect the parasites' levels of host dependence, additional evidence that altered transporter gene expression is causative versus consequential is needed. Our findings identify potential targets for directed manipulation that will allow for a better understanding of the nutrient transport process and perhaps a means for controlling the devastating effects of these parasites on crop productivity.
Collapse
Affiliation(s)
- Vikram A. Misra
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| | - Eric K. Wafula
- Department of Biology, Penn State University, University Park, PA 16802 USA
| | - Yu Wang
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
- Present Address: Center for Quantitative Sciences, Vanderbilt University, 2220 Pierce Avenue, 571 Preston Research Building, Nashville, TN 37232-6848 USA
| | | | - Michael P. Timko
- Department of Biology, University of Virginia, Gilmer Hall 044, Charlottesville, VA 22904 USA
| |
Collapse
|
60
|
Deng X, An B, Zhong H, Yang J, Kong W, Li Y. A Novel Insight into Functional Divergence of the MST Gene Family in Rice Based on Comprehensive Expression Patterns. Genes (Basel) 2019; 10:genes10030239. [PMID: 30897847 PMCID: PMC6470851 DOI: 10.3390/genes10030239] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023] Open
Abstract
Sugars are critical for plant growth and development as suppliers of carbon and energy, as signal molecules, or as solute molecules for osmotic homeostasis. Monosaccharide transporter (MST) genes are involved in various processes of plant growth and development as well as in response to abiotic stresses. However, the evolution and their roles of MST genes in growth and development and in coping with abiotic stresses in rice are poorly known. Here, we identified 64 MST genes in rice genome, which are classified into seven subfamilies: STP, PLT, AZT, ERD, pGlcT, INT, and XTPH. MST genes are not evenly distributed between chromosomes (Chrs) with a bias to Chr 3, 4, 7, and 11, which could be a result of duplication of fragments harboring MST genes. In total, 12 duplication events were found in the rice MST family, among which, two pairs were derived from fragmental duplications and ten pairs were from tandem duplications. The synonymous and nonsynonymous substitution rates of duplicate gene pairs demonstrated that the MST family was under a strong negative selection during the evolution process. Furthermore, a comprehensive expression analysis conducted in 11 different tissues, three abiotic stresses, five hormone treatments, and three sugar treatments revealed different expression patterns of MST genes and indicated diversified functions of them. Our results suggest that MST genes play important roles not only in various abiotic stresses but also in hormone and sugar responses. The present results will provide a vital insight into the functional divergence of the MST family in the future study.
Collapse
Affiliation(s)
- Xiaolong Deng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Baoguang An
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Hua Zhong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Jing Yang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weilong Kong
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Yangsheng Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
61
|
Zhang W, Wang S, Yu F, Tang J, Yu L, Wang H, Li J. Genome-Wide Identification and Expression Profiling of Sugar Transporter Protein (STP) Family Genes in Cabbage (Brassica oleracea var. capitata L.) Reveals their Involvement in Clubroot Disease Responses. Genes (Basel) 2019; 10:E71. [PMID: 30669698 PMCID: PMC6356595 DOI: 10.3390/genes10010071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/18/2019] [Indexed: 12/23/2022] Open
Abstract
Sugar transporter protein (STP) genes are involved in multiple biological processes, such as plant responses to various stresses. However, systematic analysis and functional information of STP family genes in Brassica oleracea are very limited. A comprehensive analysis was carried out to identify BoSTP genes and dissect their phylogenetic relationships and to investigate the expression profiles in different organs and in response to the clubroot disease. A total of 22 BoSTP genes were identified in the B. oleracea genome and they were further classified into four clades based on the phylogenetic analysis. All the BoSTP proteins harbored the conserved sugar transporter (Sugar_tr, PF00083) domain, and the majority of them contained 12 transmembrane helices (TMHs). Rates of synonymous substitution in B. oleracea relative to Arabidopsis thaliana indicated that STP genes of B. oleracea diverged from those of A. thaliana approximately 16.3 million years ago. Expression profiles of the BoSTP genes in different organs derived from RNA-Seq data indicated that a large number of the BoSTP genes were expressed in specific organs. Additionally, the expression of BoSTP4b and BoSTP12 genes were induced in roots of the clubroot-susceptible cabbage (CS-JF1) at 28 days after inoculation with Plasmodiophora brassicae, compared with mock-inoculated plants. We speculated that the two BoSTPs might be involved in monosaccharide unloading and carbon partitioning associated with P. brassicae colonization in CS-JF1. Subcellular localization analysis indicated that the two BoSTP proteins were localized in the cell membrane. This study provides insights into the evolution and potential functions of BoSTPs.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Shenyun Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Fangwei Yu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jun Tang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Li Yu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Hong Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jianbin Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
62
|
Zhang Q, Feng C, Li W, Qu Z, Zeng M, Xi W. Transcriptional regulatory networks controlling taste and aroma quality of apricot (Prunus armeniaca L.) fruit during ripening. BMC Genomics 2019; 20:45. [PMID: 30646841 PMCID: PMC6332858 DOI: 10.1186/s12864-019-5424-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/02/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Taste and aroma, which are important organoleptic qualities of apricot (Prunus armeniaca L.) fruit, undergo rapid and substantial changes during ripening. However, the associated molecular mechanisms remain unclear. The goal of this study was to identify candidate genes for flavor compound metabolism and to construct a regulatory transcriptional network. RESULTS We characterized the transcriptome of the 'Jianali' apricot cultivar, which exhibits substantial changes in flavor during ripening, at 50 (turning), 73 (commercial maturation) and 91 (full ripe) days post anthesis (DPA) using RNA sequencing (RNA-Seq). A weighted gene co-expression network analysis (WGCNA) revealed that four of 19 modules correlated highly with flavor compound metabolism (P < 0.001). From them, we identified 1237 differentially expressed genes, with 16 intramodular hubs. A proposed pathway model for flavor compound biosynthesis is presented based on these genes. Two SUS1 genes, as well as SPS2 and INV1 were correlated with sugar biosynthesis, while NADP-ME4, two PK-like and mitochondrial energy metabolism exerted a noticeable effect on organic acid metabolism. CCD1 and FAD2 were identified as being involved in apocarotenoid aroma volatiles and lactone biosynthesis, respectively. Five sugar transporters (Sweet10, STP13, EDR6, STP5.1, STP5.2), one aluminum-activated malate transporter (ALMT9) and one ABCG transporter (ABCG11) were associated with the transport of sugars, organic acids and volatiles, respectively. Sixteen transcription factors were also highlighted that may also play regulatory roles in flavor quality development. CONCLUSIONS Apricot RNA-Seq data were obtained and used to generate an annotated set of predicted expressed genes, providing a platform for functional genomic research. Using network analysis and pathway mapping, putative molecular mechanisms for changes in apricot fruit taste and aroma during ripening were elucidated.
Collapse
Affiliation(s)
- Qiuyun Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 People’s Republic of China
| | - Wenhui Li
- Agriculture National Fruit Tree Germplasm Repository, Xinjiang Academy of Agricultural Sciences, Luntai, Xinjiang, 841600 People’s Republic of China
| | - Zehui Qu
- College of Computer and Information Sciences, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 People’s Republic of China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716 People’s Republic of China
| |
Collapse
|
63
|
Jiu S, Haider MS, Kurjogi MM, Zhang K, Zhu X, Fang J. Genome-wide Characterization and Expression Analysis of Sugar Transporter Family Genes in Woodland Strawberry. THE PLANT GENOME 2018; 11:170103. [PMID: 30512042 DOI: 10.3835/plantgenome2017.11.0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In higher plants, sugars are nutrients and important signal molecules. Sugar transporters (STs) facilitate sugar transport across membranes and are associated with loading and unloading of the conducting complex. Strawberry ( Duchesne ex Rozier) is one of the most economically important and widely cultivated fruit crop and a model plant among fleshy fruits worldwide. In this study, 66 woodland strawberry ( L.) ST (FvST) genes were identified and further classified into eight distinct subfamilies in the woodland strawberry genome based on the phylogenetic analysis. In the promoter sequences of FvST gene families, a search for -regulatory elements suggested that some of them might probably be regulated by plant hormones (e.g., salicylic acid, abscisic acid, and auxin), abiotic (e.g., drought, excessive cold, and light), and biotic stress factors. Exon-intron analysis showed that each subfamily manifested closely associated gene architectural features based on similar number or length of exons. Moreover, to comprehend the potential evolution mechanism of FvST gene family, the analysis of genome duplication events was performed. The segmental and tandem duplication analysis elucidated that some of ST genes arose through whole-genome duplication (WGD) or segmental duplication, accompanied by tandem duplications. The expression analysis of 24 FvST genes in vegetative and during fruit development has shown that the expression of several ST genes was tissue and developmental stage specific. Generally, our findings are important in understanding of the allocation of photo assimilates from source to sink cell and provide insights into the genomic organization and expression profiling of FvST gene families in woodland strawberry.
Collapse
|
64
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
65
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
66
|
Peng M, Aguilar-Pontes MV, de Vries RP, Mäkelä MR. In Silico Analysis of Putative Sugar Transporter Genes in Aspergillus niger Using Phylogeny and Comparative Transcriptomics. Front Microbiol 2018; 9:1045. [PMID: 29867914 PMCID: PMC5968117 DOI: 10.3389/fmicb.2018.01045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Aspergillus niger is one of the most widely used fungi to study the conversion of the lignocellulosic feedstocks into fermentable sugars. Understanding the sugar uptake system of A. niger is essential to improve the efficiency of the process of fungal plant biomass degradation. In this study, we report a comprehensive characterization of the sugar transportome of A. niger by combining phylogenetic and comparative transcriptomic analyses. We identified 86 putative sugar transporter (ST) genes based on a conserved protein domain search. All these candidates were then classified into nine subfamilies and their functional motifs and possible sugar-specificity were annotated according to phylogenetic analysis and literature mining. Furthermore, we comparatively analyzed the ST gene expression on a large set of fungal growth conditions including mono-, di- and polysaccharides, and mutants of transcriptional regulators. This revealed that transporter genes from the same phylogenetic clade displayed very diverse expression patterns and were regulated by different transcriptional factors. The genome-wide study of STs of A. niger provides new insights into the mechanisms underlying an extremely flexible metabolism and high nutritional versatility of A. niger and will facilitate further biochemical characterization and industrial applications of these candidate STs.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Maria V Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands.,Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Miia R Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
67
|
Liu Q, Dang H, Chen Z, Wu J, Chen Y, Chen S, Luo L. Genome-Wide Identification, Expression, and Functional Analysis of the Sugar Transporter Gene Family in Cassava (Manihot esculenta). Int J Mol Sci 2018; 19:ijms19040987. [PMID: 29587418 PMCID: PMC5979426 DOI: 10.3390/ijms19040987] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 11/24/2022] Open
Abstract
The sugar transporter (STP) gene family encodes monosaccharide transporters that contain 12 transmembrane domains and belong to the major facilitator superfamily. STP genes play critical roles in monosaccharide distribution and participate in diverse plant metabolic processes. To investigate the potential roles of STPs in cassava (Manihot esculenta) tuber root growth, genome-wide identification and expression and functional analyses of the STP gene family were performed in this study. A total of 20 MeSTP genes (MeSTP1–20) containing the Sugar_tr conserved motifs were identified from the cassava genome, which could be further classified into four distinct groups in the phylogenetic tree. The expression profiles of the MeSTP genes explored using RNA-seq data showed that most of the MeSTP genes exhibited tissue-specific expression, and 15 out of 20 MeSTP genes were mainly expressed in the early storage root of cassava. qRT-PCR analysis further confirmed that most of the MeSTPs displayed higher expression in roots after 30 and 40 days of growth, suggesting that these genes may be involved in the early growth of tuber roots. Although all the MeSTP proteins exhibited plasma membrane localization, variations in monosaccharide transport activity were found through a complementation analysis in a yeast (Saccharomyces cerevisiae) mutant, defective in monosaccharide uptake. Among them, MeSTP2, MeSTP15, and MeSTP19 were able to efficiently complement the uptake of five monosaccharides in the yeast mutant, while MeSTP3 and MeSTP16 only grew on medium containing galactose, suggesting that these two MeSTP proteins are transporters specific for galactose. This study provides significant insights into the potential functions of MeSTPs in early tuber root growth, which possibly involves the regulation of monosaccharide distribution.
Collapse
Affiliation(s)
- Qin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570110, China.
| | - Huijie Dang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570110, China.
| | - Zhijian Chen
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, China.
| | - Junzheng Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570110, China.
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570110, China.
| | - Songbi Chen
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Danzhou 571737, China.
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570110, China.
| |
Collapse
|
68
|
Rottmann TM, Fritz C, Lauter A, Schneider S, Fischer C, Danzberger N, Dietrich P, Sauer N, Stadler R. Protoplast-Esculin Assay as a New Method to Assay Plant Sucrose Transporters: Characterization of AtSUC6 and AtSUC7 Sucrose Uptake Activity in Arabidopsis Col-0 Ecotype. FRONTIERS IN PLANT SCIENCE 2018; 9:430. [PMID: 29740457 PMCID: PMC5925572 DOI: 10.3389/fpls.2018.00430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 05/20/2023]
Abstract
The best characterized function of sucrose transporters of the SUC family in plants is the uptake of sucrose into the phloem for long-distance transport of photoassimilates. This important step is usually performed by one specific SUC in every species. However, plants possess small families of several different SUCs which are less well understood. Here, we report on the characterization of AtSUC6 and AtSUC7, two members of the SUC family in Arabidopsis thaliana. Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that AtSUC6Col-0 is a high-affinity H+-symporter that mediates the uptake of sucrose and maltose across the plasma membrane at exceptionally low pH values. Reporter gene analyses revealed a strong expression of AtSUC6Col-0 in reproductive tissues, where the protein product might contribute to sugar uptake into pollen tubes and synergid cells. A knockout of AtSUC6 did not interfere with vegetative development or reproduction, which points toward physiological redundancy of AtSUC6Col-0 with other sugar transporters. Reporter gene analyses showed that AtSUC7Col-0 is expressed in roots and pollen tubes and that this sink specific expression of AtSUC7Col-0 is regulated by intragenic regions. Transport activity of AtSUC7Col-0 could not be analyzed in baker's yeast or Xenopus oocytes because the protein was not correctly targeted to the plasma membrane in both heterologous expression systems. Therefore, a novel approach to analyze sucrose transporters in planta was developed. Plasma membrane localized SUCs including AtSUC6Col-0 and also sucrose specific SWEETs were able to mediate transport of the fluorescent sucrose analog esculin in transformed mesophyll protoplasts. In contrast, AtSUC7Col-0 is not able to mediate esculin transport across the plasma membrane which implicates that AtSUC7Col-0 might be a non-functional pseudogene. The novel protoplast assay provides a useful tool for the quick and quantitative analysis of sucrose transporters in an in planta expression system.
Collapse
|
69
|
Veillet F, Gaillard C, Lemonnier P, Coutos-Thévenot P, La Camera S. The molecular dialogue between Arabidopsis thaliana and the necrotrophic fungus Botrytis cinerea leads to major changes in host carbon metabolism. Sci Rep 2017; 7:17121. [PMID: 29215097 PMCID: PMC5719352 DOI: 10.1038/s41598-017-17413-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/22/2017] [Indexed: 12/26/2022] Open
Abstract
Photoassimilates play crucial roles during plant-pathogen interactions, as colonizing pathogens rely on the supply of sugars from hosts. The competition for sugar acquisition at the plant-pathogen interface involves different strategies from both partners which are critical for the outcome of the interaction. Here, we dissect individual mechanisms of sugar uptake during the interaction of Arabidopsis thaliana with the necrotrophic fungus Botrytis cinerea using millicell culture insert, that enables molecular communication without physical contact. We demonstrate that B. cinerea is able to actively absorb glucose and fructose with equal capacities. Challenged Arabidopsis cells compete for extracellular monosaccharides through transcriptional reprogramming of host sugar transporter genes and activation of a complex sugar uptake system which displays differential specificity and affinity for hexoses. We provide evidence that the molecular dialogue between Arabidopsis cells and B. cinerea triggers major changes in host metabolism, including apoplastic sucrose degradation and consumption of carbohydrates and oxygen, suggesting an enhanced activity of the glycolysis and the cellular respiration. We conclude that beside a role in sugar deprivation of the pathogen by competing for sugar availability in the apoplast, the enhanced uptake of hexoses also contributes to sustain the increased activity of respiratory metabolism to fuel plant defences.
Collapse
Affiliation(s)
- Florian Veillet
- Laboratoire Ecologie et Biologie des Interactions, Equipe "SEVE-Sucres et Echanges Végétaux-Environnement", Université de Poitiers, UMR CNRS 7267, F-86073, Poitiers, France
| | - Cécile Gaillard
- Laboratoire Ecologie et Biologie des Interactions, Equipe "SEVE-Sucres et Echanges Végétaux-Environnement", Université de Poitiers, UMR CNRS 7267, F-86073, Poitiers, France
| | - Pauline Lemonnier
- Laboratoire Ecologie et Biologie des Interactions, Equipe "SEVE-Sucres et Echanges Végétaux-Environnement", Université de Poitiers, UMR CNRS 7267, F-86073, Poitiers, France
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Pierre Coutos-Thévenot
- Laboratoire Ecologie et Biologie des Interactions, Equipe "SEVE-Sucres et Echanges Végétaux-Environnement", Université de Poitiers, UMR CNRS 7267, F-86073, Poitiers, France
| | - Sylvain La Camera
- Laboratoire Ecologie et Biologie des Interactions, Equipe "SEVE-Sucres et Echanges Végétaux-Environnement", Université de Poitiers, UMR CNRS 7267, F-86073, Poitiers, France.
| |
Collapse
|
70
|
Mao GL, Yan Y, Chen Y, Wang BF, Xu FF, Zhang ZX, Lin F, Xu HH. Family of Ricinus communis Monosaccharide Transporters and RcSTP1 in Promoting the Uptake of a Glucose-Fipronil Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6169-6178. [PMID: 28692262 DOI: 10.1021/acs.jafc.7b02044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Enhancing the systemic distribution of a bioactive compound by exploiting the vascular transport system of a plant presents a means of reducing both the volume and frequency of pesticide/fungicide application. The foliar uptake of the glucose-fipronil conjugate N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(β-d-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (GTF) achieved in castor bean (Ricinus communis) and its transport via the phloem are known to be mediated by monosaccharide transporter(s) [MST(s)], although neither the identity of the key MST(s) involved nor the mechanistic basis of its movement have yet to be described. On the basis of homology with Arabidopsis thaliana sugar transporters, the castor bean genome was concluded to harbor 53 genes encoding a sugar transporter, falling into the eight previously defined subfamilies INT, PMT, VGT, STP, ERD6, pGlucT, TMT, and SUT. Transcriptional profiling identified the product of RcSTP1 as a candidate for mediating GTF uptake, because this gene was induced by exposure of the plant to GTF. When RcSTP1 was transiently expressed in onion epidermis cells, the site of RcSTP1 deposition was shown to be the plasma membrane. A functional analysis based on RcSTP1 expression in Xenopus laevis oocytes demonstrated that its product has a high affinity for GTF. The long-distance root-to-shoot transport of GTF was enhanced in a transgenic soybean chimera constitutively expressing RcSTP1.
Collapse
Affiliation(s)
- Gen-Lin Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Yin Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Yan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Bing-Feng Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Fei-Fei Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Zhi-Xiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Han-Hong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| |
Collapse
|
71
|
Tarancón C, González-Grandío E, Oliveros JC, Nicolas M, Cubas P. A Conserved Carbon Starvation Response Underlies Bud Dormancy in Woody and Herbaceous Species. FRONTIERS IN PLANT SCIENCE 2017; 8:788. [PMID: 28588590 PMCID: PMC5440562 DOI: 10.3389/fpls.2017.00788] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/27/2017] [Indexed: 05/18/2023]
Abstract
Plant shoot systems give rise to characteristic above-ground plant architectures. Shoots are formed from axillary meristems and buds, whose growth and development is modulated by systemic and local signals. These cues convey information about nutrient and water availability, light quality, sink/source organ activity and other variables that determine the timeliness and competence to maintain development of new shoots. This information is translated into a local response, in meristems and buds, of growth or quiescence. Although some key genes involved in the onset of bud latency have been identified, the gene regulatory networks (GRNs) controlled by these genes are not well defined. Moreover, it has not been determined whether bud dormancy induced by environmental cues, such as a low red-to-far-red light ratio, shares genetic mechanisms with bud latency induced by other causes, such as apical dominance or a short-day photoperiod. Furthermore, the evolution and conservation of these GRNs throughout angiosperms is not well established. We have reanalyzed public transcriptomic datasets that compare quiescent and active axillary buds of Arabidopsis, with datasets of axillary buds of the woody species Vitis vinifera (grapevine) and apical buds of Populus tremula x Populus alba (poplar) during the bud growth-to-dormancy transition. Our aim was to identify potentially common GRNs induced during the process that leads to bud para-, eco- and endodormancy. In Arabidopsis buds that are entering eco- or paradormancy, we have identified four induced interrelated GRNs that correspond to a carbon (C) starvation syndrome, typical of tissues undergoing low C supply. This response is also detectable in poplar and grapevine buds before and during the transition to dormancy. In all eukaryotes, C-limiting conditions are coupled to growth arrest and latency like that observed in dormant axillary buds. Bud dormancy might thus be partly a consequence of the underlying C starvation syndrome triggered by environmental and endogenous cues that anticipate or signal conditions unfavorable for sustained shoot growth.
Collapse
Affiliation(s)
- Carlos Tarancón
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Eduardo González-Grandío
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Juan C. Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| |
Collapse
|
72
|
Rani M, Raj S, Dayaman V, Kumar M, Dua M, Johri AK. Functional Characterization of a Hexose Transporter from Root Endophyte Piriformospora indica. Front Microbiol 2016; 7:1083. [PMID: 27499747 PMCID: PMC4957513 DOI: 10.3389/fmicb.2016.01083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/28/2016] [Indexed: 11/30/2022] Open
Abstract
Understanding the mechanism of photosynthate transfer at symbiotic interface by fungal monosaccharide transporter is of substantial importance. The carbohydrate uptake at the apoplast by the fungus is facilitated by PiHXT5 hexose transporter in root endophytic fungus Piriformospora indica. The putative PiHXT5 belongs to MFS superfamily with 12 predicted transmembrane helices. It possess sugar transporter PFAM motif (PF0083) and MFS superfamily domain (PS50850). It contains the signature tags related to glucose transporter GLUT1 of human erythrocyte. PiHXT5 is regulated in response to mutualism as well as glucose concentration. We have functionally characterized PiHXT5 by complementation of hxt-null mutant of Saccharomyces cerevisiae EBY.VW4000. It is involved in transport of multiple sugars ranging from D-glucose, D-fructose, D-xylose, D-mannose, D-galactose with decreasing affinity. The uncoupling experiments indicate that it functions as H(+)/glucose co-transporter. Further, pH dependence analysis suggests that it functions maximum between pH 5 and 6. The expression of PiHXT5 is dependent on glucose concentration and was found to be expressed at low glucose levels (1 mM) which indicate its role as a high affinity glucose transporter. Our study on this sugar transporter will help in better understanding of carbon metabolism and flow in this agro-friendly fungus.
Collapse
Affiliation(s)
- Mamta Rani
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sumit Raj
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Vikram Dayaman
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Atul K. Johri
- School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| |
Collapse
|
73
|
Divergent Evolutionary Pattern of Sugar Transporter Genes is Associated with the Difference in Sugar Accumulation between Grasses and Eudicots. Sci Rep 2016; 6:29153. [PMID: 27356489 PMCID: PMC4928125 DOI: 10.1038/srep29153] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/15/2016] [Indexed: 01/22/2023] Open
Abstract
Sugars play a variety of roles in plants, and their accumulation in seeds and/or surrounding pericarp tissues is distinctly different between grasses and eudicots. However, little is known about the evolutionary pattern of genes involved in sugar accumulation in these two major groups of flowering plants. Here, we compared evolutionary rates, gene duplication, and selective patterns of genes involved in sugar metabolism and transport between grasses and eudicots using six grass species and seven eudicot species as materials. Overall, sugar transporter genes exhibit divergent evolutionary patterns, whereas, sugar metabolism genes showing similar evolutionary pattern between monocots and eudicots. Sugar transporter genes have higher frequencies of recent duplication in eudicots than in grasses and their patterns of evolutionary rate are different. Evidence for divergent selection of these two groups of flowering plants is also observed in sugar transporter genes, wherein, these genes have undergone positive selection in eudicots, but not in grasses. Taken together, these findings suggest that sugar transporter genes rather than sugar metabolism genes play important roles in sugar accumulation in plants, and that divergent evolutionary patterns of sugar transporter genes are associated with the difference of sugar accumulation in storage tissues of grasses and eudicots.
Collapse
|
74
|
Duplat-Bermúdez L, Ruiz-Medrano R, Landsman D, Mariño-Ramírez L, Xoconostle-Cázares B. Transcriptomic analysis of Arabidopsis overexpressing flowering locus T driven by a meristem-specific promoter that induces early flowering. Gene 2016; 587:120-31. [PMID: 27154816 DOI: 10.1016/j.gene.2016.04.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 01/09/2023]
Abstract
Here we analyzed in leaves the effect of FT overexpression driven by meristem-specific KNAT1 gene homolog of Arabidopsis thaliana (Lincoln et al., 1994; Long et al., 1996) on the transcriptomic response during plant development. Our results demonstrated that meristematic FT overexpression generates a phenotype with an early flowering independent of photoperiod when compared with wild type (WT) plants. Arabidopsis FT-overexpressor lines (AtFTOE) did not show significant differences compared with WT lines neither in leaf number nor in rosette diameter up to day 21, when AtFTOE flowered. After this period AtFTOE plants started flower production and no new rosette leaves were produced. Additionally, WT plants continued on vegetative stage up to day 40, producing 12-14 rosette leaves before flowering. Transcriptomic analysis of rosette leaves studied by sequencing Illumina RNA-seq allowed us to determine the differential expression in mature leaf rosette of 3652 genes, being 626 of them up-regulated and 3026 down-regulated. Overexpressed genes related with flowering showed up-regulated transcription factors such as MADS-box that are known as flowering markers in meristem and which overexpression has been related with meristem identity preservation and the transition from vegetative to floral stage. Genes related with sugar transport have shown a higher demand of monosaccharides derived from the hydrolysis of sucrose to glucose and probably fructose, which can also be influenced by reproductive stage of AtFTOE plants.
Collapse
Affiliation(s)
- L Duplat-Bermúdez
- Departamento de Biotecnología y Bioingenieria, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - R Ruiz-Medrano
- Departamento de Biotecnología y Bioingenieria, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 Mexico City, Mexico
| | - D Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - L Mariño-Ramírez
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - B Xoconostle-Cázares
- Departamento de Biotecnología y Bioingenieria, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 Mexico City, Mexico.
| |
Collapse
|
75
|
Reinders A. Fuel for the road--sugar transport and pollen tube growth. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2121-3. [PMID: 27022182 PMCID: PMC4809301 DOI: 10.1093/jxb/erw113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Anke Reinders
- Department of Plant Biology, University of Minnesota, 140 Gortner Labs, 1479 Gortner Ave., St Paul, MN 55108, USA
| |
Collapse
|
76
|
Rottmann T, Zierer W, Subert C, Sauer N, Stadler R. STP10 encodes a high-affinity monosaccharide transporter and is induced under low-glucose conditions in pollen tubes of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2387-99. [PMID: 26893494 PMCID: PMC4809294 DOI: 10.1093/jxb/erw048] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pollen tubes are fast growing, photosynthetically inactive cells. Their energy demand is covered by specific transport proteins in the plasma membrane that mediate the uptake of sugars. Here we report on the functional characterization of AtSTP10, a previously uncharacterized member of the SUGAR TRANSPORT PROTEIN family. Heterologous expression of STP10 cDNA in yeast revealed that the encoded protein catalyses the high-affinity uptake of glucose, galactose and mannose. The transporter is sensitive to uncouplers of transmembrane proton gradients, indicating that the protein acts as a hexose-H(+)symporter. Analyses of STP10 mRNA and STP10 promoter-reporter gene studies revealed a sink-specific expression pattern of STP10 in primordia of lateral roots and in pollen tubes. This restriction to sink organs is mediated by intragenic regions of STP10 qPCR analyses with cDNA of in vitro grown pollen tubes showed that STP10 expression was down-regulated in the presence of 50mM glucose. However, in pollen tubes of glucose-insensitive plants, which lack the glucose sensor hexokinase1 (HXK1), no glucose-induced down-regulation of STP10 expression was detected. A stp10T-DNA insertion line developed normally, which may point towards functional redundancy. The data presented in this paper indicate that a high-affinity glucose uptake system is induced in growing pollen tubes under low glucose conditions and that this regulation may occur through the hexokinase pathway.
Collapse
Affiliation(s)
- Theresa Rottmann
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Wolfgang Zierer
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christa Subert
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ruth Stadler
- Molecular Plant Physiology, University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
77
|
Veillet F, Gaillard C, Coutos-Thévenot P, La Camera S. Targeting the AtCWIN1 Gene to Explore the Role of Invertases in Sucrose Transport in Roots and during Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2016; 7:1899. [PMID: 28066461 PMCID: PMC5167757 DOI: 10.3389/fpls.2016.01899] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/30/2016] [Indexed: 05/15/2023]
Abstract
Cell wall invertases (CWIN) cleave sucrose into glucose and fructose in the apoplast. CWINs are key regulators of carbon partitioning and source/sink relationships during growth, development and under biotic stresses. In this report, we monitored the expression/activity of Arabidopsis cell wall invertases in organs behaving as source, sink, or subjected to a source/sink transition after infection with the necrotrophic fungus Botrytis cinerea. We showed that organs with different source/sink status displayed differential CWIN activities, depending on carbohydrate needs or availabilities in the surrounding environment, through a transcriptional and posttranslational regulation. Loss-of-function mutation of the Arabidopsis cell wall invertase 1 gene, AtCWIN1, showed that the corresponding protein was the main contributor to the apoplastic sucrose cleaving activity in both leaves and roots. The CWIN-deficient mutant cwin1-1 exhibited a reduced capacity to actively take up external sucrose in roots, indicating that this process is mainly dependent on the sucrolytic activity of AtCWIN1. Using T-DNA and CRISPR/Cas9 mutants impaired in hexose transport, we demonstrated that external sucrose is actively absorbed in the form of hexoses by a sugar/H+ symport system involving the coordinated activity of AtCWIN1 with several Sugar Transporter Proteins (STP) of the plasma membrane, i.e., STP1 and STP13. Part of external sucrose was imported without apoplastic cleavage into cwin1-1 seedling roots, highlighting an alternative AtCWIN1-independent pathway for the assimilation of external sucrose. Accordingly, we showed that several genes encoding sucrose transporters of the plasma membrane were expressed. We also detected transcript accumulation of vacuolar invertase (VIN)-encoding genes and high VIN activities. Upon infection, AtCWIN1 was responsible for all the Botrytis-induced apoplastic invertase activity. We detected a transcriptional activation of several AtSUC and AtVIN genes accompanied with an enhanced vacuolar invertase activity, suggesting that the AtCWIN1-independent pathway is efficient upon infection. In absence of AtCWIN1, we postulate that intracellular sucrose hydrolysis is sufficient to provide intracellular hexoses to maintain sugar homeostasis in host cells and to fuel plant defenses. Finally, we demonstrated that Botrytis cinerea possesses its own functional sucrolytic machinery and hexose uptake system, and does not rely on the host apoplastic invertases.
Collapse
|
78
|
Su T, Wolf S, Han M, Zhao H, Wei H, Greiner S, Rausch T. Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth. PLANT MOLECULAR BIOLOGY 2016; 90:137-55. [PMID: 26546341 DOI: 10.1007/s11103-015-0402-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/30/2015] [Indexed: 05/19/2023]
Abstract
In higher plants, cell wall invertase (CWI) and vacuolar invertase (VI) are recognized as essential players in sugar metabolism and sugar signaling, thereby affecting source-sink interactions, plant development and responses to environmental cues. CWI and VI expression levels are transcriptionally controlled; however, both enzymes are also subject to posttranslational control by invertase inhibitor proteins. The physiological significances of inhibitor proteins during seed germination and early seedling development are not yet fully understood. Here, we demonstrate that the inhibitor isoform AtCIF1 impacted on seed germination and early seedling growth in Arabidopsis. The primary target of AtCIF1 was shown to be localized to the apoplast after expressing an AtCIF1 YFP-fusion construct in tobacco epidermis and transgenic Arabidopsis root. The analysis of expression patterns showed that AtCWI1 was co-expressed spatiotemporally with AtCIF1 within the early germinating seeds. Seed germination was observed to be accelerated independently of exogenous abscisic acid (ABA) in the AtCIF1 loss-of-function mutant cif1-1. This effect coincided with a drastic increase of CWI activity in cif1-1 mutant seeds by 24 h after the onset of germination, both in vitro and in planta. Accordingly, quantification of sugar content showed that hexose levels were significantly boosted in germinating seeds of the cif1-1 mutant. Further investigation of AtCIF1 overexpressors in Arabidopsis revealed a markedly suppressed CWI activity as well as delayed seed germination. Thus, we conclude that the posttranslational modulation of CWI activity by AtCIF1 helps to orchestrate seed germination and early seedling growth via fine-tuning sucrose hydrolysis and, possibly, sugar signaling.
Collapse
Affiliation(s)
- Tao Su
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Sebastian Wolf
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Mei Han
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hongbin Wei
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Steffen Greiner
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| | - Thomas Rausch
- Plant Molecular Physiology, Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 360, Heidelberg, 69120, Germany.
| |
Collapse
|
79
|
A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 2015; 47:1494-8. [PMID: 26551671 DOI: 10.1038/ng.3439] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/13/2015] [Indexed: 01/25/2023]
Abstract
As there are numerous pathogen species that cause disease and limit yields of crops, such as wheat (Triticum aestivum), single genes that provide resistance to multiple pathogens are valuable in crop improvement. The mechanistic basis of multi-pathogen resistance is largely unknown. Here we use comparative genomics, mutagenesis and transformation to isolate the wheat Lr67 gene, which confers partial resistance to all three wheat rust pathogen species and powdery mildew. The Lr67 resistance gene encodes a predicted hexose transporter (LR67res) that differs from the susceptible form of the same protein (LR67sus) by two amino acids that are conserved in orthologous hexose transporters. Sugar uptake assays show that LR67sus, and related proteins encoded by homeoalleles, function as high-affinity glucose transporters. LR67res exerts a dominant-negative effect through heterodimerization with these functional transporters to reduce glucose uptake. Alterations in hexose transport in infected leaves may explain its ability to reduce the growth of multiple biotrophic pathogen species.
Collapse
|
80
|
Yadav UP, Ayre BG, Bush DR. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality. FRONTIERS IN PLANT SCIENCE 2015; 6:275. [PMID: 25954297 PMCID: PMC4405696 DOI: 10.3389/fpls.2015.00275] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/06/2015] [Indexed: 05/18/2023]
Abstract
The principal components of plant productivity and nutritional value, from the standpoint of modern agriculture, are the acquisition and partitioning of organic carbon (C) and nitrogen (N) compounds among the various organs of the plant. The flow of essential organic nutrients among the plant organ systems is mediated by its complex vascular system, and is driven by a series of transport steps including export from sites of primary assimilation, transport into and out of the phloem and xylem, and transport into the various import-dependent organs. Manipulating C and N partitioning to enhance yield of harvested organs is evident in the earliest crop domestication events and continues to be a goal for modern plant biology. Research on the biochemistry, molecular and cellular biology, and physiology of C and N partitioning has now matured to an extent that strategic manipulation of these transport systems through biotechnology are being attempted to improve movement from source to sink tissues in general, but also to target partitioning to specific organs. These nascent efforts are demonstrating the potential of applied biomass targeting but are also identifying interactions between essential nutrients that require further basic research. In this review, we summarize the key transport steps involved in C and N partitioning, and discuss various transgenic approaches for directly manipulating key C and N transporters involved. In addition, we propose several experiments that could enhance biomass accumulation in targeted organs while simultaneously testing current partitioning models.
Collapse
Affiliation(s)
- Umesh P. Yadav
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Brian G. Ayre
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Daniel R. Bush
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
81
|
Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thévenot P, La Camera S. Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. PLANT MOLECULAR BIOLOGY 2014; 85:473-84. [PMID: 24817131 DOI: 10.1007/s11103-014-0198-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/06/2014] [Indexed: 05/04/2023]
Abstract
Botrytis cinerea is the causing agent of the grey mold disease in more than 200 crop species. While signaling pathways leading to the basal resistance against this fungus are well described, the role of the import of sugars into host cells remains to be investigated. In Arabidopsis thaliana, apoplastic hexose retrieval is mediated by the activity of sugar transport proteins (STPs). Expression analysis of the 14 STP genes revealed that only STP13 was induced in leaves challenged with B. cinerea. STP13-modified plants were produced and assayed for their resistance to B. cinerea and glucose transport activity. We report that STP13-deficient plants exhibited an enhanced susceptibility and a reduced rate of glucose uptake. Conversely, plants with a high constitutive level of STP13 protein displayed an improved capacity to absorb glucose and an enhanced resistance phenotype. The correlation between STP13 transcripts, protein accumulation, glucose uptake rate and resistance level indicates that STP13 contributes to the basal resistance to B. cinerea by limiting symptom development and points out the importance of the host intracellular sugar uptake in this process. We postulate that STP13 would participate in the active resorption of hexoses to support the increased energy demand to trigger plant defense reactions and to deprive the fungus by changing sugar fluxes toward host cells.
Collapse
Affiliation(s)
- Pauline Lemonnier
- UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Equipe "Physiologie Moléculaire du Transport des Sucres chez les végétaux", Université de Poitiers, Batiment Botanique B31, 3 rue Jacques Fort, TSA 51106, 86073, Poitiers Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
82
|
Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, Shibata D, Shiratake K. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. PLANT & CELL PHYSIOLOGY 2014; 55:1123-41. [PMID: 24833026 DOI: 10.1093/pcp/pcu052] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The mobility of sugars between source and sink tissues in plants depends on sugar transport proteins. Studying the corresponding genes allows the manipulation of the sink strength of developing fruits, thereby improving fruit quality for human consumption. Tomato (Solanum lycopersicum) is both a major horticultural crop and a model for the development of fleshy fruits. In this article we provide a comprehensive inventory of tomato sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPORTER PROTEIN family, the SUGAR FACILITATOR PROTEIN family, the POLYOL/MONOSACCHARIDE TRANSPORTER family, the INOSITOL TRANSPORTER family, the PLASTIDIC GLUCOSE TRANSLOCATOR family, the TONOPLAST MONOSACCHARIDE TRANSPORTER family and the VACUOLAR GLUCOSE TRANSPORTER family. Expressed sequence tag (EST) sequencing and phylogenetic analyses established a nomenclature for all analyzed tomato sugar transporters. In total we identified 52 genes in tomato putatively encoding sugar transporters. The expression of 29 sugar transporter genes in vegetative tissues and during fruit development was analyzed. Several sugar transporter genes were expressed in a tissue- or developmental stage-specific manner. This information will be helpful to better understand source to sink movement of photoassimilates in tomato. Identification of fruit-specific sugar transporters might be a first step to find novel genes contributing to tomato fruit sugar accumulation.
Collapse
Affiliation(s)
- Stefan Reuscher
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 JapanThese authors contributed equally to this work
| | - Masahito Akiyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 JapanThese authors contributed equally to this work
| | - Tomohide Yasuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Haruko Makino
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, 599-8531 Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, 292-0818 Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| |
Collapse
|
83
|
Wei X, Liu F, Chen C, Ma F, Li M. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. FRONTIERS IN PLANT SCIENCE 2014; 5:569. [PMID: 25414708 PMCID: PMC4220645 DOI: 10.3389/fpls.2014.00569] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/03/2014] [Indexed: 05/21/2023]
Abstract
In plants, sugar transporters are involved not only in long-distance transport, but also in sugar accumulations in sink cells. To identify members of sugar transporter gene families and to analyze their function in fruit sugar accumulation, we conducted a phylogenetic analysis of the Malus domestica genome. Expression profiling was performed with shoot tips, mature leaves, and developed fruit of "Gala" apple. Genes for sugar alcohol [including 17 sorbitol transporters (SOTs)], sucrose, and monosaccharide transporters, plus SWEET genes, were selected as candidates in 31, 9, 50, and 27 loci, respectively, of the genome. The monosaccharide transporter family appears to include five subfamilies (30 MdHTs, 8 MdEDR6s, 5 MdTMTs, 3 MdvGTs, and 4 MdpGLTs). Phylogenetic analysis of the protein sequences indicated that orthologs exist among Malus, Vitis, and Arabidopsis. Investigations of transcripts revealed that 68 candidate transporters are expressed in apple, albeit to different extents. Here, we discuss their possible roles based on the relationship between their levels of expression and sugar concentrations. The high accumulation of fructose in apple fruit is possibly linked to the coordination and cooperation between MdTMT1/2 and MdEDR6. By contrast, these fruits show low MdSWEET4.1 expression and a high flux of fructose produced from sorbitol. Our study provides an exhaustive survey of sugar transporter genes and demonstrates that sugar transporter gene families in M. domestica are comparable to those in other species. Expression profiling of these transporters will likely contribute to improving our understanding of their physiological functions in fruit formation and the development of sweetness properties.
Collapse
Affiliation(s)
| | | | | | - Fengwang Ma
- *Correspondence: Mingjun Li and Fengwang Ma, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China e-mail: ;
| | - Mingjun Li
- *Correspondence: Mingjun Li and Fengwang Ma, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China e-mail: ;
| |
Collapse
|
84
|
Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. Source-to-sink transport of sugar and regulation by environmental factors. FRONTIERS IN PLANT SCIENCE 2013; 4:272. [PMID: 23898339 PMCID: PMC3721551 DOI: 10.3389/fpls.2013.00272] [Citation(s) in RCA: 561] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/02/2013] [Indexed: 05/18/2023]
Abstract
Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.
Collapse
Affiliation(s)
- Remi Lemoine
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Sylvain La Camera
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Rossitza Atanassova
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Fabienne Dédaldéchamp
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Thierry Allario
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Nathalie Pourtau
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jean-Louis Bonnemain
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Maryse Laloi
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Pierre Coutos-Thévenot
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Laurence Maurousset
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mireille Faucher
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Christine Girousse
- Diversité et Ecophysiologie des Céréales, Unités Mixtes de RechercheClermont Ferrand, France
| | - Pauline Lemonnier
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jonathan Parrilla
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mickael Durand
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| |
Collapse
|
85
|
Yuan JG, Wu HX, Lu ML, Song GP, Xu HH. Synthesis of a series of monosaccharide-fipronil conjugates and their phloem mobility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4236-41. [PMID: 23586601 DOI: 10.1021/jf400888c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
To test the effect of adding different monosaccharide groups to a non-phloem-mobile insecticide on the phloem mobility of the insecticide, a series of conjugates of different monosaccharides and fipronil were synthesized using the trichloroacetimidate method. Phloem mobility tests in castor bean ( Ricinus communis L.) seedlings indicated that the phloem mobility of these conjugates varied markedly. L-Rhamnose-fipronil and D-fucose-fipronil displayed the highest phloem mobility among all of the tested conjugates. Conjugating hexose, pentose, or deoxysugar to fipronil through an O-glycosidic linkage can confer phloem mobility to fipronil in R. communis L. effectively, while the -OH orientation of the monosaccharide substantially affected the phloem mobility of the conjugates.
Collapse
Affiliation(s)
- Jian-Guo Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | | | | | | | | |
Collapse
|
86
|
Ludewig F, Flügge UI. Role of metabolite transporters in source-sink carbon allocation. FRONTIERS IN PLANT SCIENCE 2013; 4:231. [PMID: 23847636 PMCID: PMC3698459 DOI: 10.3389/fpls.2013.00231] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/13/2013] [Indexed: 05/18/2023]
Abstract
Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or - in combination with nitrogen - as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters.
Collapse
Affiliation(s)
- Frank Ludewig
- *Correspondence: Frank Ludewig, Botanical Institute II, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany e-mail:
| | | |
Collapse
|
87
|
Abstract
Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K+-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K+ channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.
Collapse
Affiliation(s)
- Rainer Hedrich
- University of Wuerzburg, Institute for Molecular Plant Physiology and Biophysics, Wuerzburg, Germany; and King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
88
|
Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their interactions with fungi. TRENDS IN PLANT SCIENCE 2012; 17:413-22. [PMID: 22513109 DOI: 10.1016/j.tplants.2012.03.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/06/2012] [Accepted: 03/17/2012] [Indexed: 05/18/2023]
Abstract
Sucrose and monosaccharide transporters mediate long distance transport of sugar from source to sink organs and constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Even if numerous families of plant sugar transporters are defined; efflux capacities, subcellular localization and association to membrane rafts have only been recently reported. On the fungal side, the investigation of sugar transport mechanisms in mutualistic and pathogenic interactions is now emerging. Here, we review the essential role of sugar transporters for distribution of carbohydrates inside plant cells, as well as for plant-fungal interaction functioning. Altogether these data highlight the need for a better comprehension of the mechanisms underlying sugar exchanges between fungi and their host plants.
Collapse
Affiliation(s)
- Joan Doidy
- UMR INRA 1347, Agrosup, Université de Bourgogne, Agroécologie, Pôle Interactions Plantes Microorganismes ERL CNRS 6300, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
89
|
Lalonde S, Frommer WB. SUT Sucrose and MST Monosaccharide Transporter Inventory of the Selaginella Genome. FRONTIERS IN PLANT SCIENCE 2012; 3:24. [PMID: 22645575 PMCID: PMC3355790 DOI: 10.3389/fpls.2012.00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/20/2012] [Indexed: 05/05/2023]
Abstract
Most metazoa use hexose transporters to acquire hexoses from their diet and as a transport form for distributing carbon and energy within their bodies; insects use trehalose, and plants use sucrose as their major form for translocation. Plant genomes contain at least three families of mono- and disaccharide transporters: monosaccharide/polyol transporters that are evolutionary closely related to the yeast and human glucose transporters, sucrose transporters of the SUT family, which similar to the hexose transporters belong to the major facilitator superfamily, but share only minimal amino acid sequence homology with the hexose transporters, and the family of SWEET sugar transporters conserved between animals and plants. Recently, the genome sequence of the spikemoss Selaginella has been determined. In order to study the evolution of sugar transport in plants, we carefully annotated of the complement of sugar transporters in Selaginella. We review the current knowledge regarding sugar transport in spikemoss and provide phylogenetic analyses of the complement of MST and SUT homologs in Selaginella (and Physcomitrella).
Collapse
Affiliation(s)
- Sylvie Lalonde
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
| | - Wolf B. Frommer
- Department of Plant Biology, Carnegie Institution for ScienceStanford, CA, USA
- *Correspondence: Wolf B. Frommer, Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA. e-mail:
| |
Collapse
|
90
|
Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PA, Krueger S, Wic S, Neuhaus HE, Büttner M. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. PLANT PHYSIOLOGY 2011; 157:1664-76. [PMID: 21984725 PMCID: PMC3327193 DOI: 10.1104/pp.111.186825] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/06/2011] [Indexed: 05/18/2023]
Abstract
Subcellular sugar partitioning in plants is strongly regulated in response to developmental cues and changes in external conditions. Besides transitory starch, the vacuolar sugars represent a highly dynamic pool of instantly accessible metabolites that serve as energy source and osmoprotectant. Here, we present the molecular identification and functional characterization of the vacuolar glucose (Glc) exporter Arabidopsis (Arabidopsis thaliana) Early Responsive to Dehydration-Like6 (AtERDL6). We demonstrate tonoplast localization of AtERDL6 in plants. In Arabidopsis, AtERDL6 expression is induced in response to factors that activate vacuolar Glc pools, like darkness, heat stress, and wounding. On the other hand, AtERDL6 transcript levels drop during conditions that trigger Glc accumulation in the vacuole, like cold stress and external sugar supply. Accordingly, sugar analyses revealed that Aterdl6 mutants have elevated vacuolar Glc levels and that Glc flux across the tonoplast is impaired under stress conditions. Interestingly, overexpressor lines indicated a very similar function for the ERDL6 ortholog Integral Membrane Protein from sugar beet (Beta vulgaris). Aterdl6 mutant plants display increased sensitivity against external Glc, and mutant seeds exhibit a 10% increase in seed weight due to enhanced levels of seed sugars, proteins, and lipids. Our findings underline the importance of vacuolar Glc export during the regulation of cellular Glc homeostasis and the composition of seed reserves.
Collapse
|
91
|
Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. THE PLANT CELL 2011; 23:3812-23. [PMID: 21972259 PMCID: PMC3229151 DOI: 10.1105/tpc.111.089813] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/09/2011] [Accepted: 09/19/2011] [Indexed: 05/17/2023]
Abstract
For more than 400 million years, plants have maintained a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi. This evolutionary success can be traced to the role of these fungi in providing plants with mineral nutrients, particularly phosphate. In return, photosynthates are given to the fungus, which support its obligate biotrophic lifestyle. Although the mechanisms involved in phosphate transfer have been extensively studied, less is known about the reciprocal transfer of carbon. Here, we present the high-affinity Monosaccharide Transporter2 (MST2) from Glomus sp with a broad substrate spectrum that functions at several symbiotic root locations. Plant cell wall sugars can efficiently outcompete the Glc uptake capacity of MST2, suggesting they can serve as alternative carbon sources. MST2 expression closely correlates with that of the mycorrhiza-specific Phosphate Transporter4 (PT4). Furthermore, reduction of MST2 expression using host-induced gene silencing resulted in impaired mycorrhiza formation, malformed arbuscules, and reduced PT4 expression. These findings highlight the symbiotic role of MST2 and support the hypothesis that the exchange of carbon for phosphate is tightly linked. Unexpectedly, we found that the external mycelium of AM fungi is able to take up sugars in a proton-dependent manner. These results imply that the sugar uptake system operating in this symbiosis is more complex than previously anticipated.
Collapse
Affiliation(s)
- Nicole Helber
- Plant-Microbial Interactions Group, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | - Kathrin Wippel
- Friedrich-Alexander University Erlangen-Nürnberg, Molecular Plant-Physiology, D-91054 Erlangen, Germany
| | - Norbert Sauer
- Friedrich-Alexander University Erlangen-Nürnberg, Molecular Plant-Physiology, D-91054 Erlangen, Germany
| | | | - Bettina Hause
- Leibniz Institute of Plant Biochemistry, D-06018 Halle, Germany
| | - Natalia Requena
- Plant-Microbial Interactions Group, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| |
Collapse
|
92
|
Slewinski TL. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. MOLECULAR PLANT 2011; 4:641-62. [PMID: 21746702 DOI: 10.1093/mp/ssr051] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many levels, ranging from organelles to the whole plant. Many family members are essential for cellular homeostasis and reproductive success. Although most transporters do not directly participate in long-distance transport, their indirect roles greatly impact carbon allocation and transport flux to the heterotrophic tissues of the plant. Functional characterization of some members from both gene families has revealed their diverse roles in carbohydrate partitioning, phloem function, resource allocation, plant defense, and sugar signaling. This review highlights the broad impacts and implications of monosaccharide transport by describing some of the functional roles of the monosaccharide transporter(-like) superfamily and the SWEET transporter family.
Collapse
Affiliation(s)
- Thomas L Slewinski
- Department of Plant Biology, Cornell University, 262 Plant Science Building, Ithaca, NY 14853, USA.
| |
Collapse
|
93
|
Werner D, Gerlitz N, Stadler R. A dual switch in phloem unloading during ovule development in Arabidopsis. PROTOPLASMA 2011; 248:225-35. [PMID: 21153670 DOI: 10.1007/s00709-010-0223-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/12/2010] [Indexed: 05/18/2023]
Abstract
Developing flowers are important sinks in Arabidopsis thaliana. Their energy demand is covered by assimilates which are synthesized in source leaves and transported via the vasculature. Assimilates are unloaded either symplastically through plasmodesmata or apoplastically by specific transport proteins. Here we studied the pathway of phloem unloading and post-phloem transport in developing gynoecia. Using phloem-mobile fluorescent tracers, we show that phloem unloading into cells of ovule primordia followed a symplastic pathway. Subsequently, the same tracers could not move out of phloem cells into mature ovules anymore. A further change in the mode of phloem unloading occurred after anthesis. In open flowers as well as in outgrowing siliques, the phloem was again unloaded via the symplast. This observed onset of symplastic phloem unloading was accompanied by a change in frequency of MP17-GFP-labeled plasmodesmata. We could also show that the change in cell-cell connectivity was independent of fertilization and increasing sink demand. The presented results indicate that symplastic connectivity is highly regulated and varies not only between different sink tissues but also between different developmental stages.
Collapse
Affiliation(s)
- Dagmar Werner
- Lehrstuhl Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | | | | |
Collapse
|
94
|
Sauer N, Hedrich R. Dynamics and regulation of plant membrane transport. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:1-2. [PMID: 20712615 DOI: 10.1111/j.1438-8677.2010.00390.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|