51
|
Heijtz RD, Beraki S, Scott L, Aperia A, Forssberg H. Sex differences in the motor inhibitory and stimulatory role of dopamine D1 receptors in rats. Eur J Pharmacol 2002; 445:97-104. [PMID: 12065200 DOI: 10.1016/s0014-2999(02)01716-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated sex differences in the motor responses to the full and selective dopamine D1-like receptor agonist, (+/-)-6-chloro-7,8-dihydroxyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297; 0.3, 3, and 10 mg/kg, s.c.), in non-habituated adult rats. In general, SKF-81297 produced a biphasic effect on motor activity (including locomotion, rearing and exploratory activity) which consisted of an initial short inhibition followed by a long-lasting stimulation. These effects were dose- and sex-dependent. The inhibitory phase was more pronounced in males than females while the opposite was true for the stimulatory phase. Importantly, the motor inhibitory effects of SKF-81297 were not due to an increase in stereotypy (e.g., grooming activity). These biphasic effects on several motor parameters suggest the presence of two distinct dopamine D1 receptor populations which have opposite effects on motor activity and which are, in part, sexually dimorphic.
Collapse
Affiliation(s)
- Rochellys Diaz Heijtz
- Department of Woman and Child Health, Astrid Lindgren Children's Hospital, Q2:09, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
52
|
Abstract
Drugs of abuse, such as psychostimulants and opiates, are generally considered as exerting their locomotor and rewarding effects through an increased dopaminergic transmission in the nucleus accumbens. Noradrenergic transmission may also be implicated because most psychostimulants increase norepinephrine (NE) release, and numerous studies have indicated interactions between noradrenergic and dopaminergic neurons through alpha1-adrenergic receptors. However, analysis of the effects of psychostimulants after either destruction of noradrenergic neurons or pharmacological blockade of alpha1-adrenergic receptors led to conflicting results. Here we show that the locomotor hyperactivities induced by d-amphetamine (1-3 mg/kg), cocaine (5-20 mg/kg), or morphine (5-10 mg/kg) in mice lacking the alpha1b subtype of adrenergic receptors were dramatically decreased when compared with wild-type littermates. Moreover, behavioral sensitizations induced by d-amphetamine (1-2 mg/kg), cocaine (5-15 mg/kg), or morphine (7.5 mg/kg) were also decreased in knock-out mice when compared with wild-type. Ruling out a neurological deficit in knock-out mice, both strains reacted similarly to novelty, to intraperitoneal saline, or to the administration of scopolamine (1 mg/kg), an anti-muscarinic agent. Finally, rewarding properties could not be observed in knock-out mice in an oral preference test (cocaine and morphine) and conditioned place preference (morphine) paradigm. Because catecholamine tissue levels, autoradiography of D1 and D2 dopaminergic receptors, and of dopamine reuptake sites and locomotor response to a D1 agonist showed that basal dopaminergic transmission was similar in knock-out and wild-type mice, our data indicate a critical role of alpha1b-adrenergic receptors and noradrenergic transmission in the vulnerability to addiction.
Collapse
|
53
|
Olsen CM, Duvauchelle CL. Intra-prefrontal cortex injections of SCH 23390 influence nucleus accumbens dopamine levels 24 h post-infusion. Brain Res 2001; 922:80-6. [PMID: 11730704 DOI: 10.1016/s0006-8993(01)03152-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dopaminergic pathway from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc) is well known to be involved in the reinforcing properties of many drugs of abuse. The medial prefrontal cortex (mPFC) has been shown to exhibit significant influence over activity in this pathway, and has also been implicated in drug abuse. The present experiment investigated the ability of D1 activity in the mPFC to influence accumbal dopamine levels. NAcc dopamine (DA) was monitored before, immediately after, and 24 h following mPFC infusion of a D1 agonist (SKF 38393), D1 antagonist (SCH 23390), or a vehicle solution. Immediately following infusion of dopaminergic agents or vehicle, no significant changes in accumbal DA were observed. However, 24 h following infusion of the antagonist but not the agonist, significant elevations of accumbal DA were observed. Since elevated NAcc DA was only observed 24 h after treatment, these results provide evidence that long-term neural adaptations can be induced by transient neuropharmacological treatment.
Collapse
Affiliation(s)
- C M Olsen
- College of Pharmacy, Division of Pharmacology/Toxicology, The University of Texas at Austin, Austin, TX 78712-1074, USA
| | | |
Collapse
|
54
|
Beyer CE, Steketee JD. Characterization of the role of medial prefrontal cortex dopamine receptors in cocaine-induced locomotor activity. Behav Neurosci 2001; 115:1093-100. [PMID: 11584922 DOI: 10.1037/0735-7044.115.5.1093] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Medial prefrontal cortex (mPFC) dopamine (DA) modulates the motor-stimulant response to cocaine. The present study examined the specific mPFC DA receptor subtypes that mediate this behavioral response. Intra-mPFC injection of the DA D2-like receptor agonist quinpirole blocked cocaine-induced motor activity, an effect that was prevented by coadministration of the D2 receptor antagonist sulpiride. Intra-mPFC injection of the selective D4 receptor agonist PD 168,077 or the selective D1 receptor agonist SKF 81297 did not alter the motor-stimulant response to cocaine. Finally, it was found that an intermediate dose of quinpirole, which only attenuated cocaine-induced motor activity, was not altered by SKF 81297 coadministration, suggesting a lack of synergy between mPFC D1 and D2 receptors. These results suggest that D2 receptor mechanisms in the mPFC are at least partly responsible for mediating the acute motor-stimulant effects of cocaine.
Collapse
Affiliation(s)
- C E Beyer
- Department of Pharmacology and Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, USA
| | | |
Collapse
|
55
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
56
|
Lacroix L, Spinelli S, White W, Feldon J. The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience 2000; 97:459-68. [PMID: 10828529 DOI: 10.1016/s0306-4522(00)00013-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypofunction of prefrontal cortical regions, such as dorsolateral and orbital regions, has been suggested to contribute to the symptomatology of schizophrenia. In the rat, the medial and the lateral prefrontal cortices are considered as homologs of the primate dorsolateral and orbital prefrontal cortices, respectively. The present study investigated in rats the effects of lesions of the medial and lateral prefrontal cortices on latent inhibition, prepulse inhibition and amphetamine-induced activity. These paradigms are known to be modulated by the mesolimbic dopaminergic system, a system that has been suggested to be involved in the symptomatology of schizophrenia. Latent inhibition and prepulse inhibition are disrupted in schizophrenic patients as well as in rats treated with amphetamine. Amphetamine-induced activity was tested under dim light (low stress) and bright light (high stress) because stressful situations selectively increase mesocortical dopamine activity. Lateral prefrontal cortex lesioned animals did not differ in their behavior from control animals in any of the paradigms used in this study. Medial prefrontal cortex lesions did not affect latent inhibition but increased prepulse inhibition. In the amphetamine-induced activity experiment, prior to drug administration, open field locomotion was reduced under bright illumination for all lesion groups. After amphetamine administration, medial prefrontal cortex lesions attenuated the hyperlocomotor effect of the drug under the dim light condition and potentiated it under the bright light condition. The results indicate that medial and lateral prefrontal cortex can be functionally differentiated by their involvement in the modulation of behavior requiring mesocorticolimbic dopamine activation. The results in amphetamine induced activity suggest that the behavioral outcomes associated with medial prefrontal cortex depend on the background (stress) against which the evaluation is made. The results also support the notion that prepulse inhibition may be a better model than latent inhibition of the symptoms of schizophrenia associated with dysfunctional prefrontal activity.
Collapse
Affiliation(s)
- L Lacroix
- Behavioural Neurobiology Laboratory, The Swiss Federal Institute of Technology Zurich, Schorenstrasse 16, 8603, Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
57
|
Fatigati MD, Anderson RM, Rompré P. Effects of prefrontal cortex microinjection of neurotensin-(8-13) on midbrain dopamine and non-dopamine cell firing. Brain Res 2000; 876:196-200. [PMID: 10973609 DOI: 10.1016/s0006-8993(00)02654-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effects of prefrontal cortex microinjections of 0.3 and 3 nmol/0.5 microl of neurotensin-(8-13) on the firing rate of midbrain dopamine and non-dopamine cells were studied in urethane-anesthetized rats. Neurotensin produced an increase in firing in 14 of 26 dopamine cells tested, an effect that peaked between 15 and 20 min after the injection at both doses. On the other hand, a majority of non-dopamine cells (7/10) tested with the higher dose of neurotensin showed a statistically significant decrease in firing when compared to saline, an effect that also peaked between 15 and 20 min. These results show that prefrontal cortex neurotensin can modulate both dopamine and non-dopamine neurotransmission in the ventral midbrain.
Collapse
Affiliation(s)
- M D Fatigati
- Centre de recherche de Fernand-Seguin, Département de Psychiatrie, Hôpital Louis-H. Lafontaine, Université de Montréal, Québec, H1N 3V2, Montréal, Canada
| | | | | |
Collapse
|
58
|
Gurden H, Tassin JP, Jay TM. Integrity of the mesocortical dopaminergic system is necessary for complete expression of in vivo hippocampal-prefrontal cortex long-term potentiation. Neuroscience 2000; 94:1019-27. [PMID: 10625044 DOI: 10.1016/s0306-4522(99)00395-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The prefrontal cortex receives dopaminergic inputs from the ventral tegmental area and excitatory inputs from the hippocampus. Both afferent pathways target in close proximity dendritic spines of pyramidal cells in layer V-VI of the prefrontal cortex. In view of the prominent role of dopamine in cognitive functions we examined the effects of ventral tegmental area stimulation on the induction of long-term potentiation in the hippocampal-prefrontal cortex pathway of anesthetized rats. Stimulation of the ventral tegmental area at a frequency known to evoke dopamine overflow in the prefrontal cortex produces a long-lasting enhancement of the magnitude of the hippocampal-prefrontal cortex long-term potentiation. The role of dopamine was further examined by investigating the effects of prefrontocortical dopamine depletion induced by an electrolytic ventral tegmental area lesion. A significant correlation (r = 0.8; P < 0.001; n = 14) was obtained between cortical dopamine levels and cortical long-term potentiation amplitude, a depletion of more than 50% of cortical levels corresponding to a dramatic decrease in hippocampal-prefrontal cortex long-term potentiation. However, a recovery to normal long-term potentiation was observed 1 h after tetanic stimulation. In contrast to the effects on long-term potentiation, ventral tegmental area stimulation, when applied at low or high frequency, decreases the amplitude of the hippocampal-prefrontal cortex postsynaptic synaptic response. The present study demonstrates the importance of the integrity of the mesocortical dopaminergic system for long-term potentiation to occur in the hippocampal-prefrontal cortex pathway and suggests a frequency-dependent effect of dopamine on hippocampal-prefrontal cortex transmission.
Collapse
Affiliation(s)
- H Gurden
- Neurobiologie de l'Apprentissage et de la Mémoire, CNRS URA 1491, Université Paris Sud, Orsay, France
| | | | | |
Collapse
|
59
|
Lacroix L, Broersen LM, Feldon J, Weiner I. Effects of local infusions of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine induced activity. Behav Brain Res 2000; 107:111-21. [PMID: 10628735 DOI: 10.1016/s0166-4328(99)00118-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Impaired ability to 'gate out' sensory and cognitive information is considered to be a central feature of schizophrenia and is manifested, among others, in disrupted prepulse inhibition (PPI) and latent inhibition (LI). The present study investigated in rats the effects of increasing or decreasing dopamine (DA) receptor activation within the medial prefrontal cortex (mPFC) by local administration of the indirect DA receptor agonist amphetamine (AMPH; 10.0 microg/side) or the DA antagonist cis-flupenthixol (FLU; 12.0 microg/side) on PPI and LI as well as on systemic AMPH-induced activity. The effects of intra-mPFC apomorphine (APO; 10.0 microg/side) on PPI were also tested. AMPH infusions decreased systemic AMPH-induced increase in locomotor activity in the open field, whereas FLU infusion was ineffective. Both infusions had no effect on LI and PPI. However, APO infusions induced a disruption of PPI. These results provide additional evidence that the mPFC is a component of the neural circuitry mediating PPI but plays no role in LI. In addition, they show that the behavioral outcomes produced by DA receptor activation/blockade in the mPFC of the rat cannot be explained by postulating a simple reciprocal relationship between the cortical and subcortical DA systems.
Collapse
Affiliation(s)
- L Lacroix
- Behavioural Biology Laboratory, Swiss Federal Institute of Technology, Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
60
|
Broersen LM, Feldon J, Weiner I. Dissociative effects of apomorphine infusions into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine-induced locomotion. Neuroscience 1999; 94:39-46. [PMID: 10613495 DOI: 10.1016/s0306-4522(99)00287-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Impaired ability to "gate out" sensory and cognitive information is considered to be a central feature of schizophrenia and is manifested, among others, in disrupted prepulse inhibition and latent inhibition. The present study investigated, in rats, the effects of increasing dopamine receptor activation within the medial prefrontal cortex by local administration of the dopamine receptor agonist apomorphine (9 microg/side) on prepulse inhibition and latent inhibition, as well as on spontaneous and amphetamine-induced activity. Apomorphine infusions decreased spontaneous locomotor activity and blocked amphetamine-induced increase in locomotor activity in the open field, which is in line with the suggestion that dopamine receptor activation in the medial prefrontal cortex inhibits mesolimbic dopamine activity. However, apomorphine infusions induced a disruption of prepulse inhibition, an effect associated with increased dopaminergic activity in the nucleus accumbens, and left the latent inhibition effect intact. While these results support previous evidence that the medial prefrontal cortex is a component of the neural circuitry mediating prepulse inhibition but plays no role in latent inhibition, they show that dopamine receptor activation in the medial prefrontal cortex of the rat produces behavioural outcomes that cannot be explained by postulating a simple reciprocal relationship between the mesocortical and mesolimbic dopamine systems.
Collapse
Affiliation(s)
- L M Broersen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research
| | | | | |
Collapse
|
61
|
Di Chiara G, Loddo P, Tanda G. Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression. Biol Psychiatry 1999; 46:1624-33. [PMID: 10624543 DOI: 10.1016/s0006-3223(99)00236-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic mild stress (CMS) has been reported to induce behavioral abnormalities that model human depression. To investigate the role in depression of phasic dopamine transmission in cortical and limbic areas, we studied the effect of CMS on the responsiveness of dopamine (DA) transmission to aversive and rewarding stimuli in rats by microdialysis of the nucleus accumbens (NAc) shell and of the medial prefrontal cortex (PFCX). METHODS Rats were subjected for 30 days to CMS and administered two trials of tail pinch as aversive stimulus and two feeding sessions of a highly palatable food as rewarding stimulus. Concentric microdialysis probes were implanted in the NAc shell and in the medial PFCX. RESULTS In unstressed rats, DA decreased in the NAc and increased in the PFCX on the first tail-pinch trial; on the 1st feeding trial, DA increased in the NAc and to a larger extent in the PFCX. In the second tail-pinch trial or feeding trial, these responses were maintained in the PFCX but underwent habituation in the NAc. CMS did not affect basal dialysate DA in the NAc or in the PFCX but influenced the responsiveness of Da transmission to tail pinches and to feeding in a reciprocal manner. Thus, in the tail-pinch trial, CMS reversed the inhibitory response of NAc DA transmission into a stimulatory one and potentiated the stimulatory response in the PFCX. By contrast, in the feeding trial, CMS blunted the stimulatory response of DA transmission in the NAc in the first trial and in the PFCX in the second trial. CONCLUSIONS CMS reciprocally affected DA responsiveness to motivational stimuli, facilitating or inducing a stimulatory DA response to aversive stimuli but blunting stimulatory responses to rewarding stimuli. Given the postulated role of phasic DA responsiveness in the NAc shell for learning and of DA transmission in the PFCX for expression of motivation, we hypothesize that depression is the result of defective learning and expression of aversive and appetitive motivation.
Collapse
Affiliation(s)
- G Di Chiara
- Department of Toxicology, University of Cagliari, Italy
| | | | | |
Collapse
|
62
|
A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 1999. [PMID: 10531460 DOI: 10.1523/jneurosci.19-21-09579.1999] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated treatment with psychostimulant drugs causes long-lasting behavioral sensitization and associated neuroadaptations. Although sensitization induced by a single psychostimulant exposure has also been reported, information on the behavioral and neurochemical consequences of a single psychostimulant exposure is sparse. Therefore, to evaluate whether behavioral sensitization evoked by single and repeated psychostimulant pretreatment regimens represent the same neurobiological phenomenon, the time-dependent expression of behavioral, neurochemical, and neuroendocrine sensitization after a single exposure to amphetamine was investigated in rats. A single exposure to amphetamine (5 mg/kg, i.p.) caused context-independent sensitization of the locomotor effects of amphetamine, which intensified over time. Thus, sensitization to amphetamine was marginal at 3 d after treatment and more evident after 1 week, whereas 3 weeks after treatment, profound sensitization, as well as cross-sensitization, to cocaine was observed. Amphetamine pretreatment caused an increase in the electrically evoked release of [(3)H]dopamine from nucleus accumbens, caudate putamen, and medial prefrontal cortex slices and of [(14)C]acetylcholine from accumbens and caudate slices. The hyperreactivity of dopaminergic nerve terminals appeared to parallel the development of locomotor sensitization, i.e., whereas hyperreactivity of accumbens dopaminergic terminals increased between 3 d and 3 weeks after treatment, the hyperreactivity of medial prefrontal dopaminergic terminals decreased. Pre-exposure to amphetamine also sensitized the hypothalamus-pituitary-adrenal axis response to amphetamine at 1 and 3 weeks, but not at 3 d after treatment. Because these data closely resemble those reported previously for repeated amphetamine pretreatment, it is concluded that a single exposure to amphetamine is sufficient to induce long-term behavioral, neurochemical, and neuroendocrine sensitization in rats.
Collapse
|
63
|
Doherty MD, Gratton A. Effects of medial prefrontal cortical injections of GABA receptor agonists and antagonists on the local and nucleus accumbens dopamine responses to stress. Synapse 1999; 32:288-300. [PMID: 10332804 DOI: 10.1002/(sici)1098-2396(19990615)32:4<288::aid-syn5>3.0.co;2-u] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stress stimulates dopamine (DA) release in nucleus accumbens (NAcc) but will do so more strongly in medial prefrontal cortex (PFC). Evidence indicates, however, that the cortical DA response to stress acts to dampen the concurrent increase in NAcc DA release. In the present study, we used voltammetry to investigate the role of PFC GABA in regulating the NAcc DA response to stress. The results of Experiment 1 show that the NAcc stress response is inhibited following bilateral cortical microinjections of baclofen (GABAB receptor agonist). While phaclofen (GABAB receptor antagonist) blocked the effect of baclofen, it had no significant effect of its own. Intra-PFC injections of muscimol (GABAA receptor agonist) and bicuculline (GABAA receptor antagonist) had no effect on the DA stress response in NAcc. In Experiment 2, we explored the possibility that GABA influences the NAcc DA stress response indirectly by modulating stress-induced DA release in PFC. None of the drugs tested had an effect on the PFC stress response at a dose (1 nmol) that produced reliable effects on the NAcc stress response. At an order of magnitude higher dose, however, locally applied phaclofen and muscimol enhanced and attenuated, respectively, the DA stress response in PFC. These results were validated in Experiment 3 by showing that intra-PFC injections of GBR-12395 (DA uptake blocker) and quinpirole (D2/D3 receptor agonist) dose-dependently enhanced and inhibited, respectively, the local DA stress response. Together, these findings indicate that increased GABA transmission in PFC exerts an inhibitory influence on the NAcc DA response to stress, and that this action is mediated primarily but not exclusively by GABAB receptors which may be located both on cortical output neurons and on DA terminals.
Collapse
Affiliation(s)
- M D Doherty
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Verdun, Québec, Canada
| | | |
Collapse
|
64
|
Prasad BM, Hochstatter T, Sorg BA. Expression of cocaine sensitization: regulation by the medial prefrontal cortex. Neuroscience 1999; 88:765-74. [PMID: 10363816 DOI: 10.1016/s0306-4522(98)00183-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extracellular levels of dopamine are increased in response to systemic administration of cocaine in several brain areas including the nucleus accumbens and medial prefrontal cortex. While the cocaine-induced increase in extracellular dopamine levels in the nucleus accumbens is augmented after repeated daily cocaine, the response of extracellular dopamine levels in the medial prefrontal cortex is attenuated. Since dopamine in the medial prefrontal cortex has an inhibitory effect on nucleus accumbens dopamine levels and locomotor activity, the role of medial prefrontal cortex dopamine tolerance in the expression of sensitized locomotor behavior was further examined by injection of D-amphetamine sulfate into the prelimbic portion of the medial prefrontal cortex just prior to cocaine challenge in cocaine-sensitized rats. Male Sprague-Dawley rats were non-handled (naive) or injected with either saline (1 ml/kg, i.p.) or cocaine (15 mg/kg, i.p.) for five consecutive days. After a seven to 12 day withdrawal period, rats were microinjected with either saline or various doses of amphetamine into primarily the prelimbic region of the medial prefrontal cortex followed by systemic injection of saline or cocaine. In naive rats, intramedial prefrontal cortex amphetamine produced a trend toward decreased locomotor responding to cocaine challenge while no effect of amphetamine was evident in daily saline pretreated rats. Daily cocaine pretreated rats that received saline in the medial prefrontal cortex demonstrated a sensitized locomotor response compared to their daily saline pretreated counterparts. This sensitization was blocked by a low dose of amphetamine (0.175 microg/side) in the medial prefrontal cortex, an effect which disappeared in animals administered higher amphetamine doses. The results suggest that in rats sensitized to cocaine, decreased medial prefrontal cortex dopamine levels in response to cocaine challenge may contribute to behavioral sensitization. Furthermore, the data indicate the possibility that there is an optimal range at which medial prefrontal cortex amphetamine exerts maximal behavioral inhibition. These findings implicate a role for decreased cortical control in producing sensitized behavioral responding to cocaine.
Collapse
Affiliation(s)
- B M Prasad
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Washington State University, Pullman, 99164-6520, USA
| | | | | |
Collapse
|
65
|
Hedou G, Feldon J, Heidbreder CA. Effects of cocaine on dopamine in subregions of the rat prefrontal cortex and their efferents to subterritories of the nucleus accumbens. Eur J Pharmacol 1999; 372:143-55. [PMID: 10395094 DOI: 10.1016/s0014-2999(99)00218-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study sought to investigate the contributions of the ventral prelimbic/infralimbic cortices and shell subterritory of the nucleus accumbens as well as the dorsal prelimbic/anterior cingulate cortices and core subregion of the nucleus accumbens to the acute systemic effects of cocaine (20 mg/kg i.p.) on both locomotor activity and simultaneous dialysate dopamine levels using a dual-probe microdialysis design. Basal dopamine levels were significantly higher in the ventral medial prefrontal cortex compared with the dorsal medial prefrontal cortex and higher concentrations of dopamine were also observed in the core of the nucleus accumbens compared with its shell counterpart. Cocaine produced a significant decrease in dopamine levels in both the ventral and dorsal medial prefrontal cortices. In contrast, cocaine significantly increased dialysate dopamine in the shell of the nucleus accumbens, whereas only a slight increase in dopamine was observed in the core subregion of the nucleus accumbens. A significant negative relationship between dopamine levels in the ventral and dorsal medial prefrontal cortices and dialysate dopamine concentrations in the shell and core of the nucleus accumbens was observed. Finally, in both the ventral and dorsal medial prefrontal cortices, the magnitude of the locomotor response to cocaine was inversely related to dialysate dopamine levels. In contrast, the magnitude of the locomotor response to cocaine became progressively larger as dopamine levels increased in the shell of the nucleus accumbens. These results show a dissociation in the pattern of dopamine release in subterritories of both the medial prefrontal cortex and nucleus accumbens in response to the acute systemic administration of cocaine.
Collapse
Affiliation(s)
- G Hedou
- The Swiss Federal Institute of Technology Zürich (ETH), Laboratory of Behavioral Biology, Schwerzenbach
| | | | | |
Collapse
|
66
|
Dracheva S, Xu M, Kelley KA, Haroutunian V, Holstein GR, Haun S, Silverstein JH, Sealfon SC. Paradoxical locomotor behavior of dopamine D1 receptor transgenic mice. Exp Neurol 1999; 157:169-79. [PMID: 10222120 DOI: 10.1006/exnr.1999.7037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The behavioral effects of augmenting dopamine D1 receptor expression in the brain were investigated in mice incorporating additional copies of the mouse D1 receptor gene. Two transgenic lines showed increases in brain D1 receptor binding sites, which were greatest in extrastriatal regions. The full D1 agonist SKF 81297, when administered systemically to control animals, stimulated a dose-dependent increase in locomotor activity. In contrast, in D1 receptor overexpressing transgenic mice, this drug caused a marked suppression of locomotion due to a decrease in the frequency of movement initiation. Amphetamine and cocaine induced comparable locomotor activation in both transgenic animals and their control littermates. In the transgenic animals, D1 agonist-induced rearing and climbing behaviors were suppressed. However, on rotarod testing, the agonist-treated transgenic and control mice performed comparably, indicating that sensorimotor coordination was unaffected. These studies demonstrate that altering the levels of D1 receptor expression reverses the effects of D1 agonism on locomotor initiation and rearing.
Collapse
Affiliation(s)
- S Dracheva
- Dr. Arthur M. Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Chen JC, Li JY, Liang KW, Huang YK. Neuropeptide FF potentiates the behavioral sensitization to amphetamine and alters the levels of neurotransmitters in the medial prefrontal cortex. Brain Res 1999; 816:220-4. [PMID: 9878747 DOI: 10.1016/s0006-8993(98)01108-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have demonstrated that chronic administration of neuropeptide FF (NPFF) into the lateral ventricle potentiated the behavioral sensitization to amphetamine. Further, the treatment with NPFF decreased the levels of serotonin, and increased the glutamate and GABA content in the medial prefrontal cortex of amphetamine-sensitized rats. The results suggest that NPFF may modulate the neuronal process of amphetamine addiction.
Collapse
Affiliation(s)
- J C Chen
- Laboratory of Neuropharmacology, Department of Pharmacology, Chang-Gung University, Tao-Yuan 333, Taiwan.
| | | | | | | |
Collapse
|
68
|
Karler R, Calder LD, Thai DK, Bedingfield JB. The role of dopamine in the mouse frontal cortex: a new hypothesis of behavioral sensitization to amphetamine and cocaine. Pharmacol Biochem Behav 1998; 61:435-43. [PMID: 9802839 DOI: 10.1016/s0091-3057(98)00133-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In previous studies we demonstrated that dopamine, specifically a D2-receptor system, in the frontal cortex of the mouse functions to inhibit the motor response elicited by systemically administered amphetamine or cocaine; the inhibition appears to be the result of the dopaminergic activation of a GABAergic system. In the present study the inhibitory role of dopamine and GABA in the cortex was investigated in animals that were behaviorally sensitized to stimulant-induced stereotypy. For these studies various dopaminergic and GABAergic drugs were injected intracortically (i.c.) and their effects on stimulant-induced stereotypy were compared in nonsensitized and sensitized mice. The results indicate that the dopaminergic system in the cortex of sensitized animals, in contrast to nonsensitized controls, no longer functions to inhibit the motor response to the stimulants. The change in dopaminergic function in sensitized animals appears to be the result of a qualitative change in the D2 dopamine receptor system and not the result of a change in the associated GABA system. The loss of the inhibitory activity of dopamine in the cortex correlated with the persistence of sensitization. These results suggest a new mechanism to account for behavioral sensitization; that is, the phenomenon is the result of a loss of stimulant-induced dopaminergic inhibition of motor activity normally mediated by the frontal cortex.
Collapse
Affiliation(s)
- R Karler
- Department of Pharmacology, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | | | |
Collapse
|
69
|
Gioanni Y, Thierry AM, Glowinski J, Tassin JP. Alpha1-adrenergic, D1, and D2 receptors interactions in the prefrontal cortex: implications for the modality of action of different types of neuroleptics. Synapse 1998; 30:362-70. [PMID: 9826228 DOI: 10.1002/(sici)1098-2396(199812)30:4<362::aid-syn3>3.0.co;2-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The activation of rat mesocortical dopaminergic (DA) neurons evoked by the electrical stimulation of the ventral tegmental area (VTA) induces a marked inhibition of the spontaneous activity of prefrontocortical cells. In the present study, it was first shown that systemic administration of either clozapine (a mixed antagonist of D1, D2, and alpha1-adrenergic receptors) (3-5 mg/kg, i.v.), prazosin (an alpha1-adrenergic antagonist) (0.2 mg/kg, i.v.), or sulpiride (a D2 antagonist) (30 mg/kg, i.v.), but not SCH 23390 (a D1 antagonist) (0.2 mg/kg, i.v.), reversed this cortical inhibition. Second, it was found that following the systemic administration of prazosin, the VTA-induced cortical inhibition reappeared when either SCH 23390 or sulpiride was applied by iontophoresis into the prefrontal cortex. Third, it was seen that, whereas haloperidol (0.2 mg/kg, i.v.), a D2 antagonist which also blocks alpha1-adrenergic receptors, failed to reverse the VTA-induced inhibition, the systemic administration of haloperidol plus SCH 23390 (0.2 mg/kg, i.v.) blocked this inhibition. Finally, it was verified that the cortical inhibitions obtained following treatments with either "prazosin plus sulpiride" or "prazosin plus SCH 23390" were blocked by a superimposed administration of either SCH 23390 or sulpiride, respectively. These data indicate that complex interactions between cortical D2, D1, and alpha1-adrenergic receptors are involved in the regulation of the activity of prefrontocortical cells innervated by the VTA neurons. They confirm that the physiological stimulation of cortical alpha1-adrenergic receptors hampers the functional activity of cortical D1 receptors and suggest that the stimulations of cortical D1 and D2 receptors exert mutual inhibition on each other's transmission.
Collapse
Affiliation(s)
- Y Gioanni
- INSERM U 114, Chaire de Neuropharmacologie, Collège de France, Paris
| | | | | | | |
Collapse
|
70
|
Changes in medial prefrontal cortical dopamine levels associated with response-contingent food reward: an electrochemical study in rat. J Neurosci 1998. [PMID: 9787015 DOI: 10.1523/jneurosci.18-21-09130.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltammetry was used to monitor in rats changes in medial prefrontal cortex (PFC) dopamine (DA) levels associated with response-contingent presentation of a condensed milk reward. During two initial training sessions, minor DA signal fluctuations were seen when animals consumed a standard 30 sec (0.2 ml) meal earned on a continuous reinforcement schedule. There was no evidence of experience-dependent changes in these fluctuations. Under delayed reinforcement conditions, lever-presses were followed by DA signal increases that were time-locked to the delay duration, and these were followed by signal decreases when animals eventually received the reward. Such decreases became more pronounced when the standard rate of milk delivery was tripled, but were attenuated when milk delivery was reduced to half the usual rate. Withholding earned milk resulted in signal increases. In contrast, DA signal increases were observed during milk consumption when the standard meal duration was unexpectedly shortened to 15 sec or lengthened to 60 or 90 sec. Orderly changes in DA signal were also observed under partial reinforcement conditions. Unreinforced responses were associated with DA signal decreases, whereas transient increases were seen during the 30 sec meal that followed reinforced responses. These findings indicate that response-contingent reward presentation elicits synchronous changes in PFC DA transmission. They also suggest that the DA input to PFC is activated when rewards are presented under conditions that deviate from those that the animals had come to expect, particularly so when the temporal structure of learned associations is altered.
Collapse
|
71
|
Duvauchelle CL, Fleming SM, Kornetsky C. Prefrontal cortex infusions of SCH 23390 cause immediate and delayed effects on ventral tegmental area stimulation reward. Brain Res 1998; 811:57-62. [PMID: 9804893 DOI: 10.1016/s0006-8993(98)00952-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A reward-relevant relationship between dopamine projection regions of the ventral tegmental area (VTA) was investigated through the use of brain stimulation reward (BSR) thresholds. Using a rate-free method, changes in VTA BSR thresholds were determined after intracranial injections of the dopamine D1 antagonist, SCH 23390 into the prefrontal cortex (PFC), or the nucleus accumbens (NAcc). Reward thresholds assessed immediately after the infusion of SCH 23390 into the NAcc (0.5 microgram/0.5 microliter/side) were significantly higher than those assessed just after saline infusions, indicating a drug-induced attenuation of the rewarding effects of the brain stimulation. The effects of this dose subsided when tested 24 h later. Conversely, intra-PFC infusions of SCH 23390 at the same dose (0.5 microgram/0.5 microliter/side) resulted in lowered BSR thresholds when rats were tested immediately after infusion. In addition, animals tested 24 h after receiving the lowest dose (0.125 microgram/0.5 microliter/side) demonstrated a robust delayed threshold-lowering effect. These immediate and delayed effects of the intra-PFC dopamine antagonist demonstrate a facilitation of VTA BSR and are consistent with the view that PFC dopamine serves a modulatory role over important reward elements within the NAcc. The deferred effects of intra-prefrontal cortex DA receptor blockade on brain stimulation reward thresholds may reflect adaptive responses of subcortical structures to changes in PFC dopamine neurotransmission. It has been suggested that neural adjustments of this type may underlie long term changes in central nervous system functioning brought about by disease, drug use or behavioral conditioning.
Collapse
Affiliation(s)
- C L Duvauchelle
- Boston University School of Medicine, Departments of Psychiatry and Pharmacology, 715 Albany Street, L-602, Boston, MA 02118, USA
| | | | | |
Collapse
|
72
|
Ben-Shahar O, Ettenberg A. Amphetamine infusions into the prefrontal cortex attenuate the sensitization to amphetamine. Prog Neuropsychopharmacol Biol Psychiatry 1998; 22:763-73. [PMID: 9723118 DOI: 10.1016/s0278-5846(98)00038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Adult male rats were implanted with chronic medial prefrontal cortex cannulae. 2. On each of 5 consecutive days, rats received bilateral 0.5 ml intra-prefrontal cortex injections of either 5 mg d-amphetamine or saline, followed by a subcutaneous injection of either 1 mg/kg d-amphetamine or saline. 3. Immediately after the drug treatments each rat was placed into a photocell equipped locomotor activity chamber for 60 min. 4. Administration of d-amphetamine into the prefrontal cortex did not block the acute locomotor response to subcutaneous d-amphetamine nor did it in itself produce an increase in locomotor activity. However, prefrontal cortex amphetamine treatments did attenuate the sensitized locomotor effects of subcutaneous amphetamine that developed over trials/days. 5. Dopamine in the prefrontal cortex may be involved in the development of amphetamine-induced behavioral sensitization.
Collapse
Affiliation(s)
- O Ben-Shahar
- Department of Psychology, University of California, Santa Barbara, USA
| | | |
Collapse
|
73
|
Saitoh A, Morita K, Sodeyama M, Kamei J. Effects of the experimental diabetes on dopamine D1 receptor-mediated locomotor-enhancing activity in mice. Pharmacol Biochem Behav 1998; 60:161-6. [PMID: 9610938 DOI: 10.1016/s0091-3057(97)00588-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of diabetes on the dopamine-related locomotor-enhancing activities were studied in mice. Although spontaneous locomotor activity in diabetic mice was significantly greater than that in nondiabetic mice, the locomotor-enhancing effects of methamphetamine (4 mg/kg, s.c.), cocaine (20 mg/kg, s.c.) and SKF82958 (1 mg/kg, s.c.), a selective dopamine D1-receptor agonist, in diabetic mice were significantly lower than those in nondiabetic mice. When dopamine level in the whole brain was reduced by pretreatment with 6-hydroxydopamine (6-OHDA), spontaneous locomotor activity was significantly reduced in both nondiabetic and diabetic mice. There was no significant difference in the total spontaneous locomotor activity counts within 3 h between 6-OHDA-treated nondiabetic and 6-OHDA-treated diabetic mice. Furthermore, the locomotor-enhancing effect of SKF82958 in 6-OHDA-treated diabetic mice was also significantly lower than that in 6-OHDA-treated nondiabetic mice. In a binding assay, the Bmax values of [3H]SCH23390 binding to whole-brain membranes of diabetic mice were significantly lower than those in nondiabetic mice. However, there was no significant difference in the Kd values between nondiabetic and diabetic mice. These results suggest that the decreased density of dopamine D1 receptors in diabetic mice may result in hyporesponsiveness to dopamine-related locomotor enhancement.
Collapse
Affiliation(s)
- A Saitoh
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | | | | | | |
Collapse
|
74
|
Abstract
The locomotor hyperactivity induced by systemic or local (nucleus accumbens) D-amphetamine injections can be blocked by systemic or local (prefrontal cortex) injections of prazosin, an alpha1-adrenergic antagonist (Blance et al., 1994). Microdialysis studies performed on freely moving animals indicated that prazosin (0.5 mg/kg, i.p.) does not modify the increase in the extracellular dopamine (DA) levels in the nucleus accumbens that are induced by D-amphetamine (2.0 mg/kg, i.p.), but it inhibits the D-amphetamine-induced locomotor hyperactivity (-63%, p < 0.0001). No behavioral activation occurred after the bilateral local perfusion of 3 microM D-amphetamine in the nucleus accumbens, although it led to a fivefold increase in extracellular DA levels. This increase in extracellular DA levels was not affected by prazosin (0.5 mg/kg, i.p.). When an intraperitoneal injection of D-amphetamine (0.5 mg/kg) was superimposed to the continuous local perfusion of 3 microM D-amphetamine, it induced a 64% increase in the extracellular DA levels in the nucleus accumbens, and this response was associated with simultaneous behavioral activation. Both the increases in extracellular DA levels and in locomotor activity were completely blocked by a pretreatment with prazosin, injected either systemically (0.5 mg/kg, i.p.) or locally and bilaterally into the prefrontal cortex (500 pmol/side). Complementary experiments indicated that the focal application of D-amphetamine requires at least a 4.8-fold higher increase in DA output compared with systemic D-amphetamine for the behavioral effects to be elicited. Altogether, these results suggest that locomotor activating effects of D-amphetamine are caused by the stimulation of cortical alpha1-adrenergic receptors by noradrenaline, which increases the release of a functional part of subcortical DA.
Collapse
|
75
|
Dalia A, Uretsky NJ, Wallace LJ. Dopaminergic agonists administered into the nucleus accumbens: effects on extracellular glutamate and on locomotor activity. Brain Res 1998; 788:111-7. [PMID: 9554973 DOI: 10.1016/s0006-8993(97)01518-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hypothesis to be tested was that increased dopaminergic transmission induced by amphetamine in the nucleus accumbens results in increased glutamatergic neurotransmission in this brain area and that the increase in level of this neurotransmitter contributes to behavioral effects of psychostimulant drugs. Amphetamine (1 mg/kg, i. p.) increased the amount of extracellular glutamate in the accumbens, as measured by in vivo dialysis, and stimulated locomotor activity. Amphetamine (10 mM) infused into the accumbens by reverse dialysis through the probe produced a similar stimulation of locomotor activity as systemic amphetamine but a greater increase in extracellular glutamate levels. Both of these responses to amphetamine were attenuated by either the selective D1 antagonist SCH23390 or the selective D2 antagonist eticlopride. The combination of a D1 and D2 agonist, SKF38393 (20 mM) and quinpirole (50 mM), administered into the accumbens by reverse dialysis also increased extracellular glutamate and stimulated locomotor activity. Administration of a glutamate uptake inhibitor, threo-beta-hydroxy-aspartate (50 mM), increased extracellular glutamate but did not stimulate locomotor activity. Systemic administration of caffeine (15 mg/kg, i.p.) increased locomotor activity but did not increase extracellular levels of glutamate. These data suggest that activation of dopaminergic receptors in the nucleus accumbens results in stimulation of locomotor activity and in activation of glutamatergic transmission in this brain region. However, an increase in glutamate levels in the nucleus accumbens is neither sufficient nor necessary to produce a stimulation of locomotor activity.
Collapse
Affiliation(s)
- A Dalia
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
76
|
Rompré PP, Boye SM, Moisan J. Activation of neurotensin receptors in the prefrontal cortex stimulates midbrain dopamine cell firing. Eur J Pharmacol 1998; 341:169-72. [PMID: 9543236 DOI: 10.1016/s0014-2999(97)01475-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of medial prefrontal cortex microinjections of 3 nmol/0.5 microl of neurotensin-(1-13), the inactive fragment neurotensin-(1-8), or vehicle on the firing rate of midbrain dopamine neurons were studied in anesthetized rats. Twelve of 19 cells tested with neurotensin-(1-13) showed an average 20-25% increase in firing rate between 10 and 20 min after the injection. This effect was not mimicked by neurotensin-(1-8) (9 cells), nor by a control injection (10 cells) suggesting that it is mediated by high-affinity neurotensin receptors. These results suggest that activation of neurotensin receptors in the medial prefrontal cortex can modulate neural activity of a subpopulation of midbrain dopamine neurons.
Collapse
Affiliation(s)
- P P Rompré
- Centre de recherche de l'Hôpital Sacré-Coeur, Département de Psychiatrie, Université de Montréal, Québec, Canada.
| | | | | |
Collapse
|
77
|
Tassin JP. Norepinephrine-dopamine interactions in the prefrontal cortex and the ventral tegmental area: relevance to mental diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1997; 42:712-6. [PMID: 9327998 DOI: 10.1016/s1054-3589(08)60847-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J P Tassin
- INSERM U.114, Collège de France, Paris, France
| |
Collapse
|
78
|
Doherty MD, Gratton A. NMDA receptors in nucleus accumbens modulate stress-induced dopamine release in nucleus accumbens and ventral tegmental area. Synapse 1997; 26:225-34. [PMID: 9183812 DOI: 10.1002/(sici)1098-2396(199707)26:3<225::aid-syn4>3.0.co;2-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Converging evidence suggests that dopamine (DA) transmission in nucleus accumbens (NAcc) is modulated locally by an excitatory amino acid (EAA)-containing input possibly originating in medial prefrontal cortex (PFC). In the present study, we examined the effects of intra-NAcc administration of EAA receptor antagonists on stress-induced increases of NAcc DA levels and of dendritically released DA in the ventral tegmental area (VTA). Local injection of the NMDA receptor antagonist-AP-5 (0.05, 0.5, and 5.0 nmoles)-dose-dependently potentiated increases in NAcc DA levels elicited by 15 min of restraint stress. In contrast, local application of equivalent doses of the kainate/AMPA receptor antagonist-DNQX-failed to alter the NAcc DA stress response reliably. In a separate experiment, we found that intra-NAcc injection of AP-5 also potentiated stress-induced increases in VTA DA levels. These results indicate that EAAs acting at NMDA receptors in NAcc can modulate stress-induced DA release in this region. Our data indicate, however, that this action exerts an inhibitory influence on the NAcc DA stress response, suggesting that the relevant population of NMDA receptors are not located on NAcc DA terminals. The fact that intra-NAcc AP-5 injections also potentiated the DA stress response in VTA suggests instead an action mediated by NMDA receptors located on NAcc neurons that feedback, directly or indirectly, to cell bodies of the mesocorticolimbic DA system.
Collapse
Affiliation(s)
- M D Doherty
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Verdun, Québec, Canada
| | | |
Collapse
|
79
|
El-Khodor BF, Boksa P. Long-term reciprocal changes in dopamine levels in prefrontal cortex versus nucleus accumbens in rats born by Caesarean section compared to vaginal birth. Exp Neurol 1997; 145:118-29. [PMID: 9184115 DOI: 10.1006/exnr.1997.6437] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epidemiological evidence indicates a higher incidence of pregnancy and birth complications among individuals who later develop schizophrenia, a disorder linked to alterations in mesolimbic dopamine (DA) function. Two birth complications usually included in these epidemiological studies, and still frequently encountered in the general population, are birth by Caesarean section (C-section) and fetal asphyxia. To test the hypothesis that birth complications can produce long-lasting changes in DA systems, the present study examined the effects of Caesarean birth, with or without an added period of anoxia, on steady state monoamine levels and metabolism in various brain regions in a rat model. Pups born vaginally served as controls. At 2 months of age, in animals born by rapid C-section, steady state levels of DA were decreased by 53% in the prefrontal cortex and increased by 40% in both the nucleus accumbens and striatum, in comparison to the vaginally born group. DA turnover increased in the prefrontal cortex, decreased in the nucleus accumbens, and showed no significant change in the striatum, in the C-section group. Thus, birth by a Caesarean procedure produces long-term reciprocal changes in DA levels and metabolism in the nucleus accumbens and prefrontal cortex. This is consistent with the known inhibitory effect of increased prefrontal cortex DA activity on DA release in the nucleus accumbens. By contrast to birth by rapid C-section alone, young adult animals, that had been born by C-section with 15 min of added anoxia, showed no change in steady state DA levels in the prefrontal cortex, nucleus accumbens, or striatum and a significant decrease in DA turnover only in the nucleus accumbens, in comparison to the vaginally born group. Levels of norepinephrine, serotonin, and its metabolite, 5-hydroxyindole acetic acid, were unchanged in all groups, indicating relatively specific effects on DA systems. Although appearing robust at birth on gross observation, more subtle measurements revealed that rat pups born by C-section show altered respiratory rates and activity levels and increased levels of whole brain lactate, suggestive of low grade brain hypoxia, during the first 24 h of life, in comparison to vaginally born controls. Pups born by C-section with 15 min of added acute anoxia were pale, hypotonic, and inactive at birth and showed reduced respiration and high brain lactate levels. However, these alterations resolved by 1-5 h after birth and, with few exceptions, animals in the anoxic group remained normal with respect to these parameters during the remainder of the first 24 h of life. Immediately after birth, levels of plasma epinephrine, a hormone known to play a role in neonatal adaptation to extrauterine life and protection against hypoxia, were decreased in pups born by C-section but increased in pups born by C-section with 15 min added anoxia, in comparison to levels measured in vaginally born controls. These early developmental alterations could contribute to long-term alterations in dopaminergic parameters observed in rats born by C-section, with or without added anoxia. It is concluded that C-section birth is sufficient perturbation to produce long-lasting effects on DA levels and metabolism in the central nervous system of the rat. These findings highlight the sensitivity of DA pathways to variations in birth procedure and support the notion that birth complications might contribute to the pathophysiology of disorders involving central dopaminergic neurons, such as schizophrenia.
Collapse
Affiliation(s)
- B F El-Khodor
- Department of Psychiatry, McGill University, Douglas Hospital Research Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
80
|
Gorelova N, Yang CR. The course of neural projection from the prefrontal cortex to the nucleus accumbens in the rat. Neuroscience 1997; 76:689-706. [PMID: 9135043 DOI: 10.1016/s0306-4522(96)00380-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Corticostriatal neurons linking the prefrontal cortex and the nucleus accumbens connect the terminal fields of the ascending mesotelencephalic dopamine neurons and may potentially mediate cortical dopaminergic modulation of subcortical dopamine transmission. In our attempt to develop a brain slice preparation that maximally preserves this prefrontal accumbens pathway for in vitro electrophysiological studies, knowledge of the complete course of its projection is critical. Microinjection of biotin-dextran amine as an anterograde tracer into the prefrontal cortex revealed the following in the coronal, sagittal and oblique planes of rat brain. (1) Axonal fibers from the rostral prelimbic cortex projected at an angle of approximately 60 degrees to the horizontal plane through the infralimbic region and mainly entered the rostromedial accumbens. Some also chose a ventral route to enter the "core" of the accumbens. (2) From the central ventral prelimbic regions, axons spread out diffusely and descended to the dorsal accumbens. They then entered throughout the rostral-caudal "shell" of the nucleus accumbens. (3) From the caudal prelimbic region of the prefrontal cortex, axonal fibers descended approximately 10 degrees to the coronal plane and entered the dorsal nucleus accumbens and the caudate nucleus. The denser caudate-projecting fibers gave rise to collaterals that entered the accumbens "core". These results suggest that brain slices that preserve the rostral prelimbic-medial accumbens pathway can be obtained by an oblique (approximately 60 degrees) cut, whereas preservation of the caudal prefrontal-accumbens neurons necessitates a 10 degrees cut. Finally, in whole-cell patch-clamp recordings of accumbens neurons in such slices, orthodromically evoked excitatory postsynaptic potentials to deep layer prefrontal cortical stimulation were observed, thus confirming the functional preservation of portions of this prefrontal cortex nucleus accumbens pathway.
Collapse
Affiliation(s)
- N Gorelova
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
81
|
Broersen LM, Heinsbroek RP, de Bruin JP, Olivier B. Effects of local application of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition. Biol Psychiatry 1996; 40:1083-90. [PMID: 8931910 DOI: 10.1016/s0006-3223(95)00595-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The involvement of the dopamine (DA) innervation of the medial prefrontal cortex (PFC) in attention was studied in a latent inhibition (LI) paradigm in rats. LI becomes evident by a retardation of conditioning to a stimulus after nonreinforced preexposure to that stimulus. LI is thought to reflect an animal's ability not to attend to irrelevant stimuli and is often used as an animal paradigm modeling schizophreniclike attentional deficits. In the present study the effects of bilateral infusions of the DA receptor agonist apomorphine (APO, 9.0 micrograms/side) and the DA receptor antagonist cis-flupenthixol (FLU, 12.0 micrograms/side) into the medial PFC on LI were assessed. Although in comparison with vehicle both APO and FLU infusions attenuated response suppression in nonpreexposed animals, the drugs differentially affected LI in preexposed animals. After infusions of APO animals failed to show conditioned suppression, whereas FLU-treated animals displayed as much suppression of responding as nonpreexposed animals. The abolition of LI induced by FLU infusions into the medial PFC suggests that prefrontal DA is involved in attentional processes in a way opposite to the established role of subcortical DA systems in these processes.
Collapse
Affiliation(s)
- L M Broersen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, The Netherlands
| | | | | | | |
Collapse
|
82
|
Ellenbroek BA, Budde S, Cools AR. Prepulse inhibition and latent inhibition: the role of dopamine in the medial prefrontal cortex. Neuroscience 1996; 75:535-42. [PMID: 8931016 DOI: 10.1016/0306-4522(96)00307-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The prefrontal cortex has often been implicated in the pathophysiology of schizophrenia. Schizophrenic patients are known to suffer from certain information processing deficits, which can be detected, among others, in the prepulse inhibition and the latent inhibition paradigm. The present study was designed to investigate the role of dopamine receptors in the medial prefrontal cortex in prepulse inhibition and latent inhibition. The results show that the local application of the selective antagonist of the dopamine D1-like receptor family, SCH 39166, into the medial prefrontal cortex dose-dependently reduced prepulse inhibition. Likewise, the selective antagonist of the dopamine D2-like receptor family, sulpiride, injected into the medial prefrontal cortex dose-dependently reduced prepulse inhibition. Neither of these antagonists, however, influenced latent inhibition as measured with the conditioned taste aversion paradigm. These data further indicate that the neuronal substrates of latent inhibition and prepulse inhibition are clearly different. Since the prefrontal cortex is intimately related to subcortical dopamine, the possible differential involvement of subcortical dopaminergic terminal fields in prepulse inhibition and latent inhibition is discussed.
Collapse
|
83
|
Doherty MD, Gratton A. Medial prefrontal cortical D1 receptor modulation of the meso-accumbens dopamine response to stress: an electrochemical study in freely-behaving rats. Brain Res 1996; 715:86-97. [PMID: 8739626 DOI: 10.1016/0006-8993(95)01557-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Voltammetry was used to study the role of prefrontal cortex (PFC) dopamine (DA) in modulating the nucleus accumbens (NAcc) DA response to stress. Signal increases elicited in NAcc by 15 min of restraint were monitored in freely-behaving rats following intra-PFC microinjections of D1 and D2 receptor-selective drugs. The exact site of injection was first determined by assessing the electrochemical response to stress at two dorsal-ventral levels of PFC. Consistent with previous reports, a pronounced stress response was observed ventrally at sites within the infralimbic PFC but not dorsally within the superficial layers of PFC. When microinjected into the infralimbic PFC, the D1 receptor antagonist SCH 23390 significantly enhanced the NAcc stress response. While the D1 receptor agonist SKF 38393 tended to decrease the NAcc stress response, it failed to do so reliably. Neither sulpiride (D2 receptor antagonist) nor quinpirole (D2 receptor agonist) had a significant effect. Finally, systemic administration of the selective DA uptake inhibitor GBR 12909 dose-dependently potentiated stress-induced signal increases in NAcc and in PFC, indicating that the electrochemical responses to stress in both regions were due primarily to increases in extracellular DA levels. Together, these data add to other evidence indicating that the PFC exerts an inhibitory influence on subcortical DA transmission. Specifically, the present results suggest that the NAcc DA response to stress is dampened by the concurrent activation of meso-PFC DA neurons and that this action is mediated, at least in part, by D1 receptors in PFC.
Collapse
Affiliation(s)
- M D Doherty
- Douglas Hospital Research Center, McGill University, Department of Psychiatry, Montréal, Qué., Canada
| | | |
Collapse
|
84
|
Noel MB, Gratton A. Electrochemical evidence of increased dopamine transmission in prefrontal cortex and nucleus accumbens elicited by ventral tegmental mu-opioid receptor activation in freely behaving rats. Synapse 1995; 21:110-22. [PMID: 8584972 DOI: 10.1002/syn.890210204] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronoamperometry was used in combination with monoamine-selective electrodes to monitor, in nucleus accumbens (NAcc) and prefrontal cortex (PFC) of freely behaving rats, changes in dopamine (DA)-like electrochemical signals elicited by unilateral ventral tegmental microinjections of the selective mu-opioid receptor agonist D-Ala, N-Me-Phe-Gly-Ol-Enkephalin (DAMGO; 0.01, 0.1, and 1.0 nmol). The results show that DAMGO dose-dependently increased electrochemical signals both in Nacc and PFC within a few minutes of injection. While DAMGO elicited signal increases of comparable amplitudes in both regions, the increases recorded in PFC were significantly longer lasting than those in NAcc; at the highest dose tested (1.0 nmol), DAMGO produced signal increases that lasted (mean +/- sem) 129 +/- 7.3 min in PFC and 96 +/- 12.5 min in NAcc. Pretreatment with the opioid receptor antagonist, naloxone (2 mg/kg, sc), significantly attenuated the peak amplitude and reduced the duration of DAMGO-induced (0.1 nmol) signal increases both in PFC and NAcc. In contrast, pretreatment with apomorphine (50 micrograms/kg, sc), a D1/D2 DA receptor agonist, significantly reduced the duration and the rate of rise of the signal increases in both regions but had little effect on the peak increases in signal. Unilateral ventral tegmental DAMGO administration (0.01, 0.1, and 1.0 nmol) also caused dose-dependent increases in contraversive circling the duration of which approximated that of the signal increases recorded in NAcc. However, differences in the time courses of DAMGO-induced contraversive circling and signal increases in NAcc suggest that the behavioral stimulant effect of ventral tegmental mu-opioid receptor activation may not be mediated exclusively by meso-NAcc DA neurons. The results of this study suggest that enkephalins modulate the activity of meso-PFC DA neurons and that behaviorally relevant activation of mu-opioid receptors in the ventral tegmental area increases DA transmission in PFC to a same, if not to a greater extent as in NAcc. These findings are discussed in relation to evidence indicating that the response of meso-NAcc DA neurons to a variety of stimuli, including drugs of abuse, is indirectly regulated by a DA-sensitive neurons in PFC.
Collapse
Affiliation(s)
- M B Noel
- McGill University, Douglas Hospital Research Center, Verdun, Quebec, Canada
| | | |
Collapse
|
85
|
Banks KE, Gratton A. Possible involvement of medial prefrontal cortex in amphetamine-induced sensitization of mesolimbic dopamine function. Eur J Pharmacol 1995; 282:157-67. [PMID: 7498271 DOI: 10.1016/0014-2999(95)00306-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined the role of the dopamine projection to the medial prefrontal cortex in amphetamine-induced sensitization of meso-nucleus accumbens dopamine function. In the first experiment, male rats received bilateral microinfusions either of 6-hydroxydopamine or of vehicle (sham) into prefrontal cortex. Six weeks later animals from both groups were injected once daily for 5 consecutive days with either amphetamine or saline. Two days after the last daily injection, all the animals were each implanted with a voltammetric electrode into nucleus accumbens. Increases in dopamine-dependent electrochemical signals elicited by amphetamine were monitored 3-4 days later using chronoamperometry. The results showed that amphetamine stimulates dopamine efflux to a greater extent in the nucleus accumbens of lesioned than of sham-lesioned animals. Furthermore, of the animals with prefrontal cortical lesions, amphetamine-induced dopamine efflux was greater in animals previously treated with the drug than in animals with no prior drug experience. In a second experiment, sensitization to the acute locomotor-stimulant effect of amphetamine was examined in prefrontal cortex-lesioned and sham-lesioned animals. The locomotor response of all animals to a test dose of amphetamine was first monitored and then on each of the subsequent 5 days, lesioned and sham-lesioned animals received an injection either of amphetamine or of saline. Five and then 13 days later, the locomotor response of all animals to the test dose of amphetamine was again measured. The results of this study showed that prefrontal cortex-lesioned animals were less responsive to the first amphetamine injection than sham-lesioned animals. However, after repeated daily administration, the acute locomotor response of lesioned animals to amphetamine was significantly greater than that of sham-lesioned animals with the same drug history. These findings are generally consistent with evidence from other sources suggesting that the dopamine input to medial prefrontal cortex exerts an indirect, inhibitory influence on mesolimbic dopamine transmission. They also suggest that long-term changes to a dopamine-sensitive mechanism in prefrontal cortex may contribute to the development of stimulant-induced sensitization of mesolimbic dopamine function.
Collapse
Affiliation(s)
- K E Banks
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
86
|
King D, Finlay JM. Effects of selective dopamine depletion in medial prefrontal cortex on basal and evoked extracellular dopamine in neostriatum. Brain Res 1995; 685:117-28. [PMID: 7583236 DOI: 10.1016/0006-8993(95)00421-l] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we demonstrate that 6-hydroxydopamine (6-OHDA) can be used to produce a lesion of dopamine (DA) terminals in medial prefrontal cortex (mPFC) while sparing the noradrenergic innervation in this region. Furthermore, we determined the impact of these lesions on both extracellular DA in neostriatum, using in vivo microdialysis, and locomotor activity. Our results demonstrate that, whereas higher doses of 6-OHDA (> or = 4 micrograms) depleted both DA and norepinephrine (NE) in mPFC, 1 micrograms 6-OHDA produced a depletion of DA (-79%) without significantly affecting NE content (-13%). Selective depletion of DA content in mPFC did not alter basal levels of extracellular DA in neostriatum determined 14 days after the lesion. The lesion also did not alter the ability of acute tail pressure (30 min) to increase extracellular DA in neostriatum or to stimulate locomotor activity. Depletion of DA in mPFC did not alter the ability of d-amphetamine (1.5 mg/kg, i.p.) to increase intracellular DA in neostriatum. In contrast, the maximum amphetamine-induced increase in locomotor activity was attenuated in lesioned rats as compared with control rats (670 and 280 locomotor counts/15 min, respectively). These data suggest that in the intact system, DA terminals in mPFC do not regulate extracellular DA in neostriatum. In addition, these data confirm that DA terminals in mPFC can influence stimulant-induced locomotion.
Collapse
Affiliation(s)
- D King
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA
| | | |
Collapse
|
87
|
Gaspar P, Bloch B, Le Moine C. D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 1995; 7:1050-63. [PMID: 7613610 DOI: 10.1111/j.1460-9568.1995.tb01092.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dopaminergic input to the frontal cortex has an important role in motor and cognitive functions. These effects are mediated by dopamine receptors both of type D1 and of type D2, although the neural circuits involved are not completely understood. We used in situ hybridization to determine the cellular localization of D1 and D2 receptor mRNAs in the rat frontal cortex. Retrograde tracing was used in the same animals to identify the main cortical efferent populations. Fluorogold was injected into the different cortical targets of the frontal cortex and sections were hybridized with D1 and D2 35S-labelled cRNA probes. D1 and D2 mRNA-containing neurons were present in all the cortical areas investigated, with greater expression in the medial prefrontal, insular and cingulate cortexes and lower expression in the motor and parietal cortexes. Neurons containing D1 mRNA were most abundant in layer VIb; they were also present in layers VIa and V of all cortical layers and in layer II of the medial prefrontal, cingulate and insular areas. Double labelling with fluorogold demonstrated that D1 mRNA was present in corticocortical, corticothalamic and corticostriatal neurons. Neurons containing D2 mRNA were essentially restricted to layer V, but only in corticostriatal and corticocortical neurons. Neither D1 nor D2 mRNA was found in corticospinal or corticopontine neurons. The present results demonstrate that D1 and D2 receptor genes are expressed in efferent cortical populations, with higher expression for D1. In spite of an overlap in some cortical layers, the expression of D1 and D2 receptor genes is specific for different categories of pyramidal neurons.
Collapse
Affiliation(s)
- P Gaspar
- INSERM U106, Bâtiment de Pédiatrie, Hôpital Salpêtrière, Paris, France
| | | | | |
Collapse
|
88
|
Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S. Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 1994; 79:945-55. [PMID: 8001143 DOI: 10.1016/0092-8674(94)90026-4] [Citation(s) in RCA: 277] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The brain mesoaccumbens dopamine system is intricately involved in the psychomotor stimulant activities of cocaine. However, the extent to which different dopamine receptors mediate these effects has not yet been firmly established. The present study used dopamine D1 receptor mutant mice produced by gene targeting to investigate the role of this receptor in the effects induced by cocaine. In contrast with wild-type mice, which showed a dose-dependent increase in locomotion, D1 mutant mice exhibited a dose-dependent decrease. Electrophysiological studies of dopamine-sensitive nucleus accumbens neurons demonstrated a marked reduction in the inhibitory effects of cocaine on the generation of action potentials. In addition, the inhibitory effects of dopamine as well as D1 and D2 agonists were almost completely abolished, whereas those of serotonin were unaffected. D2-like dopamine receptor binding was also normal. These results demonstrate the essential role of the D1 receptor in the locomotor stimulant effects of cocaine and in dopamine-mediated neurophysiological effects within the nucleus accumbens.
Collapse
Affiliation(s)
- M Xu
- Howard Hughes Medical Institute, Cambridge
| | | | | | | | | | | | | |
Collapse
|
89
|
Koch M, Bubser M. Deficient sensorimotor gating after 6-hydroxydopamine lesion of the rat medial prefrontal cortex is reversed by haloperidol. Eur J Neurosci 1994; 6:1837-45. [PMID: 7704295 DOI: 10.1111/j.1460-9568.1994.tb00576.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study sought to test the hypothesis that dopamine in the prefrontal cortex exerts an inhibitory influence on subcortical dopamsine systems and that depletion of prefrontal dopamine may affect behaviour via an increase in dopamine release in the basal ganglia. We used prepulse inhibition of the acoustic startle response, i.e. the inhibition of the acoustic startle response by a preceding non-startling stimulus, as the behavioural test, because this phenomenon of sensorimotor gating is modified in opposite directions by dopamine in the prefrontal cortex and in the basal ganglia. Rats were tested for prepulse inhibition before and after injections of the neurotoxin 6-hydroxydopamine into the medial prefrontal cortex. We attempted to differentiate the contributions of prefrontal dopamine and noradrenaline by pretreating the animals with desipramine (6-OHDAMI rats) or bupropion (6-OHDABUP rats), selective inhibitors of noradrenaline and dopamine reuptake respectively. 6-Hydroxydopamine lesion reduced prefrontal dopamine by 90% and noradrenaline by 80% in 6-OHDADMI rats, while prefrontal dopamine was reduced by 54% and noradrenaline by 95% in 6-OHDABUP rats. The ability of an acoustic prepulse (75 dB, 10 kHz) to inhibit the response to a startle pulse (100 dB noise burst) was maintained in sham-lesioned rats and in 6-OHDABUP rats. However, there was a marked reduction of prepulse inhibition (by 26%) in the 6-OHDADMI rats. Systemic administration of the dopamine antagonist haloperidol (0.05 mg/kg), which did not affect prepulse inhibition in sham-lesioned and in 6-OHDABUP rats, antagonized the lesion-induced deficit in prepulse inhibition in 6-OHDADMI rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Koch
- Tierphysiologie, Universität Tübingen, Germany
| | | |
Collapse
|
90
|
Bubser M, Schmidt WJ. Injection of apomorphine into the medial prefrontal cortex of the rat increases haloperidol-induced catalepsy. Biol Psychiatry 1994; 36:64-7. [PMID: 8080907 DOI: 10.1016/0006-3223(94)90065-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M Bubser
- Department of Neuropharmacology, University of Tubingen, Germany
| | | |
Collapse
|
91
|
Bubser M. 6-Hydroxydopamine lesions of the medial prefrontal cortex of rats do not affect dopamine metabolism in the basal ganglia at short and long postsurgical intervals. Neurochem Res 1994; 19:421-5. [PMID: 8065499 DOI: 10.1007/bf00967319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dopamine (DA) in the medial prefrontal cortex (mPFC) has been implicated in the regulation of subcortical DA function. To further characterize the potential interaction between cortical and subcortical DA systems, the short- and long-term neurochemical consequences of 6-hydroxydopamine (6-OHDA) lesions of the mPFC of rats were investigated in the mPFC and in its subcortical target structures. 4 to 5, 10 to 12 and 32 to 36 days after infusion of 6-OHDA, DA was depleted to a larger extent than noradrenaline and serotonin. No lesion-induced changes of DA and its metabolites were detected in subcortical structures. These results show that prefrontal 6-OHDA lesions produce immediate and long lasting depletions of prefrontal monoamines, especially of DA, without increasing basal DA metabolism in the striatum and nucleus accumbens.
Collapse
Affiliation(s)
- M Bubser
- Department of Neuropharmacology, University of Tübingen, Germany
| |
Collapse
|
92
|
Blanc G, Trovero F, Vezina P, Hervé D, Godeheu AM, Glowinski J, Tassin JP. Blockade of prefronto-cortical alpha 1-adrenergic receptors prevents locomotor hyperactivity induced by subcortical D-amphetamine injection. Eur J Neurosci 1994; 6:293-8. [PMID: 7912614 DOI: 10.1111/j.1460-9568.1994.tb00272.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The stimulation of cortical dopaminergic D1 receptors can counteract the increased locomotor activity evoked by D-amphetamine application in the nucleus accumbens (Vezina et al., Eur. J. Neurosci., 3, 1001-1007, 1991). Moreover, an alpha 1 antagonist, prazosin, prevents the locomotor hyperactivity induced by electrolytic lesions of the ventral tegmental area (Trovero et al., Neuroscience, 47, 69-76, 1992). Attempts were thus made to see whether blockade of alpha 1-adrenergic receptors in the rat prefrontal cortex could reduce nucleus accumbens D-amphetamine-evoked locomotor activity. Rats implanted chronically and bilaterally with cannulae into the medial prefrontal cortex and the nucleus accumbens were used for this purpose and locomotor activity was monitored in circular corridors. Preliminary experiments indicated that intraperitoneal injection of prazosin (0.06 mg/kg) reduces the locomotor hyperactivity induced by the peripheral administration of D-amphetamine (0.75 mg/kg). This effect of prazosin was not observed when locomotor hyperactivity was obtained by an intraperitoneal injection of scopolamine (0.8 mg/kg). Bilateral nucleus accumbens injections of D-amphetamine (4.0 nmol/side) markedly increased locomotor activity, as estimated in a 30 min period. Prior (20 min) bilateral injections of either prazosin or WB-4101 (0.16 pmol) into the medial prefrontal cortex abolished the nucleus accumbens D-amphetamine-evoked response. The recovery of the nucleus accumbens D-amphetamine-evoked response was closely dependent on the amount of prazosin used, very prolonged inhibitory effects of the drug being seen with a high amount (> 4 days with 160 pmol). In contrast, whatever the amount of WB-4101 used (0.16-160 pmol), recovery occurred within 3 days.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
93
|
Vezina P, Blanc G, Glowinski J, Tassin JP. Blockade of D-1 dopamine receptors in the medial prefrontal cortex produces delayed effects on pre- and postsynaptic indices of dopamine function in the nucleus accumbens. Synapse 1994; 16:104-12. [PMID: 8197574 DOI: 10.1002/syn.890160204] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The present experiments assessed the acute and delayed effects of D-1 dopamine (DA) receptor blockade in the medial prefrontal cortex (mPFC) on pre- and postsynaptic indices of DA neurotransmission in the nucleus accumbens (N.Acc). Different groups of rats received intra-mPFC injections of saline (control animals) or the D-1 DA receptor antagonist SCH-23390 (0.25 microgram/side). Acutely, intra-mPFC injections of this antagonist did not affect spontaneous locomotion but significantly increased the locomotion induced by intra-N.Acc. amphetamine (1.5 micrograms/side), in agreement with our earlier findings [Vezina et al. (1991) Eur. J. Neurosci., 3:1001-1007]. When tested two days post-injection, however, mPFC-SCH-23390 preexposed animals showed lower levels of locomotor activity than Control animals in response to intra-N.Acc. injections of amphetamine. This effect was not observed in other animals preexposed two days earlier to mPFC injections of amphetamine (2.5 micrograms/side) or the D-2 DA receptor antagonist sulpiride (1.0 microgram/side). Animals preexposed two days earlier to mPFC SCH-23390 also showed higher levels of locomotor activity (+98%) when tested with intra-N.Acc. injections of the D-1 DA receptor agonist SKF-38393 (1.0 microgram/side) and a 36% increase in maximal DA-sensitive adenylate cyclase activity in comparison to Control animals. These effects were no longer observed in animals tested seven days following the mPFC SCH-23390 injections. These results demonstrate delayed actions resulting from cortical D-1 DA receptor blockade.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Vezina
- Chaire de Neuropharmacologie, INSERM U. 114, Collège de France, Paris
| | | | | | | |
Collapse
|
94
|
Bubser M, Koch M. Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology (Berl) 1994; 113:487-92. [PMID: 7862864 DOI: 10.1007/bf02245228] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prepulse inhibition (PPI) of the acoustic startle response (ASR) is impaired by dopamine (DA) overactivity in the nucleus accumbens and anteromedial striatum. Since there is evidence that DA in the medial prefrontal cortex exerts an inhibitory control on striatal DA systems, it was investigated whether depletion of prefrontal DA reduces PPI. Rats were tested for PPI both before and after injections (2 x 1 microliter per side) of vehicle, a low (3.0 microgram/microliter) or a high (6.0 microgram/microliter) dose of 6-hydroxydopamine hydrobromide (6-OHDA) into the prefrontal cortex. Only the high dose of 6-OHDA, leading to an 87% depletion of prefrontal DA, impaired PPI. The ability of an acoustic prepulse (75 dB, 10 kHz) to reduce the response to a startle pulse (100 dB noise burst) was maintained in sham lesioned rats, but was significantly disturbed in rats lesioned with the high dose of 6-OHDA. The 6-OHDA treatment did not affect the ASR amplitude in the absence of a prepulse. The reduction of PPI in lesioned rats correlated with the extent of DA depletion. These results suggest that the DA innervation of the prefrontal cortex is involved in the modulation of the ASR and they provide further evidence for opposite actions of prefrontal and subcortical DA systems in the control of behaviour. The present findings are discussed with regard to the potential role of prefrontal DA in schizophrenia.
Collapse
Affiliation(s)
- M Bubser
- Abteilung Neuropharmakologie, Universität Tübingen, Germany
| | | |
Collapse
|
95
|
Altier N, Stewart J. Intra-VTA infusions of the substance P analogue, DiMe-C7, and intra-accumbens infusions of amphetamine induce analgesia in the formalin test for tonic pain. Brain Res 1993; 628:279-85. [PMID: 7508809 DOI: 10.1016/0006-8993(93)90965-p] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Experiments were designed to examine the analgesic effects of SP injected into the ventral tegmental area (VTA). Rats received bilateral intra-VTA infusions of 3.0 micrograms/0.5 microliter/side of the SP analogue, DiMe-C7, or the vehicle, either immediately prior to or 25 min following an injection of 0.05 ml of 2.5% formalin into one hind paw. Formalin-induced pain responses were continuously recorded for 75 min. DiMe-C7 attenuated pain responses for approximately 30 min; the analgesia was more potent and longer-lasting when DiMe-C7 was infused after, rather than prior to, the early pain phase. In another set of experiments, rats were tested in the formalin test immediately following bilateral infusions of amphetamine (1.5 or 2.5 micrograms/0.05 microliter/side) into either the medial prefrontal cortex (mPFC) or the nucleus accumbens septi (NAS). Amphetamine failed to alter pain responses when infused into the mPFC, but both doses attenuated pain responses during 25 min when infused into the NAS. There was no evidence for pain inhibition in the tail-flick test for phasic pain following either intra-VTA DiMe-C7 or intra-NAS amphetamine. The finding that intra-VTA DiMe-C7 and intra-NAS amphetamine produces analgesia in the formalin, but not the tail-flick test, suggests that activation of mesolimbic dopamine (DA) neurons contributes to suppression of tonic pain. Because stressors attenuate tonic pain responses, and are known to cause SP release in the VTA, we speculate that SP-induced activation of midbrain DA systems may mediate a form of pain- or stress-induced pain inhibitory system.
Collapse
Affiliation(s)
- N Altier
- Department of Psychology, Concordia University, Montréal, Qué, Canada
| | | |
Collapse
|
96
|
Sorg BA, Kalivas PW. Behavioral sensitization to stress and psychostimulants: Role of dopamine and excitatory amino acids in the mesocorticolimbic system. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s1044-5765(05)80042-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
97
|
Rougé-Pont F, Piazza PV, Kharouby M, Le Moal M, Simon H. Higher and longer stress-induced increase in dopamine concentrations in the nucleus accumbens of animals predisposed to amphetamine self-administration. A microdialysis study. Brain Res 1993; 602:169-74. [PMID: 8448654 DOI: 10.1016/0006-8993(93)90260-t] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Individual vulnerability to the reinforcing effects of drugs appears to be a crucial factor in the development of addiction in humans. In the rat, individuals at risk for psychostimulant self-administration (SA) may be identified from their locomotor reactivity to a stress situation such as exposure to a novel environment. Animals with high locomotor responses to novelty (high responders, HR) acquire amphetamine SA, while animals with low responses (low responders, LR) do not. In this study we examined by microdialysis whether stress-induced extracellular dopamine (DA) concentrations in the nucleus accumbens differed between these two groups of animals. This neurotransmitter was studied because it is thought to be involved in the reinforcing effects of psychostimulants. Furthermore, previous studies have shown that HR animals have a higher basal DOPAC/DA ratio in the nucleus accumbens and higher extracellular concentrations of dopamine in this structure in response to cocaine. The stress procedure used in this experiment consisted of a 10 min tail-pinch. HR animals displayed a higher and longer stress-induced changes in DA concentrations than the LR group. Regression analysis showed that stress-induced changes in DA levels accounted for 75% of the variance observed in the locomotor response to a novel environment. Since higher DA activity in the nucleus accumbens has been reported in animals in which the propensity to psychostimulant SA is induced by brain lesions or life events, this biochemical modification may be one neurobiological substrate of the predisposition to acquire psychostimulant self-administration.
Collapse
Affiliation(s)
- F Rougé-Pont
- Psychobiologie des Comportements Adaptatifs, I.N.S.E.R.M.U.259, Université de Bordeaux II, France
| | | | | | | | | |
Collapse
|
98
|
Mattingly BA, Rowlett JK, Lovell G. Effects of daily SKF 38393, quinpirole, and SCH 23390 treatments on locomotor activity and subsequent sensitivity to apomorphine. Psychopharmacology (Berl) 1993; 110:320-6. [PMID: 7831425 DOI: 10.1007/bf02251287] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In three experiments, male Wistar rats (250-350 g) were injected (SC) daily with the D1-type dopamine receptor agonist, SKF 38393 (0.0, 4.0, 8.0, or 16.0 mg/kg), the D2-type dopamine receptor agonist, quinpirole (0.0, 0.3, or 3.0 mg/kg), and/or the D1-type dopamine receptor antagonist, SCH 23390 (0.0 or 0.5 mg/kg) for 8-10 days. After each daily injection, the rats were tested for locomotor activity in photocell arenas for 20 min. Following this subchronic pretreatment, all rats were challenged with the mixed dopamine receptor agonist apomorphine (1.0 mg/kg, SC) and tested for locomotor activity. SKF 38393 treatments produced a dose-dependent decrease in locomotor activity which did not significantly change across days. Quinpirole also depressed locomotor activity when first injected, but this quinpirole-induced inhibition of activity progressively decreased across days. When subsequently challenged with apomorphine, rats in both the SKF 38393 and the quinpirole pretreatment groups displayed greater locomotor activity than rats pretreated with only vehicle. Although SCH 23390 pretreatments did not affect subsequent sensitivity to apomorphine, SCH 23390 completely blocked the effect of quinpirole. These results suggest that although repeated D1 receptor stimulation may be sufficient to induce behavioral sensitization to apomorphine, D2 receptor stimulation also contributes to the effect.
Collapse
Affiliation(s)
- B A Mattingly
- Department of Psychology, Morehead State University, KY 40351
| | | | | |
Collapse
|
99
|
Tassin JP. NE/DA interactions in prefrontal cortex and their possible roles as neuromodulators in schizophrenia. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1992; 36:135-62. [PMID: 1356142 DOI: 10.1007/978-3-7091-9211-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The monoaminergic innervation of the rat prefrontal cortex arises from well-defined mesencephalic nuclei, with noradrenergic (NE) neurons located in the locus coeruleus, dopaminergic (DA) neurons located in the ventral tegmental area, and serotonergic (5-HT) neurons originating in the raphe nuclei. Specific destruction of the NE bundle was found to induce morphological (i.e., sprouting) as well as metabolic (i.e., changes in rate of DA utilization) modifications of mesocortical DA neurons, suggesting that these two catecholaminergic systems have functional interactions within the prefrontal cortex. This was substantiated by experiments showing that DA afferents modulate the sensitivity of cortical post-synaptic beta-adrenergic receptors and that, reciprocally, NE neurons control the sensitivity of cortical D1 receptors. Behavioural and pharmacological data have further indicated that the stimulation of cortical alpha-1 adrenergic receptors inhibits cortical DA transmission at D1 receptors. Secondly, we have attempted to analyze how such interactions between neuromodulatory systems may be related to the development of mental diseases such as schizophrenia. On the basis of studies in the literature describing the effects produced by the ingestion of hallucinogenic drugs or data collected regarding REM sleep, it is postulated that two modes of brain functioning exist: analogical and cognitive. Each mode is characterized by differences in the relative activities of NE, DA and 5-HT neurons. At birth, during REM sleep, and following the ingestion of hallucinogens, the mode of brain functioning is essentially analogical; in contrast, both analogic and cognitive modes are postulated to coexist in the awake state. Oscillations between these two modes are under the control of monoaminergic systems on which an increase in cortical DA release favours the cognitive processing mode, whereas intermittent activations of NE neurons would switch the brain into the analogical mode of processing. It is proposed that schizophrenic patients with "positive" symptoms suffer from an abnormal preponderance of the analogical mode while awake, whereas "negative" symptoms are due to the excessive presence of the cognitive mode. Although pure biological deficits cannot be excluded, these dysfunctions could be related to the absence of particular environmental variables early in the development of these patients. This condition is probably required to establish normal regulatory control of monoaminergic neuronal activity.
Collapse
Affiliation(s)
- J P Tassin
- Chaire de Neuropharmacologie, INSERM U.114, Collège de France, Paris
| |
Collapse
|
100
|
Tassin JP, Trovero F, Hervé D, Blanc G, Glowinski J. Mesocortical dopamine-neurotensin neurons. Possible opposite role of noradrenergic pathways on heteroregulations of dopamine (D1) and neurotensin postsynaptic receptors in the rat prefrontal cortex. Ann N Y Acad Sci 1992; 668:205-16. [PMID: 1334386 DOI: 10.1111/j.1749-6632.1992.tb27351.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|