51
|
Lee SH, Huh N, Lee JW, Ghim JW, Lee I, Jung MW. Neural Signals Related to Outcome Evaluation Are Stronger in CA1 than CA3. Front Neural Circuits 2017. [PMID: 28638322 PMCID: PMC5461339 DOI: 10.3389/fncir.2017.00040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have shown previously that CA1 conveys significant neural signals necessary to update value of the chosen target, namely chosen value and reward signals. To better understand hippocampal neural processes related to valuation, we compared chosen value- and reward-related neural activity between the CA3 and CA1 regions. Single units were recorded with tetrodes from the dorsal CA3 and CA1 regions of rats performing a dynamic foraging task, and chosen value- and reward-related neural activity was estimated using a reinforcement learning model and multiple regression analyses. Neural signals for chosen value and reward converged in both CA3 and CA1 when a trial outcome was revealed. However, these neural signals were stronger in CA1 than CA3. Consequently, neural signals for reward prediction error and updated chosen value were stronger in CA1 than CA3. Together with our previous finding that CA1 conveys stronger value signals than the subiculum, our results raise the possibility that CA1 might play a particularly important role among hippocampal subregions in evaluating experienced events.
Collapse
Affiliation(s)
- Sung-Hyun Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea.,Neuroscience Graduate Program, Ajou University School of MedicineSuwon, South Korea
| | - Namjung Huh
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| | - Jong Won Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| | - Jeong-Wook Ghim
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Science, Seoul National UniversitySeoul, South Korea
| | - Min W Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic ScienceDaejeon, South Korea.,Neuroscience Graduate Program, Ajou University School of MedicineSuwon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
52
|
Nokia MS, Gureviciene I, Waselius T, Tanila H, Penttonen M. Hippocampal electrical stimulation disrupts associative learning when targeted at dentate spikes. J Physiol 2017; 595:4961-4971. [PMID: 28426128 DOI: 10.1113/jp274023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/10/2017] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Dentate spikes are fast fluctuations of hilar local-field potentials that take place during rest and are thought to reflect input arriving from the entorhinal cortex to the hippocampus. During dentate spikes, neuronal firing in hippocampal input (dentate gyrus) and output (CA1/CA3) regions is uncoupled. To date, the behavioural significance of dentate spikes is unknown. Here, we provide evidence that disrupting the dentate spike-related uncoupling of the dentate gyrus and the CA1/CA3 subregions for 1 h after training retards associative learning. We suggest dentate spikes play a significant role in memory consolidation. ABSTRACT Hippocampal electrophysiological oscillations, namely theta and ripples, have been implicated in encoding and consolidation of new memories, respectively. According to existing literature, hippocampal dentate spikes are prominent, short-duration (<30 ms), large-amplitude (∼2-4 mV) fluctuations in hilar local-field potentials that take place during awake immobility and sleep. Interestingly, previous studies indicate that during dentate spikes dentate gyrus granule cells increase their firing while firing of CA1 pyramidal cells are suppressed, thus resulting in momentary uncoupling of the two hippocampal subregions. To date, the behavioural significance of dentate spikes is unknown. Here, to study the possible role of dentate spikes in learning, we trained adult male Sprague-Dawley rats in trace eyeblink classical conditioning. For 1 h immediately following each conditioning session, one group of animals received hippocampal stimulation via the ventral hippocampal commissure (vHC) contingent on dentate spikes to disrupt the uncoupling between the dentate gyrus and the CA1 subregions. A yoked control group was stimulated during immobility, irrespective of brain state, and another control group was not stimulated at all. As a result, learning was impaired only in the group where vHC stimulation was administered contingent on dentate spikes. Our results suggest dentate spikes and/or the associated uncoupling of the dentate gyrus and the CA1 play a significant role in memory consolidation. Dentate spikes could possibly reflect reactivation and refinement of a memory trace within the dentate gyrus triggered by input from the entorhinal cortex.
Collapse
Affiliation(s)
- Miriam S Nokia
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Finland
| | - Irina Gureviciene
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Finland.,University of Eastern Finland, A.I.Virtanen Institute for Molecular Sciences, PO Box 1627, FI-70211, Kuopio, Finland
| | - Tomi Waselius
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Finland
| | - Heikki Tanila
- University of Eastern Finland, A.I.Virtanen Institute for Molecular Sciences, PO Box 1627, FI-70211, Kuopio, Finland
| | - Markku Penttonen
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Finland
| |
Collapse
|
53
|
Kitanishi T, Ito HT, Hayashi Y, Shinohara Y, Mizuseki K, Hikida T. Network mechanisms of hippocampal laterality, place coding, and goal-directed navigation. J Physiol Sci 2017; 67:247-258. [PMID: 27864684 PMCID: PMC10717435 DOI: 10.1007/s12576-016-0502-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022]
Abstract
The hippocampus and associated structures are responsible for episodic memory in humans. In rodents, the most prominent behavioral correlate of hippocampal neural activity is place coding, which is thought to underlie spatial navigation. While episodic memory is considered to be unique to humans in a restricted context, it has been proposed that the same neural circuitry and algorithms that enable spatial coding and navigation also support episodic memory. Here we review the recent progress in neural circuit mechanisms of hippocampal activity by introducing several topics: (1) cooperation and specialization of the bilateral hippocampi, (2) the role of synaptic plasticity in gamma phase-locking of spikes and place cell formation, (3) impaired goal-related activity and oscillations in a mouse model of mental disorders, and (4) a prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation.
Collapse
Affiliation(s)
- Takuma Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
- Center for Brain Science, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, 60438, Frankfurt am Main, Germany
| | - Yuichiro Hayashi
- Frontier Research Center for Post-genome Science and Technology, Hokkaido University, Hokkaido, 001-0021, Japan
| | - Yoshiaki Shinohara
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
- Center for Brain Science, Osaka City University Graduate School of Medicine, Asahimachi 1-4-3, Abeno-ku, Osaka, 545-8585, Japan.
| | - Takatoshi Hikida
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
54
|
Weitemier AZ, McHugh TJ. Noradrenergic modulation of evoked dopamine release and pH shift in the mouse dorsal hippocampus and ventral striatum. Brain Res 2017; 1657:74-86. [DOI: 10.1016/j.brainres.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 01/24/2023]
|
55
|
Abstract
Hippocampal area CA2 has several features that distinguish it from CA1 and CA3, including a unique gene expression profile, failure to display long-term potentiation and relative resistance to cell death. A recent increase in interest in the CA2 region, combined with the development of new methods to define and manipulate its neurons, has led to some exciting new discoveries on the properties of CA2 neurons and their role in behaviour. Here, we review these findings and call attention to the idea that the definition of area CA2 ought to be revised in light of gene expression data.
Collapse
|
56
|
Fung TK, Law CS, Leung LS. Associative spike timing-dependent potentiation of the basal dendritic excitatory synapses in the hippocampus in vivo. J Neurophysiol 2016; 115:3264-74. [PMID: 27052581 DOI: 10.1152/jn.00188.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
Spike timing-dependent plasticity in the hippocampus has rarely been studied in vivo. Using extracellular potential and current source density analysis in urethane-anesthetized adult rats, we studied synaptic plasticity at the basal dendritic excitatory synapse in CA1 after excitation-spike (ES) pairing; E was a weak basal dendritic excitation evoked by stratum oriens stimulation, and S was a population spike evoked by stratum radiatum apical dendritic excitation. We hypothesize that positive ES pairing-generating synaptic excitation before a spike-results in long-term potentiation (LTP) while negative ES pairing results in long-term depression (LTD). Pairing (50 pairs at 5 Hz) at ES intervals of -10 to 0 ms resulted in significant input-specific LTP of the basal dendritic excitatory sink, lasting 60-120 min. Pairing at +10- to +20-ms ES intervals, or unpaired 5-Hz stimulation, did not induce significant basal dendritic or apical dendritic LTP or LTD. No basal dendritic LTD was found after stimulation of stratum oriens with 200 pairs of high-intensity pulses at 25-ms interval. Pairing-induced LTP was abolished by pretreatment with an N-methyl-d-aspartate receptor antagonist, 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), which also reduced spike bursting during 5-Hz pairing. Pairing at 0.5 Hz did not induce spike bursts or basal dendritic LTP. In conclusion, ES pairing at 5 Hz resulted in input-specific basal dendritic LTP at ES intervals of -10 ms to 0 ms but no LTD at ES intervals of -20 to +20 ms. Associative LTP likely occurred because of theta-rhythmic coincidence of subthreshold excitation with a backpropagated spike burst, which are conditions that can occur naturally in the hippocampus.
Collapse
Affiliation(s)
- Thomas K Fung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Clayton S Law
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - L Stan Leung
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
57
|
Li SB, Du D, Hasan MT, Köhr G. D4 Receptor Activation Differentially Modulates Hippocampal Basal and Apical Dendritic Synapses in Freely Moving Mice. Cereb Cortex 2016; 26:647-55. [PMID: 25270308 DOI: 10.1093/cercor/bhu229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activation of D4 receptors (D4Rs) has been shown to improve cognitive performance, potentially affecting synaptic strength. We investigated the D4R agonist PD 168077 (PD) in hippocampal CA1 of freely moving mice. We electrically stimulated in stratum oriens (OR) or radiatum (RAD) and evoked local field potentials (LFPs). Intraperitoneally injected PD dose-dependently and reversibly attenuated LFPs for longer time in basal (OR) than apical (RAD) dendrites. High-frequency stimulation induced LTP that was stronger and more stable in OR than RAD. LTP lasted at least 4 h during which the paired-pulse ratio remained reduced. A PD concentration not affecting synaptic transmission was sufficient to reduce LTP in OR but not in RAD. A PD concentration reducing synaptic transmission reduced the early phase LTP in OR additionally and the late phase LTP in RAD exclusively. Furthermore, cell type-specific expression of mCherry in DATCre mice generated fluorescence in dorsal CA1 that was highest in lacunosum moleculare and similar in OR/RAD, indicating that midbrain dopaminergic fibers distribute evenly in OR/RAD. Together, the D4R-mediated modulation of hippocampal synaptic transmission and plasticity is stronger in OR than RAD. This could affect information processing in CA1 neurons, since signals arriving via basal and apical afferents are distinct.
Collapse
Affiliation(s)
- Shi-Bin Li
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Dan Du
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin 12101, Germany
| | - Georg Köhr
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, 60120 Heidelberg, Germany Current Address: Physiology of Neural Networks, Psychiatry/Psychopharmacology, Central Institute of Mental Health, J5, Heidelberg University, Mannheim 68159, Germany
| |
Collapse
|
58
|
Martín-Vázquez G, Benito N, Makarov VA, Herreras O, Makarova J. Diversity of LFPs Activated in Different Target Regions by a Common CA3 Input. Cereb Cortex 2015; 26:4082-4100. [PMID: 26400920 DOI: 10.1093/cercor/bhv211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Identifying the pathways contributing to local field potential (LFP) events and oscillations is essential to determine whether synchronous interregional patterns indicate functional connectivity. Here, we studied experimentally and numerically how different target structures receiving input from a common population shape their LFPs. We focused on the bilateral CA3 that sends gamma-paced excitatory packages to the bilateral CA1, the lateral septum, and itself (recurrent input). The CA3-specific contribution was isolated from multisite LFPs in target regions using spatial discrimination techniques. We found strong modulation of LFPs by target-specific features, including the morphology and population arrangement of cells, the timing of CA3 inputs, volume conduction from nearby targets, and co-activated inhibition. Jointly they greatly affect the LFP amplitude, profile, and frequency characteristics. For instance, ipsilateral (Schaffer) LFPs occluded contralateral ones, and septal LFPs arise mostly from remote sources while local contribution from CA3 input was minor. In the CA3 itself, gamma waves have dual origin from local networks: in-phase excitatory and nearly antiphase inhibitory. Also, waves may have different duration and varying phase in different targets. These results indicate that to explore the cellular basis of LFPs and the functional connectivity between structures, besides identifying the origin population/s, target modifiers should be considered.
Collapse
Affiliation(s)
| | - Nuria Benito
- Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid 28002, Spain.,Current address: Institute for Cellular and Integrative Neuroscience, CNRS UPR 3212 - 5 rue Blaise Pascal, Strasbourg 67084, France
| | - Valeri A Makarov
- Department of Applied Mathematics, Faculty of Mathematics, Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid, Madrid 28040, Spain.,N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Oscar Herreras
- Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid 28002, Spain
| | - Julia Makarova
- Department of Systems Neuroscience, Cajal Institute-CSIC, Madrid 28002, Spain
| |
Collapse
|
59
|
Axon-Carrying Dendrites Convey Privileged Synaptic Input in Hippocampal Neurons. Neuron 2014; 83:1418-30. [DOI: 10.1016/j.neuron.2014.08.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2014] [Indexed: 01/11/2023]
|
60
|
Hamelin S, Pouyatos B, Khalaf-Nazzal R, Chabrol T, Francis F, David O, Depaulis A. Long-term modifications of epileptogenesis and hippocampal rhythms after prolonged hyperthermic seizures in the mouse. Neurobiol Dis 2014; 69:156-68. [DOI: 10.1016/j.nbd.2014.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/08/2014] [Accepted: 05/17/2014] [Indexed: 01/15/2023] Open
|
61
|
Abstract
Contextual learning involves associating cues with an environment and relating them to past experience. Previous data indicate functional specialization within the hippocampal circuit: the dentate gyrus (DG) is crucial for discriminating similar contexts, whereas CA3 is required for associative encoding and recall. Here, we used Arc/H1a catFISH imaging to address the contribution of the largely overlooked CA2 region to contextual learning by comparing ensemble codes across CA3, CA2, and CA1 in mice exposed to familiar, altered, and novel contexts. Further, to manipulate the quality of information arriving in CA2 we used two hippocampal mutant mouse lines, CA3-NR1 KOs and DG-NR1 KOs, that result in hippocampal CA3 neuronal activity that is uncoupled from the animal's sensory environment. Our data reveal largely coherent responses across the CA axis in control mice in purely novel or familiar contexts; however, in the mutant mice subject to these protocols the CA2 response becomes uncoupled from CA1 and CA3. Moreover, we show in wild-type mice that the CA2 ensemble is more sensitive than CA1 and CA3 to small changes in overall context. Our data suggest that CA2 may be tuned to remap in response to any conflict between stored and current experience.
Collapse
|
62
|
Neuron Volumes in Hippocampal Subfields in Delayed Poststroke and Aging-Related Dementias. J Neuropathol Exp Neurol 2014; 73:305-11. [DOI: 10.1097/nen.0000000000000054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
63
|
Fan W, Fu T. Somatostatin modulates LTP in hippocampal CA1 pyramidal neurons: Differential activation conditions in apical and basal dendrites. Neurosci Lett 2014; 561:1-6. [DOI: 10.1016/j.neulet.2013.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 11/30/2022]
|
64
|
Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci 2013; 17:269-79. [PMID: 24336151 PMCID: PMC4004172 DOI: 10.1038/nn.3614] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 11/25/2013] [Indexed: 12/30/2022]
Abstract
The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit, entorhinal cortex layer II (ECII)→dentate gyrus (DG)→CA3→CA1 and the monosynaptic circuit ECIII→CA1 have been considered the main substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Here, by using highly cell type-specific transgenic mouse lines, optogenetics, and patch-clamp recordings, we show that DG cells, long believed not to project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells, through abundant longitudinal projections. CA2 innervates CA1 to complete an alternate trisynaptic circuit but, unlike CA3, projects preferentially to the deep rather than superficial sublayer of CA1. Furthermore, contrary to the current knowledge, ECIII does not project to CA2. These new anatomical results will allow for a deeper understanding of the biology of learning and memory.
Collapse
|
65
|
Shinohara Y, Hosoya A, Hirase H. Experience enhances gamma oscillations and interhemispheric asymmetry in the hippocampus. Nat Commun 2013; 4:1652. [PMID: 23552067 PMCID: PMC3644069 DOI: 10.1038/ncomms2658] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/25/2013] [Indexed: 11/27/2022] Open
Abstract
Gamma oscillations are implicated in higher-order brain functions such as cognition and memory, but how an animal’s experience organizes these gamma activities remains elusive. Here we show that the power of hippocampal theta-associated gamma oscillations recorded during urethane anesthesia tends to be greater in rats reared in an enriched environment than those reared in an isolated condition. This experience-dependent gamma enhancement is consistently larger in the right hippocampus across subjects, coinciding with a lateralized increase of synaptic density in the right hippocampus. Moreover, interhemispheric coherence in the enriched environment group is significantly elevated at the gamma frequency. These results suggest that enriched rearing sculpts the functional left–right asymmetry of hippocampal circuits by reorganization of synapses. Gamma oscillations act to synchronize neuronal activity and are implicated in cognitive processing. Using in vivo electrophysiology, Shinohara et al. find that gamma oscillations and associated structural changes are greater in right-sided hippocampi of enriched environment-reared rats.
Collapse
Affiliation(s)
- Yoshiaki Shinohara
- Laboratory for Neuron Glia Circuit, RIKEN Brain Science Institute, Wako, Japan.
| | | | | |
Collapse
|
66
|
Cui Z, Gerfen CR, Young WS. Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J Comp Neurol 2013; 521:1844-66. [PMID: 23172108 DOI: 10.1002/cne.23263] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 11/06/2012] [Indexed: 11/08/2022]
Abstract
The CA2 area is an important, although relatively unexplored, component of the hippocampus. We used various tracers to provide a comprehensive analysis of CA2 connections in C57BL/6J mice. Using various adeno-associated viruses that express fluorescent proteins, we found a vasopressinergic projection from the paraventricular nuclei of the hypothalamus (PVN) to the CA2 as well as a projection from pyramidal neurons of the CA2 to the supramammillary nuclei. These projections were confirmed by retrograde tracing. As expected, we observed CA2 afferent projections from neurons in ipsilateral entorhinal cortical layer II as well as from bilateral dorsal CA2 and CA3 using retrograde tracers. Additionally, we saw CA2 neuronal input from bilateral medial septal nuclei, vertical and horizontal limbs of the nucleus of diagonal band of Broca, supramammillary nuclei (SUM), and median raphe nucleus. Dorsal CA2 injections of adeno-associated virus expressing green fluorescent protein revealed axonal projections primarily to dorsal CA1, CA2, and CA3 bilaterally. No projection was detected to the entorhinal cortex from the dorsal CA2. These results are consistent with recent observations that the dorsal CA2 forms disynaptic connections with the entorhinal cortex to influence dynamic memory processing. Mouse dorsal CA2 neurons send bilateral projections to the medial and lateral septal nuclei, vertical and horizontal limbs of the diagonal band of Broca, and SUM. Novel connections from the PVN and to the SUM suggest important regulatory roles for CA2 in mediating social and emotional input for memory processing.
Collapse
Affiliation(s)
- Zhenzhong Cui
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
67
|
Koike M, Shibata M, Ezaki J, Peters C, Saftig P, Kominami E, Uchiyama Y. Differences in expression patterns of cathepsin C/dipeptidyl peptidase I in normal, pathological and aged mouse central nervous system. Eur J Neurosci 2012; 37:816-30. [PMID: 23279039 DOI: 10.1111/ejn.12096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/05/2012] [Accepted: 11/16/2012] [Indexed: 12/18/2022]
Abstract
Cathepsin C (CC) (EC 3.4.14.1, dipeptidyl peptidase I) is a lysosomal cysteine protease that is required for the activation of several granule-associated serine proteases in vivo. CC has been shown to be constitutively expressed in various tissues, but the enzyme is hardly detectable in central nervous system (CNS) tissues. In the present study, we investigated the regional and cellular distribution of CC in normal, aging and pathological mouse brains. Immunoblotting failed to detect CC protein in whole brain tissues of normal mice, as previously described. However, low proteolytic activity of CC was detected in a brain region-dependent manner, and granular immunohistochemical signals were found in neuronal perikarya of particular brain regions, including the accessory olfactory bulb, the septum, CA2 of the hippocampus, a part of the cerebral cortex, the medial geniculate, and the inferior colliculus. In aged mice, the number of CC-positive neurons increased to some extent. The protein level of CC and its proteolytic activity showed significant increases in particular brain regions of mouse models with pathological conditions--the thalamus in cathepsin D-deficient mice, the hippocampus of ipsilateral brain hemispheres after hypoxic-ischemic brain injury, and peri-damaged portions of brains after penetrating injury. In such pathological conditions, the majority of the cells that were strongly immunopositive for CC were activated microglia. These lines of evidence suggest that CC is involved in normal neuronal function in certain brain regions, and also participates in inflammatory processes accompanying pathogenesis in the CNS.
Collapse
Affiliation(s)
- Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
68
|
Yoshioka W, Endo N, Kurashige A, Haijima A, Endo T, Shibata T, Nishiyama R, Kakeyama M, Tohyama C. Fluorescence laser microdissection reveals a distinct pattern of gene activation in the mouse hippocampal region. Sci Rep 2012; 2:783. [PMID: 23136640 PMCID: PMC3491666 DOI: 10.1038/srep00783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/10/2012] [Indexed: 02/06/2023] Open
Abstract
A histoanatomical context is imperative in an analysis of gene expression in a cell in a tissue to elucidate physiological function of the cell. In this study, we made technical advances in fluorescence laser microdissection (LMD) in combination with the absolute quantification of small amounts of mRNAs from a region of interest (ROI) in fluorescence-labeled tissue sections. We demonstrate that our fluorescence LMD-RTqPCR method has three orders of dynamic range, with the lower limit of ROI-size corresponding to a single cell. The absolute quantification of the expression levels of the immediate early genes in an ROI equivalent to a few hundred neurons in the hippocampus revealed that mice transferred from their home cage to a novel environment have distinct activation profiles in the hippocampal regions (CA1, CA3, and DG) and that the gene expression pattern in CA1, but not in the other regions, follows a power law distribution.
Collapse
Affiliation(s)
- Wataru Yoshioka
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nozomi Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Akie Kurashige
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Asahi Haijima
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Current address: Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Toshihiro Endo
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Shibata
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Human Ecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryutaro Nishiyama
- Research/Clinical/Industrial Division, Leica Microsystems K.K., Tokyo 108-0072, Japan
| | - Masaki Kakeyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
69
|
Lateralization of observational fear learning at the cortical but not thalamic level in mice. Proc Natl Acad Sci U S A 2012; 109:15497-501. [PMID: 22949656 DOI: 10.1073/pnas.1213903109] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Major cognitive and emotional faculties are dominantly lateralized in the human cerebral cortex. The mechanism of this lateralization has remained elusive owing to the inaccessibility of human brains to many experimental manipulations. In this study we demonstrate the hemispheric lateralization of observational fear learning in mice. Using unilateral inactivation as well as electrical stimulation of the anterior cingulate cortex (ACC), we show that observational fear learning is controlled by the right but not the left ACC. In contrast to the cortex, inactivation of either left or right thalamic nuclei, both of which are in reciprocal connection to ACC, induced similar impairment of this behavior. The data suggest that lateralization of negative emotions is an evolutionarily conserved trait and mainly involves cortical operations. Lateralization of the observational fear learning behavior in a rodent model will allow detailed analysis of cortical asymmetry in cognitive functions.
Collapse
|